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1. INTRODUCTION

This is the rest of the letter I promised. After making the necessary apologies for its length,
the style in which it is written, and the delay in sending it let me tell you what is in it and
what is not in it. There are also one or two matters about which you should be concerned.

Of course the goal is to extend the theorem of your paper to all number fields and to
function fields. If I have made no mistakes such an extension is obtained in paragraph [7]
(Although I am not really at home with function fields I do not think I made any blunders.)
Moreover as I said I do have to assume the existence of an Euler product.

If you want to see quickly what the basic idea of the proof is you should probably concentrate
on function fields. For these only paragraphs [6] and [7] are necessary. Indeed in this letter
the only difference between a number field and a function field is that a function field has
no archimedean primes. The reason that so much space is devoted to archimedean fields
is that, at the moment, I know more about the representations of GL(2, K') for such fields.
As soon as I understand the representation theory of GL(2, K) for non-archimedean fields I
should be able to avoid the assumption, which appears in both the letter and your paper,
about the character y. Of course ignorance of the representation theory of GL(2, K) for a
non-archimedean field is not fatal. The same ignorance for an archimedean field would be.

Perhaps it will help when you read paragraph [7]if I give some idea of the relation between
the notation of the letter and your paper. Associate to the function I' of your paper the

function ( )k/2
ad — be at+b a b
Folg) = (ci + ) F(ci n d) g= (c d) € GL;(2,R).

If K = Q, as we now assume, the divisor D of the letter is just the number A of your paper.
Let € be the € of your paper and let § be a character modulo A. If (‘; 3) lies in U I?p set

6 (Z Z) — ¢(a)5(ad)

Date: 1967.
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if p|D and set

if pt D. Then, for (¢%) in U

a b\ ap, by
€<C d> -1l Ep(cp dp)
PFPoo
is the € of the letter. The relation F|y = e(y) 'F for v = (7 5) in Fy(A) is equivalent to

Fo(vg) = < [T &) ¢ Folg)

p|D

for v in Gx NG e X UP, dety > 0. Define a function ¢ on G by

0(719) = ¢(9) = Folgoo) [ [ e (90)
p|D

if v belongs to Gx NGX, g belongs to Gk, X UP, and det(gs) > 0. ¢ is well-defined and is
the ¢ of my letter. If we want to indicate its independence on § we should write ¢ = ;.
Now let me show that the assumption

Flw(A) =C i *F
implies that @ = %{Hp‘D Ep((l) —?)}906'5- Since (¢')? = 1

~fa b

& . d) =¢€'(a)d(ad) = €(a)('0)(ad)

if p|D. If g belongs to G, x U and det go > 0

(9) = ((1) AO_I)QH(XP (1))
() D) (G )

[Tt (4T (o -3)

p|D p|D
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- “lo —1 Fo(9geo) Hep(gp)
p|D p|D
ik 1 0
= 6 €p 0 —1 Soe’d(g)'



LETTER TO ANDRE WEIL, PART 2—1967 3

()

the representation m, _ is the infinite-dimensional quasi-simple irreducible representation
deducible from 7. ¢, will have to lie in L(&,__, m,_ )k. & will of course be the character

E(x) = e [[ e
b

If

k—1
(03] 2
— (sgn arg )" ai, as € RF
Qo

Let x’ be one of the x of your paper. X’ determines a homomorphism of Hp|m O, into C*.
m is of course the conductor of x. Let y’ also denote the character of K*\I which satisfies

X/ Hﬁp :X, Hﬁp
p

plm

if By, > 0 and B, € Oy for p # poe. Then x = (€0x’)~! is one of the characters of the letter.

If g is
1 L
I M
o |

P#Poo
the value of the integral of Lemma 7.3 is, in your notation,E]

1 / - omin(t— o), 54k AL
o(m) Z Y(a)/o Zn:cne ( m)t+2?.

a mod m

D00 (seh) S M0 I (s4h),

On the other hand it is equal to the product of Z(s, x) and the expression @ on page 7.2(ﬂ
If oy, is suitably normalized then, for the g chosen, this expression equals

1 —2mi e 0
(27r)5+§ H/Opxe 2 mgp(@ 1)) dov.

pER

This equals

This is equal to

1 g(xX)
(2m)st2 p(m)
Thus .
o\ *t2 k
= = — Ay — .
(5,x) (m> X(3+2>
Moreover

E(5‘,()07)‘1):% HEp(é _(1)) <%)S+§Ax(s+g).

p|D

IThe second formula from the bottom on p- 150 of your paper does not look correct.
2Added—this is pagination of the original letter.
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The letter and the paper will be consistent if

(Q—W)S+§A-sce'<m>g(>"§x—l<—A>

m g(X’

is equal to

it 10 2r\ ~*t: (~4, 0

C HE’J((O —1)) (%) ng(( 0 1>)

p|D p|D
X €(Cpoo oo Tpoo) H €(Cps Epr wp)

pID
PFPoo

This is a consequence of the following relations.

()

HG((_OA ' ?)) = H@‘l((_é“’ (f)) = \(A)§(~1)(~1)FA~

p|D ptD
G(Cpoogpooa 7Tpoo) = ik(277)28
€(Cp,&p,mp) =1if pt D and ptm

H€<vafp>wp) = % HCp (”Sp —2—1)
plm

plm P

HCP (nép _%@—1) :H(6’52)_1(—m;1)H(e’5x')_1(—m§)H|mp|23

plm plm plm plm

= ATT) me) g T (=g ) g

plm plm
= ([T etm) 3§ TIX (=mp) ™
pim ptm

=€ (m)y/(—1)m .

Of course all these formulae will be meaningless to you until you have read the letter.

For lemmas 2.4 and 4.3 I have referred to a paper of Harish-Chandra. These lemmas are
not stated explicitly in that paper. It has been a long time since I looked at that paper and I
should read it again to see that the lemmas are really implicit in it. I will do so as soon as
possible. The appendix to paragraph [7]is not relevant to the rest of the paper. You should
not read it. I include it only because the footnotes contain corrections to paragraph [o]
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With so many formulae there are bound to be some small errors. They should show up as
soon as one starts to apply the theorem.

2. REPRESENTATIONS OF GL(2,R)

In this paragraph the next Gg will be GL(2, R) and G% will be the group of matrices in Ggr
with determinant +1. U will be O(2,R) and U° will be SO(2,R). g will be the Lie algebra of
Gr and gc its complexification. g° will be the Lie algebra of G and g% its complexification.
2 and 2% will be the universal enveloping algebras of gc and g respectively. Since neither
Gr nor G% is connected it is not sufficient for us to study representations of 2l or 2°. Let

(b )

A representation m of {0,2(} on a vector space W assigns to each X in 2 a linear trans-

formation m(X) of W. It also assigns to ¢ a linear transformation 7(c). We demand

not only that X — 7(X) be a representation of 2 but also that (7‘(‘(0))2 = [, and

m(o)m(X)m(c) = w(ado(X)) for all X in A. A representation of {o,2°} is defined

in a similar manner. If 7 is a representation of {o, 2}, 7 will denote its restriction to {o, A°}
Two bases of g& are

N H RS RS
o=(50) v=(h) we(l 5

U is contained in the Lie algebra of the one-dimensional group U. If 7 is a representation of
{o,%} on W let W,, = {w € W | 7(U)w = inw}. We shall always assume that W, = {0} if
n is not an integer. The representation 7 will be called quasi—simpleﬂ if W=> W, and
m(Z) is a scalar for all Z in the centre of 2. If m; and 7y are two representations of {0, 2}
on Wi and W5 respectively mo will be said to be deducible from 7 if there are two invariant
subspaces W3 D W, of W; and 75 is equivalent to the representation of {o, A} on W5/Wj.
Similar notions can be introduced for representations of {o,A%}.
If Z lies in the centre of 2 then ad o(Z) = Z. The centre of A° is generated by

1 1 1
D:XY+YX+§ZZ:2YX+Z+§ZQ:2XY—Z+§Z2.

and

The centre of 2 is generated by D and J = (}9).
If G is any Lie group and X lies in its Lie algebra p(X) is the left-invariant vector field

defined by p(X)¢(g) = Lo(gexptX )‘ and A(X) is the right-invariant vector field defined
=0
by MX)p(g) = %gp(exp(—tX)g)‘ . The maps X — p(X) and X — A(X) extend to

representations of the complex universal enveloping algebra.

31 use the expression in a slightly different sense than Harish-Chandra.
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Let w be a continuous homomorphism of Ag, the group of diagonal matrices in Gg, into C*.
Let w; and wy be the homomorphisms of R* into C* defined by

ao=o((69))
a0- (3 9))

m;
) ,m; =0or 1, and set s = s; — s9, m = my; — msy. If Ngr is the group

o

let L(w) be the space of all infinitely differentiable U-finite functions on Ng\Gr satisfying

(0751 0
= < 0 Olg)
in Ar. If ¢ belongs to L(w) and X belongs to 2 then p(X)p also belongs to L(w). Of
course p(o)p which is defined by (p(c)¢)(g) = ¢(go) also belongs to L(w) and we obtain a
representation 7, of {o, A} on L(w).
Because of the Iwasawa decomposition Gr = NrARUY, the functions in L(w) are de-

termined by their restrictions to U". The functions ¢, with 5™ € Z, which are defined
by

and

si t

Let wi(t) = |t] (4

of all matrices of the form

2
©(g) for all

ar
e

p(ag) = w(a)

1/2

ay einﬁ

(8%

if g = (39)a( 520 mg ) and a = (% .5,), form a basis of L(w)

on(g) = w(a)

%g&n = iy,

2

(vi) Tu(J) = (s1+ s2)1

The relations (i), (ii), and (vi) are clear. To prove (iv) we observe that p(D) = A(D) and
that if ¢ € L(w),

s?—1
2
Since [U,V] = 2iV and [U, W] = 2iW, 7,(V)p, is a multiple of ¢, 2 and m,(W)p, is a
multiple of ¢,_o. It is easily seen that (m,(V)e,)(1) = (s 4+ 14 n) and (m,(W)e,)(1) =

(s +1—n). The relations (ii) and (iii) follow.

AD)p =NZ)p + %)\(Zz)gp =|—(s+1)+ %(s +1)? ¢ = ©.

Corollary.
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(i) If s —m is not an even integer the restriction of m, to A° is irreducible.
(#1) If s —m is an odd integer and s > 0 the only subspaces of L(w) invariant under A°

are
Mi(w)= Y Cgn Mw) = > Cp,

n>s+1 n< (s+1)

and M(w) = M;(w) + My(w). The spaces Ml(w), Ms(w), and L(w)/M(w) are
irreducible under 2°. The only subspace invariant under {o,A} is M(w). The
representations of {o,A°} on M(w) and L(w)/M(w) are irreducible.

(111) If s —m is an odd integer and s < O the only subspaces of L(w) invariant under A°

are
Miw)= Y Cp,, Mw)= > Cg,,

n=s+1 n<—(s+1)

ez nomey

and M(w) = M;(w) N My(w). The only subspace invariant under {o,2°} is M(w)
and the representations of A° on M(w) and L(w)/M (w) are irreducible.

This follows immediately from the lemma and the observation that an invariant subspace
of L(w) is spanned by the ¢, it contains.

If 7 is a quasi-simple representation of {¢,21°} on H then w(V)H, C H,,, and 7(W)H, C
H, 5. Consequently HY = H, and H' =Y .4 H, are invariant subspaces of H.

n even

We shall say that 7 is of type 0 if H' = {0} and that 7 as of type 1 if H° = {0}.

Lemma 2.2. Suppose 7 is a quasi-simple irreducible representation of {o,2°} on H which

is of type m. Suppose moreover that w(D) = 52771[ and s —m is not an odd integer. If n >0

let A,, be the restriction of
m(o)m(W)"

m_l(s +2k — (n—1))
to H,. If n <0 let A, be the restriction of
(o) (V)"

|kn:|61 (S + 2k — (|n| — 1))

to H,. Then A2 =1 for all n. Let A(r) be the operator H whose restriction to H, is A,.
A(m) commutes with (o) and with 7(X) if X is in A°.

Using the relations Z = @, 2X=U —i(V;W), 2Y =-U —i(V_QW) one shows easily that
vw  wv U?* VW T vz wv I U?
4 4 2 2 2 2 2

Thus, if ¢ lies in H,,,
T(V)r(W)e =7m(2D = 2iU + U*)p = (s° — 1+ 2n—n*)p = [s* — (n — 1)*]p
T(W)r(V)e =m(2D +2iU + U?)p = (s* = 1 —2n — n*)p = [s* — (n+ 1)*] .
In particular if 0 < j < |n| and ¢ € W,
(VY a(W)ytle = [s° — (n— 25 — 1)*|x (V) ’/T(W) © ifn>0
(WY (V) = [s —(In| =25 —1) ] ifn<0
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Since w(o)m(W)n(o) = n(V) and 7(o)n (V)7 (o) = (W) it follows that
nl— : 2

II |52 = (inl = 25 = 1)7]

{03! (s 20 - 1= 1) |

It is easy to see that A(m) commutes with m(c) and w(U). Thus to prove the last
assertion of the lemma we need only show that it commutes with 7(V') and 7(WW) or that
Apom(V) =m(V)A, and A, _on(W) = 7(W)A,,. We must study various cases separately.

Suppose that n > 0 and ¢ belongs to H,.

1
Ao (V)p =
w2 (V) Zié(s+2k—(n+1))

Alp = S =

m(o)m (W) x(V)p

(V) - (s* = (n Nr(o)m "
=m(V)Anp.
Ifn>2
1 n
W) A = s TV
(o) 2_(_p 2) - n—1
Z:é(s—i-Qk:—(n—l))(S (Fn 1) m (W)
= A, om(W)ep.
fn=1
(W) Anp = %W(W)W(U)W(W)w = %W(U)W(V)W(W)SO = Anam(W)e.
fn=20
Auam(W)p = 5 ——m(o)n(VVa(V)g
= T (o) (V)m(W ) = =W )(o)p = 7(W) Ao

There is no need to discuss the case n < 0 because (o)A (o) = A_,, w(o)m(W)n (o) =

7(V), and 7(o)n(V)7(0) = m(W).

Lemma 2.3. A quasi-simple representation © of {o,2} is irreducible if and only if ©° is
irreducible. If w is an irreducible quasi-simple representation of {o,2A} on H there are two
possibilities.
(i) The restriction T of w to A is irreducible and the two representations X — 7(X) and
X = w(ado(X)) are equivalent.
(7) H is the direct sum of two subspaces Hy and Hy invariant under 4. The representations
1 and 7o of A on Hy and Hy are inequivalent but o is equivalent to X — Ty (ad J(X))
and m(o)H, = Hs.

The first assertion is a matter of definition. Suppose 7 is irreducible. Either H is irreducible
under 2, when the first possibility occurs, or it is not. Suppose it is not. Let H; be a proper
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subspace of H invariant under 2 and let Hy, = w(o)H;. Since H; + Hy and Hy N Hy are
invariant under {o, A}, Hy N Hy = {0} and H = H, ® H,. If H{ were a proper subspace of H;
invariant under 2 then H| @ H}, with H) = n(0)H], would be a proper invariant subspace
of H. T, is certainly equivalent to X — 7, (ad o(X )) To complete the proof of the lemma
we have merely to show that 7; and X — 7 (ad (X)) are not equivalent. To do this we use

the following lemma which is a special case of a theorem of Harish-Chandra (Representations
of semi-simple Lie groups, 11, T.A.M.S. v. 16, 1954).

Lemma 2.4. Let @ be an irreducible quasi-simple representation of A on W. There is at least
one continuous homomorphism w of Ar into C* such that @ is of type |m| and 5(D) = 527_1[
and 7 (J) = (s1 + s2)I. Moreover if w is any such homomorphism, & is deducible from T,
the restriction of m, to 2.

As usual wy(t) = w((6 (1))), wo(t) = w(((l) (t))), wi(t) = |t
m = my—msy. Although the adjectives of the lemma have only been defined for representations
of {o,A} their meaning for representations of 2 is clear. The lemma implies that W, is of
dimension at most 1. Consequently any linear transformation leaving W,, invariant has an
eigenvector and any linear transformation commuting with 7(X) for all X in 2 is a scalar.

If 7, and X — 7 (ado(X)) were equivalent there would be an operator A such that

A7 (X)A = 7 (ad 0(X)) for all X. Thus A (X)A~2 = A(ﬁl (ada(X)))A—l — 71 (X)
and A? is a scalar. We may suppose that A2 = I. If x lies in H; and X lies in 2 then
T(X)(z @ m(0)Az) =y @ w(o)m(A)y if y = 7(X)z and 7(0)(z & 7(0)Az) = y & 7(0) Ay if
y = Az so that {x D W(U)ASL’} is a proper invariant subspace.

si [t i
(ﬂ) , S = 8 — S, and

Lemma 2.5. Suppose 7 is an irreducible quasi-simple representation of {o, A} on H. There

is a continuous homomorphism w of Ar into C* such that w is of type |m|, m(D) = 82;11,
w(J) = (s1+ s2)] and, if s —m is not an odd integer, A(w) = (=1)"21. If w is any such
homomorphism and 7 is infinite-dimensional then w is deducible from .

Choose s so that w(D) = 527—1] and define s; and s, by s1 — s9 = s and w(J) = (s1 + s2)1.
Choose my to be 0 or 1 and define my, which is 0 or 1, by the condition that 7 is of type
|m| if m = my — mgy. If s —m is not an odd integer A(r) is defined and commutes with 7 (o)
and all 7(X). By the previous two lemmas H,, is finite-dimensional. Consequently A(7) is a
scalar. Since A%(w) = I, A(w) = +1. Choose my so that A(r) = (—1)™21. If s —m is an odd
integer mo may be chosen to be either 0 or 1. It follows from Lemma 2.1 that if s —m is not
an odd integer then A(m,) = (—1)™21.

Suppose first that s — m is not an odd integer. Lemmas 2.3, 2.4 and the corollary to
Lemma 2.1 imply that 7, the restriction of 7 to 2, is irreducible and equivalent to 7.
Let B be a map from H to L(w) such that Br(X) = m,(X)B for all X. I claim that

Bn(o) = m,(0)B. It is enough to verify that Bw(o)x = m,(0)Bx for x in H,. Clearly
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BA(r) = A(r,)B. Since A%*(w) = I, Br(o)x = Br(o)A%x. If n > 0

m(o)xr = Br(o)A(m)w(o)m(W)"x
Bn(o) s+ 2k — (n—1))
bA(Tr)ﬂ'(W)nx
42k — (n—1))
A(my)mo(W)" B
s+ 2k—(n—1))
= m,(0)Bx
and if n <0
Br(o)A(m)m(o)m(V)"lg
Br(o)x =
(o) i~ 1<3+2k_(|n|_1))
_ BA(W)W(V)\nIx
Lt (s 4+ 2= (0l = 1))
_ A(m,)m, (V)" Bx
i 1<$ +2k — (In| — 1))
= m,(0)Bz.

If s —m is an odd integer and 7 is infinite-dimensional it follows from Lemmas 2.3, 2.4 and
the corollary to Lemma 2.1 that H = H; @ Hy. Let V/ O V" be subspaces of L(w) invariant
under 2 such that 7; is equivalent to the representation of 2 on V’'/V”. Let W’ be the
intersection of all subspaces of L(w) which contain V' and are invariant under {o,}. Let
W" be the union of all subspaces of L(w) which are contained in V" and are invariant under
{o,2}. By the corollary to Lemma 2.1 the representation 7, of {o,A} on W = W'/W"
is irreducible. By Lemma 2.3, W is the direct sum of two subspaces W; and W5 invariant
under 2. We may suppose that the representation of 2l on W is equivalent to 7. Let B; be
a map of H; to Wy such that Byn(X) = 7,(X)B; for X in 2. Let By = 7,(0)Bi7(0) and
set B = By @ By. It is immediate that Br(o) = 7,(0)B and Br(X) = 7,(X)B for all X.

It is not difficult to see that every finite-dimensional representation of {o, 2} is deducible
from some 7,. As a consequence A(7) can be defined by the formulae of Lemma 2.6. If 7 is
deducible from 7, then A(w) = (—1)™21.

Corollary. Suppose A(D), A(J), and m, which is to be 0 or 1, are given numbers. Let \(D) =

52_1 . If s —m is not an odd integer there are two irreducible quasi-simple representations m

of {a A} of type m for which m(D) = XN(D)I and w(J) = X\(J) = A(J)I. For one A(m) =1
and for the other A(w) = —I. If s — m is an odd integer there are three such representations.
One is infinite-dimensional. The other two are finite-dimensional. For one of these A(m) =1

and for the other A(m) = —1I.

Since s is not unambiguously determined neither is A(7). However once a representation
from which 7 is deducible is specified s can be taken to be s; — s5. Such a choice was implicit
at various places in the preceding paragraph.
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3. THE LOCAL FUNCTIONAL EQUATION FOR GL(2,R)

If 7 is an irreducible quasi-simple representation of {o,2(} and m; is a representation of
{o,} on W we shall say that 7 is contained in 7y if there is an invariant subspace V' of W
such that the restriction of m to V' is equivalent to m. We shall say that 7 is contained at
most once in m if there is at most one such subspace. If V' were another such subspace
either VN V' = {0} or V= V"; thus to show that 7 is contained at most once in 7; one has
merely to show that two such subspaces must have a non-zero element in common. Similar
notions can be introduced for representations of {o,2°}.

If n is a continuous homomorphism of Ag into C* let L(n) be the space of all infinitely
differentiable U-finite functions on Gr satisfying ¢(ag) = n(a)p(g) for all a in Ag. If ¢ lies
in L(n) so does p(c)p and p(X)p for X in 2. Thus we have a representation p(n) of {o, A}
on L(n).

Lemma 3.1. No irreducible quasi-simple representation of {o,2} is contained more than
once in p(n).

Let 7 be an irreducible quasi-simple representation of {0, 2} and let 7° be its restriction
to {o,2°}. Suppose 7 is deducible from 7. Let L°(n) be the space of infinitely differentiable
U-finite functions on G satisfying ¢(ag) = n(a)p(g) for all a in Ag N G% and let p°(n) be
the representation of {0, A%} on L%(n). It is enough to show that 7° is contained at most
once in p°(n).

Suppose H C L°(n) and the restriction of p°(n) to H is equivalent to 7. The integers n
for which H,, # {0} are determined by 7. To prove the lemma we need only show that, for
some such n, H, is uniquely determined by 7. Let mi(t) =n((§9)), n2(t) = n((§?)), and let

£;
ni(t) = |t]" (%) with ¢; = 0 or 1. If ¢ lies in H,, set ¢(z) = ¢((§¢)); then
w(g) = n(a)i(z)e™

B 1 =z cosf sinf
g=%%p 1 —sinf@ cos6

with a in Ag N G%. Consequently ¢ is uniquely determined by . Let o1 = p(V)p,
o = p(W)ep, and let ¢, and 1y be the corresponding functions on R. Since

w0 (o 1)) =it

w2 (g 1)) = rote) - 25
p(X)ep (é 313> :%

V=2Z+2X—-iU
W =2—-2X 41U

and
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one has
Py (x) = =2(z — z)% + (r+n)y
Po(x) = =2(z + 2)% + (r—n)i.

Moreover p(D)y = p(@ —U — %2> ¢ corresponds to the function
d*y dp (r—1)%-1

2x? 4+ 1)— 4y — 2rx — 2in)— + ——— ).
(x* + >dx2+(x r Zn)dac+ ) )
Consequently

& oy [(r=1)2 =8
A 22?4+ 1)—= + (4o — 2rz — 2in)— =
(A) (93+)dx2+(:1: ra m)dx+ 5 =0

Finally p(c)¢ corresponds to (—1)%2y(—x).
There are a number of separate cases to consider. If s —m is an odd integer and 7 is
infinite-dimensional take ng = |s| + 1. Then H,,, # {0} and p(W)¢ =0 if ¢ € H,,. Thus

L dy
2(x 4 1) ot (r —mno)y = 0.

This equation determines ¥ up to a scalar factor.

If s —m is not an odd integer or 7 is finite-dimensional and if m = 0 then Hy # {0}. If
v lies in Hy then 1 must satisfy equation and the condition ¥(—x) = (—1)2"m2¢)(z)
because A(m%) = (—1)"21. Thus 1 is determined up to a scalar factor.

If s —m is not an odd integer or = is finite-dimensional and if |m| = 1 then H; # {0}.
Referring to the definition of A(7) in Lemma 2.2 we see that 1 satisfies equation and
the equation

—2(z + Z)% + (r — Dap(z) = (=1)2T2s59p(—2x).

This equation implies a non-trivial linear relation between the values of 1 and its first
derivative at x = 0. Thus % is determined up to a scalar factor.
If £(z) = €™, with u # 0, is a non-trivial character of R let L(£) be the space of all
infinitely differentiable U-finite functions on Gr satisfying
: I z :
(i) w((o 1)g> = ¢(x)p(g) for all 2 in R,

(ii) if g belongs to Gr and X belongs to 2 there is a constant M such that
tpv 0 M M
p(X)e g || < M{tal™ + [t
0 t
for |t1| 2 |t2|

Let p(&) be the representation of {0, 2} on L(§).

Lemma 3.2. No irreducible quasi-simple representation of {o,} is contained more than
once in p(§).

Let 7 be such a representation and let 7 be deducible from . Let L°(&) be the space of
all infinitely differentiable U-finite functions on G% satisfying



LETTER TO ANDRE WEIL, PART 2—1967 13

() w((é “”f)g> = ¢(@)ely).

(i) if g lies in G% and X lies in A° there is a constant M such that

20
p(X)p (O t—1/2>9 < MY

fort > 1.
Let p°(€) be the representation of {7, 2%} on L°(¢). It is enough to show that 7 is
contained at most once in p°(n). The proof of this will be similar to the proof of the previous

lemma.
Suppose H is an invariant subspace of L°(¢) and the restriction of p°(¢) to H is equivalent
to V. If ¢ lies in H,, set

t
0
viy=e| (" L || ter~
ERE

Since ¢(g) = §(x)p(t)e™ if

(1)

the function ¢ is determined by 1. Let p1 = p(V)¢e, @2
corresponding functions on R*. Since

=
|
=S
»
=
== O
~|
[

cosf sind
—sinf cosf

p(W)p, and let 1)1 and 15 be the

¢
0
172
AWl |y o || =i
||
| |f/2 0 dv
A ! = 2t—
p(Z)p |t\+/2 di
¢
0
/2 )
X | Yy ] ] =t
[¢]
one has
d
Y (t) = Qtd—f — (2ut — n)y

Po(t) = Qt% + (2ut — n)1.

Moreover p(D)¢ corresponds to 2t4 (t%) — Qt% + (2nut — 2ut?)7) so that

d ( dy dy 20y, S0—1
(B) QtE (ta) — QtE + (2nut — 2u"t" )y = 5 .
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Finally p(o)p corresponds to (—1)"(—t).
Suppose that s —m is an odd integer and 7 is infinite-dimensional. Take ng = |s| + 1.
Then H,, # {0} and p(W)e = 0 if ¢ belongs to H,,. Consequently
d
Qtd—qf + (2ut — ny)y = 0.
If v is to satisfy this equation and the growth condition it must vanish for ut < 0 and be a
multiple of [¢|"0/2¢~" for ut > 0. Thus it is determined up to a scalar factor.

Before discussing the remaining cases we should comment on equation . It may be

written as
d*y) ,  nu  (1—s?)
— 4 |~ — + =0.
dt? ( t 4t2 v
Dropping the terms in % and t% we obtain the equation % —u*p = 0. As a consequence the

original equation has one solution on the positive real axis of the form t“e*““t(l + O(%))
and one of the form t”el"* (1 + O(%)) Only the first will satisfy the growth conditions. On

the negative real axis it has solutions of the forms ¢t# el“l* (1 + O(%)) and t*' e~ vl (1 + O(%))

Only the first satisfies the required growth conditions. Thus the space of solutions of
equation (B|) which satisfy the growth conditions has dimension two.

If s —m is not an odd integer or 7 is finite-dimensional and if m = 0 then Hy # {0}. If
¢ belongs to Hy then (—t) = (—1)™24)(t) because A(n®) = (—1)™21. This supplementary
condition will determine ¢ up to a scalar factor.

If s —m is not an odd integer or 7 is finite-dimensional and if |m| = 1 then H; # {0}. If ¢
belongs to H; then

dip

2t—- + (2ut — )y(t) = (= 1)t gah(—t).

This supplementary condition determines @ up to a scalar factor.
Suppose 1(t) satisfies equation (B)) with n =1 and
1 d
(t) = —(—1)m2+1{—2t%(—t) — (2ut + 1)¢(—t)}.

s
Then

%{_Qtd_w(_t) — (2ut + 1)1//(—15)}

dt
_ ﬂ{zt%(w—w) ~ (ut + 1)¢’(—t)}

S

which equals

%{t% [zt% + (2ut — 1)¢] — w [2t% + (2ut — 1)¢(t)1 }

Simplifying we obtain

o d( dy dy - 1
3o (1) o™ (2w out v
52{ dt( dt) dt+( W ub g v
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which is just ¢ itself.

Corollary. Let m be an irreducible quasi-simple representation of {o,2}. m is contained in
p(&) if and only if w is infinite-dimensional.
It is enough to show that 7° is contained in 7%(¢) if and only if 7¥ is infinite-dimensional.

Suppose H is a non-trivial finite-dimensional subspace of L°(¢). Let 7 be the representation
of {o,A} on H and let 7 be the contragredient representation. If

w0

the only eigenvalue of 7(X,) is zero because 7 is finite-dimensional. Let ¢ be the element in
the dual of H defined by ¢() = ¢(1). ¢ is not zero and

(F(X2)P) (9) = —B(1(Xa)p) = = (1(Xa)9) (1) = —iup(1)
so —iu is an eigenvalue of 7(X,). This is a contradiction.
Suppose 7 is infinite-dimensional and deducible from m,. Let L°(&,s) be the space of
(&, 8), is two. Let

functions in L°(€) satisfying p(D)p = 522—1
Lo, s,m) = > L& 9)n

n—m
3 €Z

and let p°(&,s,m) be the representation of {o, A} on L°(&, s, m).

Suppose Wy 2 W, are two invariant subspaces of LO(&,s,m) and W = Wy /W,. The
representation of {o, A} on W is quasi-simple. Choose n so that W,, is not empty. The
dimension of W, is at most two. Among all the non-zero subspaces of W,, obtained by
intersecting W,, with an invariant subspace of W there is a minimal one W?. Let T’ be the
intersection of all invariant subspaces containing W° and let W” be the sum of all invariant
subspaces of W’ which do not contain W?. W” does not contain W? and the representation
of {o,2} on V = W'/W" is irreducible.

If s —m is not an odd integer Lemma 2.1 and Lemma 2.5 and its corollary imply that
Vi, # {0} if 25™ is an integer. Because the dimension of L°(¢, s),, is two we conclude that there

is no chain L°(¢,s,m) 2 Wi 2 W, 2 {0} of invariant subspaces. The operator A(p°(¢, s, m))
is defined and L°(¢, s, m) is the direct sum of LT = {gp ‘ A(p°(&, s,m))p = gp} and L~ =

{gp ) A(po({’, s,m))cp = —go}. We have seen that neither of these is empty. Consequently

they are both irreducible and the corollary to Lemma 2.5 implies that the restriction of
p°(&, s,m) to one of them is equivalent to 7°.

If s — m is an odd integer the same kind of argument shows that there is no chain
L&, s,m) 2 Wy 2 Wy 2 Ws 2 Wy 2 {0} of invariant subspaces. As a consequence
LO(&,5,m) must contain an invariant 1rreduc1b1e subspace. The restriction of p°(¢, s, m)
to this subspace will be equivalent to 7° which is the only infinite-dimensional irreducible
representation deducible from 70,

We return to the study of the functions ¢ (¢). The Mellin transforms

0 (z) = | W@t dt
RX

07 ()= | W(t)(sgnt)|t|"~" dt
R
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are defined for Re z sufficiently large. Equations are equivalent to the difference equations
[(22+1)? = *]07(2) + 4nub~ (2 + 1) — 40T (2 +2) =0
(22 +1)? = *]07(2) + 4nub™ (2 + 1) — 40~ (2 + 2) = 0.

If, as before, 1 corresponds to ¢, ¥, corresponds to ¢1 = p(V)p, and 1y corresponds to
o = p(W)p let 6 and ;" be the Mellin transforms of ;. Then

07 (2) = —2207(2) —2uf~ (2 + 1) + nf*(2)

© 0, (2) = =220 (2) —2uft (2 + 1) + nb (2)
03 (2) = =220 (2) + 2ub~ (2 + 1) — nb*(2)

5 (2) = —2207(2) + 2ub™ (2 + 1) — nb~ (2).

If ¢ is replaced by p(o)¢ then 67(z) is replaced by (—1)"6"(z) and 6~ (z) is replaced
by (=1)"T107(2).

If 7 is an infinite-dimensional irreducible quasi-simple representation of {o, A} let L°(¢, )
be the unique subspace of L°(¢) which transforms according to 7.

Lemma 3.3. Suppose 7 is an infinite-dimensional irreducible quasi-simple representation
of {o,A} which is deducible from 7. If L°(&,m), # 0 let 6 (z) and 6, (2) be the Mellin
transforms corresponding to some non-zero element in L°(&,7),,.

(i) If s —m is not an odd integer, m = 0, and my = 0, then

2\ [z+2i+2 z4+ L
eg(z):%(m) r( : 2)r( : 2>

0, (2)=0

2\° [z+i+% z+i-%

Gj(z)zoq(m) zF( ; 2>F< ; 2)
z 3 4 s 3

05 (2 )—Qalsgnu(| |) F(%)F(%

(i) If s —m is not an odd integer, m =0, and my = 1, then

0y () =

~ 2\ [z+2i+2 z4+ L
ot = () (5 ()
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(#1) If s —m is not an odd integer, |m| =1, and my = 0 then

somnl (4
9;<>—%sgnu(|2|)}(z+ bs >F< 2

() If s — m is not an odd integer, |m| =1, and my = 1 then

9?()—71(|i‘)zl“<z+i+ )r(zJF%_%)
91_(2)27188;HU(%)ZF<Z+ b >F<

(v) If s —m is an odd integer and ng = |s| + 1 then

5
Oral) = |u|zi’;°r< ot |2’)

. Jo ls|
0,,(2) = uF sgnuF<z+ 5 + = 5

The letters ag, a1, Bo, B1, Yo, V1, 0o denote constants.

4

)

DO [N

If s —m is not an odd integer and m = 0 the supplementary conditions on 7 (z) and 6 ()
corresponding to A(n%) = (=1)™21 are 67 (2) = (—1)™207 (2), 0, (z) = (=1)™2*10; (2). The
first and second functions in parts (i) and (ii) of the lemma satisfy these conditions as well
as the difference equations. Taking the inverse Mellin transform we obtain a function ¥ (t)
which satisfies the growth condition as well as the differential equation . The function

defined by (g) = £(w)ib(t) if
(1 =z \t|+/2 0 cost sinf
9=\0 1 0 It\+/2 —sinf cosf

will lie in LO(&, s,m)o. Moreover A(p°(§,s,m))p will equal (—1)™2¢ so that ¢ will lie in
L°(&, 7). Thus the first two equations of parts (i) and (ii) are valid. The last two can be
obtained from the first two by applying relations .

In the first four cases 7 is equivalent to m,. It follows from Lemma 2.5 that 7 is equivalent

(5 0) (5 2)

Replacing w by w interchanges cases (iii) and (iv) so we need discuss case (iii) alone.



18 LETTER TO ANDRE WEIL, PART 2—1967

|ul 2 2

all the lower signs) into the expression [(2z + 1)? — s2]6(z) — 4u?0(z + 2) one obtains

2z +1)% — §* 3 1
%—2(2—#513)(2—1—5?5)

z+1 S s
><|u|(|2|) +F(z+ii§>r<z+i$§>
u
which equals
z+1 1 S 3 s
H)+:s4+32 H+:2F2
—4u sgnu<| ’> F<(Z+ );2 2)p<(z+ );—2:|:2>

Consequently the functions of part (iii) satisfy the difference equations. The supplementary
conditions on 67 (z) and 67 (2) corresponding to the relation A(w) = I are

sOF (2) = 2201 (2) — 2uby (2 + 1) + 6] (2)
—s07 (2) = 2207 (2) — 2ub] (z + 1) + 07 (2).
These will be satisfied by the functions of part (iii) because

z 4+ Llxs L34
(2z+1F5s) r(:Z 2 ¥ 3 p(Zrz=s
o 2 2
= 2usgnu ZHF (Z+1)+%i§ r <Z+1)+%:F%
H 2 2 '

The formulae of part (iii) can now be proved in the same way as those of parts (i) and (ii).
The simplest way to prove part (v) is to appeal to the explicit form for the corresponding
function 1 (t) found during the proof of Lemma 3.2.

z ) s lrs . .
Substituting the function <l> r <Z+2i2)f‘( +QJFQ) (taking only all the upper signs or

Lemma 3.4. Suppose ¢ (t) corresponds to ¢ in L°(€,7), and 7 is deducible from m,,.
(i) If s —m is not an integer, m = 0, my = 0 then, in a neighbourhood of 0, ¥(t) has a
convergent expansion of the form

Itz Zaptp Zb .

(i) If s —m is an even integer, m =0, and mgy = 0 then, in a neighbourhood of 0, ¥(t)
has a convergent expansion of the form

17573 apt? + (loglt)t 2 Y b7,
p=0 p=0

(#i) If s —m is not an integer, m = 0, and my = 1 then, in a neighbourhood of 0, 1 (t)
has a convergent expansion of the form

o0

(sgnt)]t] 5D ayt” + (sgnt)ft| = Zb )

p=0
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(iv) If s —m is an even integer, m = 0, and my = 1, then, in a neighbourhood of 0, ¥ (t)
has a convergent expansion of the form

(sgnt) |t| Zaptp (sgnt) |t\ log|t| Zb tP.

(v) If s — m is not an integer, |m| =1, and my = 0 then, in a neighbourhood of 0, 1 (t)
has a convergent expansion of the form

o0

(sgnt)]t] 5 D apt” + [t 75 Zb )

p=0
(vi) If s —m is an even integer, |m| =1, and mg =0 then, in a neighbourhood of 0, ¥(t)
has a convergent expansion of the form

\72%#’ (sgnt)[t| = 3 log\t|Zb t?

p=0
if s is positive and one of the form

(sgnt)|t| Zaptp+ it~ log|t|Zb t

if s is negative.
(vit) If s —m is not an integer, |m| =1, and mg = 1, then, in a neighbourhood of 0, 1 (t)
has a convergent expansion of the form

15 apt” + (sgnt)|t] 72 thi’
p=0

(vigi) If s —m is an even integer, |m| =1, and ms = 1 then, in a neighbourhood of 0, ¥(t)
has a convergent expansion of the form

o o0
(sgnt)t] 727 > at” + [t 5 loglt] D b,t”
p=0 p=0

if s 1s positive and one of the form

o
|t\% Zaptp (sgnt)[t| =2 log|t| Zb t?
p=0

if s is negative.
(ix) If s —m is an odd integer then 1(t) is zero unless nut > 0 and in this region (t) has
a convergent expansion of the form

[s] >

s|+1

2 E attp.
p=0

We know that if v (t) corresponds to ¢ then 2t% — (2ut — n)1y corresponds to p(V)ep,
2t‘i—f + (2ut — n)Y corresponds to p(W)p, and (—1)"(—t) corresponds to p(o)ep. Because
each of these operations take a function with an expansion of one of the given forms to a
function with an expansion of the same form and 7° is irreducible it will be enough to show
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that there is at least one n for which the lemma is valid. If s —m is not an odd integer we
shall take n = |m| and if s —m is an odd integer we shall take n = |s| + 1.

The indicial equation of the equation does not depend on n. It is (2A —1)2 —s* =0
and has the roots A\ = 5+1 , Ay = LH with difference Ay — Ay = s. If n = 0 the series

th Do Cpt?s t >0 satlsﬁes the equatlon if and only if

[( (N +p)—1) —s}cp—élucp 9.

Thus if s is not an integer ¢ (¢) has an expansion of the form

Z bopt®?

valid for ¢ positive and close to 0. If s is an even 1nteger one of the two linearly independent
solutions given by the method of Frobenius must contain a logarithmic term because it will
not be possible to solve these equations recursively when J; is the smaller of the roots. Since
the equation is invariant under the substitution ¢ — —¢ the logarithmic solution must be of

the form
—|s|+1 > |s]+1 >
£ Y et +t 2 logt Y dyt™

p=0 p=0
and 1 (t) has an expansion of the form

s -
—|s|+1
2 Y agyt™

p=0

o0

£ gt

p=0

2P

valid for ¢ positive and close to 0. Cases (i) to (iv) of the lemma follow immediately because,
since n = 0, 1(t) is even in the first two and odd in the second two.
Just as in the previous lemma, (vii) and (viii) are redundant since they are covered already

by (v) and (vi) which we now treat. If n =1, e > peo &ty t > 0, satisfies equation (B if
and only if

1

5 [(£s + 2p)* — 5%] ¢, + 2ucy—1 — 2u’cy s = 0
or

(+2ps + 2p*)c, + 2uc, 1 — 2uPc, 5 = 0.
For convenience let ¢, = 0 if p < 0. If s is not an integer choose Co and deﬁne ci inductively
by (£s+ 2p)c + 2uc ~y = s(=1)P¢E or, equivalently, (£s + p)cf + uc,_; = 0 when p is
odd and pc + uct »—1 = 0 when p is even. This equation will be satisfied for all p if cp 0
when p is negatlve If p is odd

(£ps +p°)cy +ucy_y —u’cy, = —u [(p — 1), + ucf;J =0
and if p is even
(£ps + p*)c; + uc, 1—u2cizz—u[(j:s+( —1))cpy + uc, 2}20.
Thus, if s is not an integer, ¥ (¢) will have an expansion of the form

Zc tP

thp
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valid for ¢ positive and close to zero. Since mqy =0

—sy(—t) = Qt% + (2ut — 1)9(t).

The expression

d S o S s
QT P+ (2ut — 1) Y et
p=0 p=0

dt
is equal to
75 Z [(:I:s +2p)c, + 2uc;,t_1} = dst 2 Z oy (—t)P.
p=0 p=0
Case (v) of the lemma for n = 1 follows immediately.
Since
d dA
—(logtA(t)) =t—1 A
tdt(ogt (1)) t—logt + (t)
d( d d ( dA dA
t— | t— (logtA(t =t—|(t— 2t—
dt(dt<og ())) dt( dt)+ dt
the series

—=Isl > [s] >
Y ot T logty dytt, >0,

p=0 p=0
will satisfy equation (B|) when s is an odd integer and n = 1 if and only if

[(Is] +2p)° — 5]
2

dp + 2udy,—1 — 2u*d, 5 =0
or

(|slp +p2)dp +ud,  —u’d, 5 =0
and

(=lslp +p*)ep + ucy1 — wcp o + (=[s| + 2p)dps = 0.
Choose ¢y and ¢j; and define the other coefficients by (|s| + 2p)d, + 2ud,_; = (—1)?|s|d, or
pdy, + ud,—y = 0if p is even and (|s| + p)d, + ud,—; = 0 if p is odd and
(=Is| + 2p)cp + 2ucy_1 + 2d,j5) = (—1)P s,
or
pep +ucy—1 +dp_1s =0
if p is even and
(_|5| —i—p)cp + ucp—1+ dp—5) =0

if p is odd. Take ¢, and d, to be 0 if p is negative. These equations are consistent and
determine the remaining ¢, and all d, uniquely. We have already seen that the coefficients d,
will satisfy

(Islp + p*)dp + udy—1 — w’dy—o =
If p is even

(=Islp 4+ p*) ey + ucy—1 — u2cp_n + (—[s| + 2p)d,s
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equals
[|3| —(p— 1)}“%—1 - “2010—2 + pdy—js) = udp_ |51 + <|S| + (p - |3|)>dp*\5\ =0
and if p is odd
(—|s]p + pz)c,, + ucy—1 — u20p_2 + (—]s\ + 2p)dp_‘s‘
equals
—u[(p —1)ep1 + ucp,l} + (p — \3\)dp_|s‘ = udy_|s-1 + (p — ]3\)dp_‘s| =0.

Thus if ¢y and ¢, are suitably chosen

[o.¢] o
—s| Is|
W)y =177 ettt s logty dyt?
p=0 p=0
for ¢ positive and close to 0.
Since my =0

—sth(—t) = Zt% + (2ut — 1)9.

The right hand side is equal to

Nty A
p=0 p=0
with
c;, = (—|s| + 2p)cp + 2ucy—1 + 2d,_ s = —|s|(=1)7c,
&, = (|s| + 2p)dy, + 2ud,—1 = (—1)?|s|d,.

Case (vi) of the lemma follows.
The assertion for case (ix) with n = |s| + 1 was established while proving Lemma 3.2.
If ¢ () is the function of the lemma and x is a real number the functions

0-0— — itx t z—ld
)= [ e ar

0 (z,2) = / e () [t|F " sgnt dt
RX
are defined for Re z sufficiently large.

Lemma 3.5. 0*(z, 1) are meromorphic in the whole complex plane and bounded in regions
of the form |Reu| < constant, |Imu| > constant > 0

. . . + Z,T
(i) If s — m is not an odd integer, m = 0, and ms = 0 then (Z+%+9§ (2, )Z+l_§ and
o) ()
0~ (z,z) . .
r(”%*%)r(”%’%) are entire functions of z.
.. B . . _ _ 0+ (2,2)
(i) If s —m is not an odd integer, m = 0, and mg = 1 then F(”%%)F(”%’%) and

F(”%*%)r(”%_%) are entire functions of z.
2 2
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. . _ o 9+(Z,I)
(ii) If s —m is not an odd integer, |m| = 1 and mqy = 0 then r(”;*%)r(”%’%) and
2

0~ (z,z)

E2E

S
2

roltes

) are entire functions of z.

— —~ are entire functions of z.
e

(v) If s —m is an odd integer then F(zi(ff)s

) are entire functions of z.
2 2

Let m(t) be an infinitely differentiable function with compact support on the line which is
even and equal to 1 in a neighbourhood of 0. 6%(z, z) is the sum of

0+ (2, 2) = / et (t) |t (sgnt) 2 m(t) dt
RX
and
/RX ()t (sgn )5 (1 — ml(t)) dt.

The second integral is an entire function of z which is bounded in vertical strips. Thus it
is enough to prove the lemma with 0= (2, x) replaced by 6*(z,z). The function e (t) +

1+1

(—1)72 e ")(—t) is, for t > 0, a linear combination of convergent series of the form
t(log)* > " ept”
p=0
where « is % or %“ and 8 is 0 or 1. Given a series of this form and a real number c¢ there

is a P such that
/ t*(log t)’$ Y " ept? 27 m(t) dt
0 p=P

is analytic for Re z > ¢ and bounded in vertical strips of finite width contained in this region.
The first assertion of the lemma is a consequence of the relations

00 -1 o0
/ P () dt = ———— / T (¢) dt
0 a+p+zJy
0 —1 o0
1ot P2=1 o6 (1) dt = —/ a—+p+ 2)tPE logt — TP/ (1) dt
/0 gtm(t) (a+p+z)20[( p+2) g m'(t)

and the condition that m/(t) vanish near zero. To prove the remaining assertions one shows
that the zeros of the denominator on the right are cancelled by the poles of the I'-factor.
This is easy but the various cases of Lemma 3.4 must be examined separately. I leave it to
the reader to do so.

If 1 is any homomorphism of Ag into C* then 7 will be the homomorphism defined by

(5 0) (5 2))
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If ¢ is a homomorphism of A into C* such that
a 0 a 0 .

t
1/2 .
¢l (" ) = [t|*(sgnt)’,

‘t|1/2

and z and ¢ are defined by

with £ = 0 or 1, then ( is determined by z and ¢ and we shall sometimes write ¢ = ((z, ¢).

Lemma 3.6. Suppose m is an infinite-dimensional representation of {o, A} and m is deducible
from . Let L(§, ) be the unique subspace of L(§) which transforms according to w. If ¢
belongs to L(&,m) and ( = ((z,/) the function

oa.cor= [ o (6 D)a)e( (0 1))

1s defined for Re z sufficiently large.
(i) If s —m is not an odd integer set

¥(9.C.¢) = S
) S F<Z+mle+é+§>r(z+mzf|+§;>

2 2

(i) If s —m is an odd integer set

@/(g) <-7 ()0) — ®(‘g7<—7 ()0)

F(z—i—%—i—%l)

Then ®'(g,((z,£),¢) is an entire function of z and ®(g, (2, (), ¢) is bounded in regions of
the form |Re z| < constant, |Im z| > constant > 0. Moreover if s —m is not an odd integer

B A G

and if s —m is an odd integer

(o) (2 o) () oo

It is enough to prove the lemma for ¢ in L(¢,m),. If @ is the restriction of ¢ to G% let
¥ (t) be the function on R* corresponding to ¢. Then, if

_(ti O 1 z cosf siné
9=\o taJ\O 1)\ —sinf cos@)’
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gp((é (1]) g) is equal to

iy ttyty|'/ sgnt 0 b s
i |tt1ta]'/* sgnty e o L) eine
0 |tt1ta|'/ % sgnty to

t 0 t 0
A6 (6 1)
tty | t2 1/2
1 t1 0 eittt—luz 1o |ty 0 it inf
C 0 ts € 2 C 0 t_21/2 1/J E €

tty
and @(g, C(z,0), gp) is equal to
¢! ((% tg))@*(z,ux)eme, if £ =0,
¢! ((1501 g))@‘(z,uac)em@, if ¢ =1.

All assertions of the lemma except the functional equations follow immediately from Lemma 3.5.

Thus

is equal to

If n = ¢! the maps
o= ®(9,(,9),

w—+¢“(<_? é)gﬂ;p>

are {0, 2} invariant maps of L(&, 7) into L(n). According to Lemma 3.1 one must be a scalar

multiple of the other. To see what the multiple is we choose g = 1 so that ®(g, Z , ) is equal
to 6, (—2) if £ — |m| = 0 and is equal to 8, (—z) if |¢ — |m|| = 1 and choose n in such a way

that Lemma 3.3 can be applied.
0 1
®<<_1 0)943@)

is equal to ()"0} (z) if £ =0 and to (i)"6, (z) is £ = 1. In the first column below we write
the values of ®'(1, (, ) for the values of n and ¢ in the last column; in the second column we

write the values of @’ (( 9 (1))( , go). Comparing them we obtain the lemma. In all but the
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last line s — m is not an odd integer.

'(1,(, ) <I>’<<_(1) é)@s@)

oz()(l—qi')_z ao(%)z (=0, m=0, my=0,n=
20 sgnu(rzl>_z —20 sgnu(%)z (=1, m=0, my=0,n=
20, sgnu<|—3|>_z —20 sgnu(%)z (=0,m=0, m =1 n=2.
50(%)_z 50<|i—‘>2 (=1,m=0 me=1,n=
Yo sgnu(%)ﬂ Yo (%)Z =0,lm|=1, my=0,n=1.
%(ﬁ)—z Yo sgnu(%)z C=1,m|=1, my=0,n=1.
" sgnu(%)ﬁ i (%)Z (=0,lm|=1 my=1n=
%(%)_z i sgnu(%)z (=1, |m|=1 my=1n=

If s —m is an odd integer the two values are

—z+n/2 ]
do (ﬁ) (sgnu)’ (z)|5|+150(ﬁ
z4n/2

>z+n/2
—z4n/2
(50< 1 ) (sgnu)‘~? (i)|5|+1(50<ﬁ> (sgnu)® n=|s|+1, |m|=1.

(sgnu)® n=|s|+1, m=0.

ful
4. REPRESENTATIONS OF GL(2,C)

In this paragraph and the next G¢ will be GL(2,C) and G will be SL(2,C). U will be
the group of unitary matrices in G¢ and U° will be U N GY. Gc and G will be considered
as real Lie groups. The Lie algebra of G¢ is

o=t =00

its complexification is

The Lie algebra of G is

its complexification is

0 a b a v
dc = e d) T \¢ @

a—l—d:a'—I—d':O}.
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The Lie algebra of U is

its complexification is

w={ (0 0o o)}

Finally u® = un g% and ug = uc N g%. When there is no risk of confusion an element of uc
will be identified by giving its first component. N
Let V,, be the space of binary forms of degree n and let V,, be its dual. We write the

elements of V,, as
Ylay) = Y grasthysh

|k|<n
5—keZ

¥* will be called the kth component of . If |k| > 5 let Y* = 0. Let o, be the representation
of UY on V,, defined by

Tn <i 2)7#(@3 y) = ¥ (azx + cy, br + dy).

Denote the corresponding representation of uly by o, also. If 11 = 0,(99)¢ then ¢! =
(2 +k)y* = cpyp* where ¢ # 0 for =% < k < 2 and if ¢» = 0,(§ )¢ then TAEES
(% — k:)wk = dp* where d;, # 0 for -5 <k <3,

Let 2 be the universal enveloping algebra of gc and 2A° that of g&. If 7 is a representation
of 2 on a vector space W then 7° will be the restriction of 7 to A°. Let W,, be the set of all
vectors in W which transform under ug according to o,,. m will be called quasi—simpldﬂ if

() W=, W

(ii) If Z lies in the centre of 2 then w(Z) is a scalar. Suppose m; and 7 are two
representations of 2 on W; and W, respectively. my will be said to be deducible
from 7 if there are two invariant subspaces W3 and Wy of W, with W3 2 W, and m
is equivalent to the representation of 2 on W3/Wy. The same notions will be used for
representations of A°.

Set
0 1 00 1 0
(o) v=() 76 )
The centre of the universal enveloping algebra 2A° is generated by

D:(X@O)(Y@O)+(Y@O)(X@O)+%(Z@O)Q
:Z(Y@O)(X@O)JrZEBOJr%(Z@O)Q
:2(X@O)(Y®O)—Z@O+%(Z@O)2

41 use the expression in a different way than Harish-Chandra.
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and
D=0aX)0aY) +(O@Y)(O€BX)+%(O@Z)2
1

:2(0@Y)(OEBX)+(O@Z)+2(0@2)2
:2(0@){)(0@91/)—(O@Z)Jr%(O@Z)?.

The centre of 2 is generated by D, D', J = ({{)®0,and J =08 (}9).
Let w be a continuous homomorphism of the group Ac of diagonal matrices into C*. If
Ng is the group of matrices of the form (%) let L(w) be the space of infinitely differentiable

U-finite functions on N¢\Ge satisfying 1 (ag) = ‘g—;‘w(a)go(g) ifa= (% o) isin Ac. The
restriction of p to L(w) defines a representation m, of 2 on L(w). Define w; and wy on
C* by wi(t) = w((§9)) and wa(t) = w((§9)). Let wi(t) = [t]* (\tt_ll) " and set s = nzs2

mi—ms

m =

Lemma 4.1. L(w), # {0} if and only if 5 — |m| is a non-negative integer and then L(w)y
is irreducible under uy. Moreover

mﬂ));%], ww(J):{Slg—SQ—i(@)}l,

—-—m)? =1
(D) = %I, mw(J') = {81 ;— > +z<@) }]_

The first assertion is an immediate consequence of the Iwasawa decomposition and the
Frobenius reciprocity law. Set

10\ (1 0 i 0 —i 0
2= 3o ) 2= %) (6 0)

01 0 1 0 1 0 —2
%= (0 0) (0 o) =0 o) (o o)
0 0 0 0 0 0 0 0
=i o) (1 o) n=( o) (% o)
0 -1 0 -1 0 1 0 —
w=(1 o) (i o) wa= (3 o) e (% W)
Then
1 — 17 A 7
Z@oleZQ, O@Z:#,
XEBOZX1_27;X2, OEBXZXI—;DQ,
yao— -2 vay = 2t
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It is clear that p(D) = A(D), that p(D") = A(D') and that A\(X;)p = 0 if ¢ belongs to L(w).
Thus

p(D)p = XNZ @& 0)p + %/\((Z ©0)%)¢p

p(De = \0® Z)p + %/\((0 ®Z)) .

Combining this with the relations A(Z1)p = —2(s + 1)@ and A(Z;)¢ = —2imgp one obtains
the asserted values for m,(D) and 7, (D). The other two relations of the lemma are very
simple to verify.

Lemma 4.2. If neither —s — 1 — |m| nor s — 1 — |m| is a non-negative integer then w,, is
irreducible. If —s —1 —|m| = " — |m| is a non-negative integer then

Y. Lwh=Mw)
Im|<n<no
5—|m|€Z
is invariant and the representations of A on M(w) and L(w)/M(w) are irreducible. If
s —1—|m| =% — |m| is a non-negative integer then

> Lwh = M(w)
n>ngo
2 _|m|eZ
is invariant and the representations of 2 on M(w) and L(w)/M(w) are irreducible.

Set
U+:X@—Y, U=7&—Z7, U =Y ®—-X,
V+:XEBY, V=27Z&"Z, V- =Y o X.

These six elements form a basis of g&. U™, U, and U~ form a basis of ul. The space
pc spanned by VT,V and V™ is invariant under the adjoint action of u and the map
VT — 2%V = =22y, V- — —y? extends to a ug-invariant map of pc to V5. The map
W®ep = m,(W)p, W € pc, ¢ € L(w), extends to a ug invariant map of pc ® L(w),
into L(w). It follows from the existence of the Clebsch-Gordan series that the image lies
in L(w)p—2 + L(w)n + L(w)ni+2. To prove the lemma all we need do is show that the image
contains a non-zero element in L(w),» if and only if s # —(2 + 1) and that if 2 > |m| it
contains a non-zero element in L(w), s if and only if s # 3.

Let 2 —k € Z. If [k| < 2 let §(z,y) = 2 tFy2 =% and if k] > 2 let 6y (z,y) = 0. If |k| < 2

let 74 be the element of V, such that ~ (Zj wiﬁﬂy%—j) = ks if k| > 2 let 4y = 0. If
g=(}%)au witha = (4 ) in Ac and u in U° set

aq

w(a)ymon(w)de k| <
(&%)

Qon,k(g) =

|3

The functions ¢, ; form a basis of L(w),.
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Using the method described on pp. 129-130 of Weyl’s book on quantum mechanics to
decompose pc ® V,, or V5 ® V,, into a direct sum of irreducible subspaces one finds that

<g + k:) (g +k+ 1)/)(V+)90n,k—1
_ <§ + k4 1) <g —k+ 1>p(\/)g0n,;C

2
_ (g _ k) (g " 1)p(V‘)s0n,k+1

(g +k+ 1) ! (g —k+ 1> la(n, w)©niok

is equal to

and

n n
p(V)oni-1+ p(V)onk — p(V7 ) pnii1 = (5 + k- 1) ! (5 —k— 1) b(n, w)pn—2k

if |[k| < § — 1. The image contains a non-zero element in L(w),1 if and only if a(n,w) # 0

and a non-zero element in L(w),—s if and only if b(n,w) # 0. Since ,12m(1) = 1 and
Yn-2m(l) = 1if § > |m] all we need do to find a(n,w) and b(n,w) is to take k = m and
evaluate the left sides of the above expressions at 1.

Now V = 2y, VF = (X + %) —i(X - %), and V- = (3, + 1) i, - 12).
Since

,0(21)8071,]4;(1) = 2<S + 1)9071,1@(1)7
P(X1)Pn k(1) = p(X2)pnr(1) =0,

one has p(V)@a(L) = 2(s + 1)ym 7 and

0 1 _ 00
p(V+)s0n,k(1)=—7m0n(0 O>5k;; p(V )son,k(l):vman(l 0>5k.

Demr (2 —mtt a(n,w)
2 2
is equal to

_ (g+m) <g+m+1>(g—m+1> <g+m+1> (g—mﬂ)(su)
(o)) (5em)

Thus
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2
(g + 1) —m?
and

(g—i-m—l)!(g—m—1>!b(n,w):—(g—m+1> F2o>s+1) - (g+m+1)
zz(s—g).

Lemma 4.3. Suppose 7 is an irreducible quasi-simple representation of A on the vector
space H. There is at least one continuous homomorphism w of A§ into C* such that

which equals

-2

n
—+1
|:8—|—2—|— ],

21
W(D>:(s+m) I () = 51—|—52_i(m1+m2) I
2 2 2
—m)?2—1
(D) = (s —m) I m(J) = 51+52+i(m1+m2) 1,
2 2 2
and such that Hy,, # 0 for at least one ng with %> — |m| a non-negative integer. If w is any

such homomorphism then m s deducible from m,,.

The lemma is a special case of a theorem of Harish-Chandra ( Representations of semi-simple
Lie groups, 11, T.A.M.S., v. 76, 1954). Tt implies that H,, is irreducible under ug. A similar
assertion is valid for A°.

Lemma 4.4. Suppose A\(D), A\(D'), A(J), and X\(J') are four given numbers. Apart from

equivalence there are at most two quasi-simple irreducible representations of 2 satisfying
7(D)=AXD)I, =(D)=XDNI, =(J)=XJI, =(J)=NJ)I.

If there are two, then one of them is finite-dimensional.

If there is one such representation there is an w such that \(D) = %, AND') = %7

MNJ) = 81‘582 — i(mlgm”, AJ) = 51;52 +i(m1;rm2). If W’ is such that these representations are

. sh+sh, m/+m/ .
satisfied by s}, s5, m/, mj, one must have 2552 = 2222 and mdmz — 22 [ particular

m—m' = ml;mll — ngmé = my — m] is integral. The relations (s +m)? = (s’ + m’)? and
(s —m)? = (s —m/)? are satisfied if and only if one of the following holds.

i) s=4¢ m=m' (i) s=m' m=s

(ii)) s=—¢ m=—m (iv) s=-m' m=—s".

If s—m is not integral only the first two are possible. 7, and 7, are irreducible by Lemma 4.2
and equivalent by Lemma 4.3. If s — m is integral one can choose w so that s > |m|. It
follows from Lemma 4.3 that every quasi-simple irreducible representation deducible from
7 is deducible from 7,,. There are only two such representations deducible from 7, and one
of them is finite-dimensional. It is clear that Lemma 4.4 could also be formulated for 2°.



32 LETTER TO ANDRE WEIL, PART 2—1967

5. THE LOCAL FUNCTIONAL EQUATION FOR GL(2,C)

If n is a continuous homomorphism of Ac into C* let L(n) be the space of all U-finite
infinitely differentiable functions on G satisfying

plag) = nla)p(g)
for all @ in Ac. If  lies in L(n) and X lies in A then p(X)y lies in L(n) so that we have a
representation p(n) of A on L(n).

Lemma 5.1. No irreducible, quasi-simple representation is contained more than once in p(n).

Let m be an irreducible, quasi-simple representation. Suppose it is deducible from 7,
and suppose its restriction to u contains o,. If 7 occurs in L(n) then nn, = wiw, and for
the proof we may as well assume that this is the case. Let L°(n) be the space of infinitely
differentiable U°-finite functions on G satisfying p(ag) = n(a)p(g) for a in AL and let p°(n)
be the representation of 2A° on L%(n). We have to show that ¥ is contained at most once
in p°(n).

Let H C L°(n) be A -invariant and suppose that the restriction of p(n) to H is equivalent
to . There is a map ¢ — ® of H, to V,, and a function ¥(g) on G° with values in V}, such

that ¢(g) = U(g)® and W(gh) = Wg)a(k). Tet wi(t) = 1" ()", walt) = 12 ()",

12 Lo . . .
m(t) = |t|rl<|t|> , 2(t) = |t|r2<\t|> Mz = a4y let P(z) = \I’(((l) f)) U is uniquely
determined by . Let us rewrite the equations

2
(s1—52)+(m1—m)
1 221 2)_1

p(D)V = (

2 2
(s1—s2)—(m1—m2) ) 2 1

p(D) = ( ? 5 v :

Il
i<

in terms of v». D may be written as

) X1 —iXo\ (Vi—iY2\  (Zi—iZ, +1 71 —iZs\°
2 2 2 2 2
(X1 —iXe) (Ko +iXo) . (X1 —iXo) (Wi —iWa) (21— iZ) N (Zy — iZ)?

2 2 2 8
and D’ may be written as

2(X1 + ZXQ) (Yi + ZY&) (Zl —|— ZZ2 l 7 —|— ZZQ
2
(W
2

2 2
_ (Xl + ZXQ)(Xl — ZXQ) 4 (Xl -+ ZXQ)
2
It is easily seen that

1 + ZWQ) (Zl + ZZQ) (Zl + iZQ)Q
B SR 8 '

01 ox?  0y? 020Z

9 _1(9 10) 0 _1(0 10
0z 2\ 0r iy 0z 2\0x 0y

p(X%+X22)\P((1 z)) P P 0
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8w 0 0
~s500( o)

)
D) =150 (0 o)
))-

and that r = ©572 and / = —21562.

1 z
1

o

—_

p((Xl + ZXQ) W1 + ZW2

e}

—_
— N

< ?f) - (Mw _ 9y 2x8—¢).
Y
Putting everything together one obtains the equations

2
2 IV Ly zpan(o 0)—1-;{(7'—1—6—1)—1—222] O Gl

020z “0z "\1 0 0z 2
% oy (0 1\ 1 91%  (s—m)
26282_250”(0 0)+2{( K—l)—i—Qz&] zp_—Q .

There is an auxiliary equation corresponding to the relation

w(em‘ez)an (e;]e ()w) _ 62M91/1<Z)-

e
It is 5 5
v 0 .
o 8_y + Yoy, (0 —i) = il

oY _oy 1 /1 0

Since 1¥(z) is an analytic function of  and y it can be expanded in a power series

or

o0
Z 2PZ%p 4.
p,q=0

According to the auxiliary equation,

1
(p - q)¢p,q = Qﬁp,q{gl - §O'n <(1) _?) }

Thus Q/J;f’q = 0 unless p — ¢ = ¢ — k. Substituting in the first two equations one obtains

1 (s +m)?
2(p+ q + 2)y p+1,q+1 +20kwk+1q ) [(r—i—f— 1) —|—2p] pq - 9 g,q
-m)®

1 2 (s
2(17 +q+ 2) p+1,q+1 2dk¢;§,—g-}-1 + 9 [(T —{— 1) + 26]] 1];,(1 - 9 D,q
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Here 4] = 0if |j| > % and ¢, # 0 if =% < k < 4. The second equation can be used to

determine the numbers 1[)%2 inductively. Then the first can be used to determine the numbers
w;f,q for k < 3.

Let £(2) = e'®e(®2) with w # 0 be a character of C and let L(€) be the space of all infinitely
differentiable U-finite functions on G¢ satisfying

() s0(<(1) i) g> = £(2)plg).

(ii) If X € A and g € G there is a constant M such that

ti 0
(GRADISICERTED
if [t1] > |ta].

Let p(§) be the representation of 2 on L(&).

Lemma 5.2. Fvery quasi-simple irreducible representation of 2 is contained at most once

Let 7 be such a representation. Suppose 7 is deducible from 7, and the restriction of 7 to
u contains ,. Let L°(£) be the space of all infinitely differentiable U°-finite functions on G
such that

(1) ©((67)9) = &(2)elg).
(i) If X € A° and g € G¢ there is a constant M such that

tl/Q 0 u
p(X)p 0 129 < MtY fort > 1.

Let p°(€) be the representation of 2A° on L°(¢). Tt is enough to show that 7° is contained
at most once in p%(€).

Suppose H C L°(¢) is invariant and the restriction of p%(£) to H is equivalent to 7°. There
is a function ¥(g) on G with values in V,, such that H, is the set of functions of the form

U(g)®, ® € V,,. U(gu) =¥(g9)o,(u) if u € U°. Let o(t) = \D((tl/z t9/2>> fort > 0. U is

0

completely determined by . It is necessary to write the equations p(D)¥ = %\If and
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p(DU = M—l\lf in terms of 1. It is easy to verify that

1/2
p(XE + XD (to i) | = Bl
. . 2 0 . 00
p((X1 —iXo) (W) — ZWQ))\IJ 0 12 = 2tiw(t)oy, (1 0)
1/2
p((X1 + iXo) (Wi + iW,)) U <t0 t—?/Q - _2tmw(t)an(8 (1)>
2 0 o
p(Z1)¥ < 0 t-1/2 = Qta
V20 0
p(Z5)¥ (to e | = vt (é —@')'
Thus
2
1 d [ dy dvp 1 1 0 1 1 1 0
B t2|w|2w © tiwnpor, ((1) 8) _ (s +2m)zw
2
1 d [ dy dvp 1 0 1 1 0
2/,,,(2 2
! |w| b+ tiwpon, (8 _(1)) _ b 2m> b

In terms of components these equations are

(s +m)?

1[ d 2 £2]aw|?
{t—Jrk 1} Wk — |w|¢+ctzwz/1k1 -,

(A) dt

dt 2 2

Where¢j:0if|j|>§. Since ¢, # 0 for =5 < k < § and dy # 0 for —5 < k < 7 these
equations allow one to solve for all 1* in terms of ¢"/? or 1)~/

For k = 7 the second equation is

1[d n | t\w| (s — )
i . n/2 _ n/2
i3] v e = P

1 2 20,,[2 2
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which may be written as

lden/Q N ( 1 ﬁ)ldwn/z N _|’LU|2

2 dt? 2

(2+1)°
2 2 *

t dt 2 2t2

77Z)TL/Q _ (S B )2#)71/2‘

m
212

Dropping the terms in % and t% one obtains an equation with the solutions e, Thus

the given equation has one solution of the form t_“e"w“(l + O(%)) and one of the form

t*”e|w|t<1 + O(%)) Since ¥™2(t) = O(t™) as t — oo it must be a multiple of the first

solution. The lemma follows.
To find i we examine the formal solution

Yty = e MY S ant
n=0

If a_y = a_y = 0 the first derivative is

e_lw“{z —(lw|a, + (p+n — 1)an_1)t_"_”}

n=0

and the second derivative is

e_|w|t{2(|w|2an +|w|2u+2n—1a, 1+ (p+n—1)(p+n— Q)an_g)t_”_“}.
n=0
Substituting into the equation, dividing by e~*I*, and equating coefficients of t*~! we obtain
p+35=0.
For k = —7 the first of the equations is
2
1 [td¢"/2 n 1] otz Pl L (s+m)?

—n/2
2 ¥ '

dt 2 ¥

2 2
This is the equation just discussed except that —m is replaced by m. Thus if |k| = 5 then
PE(t) = t‘k‘e_‘“"t(l + O(%)) as t — 00.

During the preceding discussion we have assumed the existence of H and thus the existence
of solutions of equations which satisfy the required growth condition. We continue with
our discussion of this assumption. Since 0 is a singular point of the first kind for the first
equations of there is an N such that, for all k, ¥*(t) = O(%N) as t — 0. Thus

0% (u) = / YRt adt
0
is defined for Reu sufficiently large. These functions satisfy the difference equations
(w0 (u+2) = [(u—k+1)* = (s +m)?] 6" (u) + 2icywd* " (u+ 1)
(w0" (u+2) = [(u+k+1)* — (s —m)?]0"(u) — 2idw0" " (u + 1).
Lemma 5.3. If |k| = % then 0% (u) is a multiple of

2 “F u+1+s+|k—m| r u+1—s+|k+m|
lw| 2 2 '
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Since § > |m/| the second of the difference equations is, when k = %, just

lw|?0% (u + 2) = <u+1+3+’g—m‘) (u—l—l—s—l—‘g—l—m‘)ﬁk(u)

which is an equation satisfied by the function of the lemma. Thus the inverse Mellin
transform of that function, which is bounded by a power of ¢, satisfies the differential equation
determining 1™/? and must be a multiple of ¥"/2. A similar argument proves the lemma
when k = —

o3

Lemma 5.4. If |/m| = % the functions
0 () = 2" (iw ki%F u+1+ s+ |k—m| T u+1— s+ |k+m|
jwl* \ [w] 2 2

satisfy the difference equations. They are the only solutions of the equations for which

ey%m—-2”p<“+1+S+W%—”ﬂ>F<U+1—s+W%+"4>

o Jw 2 2

The uniqueness is evident from the form of the equations. It is convenient to treat the
cases m = 5 and m = —3 separately when verifying that they satisfy the equations. If m = %
then |w|208 (u + 2) — 2icwdi ™ (u+ 1) is equal to

2u (z’w)k_
jw] \ |w]
X {<u+1+s+g—k)(u+1—s+g+k)—2(g+k)<u—l—1+s+g—k>}

Xr(u+1+;+g—wjr(u+1—z+g+k)

= (u+1+s+g—k)(u+1—s—g—k>6§(u)

and |w|?08 (u + 2) + 2dxiw0s T (u + 1) is equal to
2 (m)"f‘?
Jw]* \ |w]
X {(u+1+s+g—k) (u+1—s+g+k> —2(%—k)(u+1+s+g—k)}

XF(u+1+s+§—k)r(u+1—s+§+k)

w3

2 2
or
(u—}-l—s—l—g—l—k) <u+1+s—g+k)9’g(u).
It is not necessary to treat the case m = —% because the equations are not changed if oF is

replaced by 0%, m by —m, and w by —w.
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Corollary. The quasi-simple irreducible representation 7 is contained in p(§) if and only if
7 18 infinite-dimensional.

It is enough to show that 7° is contained in p°(¢) if and only if 7° is infinite-dimensional.
Suppose H is a finite-dimensional invariant subspace of L°(£). Let 7 be the restriction of
p°(€) to LO(€) and let T be the representation contragredient to 7. If X, = (§ ) lies in ¢° all
the eigenvalues of 7(X,) must be zero because 7 is finite-dimensional. On the other hand if

¢ is the element of H, the dual space of H, defined by &(p) = ¢(1), ¢ € H, then

so that —izw is an eigenvalue of X,. This is a contradiction.
Suppose 7 is deducible from 7. Let TV be the set of all functions in L°(€) satisfying p(D)p =

s+m)?— s—m)2— _ m
Ctm)® =1, p(D)p = E=m =L and gp(g( é_?)) = (~1)*™p(g). If 0 = {n| W, # {0}}
then W = > _ W,. Combining the results of the previous lemma with the arguments

neh "' n
used to prove Lemma 5.3 one sees that when 2 = |m| the equations have a solution

2
satisfying the desired growth conditions. Thus W, is not zero for n = ‘%’ Although it is not
important at present, I observe that if s —m is integral then W)y, is also not zero. The proof
of Lemma 5.2 shows that W, is irreducible under u°, the Lie algebra of U°. Consequently
every invariant subspace is of the form W(o) =3 _ W, where o is a subset of 6. Suppose
oL ;t o3 and W(oy) and W (o3) are invariant. Let ng € o9, ng ¢ o3. There is a minimal
element in {0 ‘ W (o) is invariant, o3 C 0 C 0g, ng € 01}; let it be ;. There is a maximal
element in {a | W (o) is invariant, o3 C 0 C 0y, ng ¢ o}; let it be oy. The representation
of A% on W(oy)/W () is irreducible. Thus there is an irreducible representation deducible
from the representation of 2% on W(o)/W (03). Suppose W itself is not irreducible and
let W (o) be a proper invariant subspace. If W (o) were not irreducible there would be a
proper invariant subspace W (o3). No two of the irreducible representations deduced from
the representations on W/W(ay), W(o1)/W (o3), W(o2) could be equivalent because the
restrictions to ug would not be equivalent. This would contradict Lemma 4.4. For the
same reason the representation on W/W (o) is irreducible. Thus either W is irreducible
or W contains a proper invariant irreducible subspace Wj such that W/W; is irreducible.
Combining Lemma 4.4 with the earlier observations about finite-dimensional representations
one sees that if 7 is infinite-dimensional the representation of A% on W is equivalent to 7 if
W is irreducible and that if W is not irreducible the representation of A° on W, is equivalent
to mY.
We return to the study of the functions 1*(¢).

Lemma 5.5. If s —m is not an integer then, near 0, 1*(t) can be expanded in a series of
the form

oo [o.¢]
¢k(t) _ t\k—m|+1+s Z al;t2p + t|k+m|+1—s Z bl;tQp'

p=0 p=0
If s —m is an integer t and |k +m| — s > |k —m|+ s then

¢k(t) _ t\k—m\+1+s Z al;tQp + t\k+m|+1—s logtz bl;t2p
p=0 p=0
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but if |k +m| —s < |k—m|+ s then

Yr(t) =ttt log £y " gkt 4 gk tmiEe N S,
p=0 p=0

As before when k = £ the second equation of is

2
1 ti _ E -1 wn/2 . t2|w|2 _ (S - m)2¢n/2.
20 dt 2 2 2

The indicial equation $[A — 2 — 1}2 = —(s_2m)2 has the roots A\; = § + 1 — s + m and

Ao =2+4+14+s—mand \; — Xy =2(m — s). The series t* > po apt? will satisfy the equation

if and only if
2
{ |:)\i +p— g - 1] —(s— m)2}cp = [w[*cp-a.

Since ’g + m| = 4 *m the assertion of the lemma for £ = & follows from an application of
the method of Frobenius.
To prove the lemma for general k£ we use induction and the equation

1 d ?

—cpiw" () = =< [t— + k — 1] ¥ — (s + m)*P" — 2|w|*Y* §.
2t dt

The symbol A(t) will stand for a convergent series of the form )7 % ja,t*” and B(t) will stand

for a convergent series of the form Z;il byt?. The series represented by these symbols will

vary but not within a given formula. One has

1 d 2
2_15{ {ta +k— 11 tRFmIFLEs A1) — (5 4 m)2EFmITIEs 4 (1) — t2|w]2A(t)}

1
2t
If k > +m so that |k — 1 Fm| = |k F m| — 1, this is of the form t*=1Fml+1Es A1) If
k < +m then |k Fm| = +m —k and (|k F m| +kis)2—(s+m)2 = 0 and it is of the form
tk=1FmI+1%s B (t) because |k — 1 Fm| = |k Fm| + 1. The first statement of the lemma follows

immediately.
If F(t) is any function

{ [(‘k‘ -+ m’ k4 8)2 . (S + m)2:| a0t|k$m\+1is + t'kijJrlisB(t)}.

[t% Ty 1} logtF(t) = F(t) + logt [t% - 1} F(t)

and

d ? d d ?
— — 1| logtF(t) =2|t— —1|F 1 — — 1| F(t).
{tdtﬂs } ogtF(t) {tdtwc ] (t) + Ogt[tdt—l—k ] (t)
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Thus

1 d ? [kFm|+1£s
5 ta—i—kz— 1] ¢ log tA(t)

— (5 + m)AHFFmIFES Jog t A(t) — 2w A TR og tA(t)}
is equal to the sum of a term of the form t*=1¥m+1*s 100t A(t) and
1
(B) H{ (e ml £ s k)T g ) |

Suppose s —m is an integer and the assertions of the lemma are true for a given k. Let
|k Fm| £ s > |k £ m|Fs (Either all the top signs or all the bottom signs are taken).
If ([kFm|+s)— (Jk£m|Fs), which is an integer, is at least two then |k Fm|+ s >
|k —14m|+17F s and the expression (B) is of the form ¢*=1#m+1%s GQince |k — 1 Fm| £ s
will still be greater than or equal to |k — 1 & m| F s the induction goes through.

The remaining possibility is |kFm|+£s = |k£m|Fs. If k > Fm then |k—1+m| = [k£m|—1
so that |k —1Fm|£s > |k—14m|Fs and the expression (B)) is of the form t/F=1FmI+1%s A(¢),
If k> +mthen |k —1Fm|=|kFm|—1sothat |k —1E£m|Fs>|k—1Fm|Ls and the
expression is of the form t/*F=1FmI+1%s A (1),

Thus we have only to treat the case that k < Fm, k < £m and |k Fm|Lts=|k+tm|Fs.
Then |kFm|=+tm—kand [k+tm|=Fm—-ksotm—-kts=Fm—kFsorm+s=0
and [k Fm|ts+k=2x(m+s)=0. Thus |k —1Fm|+s=1]k—1xm|Fs and the
expression is of the form t*F=1#mI+1Fs A (1),

Let 1(¢) be the function with components *(t). If 2¢ is an integer and z is a fixed complex
number set

oo 1 4 ) % 0
O(u,l;z) = / o / ety () o, (e w)a%’”d@ t=! dt.
0 T Jo 0 e 2

The integral converges for Rew sufficiently large. The kth component of 0(u, ¢; z) is

0 1 47 ) ; ‘
0" (u, b;2) = / — / R ik=0) g Lk £y .
0 4t Jo

Lemma 5.6. For each { and z the function
0% (u, 0; 2)
ut14s+[0—m]| u+1—s+[+m|
e L G

is an entire function of u. Moreover 0% (u,(; z) is bounded in any region of the form |Rewu| <
constant, |Imwu| > constant > 0.

Let m(t) be an infinitely differentiable function with compact support on the real line
which is 1 in a neighbourhood of 0. Then 6% (u, ¢; 2) is the sum of

0 1 4 ) ; )
@“(u,f;z) :/ —/ it Re(e2) gi(k=0) g9 wk(t)t“’lm(t) dt
0 4 Jo
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e’} 1 47 ) ; )
/ — / eMRe"2) gik=0) g Lk (¢)¢4 1 (1 — m(t)) di.
0 4 Jy

The second integral defines an entire function of u which is bounded on vertical strips so it
will be enough to prove the lemma with 6% (u, £; z) replaced by é\’“(u,ﬁ; ).
The inner integral is equal to

e ) 1 dr ) .
Z (Zr)‘ . _/ (6Z62 + e—zez)rez(k—é)ﬁ do.
= 2l Ar g

and

It is zero if k — ¢ is not integral. If k — ¢ is integral let A be the set of integers r satisfying (i)

r > |k — (| and (ii) =% is integral. Then this expression equals

(Zt)r ZT—l—f—k ET+]<77Z

Z 2r <r+§—k>|<r+§—z);'

reA

If a real number c is given there is an R such that

00 )" r+l—k >r+k—{
0 27 r+l—k \| [ r+k=L )

reA 2 . 92 .

r>R

is analytic and bounded for Reu > ¢. We need only study the analytic properties of

/Oo PP () dt e € A,
0

The same observation when combined with Lemma 5.5 shows that when s — m is not an
integer we need only study

/ thkEmIFstriut2p g, 1) qt rel peZ, p=0
0
and that when s — m is integral and |k F m| £ s > |k & m| F s we need only study
/ tiEmFstr+ut2om (1) dt relA peZ p=0
0

and 00
/ tEFmEstriut2ey, () logtdt  re A, pEeZ, p=0.
0

The second assertion of the lemma is going to be obvious and only the first will have to be
dealt with explicitly. The first is going to follow from the observation that if s — m is not an
integer the denominator in the lemma has poles of order 1 at —1 Fs— [{ Fm|— 2, ¢ € Z,
¢ = 0 and no zeros and that if s —m is an integer and |[¢ Fm|+ s > |¢ & m| F s it has poles
of order at least one at —1+ s — |¢ £ m| — 2¢g and poles of order two at —1 F s — [ Fm| — 2q,
q€2,q=0.
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It has to be shown that these poles cancel the singularities of the numerator.

o _1 (o]
/ tm(t) dt = ——— / t et (t) dt
0 at+u+1)/
oo _1 oo
t*logtm(t) dt = —/ a+u+ 1)t logt — ot m/ (¢) dt.
| eortmodt = s [l u e o J' (1)

Since m/(t) vanishes near 0 the first integral has at most a pole of order one at —(a + 1) and
no other singularities while the second has at most a pole of order two at —(a + 1).

If s —m is not an integer the lemma will follow if it is shown that, for r € A, |k £m|+r =
|0 £ m|+2q, ¢ € Z, ¢ > 0. This is so because r = |k — ¢| +2p, p € Z, p > 0 and
|k £ m| + |k — ¢| — |[¢ £ m] is a non-negative even integer. If s —m is an integer one has to
show in addition that if [¢ Fm| — | £m|£2s > 0 and |k £ m| — |k Fm|F2s > 0 (either all
upper or all lower signs are taken so there are only two possibilities) then

lktm|Fs+ k-l =[{Fm|E£s+2q q€Z, q¢=>0.
The left side is
kFm|ts+ k- + {|k£m|— |k Fm|F2s}.
The expression in brackets, which is a non-negative integer, is by assumption positive.

If 7 is an infinite-dimensional irreducible quasi-simple representation of 2 let L(&, w) be
the unique subspace of L(§) such that the restriction of p(§) to L(&,7) is equivalent to 7.
It follows from the proof of Lemma 4.4 that there is an w such that 7 is equivalent to m,.
As usual let wi(@) =w((§9)), wa(a) =w((§2)) for @ € C* and let w;(te?) = t*ie™™? for
t>0.

If n is any character of Ac then 7 is the character defined by ﬁ((o‘l 0 )) = 77((‘)‘2 0 )>

0 a2 0 a1

If ¢ is a character of Ag such that (((§9))w((§2)) = 1 and u and ¢ are defined by
C(<t1/28w/2 t1/22i9/2>) = t“¢" then ( is uniquely determined by u and ¢ and we shall
occasionally write ¢ = ((u, ¢).

Lemma 5.7. Suppose (((§9))w((§2)) =1. If p € L(&,7) and ¢ = ((u,{) the function

o1 [ te’ 0 te’® 0 dt

1s defined for Rew sufficiently large. Set

77 u+1+s+[+m)| utl—s+[t—m|\

r (sl r (smgien)

Then @’(g,((u,ﬁ),gp) is an entire function of u and @(g,((u,f), go) is bounded in regions of
the form |Reu| < constant, |Imu| > constant > 0. Moreover

() (2 a)ncs) =otem(i) () wnco

if y(¢,m) = (=1 for || > m| and y(€,m) = (=1)"** for [¢] < |m].
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It is enough to prove the lemma for ¢ in L(§, 7),,. Thereisa ® in V,, such that if g = a(} % )u
with a = <t1€191 0 ) and v in U then go((t%ie ?)g)C((t%’H (13)) is equal to the product of

0 toeif2

1 Re(et 17%2)wz ‘ ! 6‘
Zitl (¢1001-02) ) /tt1t261(9+9 +062) 0 t 6 0
€ "2 w 0 \/ﬁei(ewlwz) S 0 1

and

" TSN
vl )on 0 0=y [P

which equals the product of

(001 —05)
; A/ Wy pis——p—=
C_]' tlezel 0 zt:il Re(ei(0+61+02)wz)<, to € 0
. e t2
0 .(60—60—06
0 toe'2 0 /:%QZ%
1

t eiw 0
/l/b E O-TL O ei(gl_g_92> u @.

and

Consequently @(g, C(u, 0), gp) is equal to

1 tlewl 0 .
¢ ( 0 t26i92> O(u, —C, wz)o, (u)d.

The first two assertions of the lemma follow immediately.

If n = ¢! the maps
p— (D/(Q,E,SO),

p — <I>’<(_? é)g,c,w)

are easily seen to be 2-invariant maps of L(&, ) into L(n). It follows from Lemma 5.1 that
one is a multiple of the other. To see what the multiple is choose ¢ = 1 and ¢ as above with
P = 5g. Then
~ 0 (—u
P(L,¢p) = r —u+1+s+|€—m|( T )—u+1_5+|e+m|
2

2

s (i) ()

if the functions #‘(u) are normalized as in the appendix.
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Since O'n(_? (1])54 = (—1)g+£5_[,
(01 B (=1)270""(u)
P ((_1 0)7(7@) - F(u+1+s;r\€+m\>F<u+1732+|€fm|)
_ ()5 2 \“(iw) 3
(2 ()

Taking § = |m/| if |¢| < |m| and § = |{] if [¢| = m we see that

(i) #((5 ) es) =mem(n) (i) wa o

because as is shown in the Appendix, fi»(u) =1 and, as is shown in Lemma 5.4, fi(u) =1
if 2 = |m|.
2

Appendix. Unfortunately the preliminary material of this paragraph was not sufficient to
give the constant occurring in the functional equation. A little more information about the
functions 0% (u) is necessary. Normalize them by setting

gy — (2 ) pfUtit st o m\putlos g my
|w| 2 2

It is an immediate consequence of the difference equations that none of the functions 6*(u),
k| < %, § — k € Z, can vanish identically.

Lemma A. Let oy, = min{% — |k|, 2 — |m|}. Then 6*(u) is of the form

2N/ iw\"2 fu+1+s+|k—m] u+1—s+|k+m|
soo(f) () (T (e

where fi(u) is a polynomial in u of degree ay. Its coefficients are polynomials in s which do
not depend on w.

We shall show that if 6% (u) is of this form with a polynomial of degree §;, the same is true
of 0*~1(u) with a polynomial of degree 3,_; where By_1 — Br < a1 — ay. This is enough
to prove the lemma because Sz = az = 0 and if Jy, were less than ay, for some ko then S
would be less than ay for all succeeding k. Since a_z = 0 this is impossible.

w|u+1

C O\ (k1)
The first difference equations show that 2ck|2uT ( “”) ’ 0%~1(u + 1) is the product of

ol
1
§fk(u+2)[u+1+s+|k—m|} [u+1—s+|k+ml]

—%fk(u)[u—k—i-1+3+m][u—k+1—s—m]

F(u—l—l—l—s—i—\k—m])r<u—|—1—s+\k’+m|)
2 2 '

If k> |m| then a1 = ap + 1, |k — 1 £ m| = |k £ m| — 1, the second factor is

F((u+1)+s+|l~c—1—m\)r((u+1)+1—s+yl~c—1+m|)
2 2 ’

and
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and the first factor is a polynomial in u and s of degree at most Gy + 1 in u.
Suppose |m| > k > —|m/|, such that ax = ag_1. Let £m > 0. The first factor is the

u+1+stm—k)
2

product of ( and

frlu+2)[u+1Fs+kFm| — filw)u—k+1FsFm]
which is a polynomial of degree at most S;. Moreover |k —1+m| = |k£+m|—1, |k —1Fm| =
|k Fm|+ 1, and |k £ m| = £m — k; so the product of “HEEm=E and the second factor is
F((u+1)+1+s+|k—1—m|>r<(u+1)+1—s|k—1+m|)_
2 2
If —|m| > k > 3 then |k—m| = m—k, [m+k| = —m—k, [k—1-m| = |k—m|+1, |k—1+m| =

|k +m|+1, and a1 = ap — 1. The first factor is the product of (“_k+12+s+m> <“_k+12_s_m>

and 2(fi(u+ 2) — fi(u)) which is either zero or a polynomial of degree at most 3, — 1.

Moreover the product of (“_k+12+8+m> (“_k+12_5_m) and the second factor is

F((u+1)+1+s+|k—1—my>F<(u+1)+1—s+yk—1+my)
2 2 '

It follows from the corollary to Lemma 5.4 that the equations and thus the difference
equations have a solution at least when s —m is not an integer. We could have used the same
ideas to show that they had a solution for all s and m. This also follows from the above lemma.
To indicate explicitly the dependence of fi(u) on s and m we write fi(u) = fr(u,s,m). The
function f_= (u,s,m) is independent of w.

Lemma B.
_n(u,s,m) = 1.
2

For the proof we observe that the functions

~ 2\"/ w\
P =t m () ()
XF(u—l—l—i—s—l—|k—m|)r<u+1—s+|k‘+m|>

|3

2 2

also satisfy the difference equations. From uniqueness and the relation

520) = s, =) ()0

we conclude that

or
f—k(u7 S, _m) = f—%(ua S, _m)fk(u7 S, m)
Choosing k = —7 we see that
f—%(u7 Sy _m)f—%(ua S, m) =1
Since both terms on the right are polynomials in s they must be independent of s and
foz(u,s,m) = e(m).



46 LETTER TO ANDRE WEIL, PART 2—1967

When s = 0 the difference equations do not change when m is replaced by —m. Consequently
fr(u,0,—m) = fr(u,0,m) and

for(u,0,m) = e(m) fr.(u,0,m).

If m is an integer we can take k = 0 and conclude that e(m) = 1. If m is a half-integer take
k= % Then ¢, = "TH We have just seen that if £m > 0,

(n+1)f_§(U+1,0,m):fé(u+2,0,m)[u+1:|:m—l—%] —f;(u,(),m){u—i—l—%$m}

1
= [yl +2,0,m) = f3,(w,0,m) | [+ 1] + [ fy (u+2,0,m) + f (u, 0,m) [rm\ + 5]-
The degree of both sides is 2 — |m|. Let a be the coefficient of u2~™l in f%(u, 0,m). The
coefficient of 42l in the polynomial on the left is (n + 1)e(m)a. The coefficient of /™!
in the polynomial on the right is 2(% — |m|)a + 2(|m| + 1)a = (n + 1)a. Thus e(m) = 1.
6. THE LOCAL FUNCTIONAL EQUATION AT A NON-ARCHIMEDEAN PRIME

Let K be a non-archimedean local field, let O be the ring of integers in K, and let 7 be a
generator of the prime ideal in O. Let Gx = GL(2, K) and let Go = GL(2,0). If A is the
group of diagonal matrices and N the group of matrices of the form

b 1)

then the Haar measure on Gx may be so normalized that

5 f(g)dg = /AK/AO B da/NK dn/Go dk: f(nak)

- (03] 0
a={0 o)
The Hecke algebra H is just the algebra, under convolution, of functions on Gx which have

compact support and are bi-invariant under Go. Let H be the algebra, under convolution, of
functions with compact support on A /Ao which satisfy

fla) = f(@).
(5 )
(¥ o)

1/2

(€51

(%)

If

a

then

a
Lemma 6.1. If f € H and a € Ak set

o f(an) dn.

Ng

fla) =

(8%

The map f — f 1s an isomorphism of H with H.
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To show that f lies in H one has to show that f(a) = N(E). This is clear if a = @, so

suppose a # a. Since a is conjugate to @ in G the integrals

/ flg~"ag)dg
Ar\Gk
/ flg~"ag) dg
Ax\Gk
are equal if they exist. But

/A o flg ag) dg = /N dn /G dk (f(k'n " ank))
[ sty

A simple change of variables shows that the last integral equals
1/2

and

o2

‘1 A

Combining this with the relation
1/2
a2
ar

one sees that f(a) = f(a).
If f = fi* fythen

A

1/2
B /]VK{ Gk fl(bvg)fQ(g_l) dg} dv.

The Haar measure has been so normalized that this equals

ﬁl 2 -1, —1
/AK/AO da/NK du/NK dv{fl(bvua)fg(a u )

fb) =

~1
a1
B }
Simple manipulation shows that this equals

B[ ~ o
/ da{ f1(bav) dv}{ fola " u) du} = f1 % fo(D).
Ak /Ao Ng Ng

D)

Ba

Gk is the disjoint union of the double cosets

Go (71'0 7?”) Go = Goa(m,n)Go m < n.

The characteristic function of such a double coset will be denoted by f, . If a(m’,n")Ng

meets Goa(m,n)Go then m +n = m' +n' and m < m’; moreover
a(m,n)Ng N Goa(m,n)Go = a(m,n)(Go N Nk).
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Thus fmn (a(m’, n’)) = 0 unless m +n =m’ +n' and m < m! Moreover

fmyn (a(m, n)) =1.

It follows readily that the map f — fis an isomorphism. Consequently every homomorphism
of H into C is of the form

wlf) = / @t o

where w is a homomorphism of Ax /Ao into C*.
If n is a homomorphism of Ag into C* let 7; and 7y be the functions on K* defined by

m<a>=n(<§ ?)) ”2<0‘>:”<((1) 2))

Lemma 6.2. Let n be a homomorphism of Ak into C* and w a homomorphism of Ak /Ao
into C*. There is up to a scalar factor at most one function ¢ on Gk satisfying

((’?g plag) = n(a)p(g) for all a in A,
/G @(gh) f(h) dh = xu(f)e(9)
for all f in H. }

If there is any non-zero solution of this equation then 7;7s = wiywy so that n; and 7, have
the same conductor. Let it be (7%). ¢ is determined by its restriction to Nk. If y € O* then

I ()R ()
woe((5 9)=+((6 1)) (%)

If v = 77% and b < a there is an a in O* such that & =1 (mod 7°) and 7;(a) # 1. Then

N () R (R B ()
{(9)

To prove the lemma we need only show that if

(7)o
A5 7)) -

so that

then
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for b > a. If O is the disjoint union |J{_, z; + (7) then Goa(0,1)Go is the disjoint union

q
T X 1 0
Ul(o 1)Gou(0 W)GO'
Thusif b > a

1 7° T T4, 1 7D
Xolfoa)e (o 1) =2.¢ (0 1 ) e (0 ™

because 1 (1 + w°z) = 1.

Lemma 6.3. Let £ be a non-trivial character of K and w a homomorphism of Ak /Ao
into C*. Apart from a scalar factor there is exactly one function ¢ on G which satisfies

(4)
w((é f)g> = &(@)e(9)

/Gso(gh)f(h) dh = xu(f)w(9)

(i)

forall f in H.

Suppose ¢ satisfies these relations. Take an Ax and set ¢'(g) = ¢(ag). The function ¢’
satisfies (ii). Moreover

-1
w’((é :f)g) = (é e )ag = &(ar x a3 D)@' (9);

thus if &(z) = £(a; x ay') it satisfies (i) with & replaced by &. Assume then for simplicity
that O is the largest ideal on which ¢ is trivial.
If o is to satisfy (i) it must be of the form

w( ((1] ‘f)ak) = £(2)(a)

with @ a function on Ax/Ap. The function ¢ is well-defined if and only if £(x)®(a) = P(a)
when a; ' X ay is in O. Thus ®(a) = 0 unless aja;,* is in O. The relations (i) will be satisfied
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if and only if

(A) P ((g‘ 2) a> — w(@)wn(a)®(a)

and

(B) / ©(gh) fo,1(h) dh = xu(fo1)e(9)-
G

We can satisfy and the previous conditions while specifying in an arbitrary manner the
value of ® at a = (7 9), a > 0. will be satisfied for all g if it is satisfied for g = (7 )
when it becomes

;*"((T iji)%@((? 2)) =q”2(w1<7r>+w2<7r>)so<(7g°‘ 2))

If a < —1 all terms on both sides are zero. If & = —1 the right side is 0 and the left side is

— = 0.
If > 0 the left side is

qw<(”a0“ ?)) +wl<w>wg<w>¢<(ﬂzl 2))

Some simple algebra then shows that (ii) will be satisfied if and only if

x Y ﬁ”q"ﬂ@((q (1])> ) (1—w1<n>x>1(1—wz<n>w>®<<é (1])>

n=—oo

The lemma follows.
If (779) is the largest ideal of K on which ¢ is trivial let ¢(g,w, &) be that solution of (i)
and (ii) which takes the value 1 at (7 9). If &(z) = {(8z) then

plg;w, &) = @((g ?)g,w,f)-

Let ¢ be a character of Ag such that ;¢ = w;'wy . Set (i (a) = (o(a)|al® where (y(7) = 1.
¢ is uniquely determined by s and (y and we shall sometimes write ¢ = ((s, (o).

Lemma 6.4. Let ¢ be a homomorphism of Ar into C* such that (1 = wy wy'. If
¢ =((s,¢p) the function

@(g,é;w,f)z/l(xso«g ?)mmé)(((% ?))dxa

1s defined for Re s sufficiently large. If (o = 1 then
(g, (w, &) = (1 - %) (1 - W)Mg,é;w,&)
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is, for each g, a polynomial in ¢° and q=° and if (7~%) is the largest ideal on which & is trivial
then

Cl(ﬂ5)¢'<<_(1) é)g,é;w,€> = G ") (g,¢w,€)

where E((Of)l O%)) = Q((‘}f aol)>. If 6 =0 then

'(1,¢w, &) = 1.
If the conductor of (y is (77), v > 0, and

g(€7) = /O X 5(%)4“1(@) o

then ®(g,C;w, &) is a polynomial in ¢° and q¢~* and

Gi (77 0 1 ) o G (m79) Cow
JE0 @((_1 O)Q,C,w,£> = G(-1) G ®(g,C,w,€).

If ¢(z) = £(7Px) then

) @(g,c;w,&/fﬂsp((wga ?)g;%g)g((g g)))dxa

= ¢ () 2(g. Gw, €)
and g(&', () = g(&,(); so it is enough to prove the lemma for § = 0.
If g=a(§?)k witha= (9 O ) in Ax and k in Go then

0 as

Aﬂ((g ?)g;wf)g((g ‘f))dxa
(6 D) LAG DG ) D)

Because cp((g DIE; gf);w,f) = f(oza:)gp((g ?);w,g) the function

(8 D0 De) o (5 9)e)

has, for a given x, compact support on K *. Since the integral

(8 2 LA =) )

is equal to
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exists for Re s sufficiently large so does that of the lemma. Moreover the difference between
®(g, (;w, &) and this expression is a polynomial in ¢° and ¢~*. If {; = 1 the expression equals

ol
<1<(%1 i))n;ﬁ(””)@((ﬂb ?)) = <1w<><<(>>0(1><><<>)

7172 772

and if the conductor is (77) and v > 0 it equals zero. All assertions of the lemma except the
functional equations follow.

Let n = 5*1. If (o =1 then (ID’((_(I) é)g, G w, §> and ®'(g, g;w,f) both satisfy the assump-

tions of Lemma 6.2. Since they both take the value 1 at g = 1 they are equal. If the conductor
of (p is (77) and 7 > 0 then

@((é ”f),&w,f)z Kxam—w((g }),w,f)g«‘g ﬁ’))m.

The last integral is easily seen to equal g(&, (). Since

()l )= ()6 ) )

the value of @((7(13 é),C;w,é) is Cfl(ﬂ”)i‘l(ﬂ”)ﬁ(—l)g(g,C). The functional equation
again follows from Lemma 6.2.

7. THE MAIN THEOREM

Let k be either the rational number field or the field of rational functions in one variable
over a finite field and let K be a finite separable extension of k. Let S, be the set of
archimedean primes of K. Let A be the adele ring of K and let I be the group of ideles.

If R is any commutative ring with unit let G be the group of 2 x 2 matrices from R which
have a determinant which is a unit of R. Ag will be the group of diagonal matrices in Gg. If
p is a non-archimedean prime let Uk, be Go,, where O, is the ring of integers in K, and if p
is an archimedean prime let Uy, be the group of unitary matrices which lie in G, .

Lemma 7.1. E| There is a constant cy such that if g belongs to Ga there is a v in Gq such
that max{|c|, |d|} < coldet g['/? if v, = (25).

Fix a measure on A. This determines a measure on A ¢ A. K @ K is a discrete subgroup
of A® A and the quotient A & A/K @ K has finite measure ¢;. The lattice Lg = (K @ K)g,
is discrete and the quotient A @ A/Lg has measure c¢;|det g|. The non-zero elements of Lg
are, for all practical purposes, the last rows of the matrices 7,4, v € Gq. There is a positive

constant ¢y such that the measure of {(3:, y) | max{|z|, |y|} < do} is at least cod?.

5(1998) As observed in the comments this lemma is not what is needed. Indeed, neither it nor its proof
make much sense. The correct lemma, which there is at this stage no need to state, would replace max
{lel,|d|} by I, max{|c|y, |d|, }. See Lemma 5.1 of the following letter. ((2023 ed): The letter to which the

author refers is this long one to Hervé Jacquet: https://publications.ias.edu/rpl/paper/55.)
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Let ¢ be any number larger than 2\/% . If Lg contained no non-zero (¢, d) with
max{|c|, |d|} < coldet g|/?

the measure of the projection of {(m,y) ’ max{|z|, [y|} < L|det g|1/2} on A ® A/Lg would
be greater than c¢;|det g|.
£ will be the space of functions ¢ on G \Ga satisfying conditions (i), (ii), and (iii) below
(i) If U =I], Uk, then ¢ is U-finite on the right.
(ii) If p is an archimedean prime the function ¢(hg), g € G, , is infinitely differentiable.
If p is any such prime let 2, be the universal enveloping of G, . If, for each p, X, belongs

to 2, the function {Hp p(Xp)}go is defined.

(iii) If ¢; is any constant there are constants M; and M, such thatﬂ
Mo

1 |det g|*/2
X <M det g| + }
Lot peta)| < {ieral + i {max{|c|,|d|}

on the set max{|c|, |d|} < ci|det g|"/2.

If p is a non-archimedean prime the group G, operates on £. If p is a complex prime 2,
acts on £. If p is a real prime let o, be the element ((1) _(1)) of G,; the pair {o,,2,} acts
on £.

If p is a non-archimedean prime, a representation of G, on a vector space H, will be
called quasi-simple if the isotropy group of every vector in H, is an open subgroup of G, . It
follows from Lemma 6.1 that the space of vectors whose isotropy group contains Ug, has
dimension at most 1 if the presentation is irreducible.

Suppose that for every prime p we are given a quasi-simple irreducible representation
of either G, , 2, or {o,,%,}, according to the nature of the prime, on a vector space H,.
Suppose there is a finite set Sy of primes which contains S, such that if p is not in Sy there is
a non-zero vector in H, which is fixed by U,. For each p not in Sy choose such a vector X'?. It
S contains Sy let Hg = Q),.q Hy. If So O 51 D 5 let dg, s, be the injection of Hg, into Hg,
which sends @), Xy to

pesS

Ry|e| & X

peST peESe—S1
and let H be the injective limit of the spaces Hg. Let 2 be the system consisting of all the
Gk,, p not in Sy, Ay, p complex, and {o,, A}, p real. The system 2 acts on H.

For our purposes a divisor D is just a function p — m, from the non-archimedean primes
to the non-negative integers such that m, = 0 for almost all p. p|D means that m, > 0 and
p 1 D means that my, =0 or p € S,. If p is not in S let Ul% be the set of (‘é Z) in Ug, for
which ¢ = 0 (mod p™) and let UP = [Togs.. U}gp. Let (7]% be the set of (¢%) in U}gp for
which a =d =1 (mod p™) and let UP = [Togs.. [?[[(’p. UP is in the normalizer of U

6See previous footnote.
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Lemma 7.2. There is a D such that HP = {x ‘ m(uw)z = x for all u in UD} contains a

non-zero vector. Moreover HP is the sum of one-dimensional subspaces invariant under UP.

Although we have not troubled to be explicit it is clear how HW s.. Gk, operates on H.

Given any divisor D let U }gp be the set of (‘g 2) in Uk, which are congruent to I modulo p™»
and let UP = [Tpes.. (7[%. Given z # 0 in H there is a D’ such that UP" is contained in the
isotropy group of z. Choose for each non-archimedean prime an a, so that (ay) = p™ and
set g = [Tgs. (9 7). Then, if my, = 2mj and D is the divisor {m,}, gUPg" is contained
in UP" and UP is contained in the isotropy group of 7(¢g~!)x. The second assertion of the
lemma is immediate because U/ UP is a finite abelian group.

If € is any homomorphism of U? into C* which sends UP to 1, let

HP = {x ’ 7(u)x = e(u)z for all u in UD}.

€

€ is determined by its restriction to the diagonal matrices. Let € be the homomorphism

(6 5) (6 )

If g is any matrix in G4 such that g, = I,if p € Sec or p1 D and g, = (a, 6 ) with (o) = p™
if p|D then gUPg™' = UP and 7(g)HP = HP.

Let $ be a subspace of £ such that the representation of [ on §) is equivalent to that on H.
We want to study some of the Dirichlet series associated to $. Let 53? be the subspace of $)
corresponding to HP. We suppose that H? is not {0}.

Choose a non-trivial character £ of A which is trivial on K. If ¢ belongs to £ set

vo(g) = measuri( KA /K \Aso<((1] )g) dz,

p1(g) = measuri( A /K \Aw<((1] Qf) g)@dm.

By the Fourier inversion formula

wl9) = polg) + D —%((3 (Dg)-

aceKX

— 8

Let GX be the set of all g in G such that g, € U}gp if p|D. Since Gp = GGE, any function
in £ is determined by its restriction to G%.

If p is a non-archimedean prime which does not divide D and ¢ belongs to 2 then ¢
must be an eigenfunction of the corresponding Hecke operators. Let it be an eigenfunction
corresponding to the homomorphism w,. Varying ¢ in $” does not change w,. It follows
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from Lemmas 3.2, 5.2, and 6.3 that HP is spanned by functions ¢ for which

%((g (1)>9> =asg ] %((08’ ?)%) py w((oé" g)gp,wp,§p> e(9p)

pES— Soo
ptD

for g in G§. a, is a constant which depends on « and «, is the image of a in K,. gp is the
projection of G on leD Gk, & is the restriction of £ to K, and ¢, p € S, is a function
in L(&, ™) determined solely by ¢. Let I” = {v € I | |1,| = 1 if p|D}. If B lies in K* N IP
then ans = €(($ 1)) aa-

We shall only consider those ¢ for which the functions ¢, ((3 D g) are of the above form.
©(g) is the sum of ¢y(g) and

S o X e (% o) T (%0 Dot

aeK*/K*NIP  BeK*NIP | pE€S~ pPESco
Bo O
XE((O 1 gp

ptD
if Bp is the projection of § on Hp| p K, In an appendix to this paragraph we shall discuss
the form of the function ¢g. Lemma E of the appendix will eventually be used to show that
@ is the sum of a cusp form and a function which is represented by an Eisenstein series. For
the present we consider only the case that ¢g(g) = 0.
Then ¢(g) is a cusp form. Let 1 be the homomorphism of K*\I into C* defined by

w((g 2)9) = n(a)e(g).

It is no real restriction to assume that }n(a)‘ = 1 and we shall do so. It then follows from
the general theory of automorphic forms that ¢ is bounded.
If My = Sup96GA|<p(g)‘ and

My = sup | [ eolg)|| TT (g0 wp: &) |€(90)]

9eGR PESco pZSoo
ptD

then

M,

M,

If ¢ #£ 0, as we certainly suppose, M5 is not zero. Of course it is not oo either for then all
the a, would be zero. In any case a, is a bounded function.

|aa| <
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If the number M, is finite the function ¢(gy,wy, &) is bounded. Appealing to the formulaﬂ
at the top of p. 6.10 we see that the inequalities
(A) |wpr ()] < 772 Jwpa ()] < [ 72

must be satisfied.

If K is the real or complex field, 7 a quasi-simple irreducible representation of {o, 2} or
2 respectively, and ¢ a homomorphism of Ag into C* satisfying the condition of Lemma
3.6 or 5.7, let ['({, m) be the function defined by

(¢ m)(g,¢0) = P(g,¢,0), @€ L ).

®(g,(, ) and P'(g,(, ) are the functions introduced in Lemmas 3.6 and 5.7.ﬂ ['(¢, ) also
depends on £ but we do not take this into account explicitly.
Let x be a character of K> N IP\IP. If s is a complex number define ¢ = ¢(s, x) by

<((3 2)) = (B8 Pxles™)

Let ¢, be the restriction of ¢ to Ag,.

Lemma 7.3. The integral

Foe? (6 D)o )

converges absolutely for Re s sufficiently large and G in GR. It is equal to zero if

(5 D)D)

is not identically 1 in O,°. There is a constant M > 0 such that a, = 0 if [ap| > M for some

p|D. Consequently the series
a, 0
) %HCP(<OP 1))

aeKX/K*NIP p|D

converges absolutely for Re s sufficiently large. Let R be the set of non-archimedean primes
which do not divide D for which ¢, is not trivial on Ao,. The product

H 1
pESoUR (1 = wpa ()G (m)|7[1/2) (1 = w2 (1) Gp o () 7 [1/2)
ptD

7(1998) labeled in this version in which the pagination differs from that of the manuscript.
8In the digressions to establish notation we allow ourselves to use, in a new sense, symbols whose meaning
has otherwise been fixed for the course of this paragraph.
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also converges absolutely for Re s sufficiently large. The integral is the product of the above
two expressions with

HFCpﬂTp "(9p+ Cos ©0) H O'(gp, G wps &) H¢(9p=<pawp7§p) €(9p).-

PESso PE¢SecUR PER
ptD

According to Lemma 6.4 only a finite number of terms in the last product are different
from 1. The absolute convergence of the other infinite product follows immediately from
the inequalities . For each p the character &, is non-trivial. If p|D, z € Oy, o € K., and

69696
w2 0)
A6 3)6 9 -(29(6 ).

Thus if a, is not zero, o must lie in the largest ideal of K, on which &, is trivial. The existence
of the constant M follows immediately.
Recalling that, for almost all p, ©(gy, wy, &) equals 1 if g, lies in Ug,, we see that

Lo 9"((3 (1))9>< ((8 (f)) o

is at most the sum over K* /K> N IP of the product of

L b o))

PESco

1/ (( g)gp,w,,,g,,)cp((g» g)) n

p§éS

If

this equals

and

Changing variables in the integral and recalling the product formula we see that the sum is

the product of
a; 0
Z |aa|H<p(<Ol 1))
KX /K*NIP p|D

I, (5 s )e(( )

peS

and
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1, (3 Do)l 3)

p§ES

and

The first term is certalnly finite for Re s sufficiently large. The convergence of the integrals
over K, p € S, was proved in Lemmas 3.6 and 5.7. Tt remains to show that if Res
is sufficiently large each of the integrals in the infinite product is finite and the product
converges. It was proved in Lemma 6.4 that for a given p the integral is finite if Res is
sufficiently large. Thus we can, in our considerations, drop any finite set of terms from the
product.

The first formulaﬂ on the top of p. 6.10 shows that if g, is a unit and O, is the largest ideal
on which &, is trivial then

/pr w((%” ?)gp’wp,£p><p<(% ‘f)) B

1

(1= |ml?) (1= |7])
if Res > 0. The infinite product converges if Res > 1.
Thus the integral is finite. A simple formal manipulation which is now justified shows that

it is the product of
a, 0
) %Hﬁp« 0 1))

Q€KX /KXNID  p|D

1s at most

I R RN
TL (G )e)o( 5 9)-
T (G D)ol (3 )

The remaining statements of the lemma are now just a matter of definition.

We shall be able to state the next lemma more succinctly if we first introduce some notation.
First let K be the real or complex field and let © be a quasi-simple irreducible representation
of {o,2} or A respectively. Let £ be a character of K and { a continuous homomorphism
of Ax into C* which satisfies the condition of Lemma 3.6 or 5.7. Define €((,&,7) by the

relation
@/(< (1) (1))9,61 )ZE(C,M)@’(Q,W)-

91998) Labeled for convenience.
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The exact form of the factor is given in Lemmas 3.6 and 5.7. If K is a non-archimedean field,
w a homomorphism of Ax /Ao into C*, ¢ a continuous homomorphism of Ax into C* which
satisfies the condition of Lemma 6.4, and & a character of K define €((, £, ) by the relation

cD/(( (1) 8)9 an f) (C,{,W)@/(g, Cawaf)

if ¢ is trivial on Ap and by the relation

q><( ! é)giwg)—dcgw) (9.¢,,6)

if it is not. The form of this factor is given in Lemma 6.4.

Choose A in K* so that (A,) = p" if p|D and set

~o(oI1(4 o)

p|D

¢ lies in $HP. If ¢ is the homomorphism of A into C* introduced in Lemma 7.3, let Z(z, )
be the product of

> wlle(¥ 9)) T rcm

aeKX/K*NIP p|D PESco

and

1

p¢sl:o[u3 (1 = apa(m)Ga(m)|r[/2) (1 = wp2(m)Gp a(m) [ 1/2)
ptD

Given ¢ the functions ¢, are determined only up to a scalar factor. Thus there is an

undetermined constant in the numbers a,, and hence in the function Z(s, x). However we can

certainly suppose that, for p archimedean, §,, the function associated to @, is the same as

¢p. This assumption is implicit in the statement and proof of the following lemma.

Lemma 7.4. =(s, x) is an entire function of s. It satisfies the functional equatzorﬂ

=(s, x) HC,,(( Ay (1)>) H E(Cmfpﬂrp)He(Cmfpawp)

p|D PESc ptD

(i

(_87 (Xﬁ)_l)-

The integral in Lemma 7.3 is the sum of

. LA 2))e((5 )
/|a<ﬁ”<<3 ?)g)c((g (1))>da.

-8, (Xn)_l) is the function obtained on replacing ¢ by @.

o Q

10@(
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The latter integral is equal to

) LG DG o) (( 1))
@ Lol GG () )G ) e

If the first integral converges for Re s sufficiently large, as it does, it must converge for all s.
The resulting function of s is entire. Since the substitution of —s for s, (xn)™" for x, @ for ¢,

and (43)g Hmp>0<? Agl> for g interchanges the integrals and (C)), the latter integral is

also an entire function.
We conclude that the product of Z(s, x) and

(D) chl(gp?Cpa@p) H '(gp, Cpr wps &p) H(I)(gp>Cp7Wpa§p) €(9p)

PESso PESoUR pER
ptD

is an entire function of s.

It is clear that if p is an archimedean prime the function =(s,x) is not changed if ¢ is
replaced by a non-zero linear combination of functions obtained from ¢ by operations of
{op,2,} or A, according to the nature of the prime. Thus to prove the lemma we can choose
the functions ¢, in any way convenient. I claim that these functions and g in G% can be so
chosen that almost all of the factors in (D] are 1 and the rest are of the form ae® with a # 0.
It will follow that =(s, x) is entire.

gp may as well be taken to be I. If we take g, = I for p ¢ RU S, p 1 D then according
to Lemma 6.4 and the formulalﬂ at the top of p. 6.12 each of the functions ®'(gy, Gy, wy, &p) is
of this form and all but a finite number are identically 1. If p € R then, according to the
formulae at the top of p. 6.12 and the bottom of p. 6.13[:7]

® ((é ﬂlwp)’gp’wp’§p>

will be of this form for a suitable choice of ~,. For a real prime choose g, = I and ¢, so that
the formulae on p. 3.37@ can be applied. For a complex prime choose g, = I and ¢, as on
pp. 5.28 and 5.29[7

Now let us see what happens to the expression @ when the substitution mentioned above

is performed. The substitution replaces ¢ by ¢ and € by €. The factor €(gp) is not changed.

11(1998) Labeled (Y).

1202023 ed.) Just before the start of section

13(1998) Now p. 33. (2023 ed.) The formulae in the table on p. [26| after “In all but the last line s — m is
not an odd integer.”

14(1998) At the very end of the chapter, just before the appendix. (2023 ed.) P. Page 5.28 starts at “If
n= Z_l the maps...”.
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The functions occurring in the other factors are not changed but some of the variables are.
gp is replaced by ( 2 5) gp and (, is replaced by ¢,. Thus the expression (D)) is multiplied by

H&v,;l(((l) _%p)) H €(Gps & o) H €(Gp, &pr wy)

ptD PES P Seo
ptD

which equals

Hcp(<‘54'° ?)) T €6 &om) 9 TT elGor i)

p|D PESeo péSoo
ptD

The lemma follows.

We want to prove a converse to this lemma. Suppose we are given the divisor D and hence
UP, a homomorphism ¢ of UP /U into C*, and a non-trivial character ¢ of A/K. Suppose
that we are given bounded functions a, and @, on K* such that

D) o D)

if 8 lies in K* N I”. Suppose moreover that a, = 0 if, for some p dividing D, «;, does not
lie in the largest ideal of K, on which &, is trivial. We will also have to be given, for each
archimedean prime p, an irreducible quasi-simple representation of {oy,,%,} or 2, according
to the nature of the prime and, for each non-archimedean prime which does not divide D, a

character w, of Ak,/Ap, which satisfies
jwpr (M) <7772 Jwpa(m)] < ]2

If p is archimedean let 7, be deducible from m,,. We shall also suppose that the homomorphism

o= Ta((7 ) (5 2)) (5 2)

of IP into C* is trivial on K* N IP.

Lemma 7.5. Choose for each archimedean prime a function @, in L(&,,m,). If g € GR the

QGZKX% p!l%((oé’“ (1)>gp> 11 @(( )gp,wp,ép> €(9p)

pés

converges absolutely. Moreover the convergence is uniform on compact subsets of GX. Let
©(g) be its sum. If x belongs to K and x, lies in O, for p|D then ¢((§%)g) = ¢(g) and, if

a, B lie in KX 017, 6((55)g) = (o).
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Choose a compact subset C of G¥. According to the discussionm on p. 6.8 there is for
each non-archimedean prime p which does not divide D a number M, such that if g € O

W((O(é)p ?)gpawp>€p> =0

if |oy| > M,. Moreover almost all of the numbers M, can be taken to be 1. Because of the
assumption on the function {a,} the sum in the lemma can be replaced by a sum over a
finite set if K is a function field and by a sum over a lattice in K if K is a number field. If
K is a function field the first two assertions of the lemma are immediate. Suppose K is a
number field.

Combining the formulaFf] at the top of p. 6.10 with our assumption on the magnitude
of the numbers wy ;(7) and wy2(7) we see that there is a positive constant b and for each
non-archimedean prime p which do not divide D a constant C, such that

ap 0 _
@((O)g 1)9137%75;3) < Gylog ™

if g is in C. For all but a finite number of primes C, can be taken to be 1.
Because of the product formula we are reduced to considering the sum

a, 0

S ot (3 1))
PESeo

over the non-zero points of a lattice in K. On pagesE] 3.9 and 5.9 we have discussed the

behaviour of the functions v (t) and ¥™?(g) as |[t| — oo. The first of the equations on

p. 5.8 can be used to determine the asymptotic behaviour of all the functions ¥*(¢). In

Lemmas 3.4 and 5.4 we have discussed the behaviour of these functions as |t| — 0. Putting
all the information together we see that these are positive constants ¢ and d and a constant @)

such that
a O —C ,—a|tx
%((op 1>9p> < Qlap| ce

if g is archimedean and g lies in C'. The absolute and uniform convergence of the sum follows.
The last two statements of the lemma can be proved for both types of field simultaneously.
If z € K and z, € O, for p|D and a, # 0 then, by assumption, &,(ayz,) = 1 if p 4 D. Thus

H &(apry) = 1.
ptD

15(1998) Now following Lemma 6.3.
16(1998) See previous footnotes. (2023 ed.) The formula labeled X).
1"Between Lemma 3.2 and its corollary and just before Lemma 5.3.
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The product
0\ /1
];[ @P((O(é)p 1) (0 a;p)gp>
PESos
AT D6 Pmens) (7))

pESoo
ptD
is equal to
a, 0 a, 0 1 xp
H§p<ap$p) H 90p<(0p 1)933) H @((Op 1)9p>wp7§p> 6((0 1 >9D>-
p

Since e(((l) o )gD> = ¢(gp) the relation ¢((§%)g) = ¢(g) follows.
The relation gp((ﬁ 2) g) = p(g) for B € K*N1IP is, essentially, one of the assumptions.

To complete the proof of the lemma we need only show that (,0((5 (l))g) = ¢(g) when S lies

in K* N IP. After replacing g by (2 9)g in the sum defining ¢ we can change variables in
the summation, replacing o by a8~!. The sum becomes

5 ot a5 Do) (T (5 Dovve) (% D)

acK % PESs p¢Seo
ptD

The relation gp((g [1)) g) = ¢(g) is thus a consequence of the assumption

Bp O0\) _
aa516<( 0 1)) = a,.

With the same choice of functions ¢, the function {@,} determines a function @. Of course €
must be replaced by €.
Let x be a character of K> N IP\IP such that

x(ap>e<(%*’ ?)) -1

for p|D and «y, in O,f. If s is a complex number define ¢ = ((s, x) as before by

<((3 2)) = (@)l (0B )
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The function Z(s, x) given as the product of

> aaﬂép((oa" ?)) II TG m)

aceKX/K*NIP p|D PESeo

and

1

p¢gUR (1 = wp 1 () Gpa (m)]7[1/2) (1 = wy 2(7) G 2 () || 1/2)
ptD

is defined for Re s sufficiently large. If {a,} is replaced by {a,} and x by x~!'n~! we can

define a similar function Z(s, x~'n71).

Lemma 7.6. If there is an A in K* with (A,) = p™ for p|D and if, for all possible choices
of X, 2(s,x) is an entire function of s which is bounded in vertical strips and satisfies the
functional equation

E(‘SvX) = HCP(<_51P ?)) H G(Cpagmﬂ—p) H G(Cpagpva) §<_57X_177_1)

p|D PESw pé Soo
ptD
then, for all g in G§,
[ (0 1 0 Al
@ (A O)gH (1 ; ) = ¢(9).
pID

Let ¢1(g) be the function on the left side of this equation and let IP be the ideles of norm 1
in IP?. We have to show that for each g in G}

(6 9 =+( 3))

for all a in 1. Since both sides are continuous functions on K> N [P\ I which is compact,
we just have to compare Fourier coefficients. Any character of IP N K*\IP is obtained by
restricting a character x of K* N IP to IP. Set

u(x,g)z/KwD\Iéjtp«g ?)g)x(a) da,
m(x,g)z/KWD\I(? %((g ?)g)x(a) da.

w(x, g) and ui(x, g) are both identically zero if x(a@e((%" ?)) # 1 for some p|D and some

ap in Oy, Thus we need only consider the x satisfying the conditions of the lemma.
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x(a)p (x, (3 (1)) 9)
x(@)m <x, (3‘ (1)> g)

are continuous functions on IP\I” which is isomorphic to R" if K is a number field and
to Z if K is a function field. As in the proof of Lemma 6.3, the Mellin transform

R (Y i D e M (G D ()

is defined for Re s sufficiently large and the Mellin transform

/I(?\ID x (@) (X, (g (1)) g> ol da
[ ? [ GG eI ()26 9))

is defined for Re s sufficiently small.

To prove the lemma in the case of a function field we need only verify that both the Mellin
transforms are entire functions of s and that they are equal. In the case of a number field we
must show in addition that they are bounded in each vertical strip of finite WidthEg]

As in Lemma 7.3 the first integral is the product of Z(s, x) and

The functions

which equals

(E) H(I)/<9P7CP790137) H (I)/(gpacmwpaép) Hq)(gpagpvaagp) e(gD)-

PESe p¢ScUR PER
ptD

R is the set of non-archimedean primes which do not divide D such that ¢ is not trivial
on Ap,. According to Lemmas 3.6, 5.7, and 6.4 each of the functions occurring in the product
is an entire function of s and all but finitely many are identically 1. Thus the first Mellin
transform is an entire function of s. The second is the product of =(—s, x !n~1) and the

18This seems to be the simplest condition which allows the application of an inversion theorem to establish
the identity of the original functions.
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G (5 ) o((5 o)mien)

factors

pPESe
~ 1 0 ; 01 ~
H <P_1<<() _Ap)>q)<<_1 O)Qp’CpaWpu§p>
p¢ScUR
ptD
H§‘1<(3 jp))@((_? é)gpfp,wp,fp> c(9p).
peER

It is also an entire function of s and, by the definitions of the factors (¢, &, ) and €((p, &y, wy)
together with the functional equation satisfied by the function =(s, x), equal to the first
Mellin transform.

One of the Mellin transforms is bounded in vertical strips of a right half-plane, the other
is bounded in vertical strips of a left half-plane. Thus to show they are bounded we can
apply the Phragmen-Lindelof theorem for strips. The function m, a real, grows no
faster than an exponential in vertical strips so it is enough to show that we can multiply
the Mellin transforms by a product of functions of the form I'(as 4 b), a real, and obtain a
function which is bounded in regions of the form Re s < constant, |Im s| > 0. By assumption
®(s, x) is bounded in such regions. The factors in the product corresponding to the
non-archimedean primes were shown in Lemma 6.4 to be bounded in vertical strips of finite
width. If p is an archimedean prime I'(¢,, 7,) is a function of this form and

F(Cm Wp)q)/(gpa Cp) QOP) = (I)<gp7 gpv SOP)
was shown in Lemmas 3.6 and 5.7 to be bounded in regions of the form |Res| < constant,
[Im s| > 0.

Theorem 7.7. If the assumptions of Lemma 7.6 are satisfied, the function ¢ is a function
on G NGR\GY.

The set of all (%) in Gx N G which satisfy

s@((z Z)g> = (o)

is a subgroup of Gx N GE. By Lemma 7.5 it contains all those matrices for which ¢ = 0. If
b =0 then
a 0 0 1\/a O 0 Al
_5 p
S0((0 d>g> - (A 0)(0 d)gH (1 0 >
mp>0
d £\/(0 1 1 At
_ 5 A p
Y (0 a)(A O)QH <1 0 )
mp>0
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Applying Lemma 7.5 to ¢ we see that the last expression is equal to
[ /0 1 0 Al
¢ (A 0)9 I1 (1 ; ) = ¢(9).
mp>0
The theorem is a consequence of the following lemma.

Lemma 7.8. Gk NGX is generated by the matrices in it of the form (g Z) and (’; 2).

Indeed
a b\ (a 0 1 g
c d)]  \c d-— % 0 1)

If the matrix on the left is in Gx N G so are both the matrices on the right.

Appendix. Some preliminary remarks are necessary before the nature of the function yg(g)
can be determined. It is convenient to treat the various types of fields separately.

We consider the real field first and use the notation of paragraphs [2] and [3] Let L be the
space of infinitely differentiable functions on Ng\Ggr which are U-finite on the right.

Lemma A. Let © be the infinite-dimensional irreducible quasi-simple representation of
{o,24}. Suppose m is deducible from m,. Let H be a subspace of L which transforms according
to m.

(i) If s—m is not an odd integer and s # 0 then w # w and H is contained in L(w)+ L(W).
(7) If s=0 and m =0 let L'(w) be the space spanned by the functions

, 1 2\ (g O cosf siné
Pnllo 1 0 ag/)\—sinf cosé
1/2
w ( <a1 0 ) ) log
0 (0%)]

5 € Z. L'(w) is an invariant irreducible subspace of L and the representation of {o, A}

on L'(w) is equivalent to m. H is contained in L(w) + L'(w).
(#ii) If s —m is an odd integer suppose, as we may, that s > 0. Define ' by

w’((oél 52)> ZSgn(agaz)w<(oél OZ))'

Then H is contained in L(w) + L(w').

defined as

o «

Qg

1
(%)

o
inb
+sz—1 e

k=1

w' is of course defined for any w. In Paragraph 2 we saw that if s —m is not an odd integer
and s # 0 then 7 is equivalent to the representation of {o, A} on L(w) and L(w) but is not
contained in the representation of {o, 2} on L(w') or L(w’). We also saw that if s —m is an
odd integer and s # 0 the representation 7 is contained once in the representation of {o, 2}
on L(w) and L(w') but is not contained in the representation of {o, 2} on L(w) or L(&').
Thus if s # 0 we need only show that H is contained in L(w) + L(w) + L(w') + L(&').
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Suppose s = 0 and m = 0. It is clear that
1 0 .
plo)e, = w<<o _J)% p()gn = (s14 s2)h,  p(U)g,, = ing,.

On the other hand taking u = 0 in the formulaeEg] on pp. 3.7 and 3.8 we see that

ey 1 2\ (g O cosf sin6
p(V)en 0 1 0 o)\ —sinf cosb

is equal to
1/2 H
.| a0 . 1 i(n+2)0
— 1)log|— 1 1
- w((o a2>) (n+ )ogoé2 +14+(n+ )k:12k_1 e
and that
1 z\/(a; O cosf sind
/
p(W)en ((0 1> ( 0 ag) (— sinf cos 0))
is equal to
1/2 H
aq a; 0 aq 1 i(n—2)8
— — 1)log|— 1 — 1 .
o~ w((o a2)> (—n + )oga2—|— +(—n+ >k:12k_1 e

Thus p(V)¢l, = (n + 1)¢, ., and p(W)ep,, = (—n + 1)¢,,_,. It follows from Lemma 2.1 that
the representation on L'(w) is equivalent to 7, and hence to 7. The representations of {o, 2}
on L(w') and L'(w') are not equivalent to 7. Again we need only show that H is contained in
L(w) 4+ L'(w) + L(w') + L'(w).

Suppose ¢ lies in H. There are functions ¢, (a;, as) on R* x R*, only a finite number of
which do not vanish identically, such that for as > 0.

1 z\[(an O cosf sinf N ind
S0((0 1)(0 Ozz)(—siHQ cose>)—z%<0‘1""2)e ‘

Moreover there are functions 1, (¢) on R* such that

. |041062|1/2 0 aq
Pnlar, az) = w ( 0 |a1042]1/2 Un A

Since ¢ is in L, p(D)¢ = MZ)p + 3A(Z?)p and the equation p(D)p = 527_130 reduces to the

equations
— 22—+ 2t— |t = n
T dt( dt> 7V
or )
d 1
4 t— — = = s%h,.
(8- 1Y =

191998) See previous footnotes. (2023 ed.) v; on p.
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If s # 0 four linearly independent solutions of this are (sgn t)“]t|17is, a=0orlandif s=0
four linearly independent solutions of this are (sgnt)?|t|"/? and (sgnt)®|t|'/?1log|t|, @ = 0 or 1.
The lemma follows for all representations except the one for which s = 0 and |m| = 1.

If s =0 and |m| = 1 the space H; contains a non-zero vector. If ¢ lies in H; the function 1,
is zero if n # 1. According to the first formula on p. 3.@ the equation p(W )y = 0 is equivalent

to )
2t——1 — by (t) = 0.
a0
Thus 1 (t) is a linear combination of |t|'/2 and (sgnt)|t|'/2. Thus H meets L(w) + L(w').
Since H is irreducible, H is contained in L(w) + L(w’).
For the complex field we use the notation of paragraphs [4 and [5] Let L be the space of

infinitely differentiable functions on Ng\G¢ which are U-finite on the right.

Lemma B. Let 7 be an infinite-dimensional irreducible quasi-simple representation of 2.
Suppose 7 is deducible from mw,. Let H be a subspace of L which transforms according to .
(i) If s — m is not integral then w # w and H is contained in L(w) 4+ L(w). If s —m is
integral define w' by
mi+mg +s m1+mo _

w/ 041 0 B |a o |51;—s2 m & 2 2 2 S
0 I v | |z '

18 deducible from 7, 75, T, and 7.

(i) If |s| > |m| we can assume with no loss of generality that s > |m)|.

Then H is contained in L(w) + L(w'") + L(&").

(ii) If |s| = |m| and s # 0 either w = W' or w = &'. In this case H is contained in
L(w) + L(w).

(i) If s =0 and m = 0 define vy and oy as 0 p. 4.8 and let ¢, = Zfl% ifn is a
non-negative even integer. If t > 0 set ¥,(t) = logt + ¢,,. Let L'(w) be the space
spanned by the functions

(6 ) 2)) (5 )z (]

with § € Z, =k € Z, and |k| < 5. L'(w) is an irreducible invariant subspace of L

and the representation of 2 on L'(w) is equivalent to w. The space H must lie in
L(w) + L'(w).

The most complicated part of the lemma to verify is the assertion that L'(w) is invariant
and irreducible so we verify that first.

03]

%)

aq

(8%

aq

o
«

2

202023 ed.) The first formula on p. 3.8 is 15 (not ;) on page
21(1998) Just after Lemma 4.2.
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For convenience set @, x(9) = 0if k € Z and |k| > 3. Just aﬁ in Paragraph 4 the existence
of the Clebsch-Gordan series allows us to assert that the function

I 1 2\[fag O
Prrze{\0 1)\ 0 ay)"
which equals

<g +k+ 1> (g - k) PV B — (g +k+ 1> (g —k+ 1> V)P

n n o
- (5 - k‘) (5 —k+ 1)P(V )Pkt 1
aq

, 2
n—+ a5

is of the form

n n a; 0

_ I — — |

(2+k+1).<2 k+1).w(<o 042))
that the function

n e e n NN
oo g = (5 + k) p(V)Gnro1+ kp(V) i + (— - k‘)p(V )Pkt

(651

%)

)'700n+2(u)5k7

2

is of the form

0 1 2\[fa;s O u
Pkl o 1)\ 0 oy
(P eV (e (2 0 W0
2 "\ 2 ' 0 "
and that the function

Op_ok = P(V+)$n,k—1 +p(V)Prnk — (V7 )Prki1

aq g
(6] [0

>%0n(u)5k,
2

is of the form

(5 )0 2)1)
(el )e((5 )

In these three formulae dy, is respectively a2 T1Fys+1=F 254k 5=k and g2 th—1y2 %=1 and
Yo lies in the dual of V.9, V,,, and V,,_, respectively.

a7 aq

(L ( o

2

>”yoan2(u)6k.

&%)

22The right hand sides of the formula on p. 4.9 (2023 ed.: p. [30| here) are not correct. They should be
(Z +k+ 1) ! (Z —k+ 1) la(n,w)ent2.k

n n
(2 +k— 1) ! (2 — k- 1) b(n, w)on—2k

and
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To show that L'(w) is invariant we need only verify that ¢,/ , is a multiple of ¢, 2, that
Y0 is a multiple of 1, and that 1, _, is a multiple of v,,_5. If n = 0 only ¥
- /
Evaluating ¢, at <t102 1

.o is defined.
2
) we see tha [(% - 1)!} tr 1 (t) is equal to
n n 0 —1
(5 + 1) (5) t(logt + cn)Yoon (0 O) 0_1
2
n d
- 2<§ + 1> ta(tlogt + cut)
n\(n 0 0
_ <§) (§ + 1) t(logt + ¢n)v00n (1 0) o1,
which equals (cf. p. 4.2)
2 3
n n n
—2(=+1 —+1 1 =-2(=-+1 .
(2+ ) (2+ )t(ogt+cn+%+1> (2~|— )twn+2(t)
In the same way we see that (%!)Qtwg(t) is equal to

n 0 1 n 00
[‘(5)“”“@1(95]‘%(5>%”“<1O)&]“k%t+0“”
which equals

GG ()G

Finally [(g - 1)!] th/J;_Q(t) is equal to

01
—Y%00n 00

d
)5_1 — Y00n ((1] 8) 51] (tlogt + cpt) + Qt_t<t logt + c,t)
which equals

t
—n(tlogt + cpt — g) =

(tlogt+ c,t) = 0.

2

—ntwn,2<t)
2The formula at the top of p. 4.10 (2023 ed.: p. is not correct. It should be

v (0 ) i),

2



72 LETTER TO ANDRE WEIL, PART 2—1967

If the functions ¢, are defined as on p. 4.@ then, as we have seenﬁ when s = 0 and
m =20

(g + k) (g +k+ 1),0(V+)90n7k—1
_ (E +k+ 1) (E —k+ 1>p(V)90n,k

2 2
n n _
- (5 - k) (E —k+ 1)/0<V )@n k1

is equal to
(2 +k+1)! (ﬂ—k+1)!(n )3
-9 2 2 Z 4 1 "
F+1)r 3+ \2 Pt
and
PV oni—1+ p(V)onie — p(V7)Pnps
is equal to

(24+k—1) (2 —k—1)!
G-0r Gonr e
Moreover one shows readily that

n n
(5 + k) p(V ) ens1 + kp(V)ens + (5 - k)ﬂ(v><ﬁn,k+l

is equal to zero. It follows immediately that the representation on L'(w) is equivalent to the
representation on L(w).

The remarks of the lemma can now be verified rather easily. Choose n so that H, # 0.
There is a function ¥(g) on G¢ with values in V,, such that H, is the set of functions of the
form (g)®, ® € V,,. Moreover ¥(gu) = ®(g)o,(u) if u € U%and U((§9)g) =w((§2))¥(g).
Let ¥(t) = W((tm 0 )), ¥ is determined by 1. According to the formula on p. 5.8

0 t71/2

the equations p(D)¥ = %\P and p(D")V = (S_”;)Ll\lf reduce to

d ’ k 2,1k

2
[ti —k - 1} YF = (s —m)2F.

dt
If either (s +m) # 0 or (s —m) # 0 these equations imply that each ¥* is a power of ¢.
Thus H,, and hence H, is contained in a space of the form >_; | L(w;) for some wy, ..., w.

Parts (i), (ii) and (iii) of the lemma follow from Lemma 4.2 and the proof of Lemma 4.4.
If s+m=0and s —m =0 then s = m = 0. Then ¢* = 0 if k¥ # 0 and ¢°(¢) is a linear
combination of ¢ and tlogt. Part (iv) of the lemma also follows.

242023 ed.) P.

25According to a remark in a previous footnote the left hand sides of the equation on p. 4.10 (2023 ed.:
p. 30) should be (% +m+ 1)!(2 —m + 1)la(n,w) and (% +m — 1)!(% —m — 1)!b(n,w).
°(1998) Between Lemmas 5.2 and 5.3.
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For a non-archimedean local field we use the notation of paragraph [6] If w is a homomor-
phism of Ax /Ao into C* define the function ¢, by

1 2z\[fay O - 1/2 a; 0
%((0 1)(0 a2>“>— “llo a u € Go.
If w# W then ¢, # @z. If w =0 define ¢/, by
, 1 2\ (a1 O B 12 a; 0 |
Zollo 1)L 0 a)") ™ “WNo ay))®

Lemma C. Suppose ¢ is a function on Nx\Gg which satisfies p(gu) = ¢(g) for u in Go
and suppose that for all f in H

/G ©(gh) f(h)dh = x.,(f)e(g)-

If w # W, ¢ is a linear combination of v, and pg and, if w = W, ¢ is a linear combination of
Qo and @,
Choosing f to be the characteristic function of a(1,1)Go and Gpa(0,1)Go we obtain the

e ) e )
(5 2)) (5 )=o) (G ) (3 0)
» S0<(C;; 0))

It is easy to see that these relations are satisfied by ¢, ¢z and, if w = w, by ¢! . If w # w then

o ((59) =¢s((§9)) #0but v, ((59)) # ¢s((59)). Subtracting from ¢ a suitable linear
combination of ¢, and gz we obtain a function ¢ which satisfies the relations and vanishes at
(39) and (§3). Itw = o then p, (()2)) # w but ¢ ((19) = 0 while @, ((59)) # 0. We
can again subtract from ¢ a suitable linear combination of ¢, and ¢/ and obtain a function
which satisfies these relations and vanishes at (V) and (7 9). To prove that, in either case,

1 vanishes identically we need only show that it vanishes at the matrices (”"‘J" ﬂon). The

first relation implies this is so if n = 0 or 1. Taking ("61 692) = (”"6*" Won) and substituting in
the second relation we see that if this is so if for all m and n = ng and ng + 1 it is true for all
m and n = ng — 1 and that if this is so for all m and n = ng and ng — 1 it is true for all m
and n = ng + 1. The lemma follows by induction.

Let S be a finite set of primes containing the archimedean primes and the primes which
divide D. Let Is = {v | ¢ is a unit if p ¢ S}. We suppose S is so large that P (K* N IP)I%
if 1P =TIsN1IP. Let Gg = [Lies Gx, % [1es Go, and let GL = GR N Gg. According to the

previous three lemmas the restriction of ¢y to G is a linear combination of functions of the

631

%)

o

(&%)
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form
(o )G )i | =
pes pgsS
1/2
] ( > log

Here (%) (Of]p 5 )up lies in Ug if p|D, 7 is a homomorphism of the group of diagonal

matrices with entries from IZ into C* such that n((%" 50p )) =1ifp ¢ S and oy, f, lie in

O, and Sy is a subset of S. If v and 4 belong to K NIL then gpo((g g)g> = ¢o(g). Moreover

> pes 10g|yp| = 0 is the only linear relation satisfied by all the vectors {log|%| ‘ pe S} as vy

varies over K* N IP. A simple argument then shows that the restriction of ¢y to GE is of
the form

(G 2))-

pesS
/2,
1% S0 (TI(S 5) )3 (T |+ TTw | Sosl %
pes| P i3 pes P pes pes pes
The homomorphisms n™, ..., 7" are to be distinct and for each i either sz or CQ(i) is to be

different from zero. If a and 8 lie in K* N IZ then n® (Hpes<%” ﬁop)) =1.

Each 1) determines a homomorphism of the diagonal matrices with entries from I”
into C*. This homomorphism, which will be 1 on the matrices with entries from K> N

IP we again call n9. The value of ¢, at Hp(o A )(OS' %)up is the same as its value at

{HPES@ 5 ) }{Hp¢s<%” 5 )} which is
/ ;nm 1;[(03 gp) T |+ (T Zlog

pesS pesS

H%

pﬁp

Define 7V by

O H(O(‘)P 510) =" H(Op O‘p)

P P
Lemma D. Ifi # j then nt) =7,

2T this formula and the similar ones following the absolute value at the complex primes is the square of
the usual absolute value.
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(5 5)) e 5))
,ﬁ(z-)ln<j><(g g)) ol |51 ((0 5))

for o, 8 in IP. Here a, b, ¢, d are real numbers and y and )’ are characters in the usual
sense. Lemma C implies that if p ¢ S the restriction of either n® 'nl) or 70 'yl to

ap 0

0 ﬁp
that a £ 0 or b # 0. Then ¢ = d = 0 and 7 "9 is an ordinary character. It is known
that the values 77)"'n) takes on the matrices <08’ f?p>v ap, By € KX, p ¢ S are dense in

Let

ap, By € pr} is trivial. This can only happen if a = b =0 or ¢ = d = 0. Suppose

the set of values which 77 "n) takes on. It follows that n = 7. In the same way we
show that if ¢ # 0 or d # 0 then ¥ = nU). This is of course excluded. It remains to treat
the case a = b = ¢ = d = 0. In this case the values taken by the vector-valued function

(n® '@ 5Oy} on the matrices <06‘° ;p), ap, By € K, p ¢ S are dense in the set of
all values it assumes. It follows from Lemma C that (1 — 7@ 5@)(1 — 7)) vanishes
identically. If 7 # nU) there is an (0 5) such that 7~ n) <(a 2 )) # 1. Then, necessarily

n(i)_ln(j)<(8‘2)> = 1. Since % # nU) there is a (0 6) such that n®~ n) (( )> # 1.
Then 707 ((35)) = 1. One sees immediately that (1 —7®~'y@)(1 = 70~'3) will not
vanish at <°67 505). This is a contradiction.

Lemma E. There are two possible forms for the function .

(i) There is a homomorphism w of the diagonal matrices with entries from IP into C*,
which is 1 on the matrices with entries from K* N IP, such that w # & and two

functions ¢ and (' on Hpes Uk, such that if g = Hp(l Zp ) (%” 5 >up lies in GX then

01
volg) equals

1/2
Qp

% (T 5) eI ) = (T0( 5) )< (I

pes pes

By

(1) There is a homomorphism w of the diagonal matrices with entries from IP into C*,
which is 1 on the matrices with entries from K* N IP, such that w = & and two

functions ¢ and ¢' on ], g Uk, such that if g = Hp(l ) (%" 5 )up lies in G then

01
wo(g) equals
1/2

pesS

H%
b

By

v rp[(og gp) C(TLw |+ (TLuw | Sl

pes pes peS
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