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1. Introduction

This is the rest of the letter I promised. After making the necessary apologies for its length,
the style in which it is written, and the delay in sending it let me tell you what is in it and
what is not in it. There are also one or two matters about which you should be concerned.

Of course the goal is to extend the theorem of your paper to all number fields and to
function fields. If I have made no mistakes such an extension is obtained in paragraph 7.
(Although I am not really at home with function fields I do not think I made any blunders.)
Moreover as I said I do have to assume the existence of an Euler product.

If you want to see quickly what the basic idea of the proof is you should probably concentrate
on function fields. For these only paragraphs 6 and 7 are necessary. Indeed in this letter
the only difference between a number field and a function field is that a function field has
no archimedean primes. The reason that so much space is devoted to archimedean fields
is that, at the moment, I know more about the representations of GL(2, K) for such fields.
As soon as I understand the representation theory of GL(2, K) for non-archimedean fields I
should be able to avoid the assumption, which appears in both the letter and your paper,
about the character χ. Of course ignorance of the representation theory of GL(2, K) for a
non-archimedean field is not fatal. The same ignorance for an archimedean field would be.

Perhaps it will help when you read paragraph 7 if I give some idea of the relation between
the notation of the letter and your paper. Associate to the function Γ of your paper the
function

F0(g) =
(ad− bc)k/2

(ci+ d)k
F

(
ai+ b

ci+ d

)
g =

(
a b
c d

)
∈ GL+(2,R).

If K = Q, as we now assume, the divisor D of the letter is just the number A of your paper.
Let ϵ′ be the ϵ of your paper and let δ be a character modulo A. If

(
a b
c d

)
lies in UD

Kp
set

ϵp

(
a b
c d

)
= ϵ′(a)δ(ad)
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if p|D and set

ϵp

(
a b
c d

)
= 1

if p ∤ D. Then, for
(
a b
c d

)
in UD

ϵ

(
a b
c d

)
=
∏
p̸=p∞

ϵp

(
ap bp
cp dp

)
is the ϵ of the letter. The relation F |γ = ϵ(γ)−1F for γ = ( r st u ) in F0(A) is equivalent to

F0(γg) =

∏
p|D

ϵp(γp)

F0(g)

for γ in GK ∩GKp∞ × UD, det γ > 0. Define a function φ on GD
A by

φ(γg) = φ(g) = F0(g∞)
∏
p|D

ϵp(gp)

if γ belongs to GK ∩GD
A, g belongs to GKp∞ ×UD, and det(g∞) > 0. φ is well-defined and is

the φ of my letter. If we want to indicate its independence on δ we should write φ = φδ.
Now let me show that the assumption

F |ω(A) = C−1i−kF

implies that φ̂ = ik

C

{∏
p|D ϵp

(
1 0
0 −1

)}
φϵ′δ. Since (ϵ′)2 = 1

ϵ̃p

(
a b
c d

)
= ϵ′(a)δ(ad) = ϵ′(a)(ϵ′δ)(ad)

if p|D. If g belongs to GKp × UD and det g∞ > 0

φ̂(g) = φ

(0 A−1

1 0

)
g
∏
p|D

(
0 1
Ap 0

)
= φ

( 0 A−1

−1 0

)
g
∏
p|D

(
0 −1
Ap 0

)∏
p|D

ϵp

((
1 0
0 −1

))

= F0

(A−1
∞ 0
0 −A−1

∞

)(
0 −1
A∞ 0

)
g∞

∏
p|D

ϵ̃g(gp)


∏

p|D

ϵp

(
1 0
0 −1

)
=
ik

C

∏
p|D

ϵp

(
1 0
0 −1

)F0(g∞)

∏
p|D

ϵ̃p(gp)


=
ik

C

∏
p|D

ϵp

(
1 0
0 −1

)φϵ′d(g).
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If

ω

((
α1 0
0 α2

))∣∣∣∣α1

α2

∣∣∣∣ k−1
2

(sgnα2)
k α1, α2 ∈ Rk

the representation πp∞ is the infinite-dimensional quasi-simple irreducible representation
deducible from πω. φp∞ will have to lie in L(ξp∞ , πp∞)k. ξ will of course be the character

ξ(x) = e2πix∞
∏
p

e−2πixp .

Let χ′ be one of the χ of your paper. χ′ determines a homomorphism of
∏

p|mO
×
p into C×.

m is of course the conductor of χ. Let χ′ also denote the character of K×\I which satisfies

χ′

∏
p

βp

 = χ′

∏
p|m

βp


if βp∞ > 0 and βp ∈ O×

p for p ̸= p∞. Then χ = (ϵ′δχ′)−1 is one of the characters of the letter.
If g is

I ×
∏
p̸=p∞

(
1 1

mp

0 1

)
the value of the integral of Lemma 7.3 is, in your notation,1

1

φ(m)

∑
a mod m

χ′(a)

∫ ∞

0

∑
n

cne
2πin(t− a

m)ts+
k
2
dt

t
.

This equals
g(χ′)

φ(m)
Γ

(
s+

k

2

) ∞∑
n=1

χ(n)cn

(2πn)s+
k
2

=
g(χ′)

φ(m)ms+ k
2

Λχ′

(
s+

k

2

)
.

On the other hand it is equal to the product of Ξ(s, χ) and the expression (D) on page 7.202.
If φp∞ is suitably normalized then, for the g chosen, this expression equals

1

(2π)s+
k
2

∏
p∈R

∫
O×

p

e−2πi α
m ζp

((
α 0
0 1

))
dα.

This is equal to
1

(2π)s+
k
2

g(χ′)

φ(m)
.

Thus

Ξ(s, χ) =

(
2π

m

)s+ k
2

Λχ′
(
s+

k

2

)
.

Moreover

Ξ̂
(
s, (χη)−1

)
=
ik

c

∏
p|D

ϵp

(
1 0
0 −1

)(2π

m

)s+ k
2

Λχ

(
s+

k

2

)
.

1The second formula from the bottom on p. 150 of your paper does not look correct.
2Added—this is pagination of the original letter.
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The letter and the paper will be consistent if(
2π

m

)s+ k
2

A−sCϵ′(m)
g(χ′)

g(χ′)
χ−1(−A)

is equal to

ik

C

∏
p|D

ϵp

((
1 0
0 −1

))
(
2π

m

)−s+ k
2

∏
p|D

ζ ′p

((
−Ap 0
0 1

))
× ϵ(ζp∞ξp∞ , πp∞)


∏
p∤D

p̸=p∞

ϵ(ζp, ξp, ωp)

.
This is a consequence of the following relations.∏

p|D

ϵp

((
1 0
0 −1

))
= δ(−1)

∏
p|D

ζp

((
−Ap 0
0 1

))
=
∏
p∤D

ζ−1
p

((
−Ap 0
0 1

))
= χ′(A)δ(−1)(−1)kA−s

ϵ(ζp∞ξp∞ , πp∞) = ik(2π)2s

ϵ(ζp, ξp, πp) = 1 if p ∤ D and p ∤ m

∏
p|m

ϵ(ζp, ξp, ωp) =
g(χ′)

g(χ′)

∏
p|m

ζp

(mp 0
0 −m−1

p

)
∏
p|m

ζp

(mp 0
0 −m−1

p

) =
∏
p|m

(ϵ′δ2)−1(−m−1
p )
∏
p|m

(ϵ′δχ′)−1(−m2
p)
∏
p|m

|mp|2s

=

∏
p|m

(ϵ′)−1(mp)


∏

p|m

χ′(−m−2
p )

m−2s

=

∏
p∤m

ϵ′(mp)


∏

p∤m

χ′(−m2
p)

m−2s

= ϵ′(m)χ′(−1)m−2s.

Of course all these formulae will be meaningless to you until you have read the letter.
For lemmas 2.4 and 4.3 I have referred to a paper of Harish-Chandra. These lemmas are

not stated explicitly in that paper. It has been a long time since I looked at that paper and I
should read it again to see that the lemmas are really implicit in it. I will do so as soon as
possible. The appendix to paragraph 7 is not relevant to the rest of the paper. You should
not read it. I include it only because the footnotes contain corrections to paragraph 5.
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With so many formulae there are bound to be some small errors. They should show up as
soon as one starts to apply the theorem.

2. Representations of GL(2,R)

In this paragraph the next GR will be GL(2,R) and G0
R will be the group of matrices in GR

with determinant ±1. U will be O(2,R) and U0 will be SO(2,R). g will be the Lie algebra of
GR and gC its complexification. g0 will be the Lie algebra of G0

R and g0C its complexification.
A and A0 will be the universal enveloping algebras of gC and g0C respectively. Since neither
GR nor G0

R is connected it is not sufficient for us to study representations of A or A0. Let

σ =

(
1 0
0 −1

)
.

A representation π of {σ,A} on a vector space W assigns to each X in A a linear trans-
formation π(X) of W . It also assigns to σ a linear transformation π(σ). We demand

not only that X → π(X) be a representation of A but also that
(
π(σ)

)2
= I, and

π(σ)π(X)π(σ−1) = π
(
adσ(X)

)
for all X in A. A representation of {σ,A0} is defined

in a similar manner. If π is a representation of {σ,A}, π0 will denote its restriction to {σ,A0}
Two bases of g0C are

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
Z =

(
1 0
0 −1

)
and

U =

(
0 1

−1 0

)
V =

(
1 i
i −1

)
W =

(
1 −i
−i −1

)
.

U is contained in the Lie algebra of the one-dimensional group U . If π is a representation of
{σ,A} on W let Wn =

{
w ∈ W

∣∣ π(U)w = inw
}
. We shall always assume that Wn = {0} if

n is not an integer. The representation π will be called quasi-simple3 if W =
∑

nWn and
π(Z) is a scalar for all Z in the centre of A. If π1 and π2 are two representations of {σ,A}
on W1 and W2 respectively π2 will be said to be deducible from π1 if there are two invariant
subspaces W3 ⊇ W4 of W1 and π2 is equivalent to the representation of {σ,A} on W3/W4.
Similar notions can be introduced for representations of {σ,A0}.
If Z lies in the centre of A then ad σ(Z) = Z. The centre of A0 is generated by

D = XY + Y X +
1

2
Z2 = 2Y X + Z +

1

2
Z2 = 2XY − Z +

1

2
Z2.

The centre of A is generated by D and J = ( 1 0
0 1 ).

If G is any Lie group and X lies in its Lie algebra ρ(X) is the left-invariant vector field

defined by ρ(X)φ(g) = d
dt
φ(g exp tX)

∣∣∣
t=0

and λ(X) is the right-invariant vector field defined

by λ(X)φ(g) = d
dt
φ
(
exp(−tX)g

)∣∣∣
t=0

. The maps X → ρ(X) and X → λ(X) extend to

representations of the complex universal enveloping algebra.

3I use the expression in a slightly different sense than Harish-Chandra.
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Let ω be a continuous homomorphism of AR, the group of diagonal matrices in GR, into C×.
Let ω1 and ω2 be the homomorphisms of R× into C× defined by

ω1(t) = ω

((
t 0
0 1

))
and

ω2(t) =

((
1 0
0 t

))
.

Let ωi(t) = |t|si
(
t
|t|

)mi

, mi = 0 or 1, and set s = s1 − s2, m = m1 −m2. If NR is the group

of all matrices of the form (
1 x
0 1

)
let L(ω) be the space of all infinitely differentiable U -finite functions on NR\GR satisfying

φ(ag) ≡ ω(a)
∣∣∣α1

α2

∣∣∣1/2φ(g) for all
a =

(
α1 0
0 α2

)
in AR. If φ belongs to L(ω) and X belongs to A then ρ(X)φ also belongs to L(ω). Of
course ρ(σ)φ which is defined by

(
ρ(σ)φ

)
(g) = φ(gσ) also belongs to L(ω) and we obtain a

representation πω of {σ,A} on L(ω).
Because of the Iwasawa decomposition GR = NRARU

0, the functions in L(ω) are de-
termined by their restrictions to U0. The functions φn with n−m

2
∈ Z, which are defined

by

φn(g) = ω(a)

∣∣∣∣α1

α2

∣∣∣∣1/2einθ
if g = ( 1 x

0 1 )a
(

cos θ sin θ
− sin θ cos θ

)
and a =

(
α1 0
0 α2

)
, form a basis of L(ω).

Lemma 2.1.

(i) πω(σ)φn = (−1)m2φ−n
(ii) πω(U)φn = inφn
(iii) πω(V )φn = (s+ 1 + n)φn+2

(iv) πω(W )φn = (s+ 1− n)φn−2

(v) πω(D) = s2−1
2
I

(vi) πω(J) = (s1 + s2)I

The relations (i), (ii), and (vi) are clear. To prove (iv) we observe that ρ(D) = λ(D) and
that if φ ∈ L(ω),

λ(D)φ = λ(Z)φ+
1

2
λ(Z2)φ =

[
−(s+ 1) +

1

2
(s+ 1)2

]
φ =

s2 − 1

2
φ.

Since [U, V ] = 2iV and [U,W ] = 2iW , πω(V )φn is a multiple of φn+2 and πω(W )φn is a
multiple of φn−2. It is easily seen that

(
πω(V )φn

)
(1) = (s+ 1 + n) and

(
πω(W )φn

)
(1) =

(s+ 1− n). The relations (ii) and (iii) follow.

Corollary.



LETTER TO ANDRÉ WEIL, PART 2—1967 7

(i) If s−m is not an even integer the restriction of πω to A0 is irreducible.
(ii) If s−m is an odd integer and s ⩾ 0 the only subspaces of L(ω) invariant under A0

are
M1(ω) =

∑
n⩾s+1
n−m

2
∈Z

Cφn, M2(ω) =
∑

n⩽−(s+1)
n−m

2
∈Z

Cφn,

and M(ω) = M1(ω) + M2(ω). The spaces M1(ω), M2(ω), and L(ω)/M(ω) are
irreducible under A0. The only subspace invariant under {σ,A0} is M(ω). The
representations of {σ,A0} on M(ω) and L(ω)/M(ω) are irreducible.

(iii) If s−m is an odd integer and s < 0 the only subspaces of L(ω) invariant under A0

are
M1(ω) =

∑
n⩾s+1
n−m

2
∈Z

Cφn, M2(ω) =
∑

n⩽−(s+1)
n−m

2
∈Z

Cφn,

and M(ω) = M1(ω) ∩M2(ω). The only subspace invariant under {σ,A0} is M(ω)
and the representations of A0 on M(ω) and L(ω)/M(ω) are irreducible.

This follows immediately from the lemma and the observation that an invariant subspace
of L(ω) is spanned by the φn it contains.

If π is a quasi-simple representation of {σ,A0} on H then π(V )Hn ⊆ Hn+2 and π(W )Hn ⊆
Hn−2. Consequently H0 =

∑
n evenHn and H1 =

∑
n oddHn are invariant subspaces of H.

We shall say that π is of type 0 if H1 = {0} and that π as of type 1 if H0 = {0}.

Lemma 2.2. Suppose π is a quasi-simple irreducible representation of {σ,A0} on H which

is of type m. Suppose moreover that π(D) = s2−1
2
I and s−m is not an odd integer. If n ⩾ 0

let An be the restriction of
π(σ)π(W )n∏m−1

k=0

(
s+ 2k − (n− 1)

)
to Hn. If n ⩽ 0 let An be the restriction of

π(σ)π(V )|n|∏|n|−1
k=0

(
s+ 2k −

(
|n| − 1

))
to Hn. Then A2

n = I for all n. Let A(π) be the operator H whose restriction to Hn is An.
A(π) commutes with π(σ) and with π(X) if X is in A0.

Using the relations Z = V+W
2

, 2X = U − i (V−W )
2

, 2Y = −U − i (V−W )
2

one shows easily that

D =
VW

4
+
WV

4
− U2

2
=
VW

2
+ iU − U2

2
=
WV

2
− iU − U2

2
.

Thus, if φ lies in Hn,

π(V )π(W )φ = π(2D − 2iU + U2)φ = (s2 − 1 + 2n− n2)φ =
[
s2 − (n− 1)2

]
φ

π(W )π(V )φ = π(2D + 2iU + U2)φ = (s2 − 1− 2n− n2)φ =
[
s2 − (n+ 1)2

]
φ.

In particular if 0 ⩽ j < |n| and φ ∈ Wn

π(V )j+1π(W )j+1φ =
[
s2 − (n− 2j − 1)2

]
π(V )jπ(W )jφ if n ⩾ 0

π(W )j+1π(V )j+1φ =
[
s2 −

(
|n| − 2j − 1

)2]
π(W )jπ(V )jφ if n ⩽ 0.
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Since π(σ)π(W )π(σ) = π(V ) and π(σ)π(V )π(σ) = π(W ) it follows that

A2
nφ =

∏|n|−1
j=0

[
s2 −

(
|n| − 2j − 1

)2]{∏|n|−1
k=0

(
s+ 2k −

(
|n| − 1

))}2φ = φ

It is easy to see that A(π) commutes with π(σ) and π(U). Thus to prove the last
assertion of the lemma we need only show that it commutes with π(V ) and π(W ) or that
An+2π(V ) = π(V )An and An−2π(W ) = π(W )An. We must study various cases separately.

Suppose that n ⩾ 0 and φ belongs to Hn.

An+2π(V )φ =
1∏n+1

k=0

(
s+ 2k − (n+ 1)

)π(σ)π(W )n+2π(V )φ

=
π(V )∏n+1

k=0

(
s+ 2k − (n+ 1)

) · (s2 − (n+ 1)2
)
π(σ)π(W )nφ

= π(V )Anφ.

If n ⩾ 2

π(W )Anφ =
1∏n−1

k=0

(
s+ 2k − (n− 1)

)π(W )π(σ)π(W )nφ

=
π(σ)∏n−1

k=0

(
s+ 2k − (n− 1)

)(s2 − (−n+ 1)2
)
π(W )n−1φ

= An−2π(W )φ.

If n = 1

π(W )Anφ =
1

s
π(W )π(σ)π(W )φ =

1

s
π(σ)π(V )π(W )φ = An−2π(W )φ.

If n = 0

An−2π(W )φ =
1

s2 − 1
π(σ)π(V )2π(W )φ

=
π(W )

s2 − 1
π(σ)π(V )π(W )φ = π(W )π(σ)φ = π(W )Anφ.

There is no need to discuss the case n ⩽ 0 because π(σ)An′π(σ) = A−n, π(σ)π(W )π(σ) =
π(V ), and π(σ)π(V )π(σ) = π(W ).

Lemma 2.3. A quasi-simple representation π of {σ,A} is irreducible if and only if π0 is
irreducible. If π is an irreducible quasi-simple representation of {σ,A} on H there are two
possibilities.

(i) The restriction π of π to A is irreducible and the two representations X → π(X) and
X → π

(
adσ(X)

)
are equivalent.

(ii) H is the direct sum of two subspaces H1 and H2 invariant under A. The representations
π1 and π2 of A on H1 and H2 are inequivalent but π2 is equivalent to X → π1

(
adσ(X)

)
and π(σ)H1 = H2.

The first assertion is a matter of definition. Suppose π is irreducible. Either H is irreducible
under A, when the first possibility occurs, or it is not. Suppose it is not. Let H1 be a proper
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subspace of H invariant under A and let H2 = π(σ)H1. Since H1 + H2 and H1 ∩ H2 are
invariant under {σ,A}, H1∩H2 = {0} and H = H1⊕H2. If H

′
1 were a proper subspace of H1

invariant under A then H ′
1 ⊕H ′

2, with H
′
2 = π(σ)H ′

1, would be a proper invariant subspace
of H. π2 is certainly equivalent to X → π1

(
adσ(X)

)
. To complete the proof of the lemma

we have merely to show that π1 and X → π1

(
adσ(X)

)
are not equivalent. To do this we use

the following lemma which is a special case of a theorem of Harish-Chandra (Representations
of semi-simple Lie groups, II, T.A.M.S. v. 16, 1954).

Lemma 2.4. Let σ be an irreducible quasi-simple representation of A on W . There is at least
one continuous homomorphism ω of AR into C× such that σ is of type |m| and σ(D) = s2−1

2
I

and σ(J) = (s1 + s2)I. Moreover if ω is any such homomorphism, σ is deducible from πω,
the restriction of πω to A.

As usual ω1(t) = ω
(
( t 0
0 1 )
)
, ω2(t) = ω

(
( 1 0
0 t )
)
, ωi(t) = |t|si

(
t
|t|

)mi

, s = s1 − s2, and

m = m1−m2. Although the adjectives of the lemma have only been defined for representations
of {σ,A} their meaning for representations of A is clear. The lemma implies that Wn is of
dimension at most 1. Consequently any linear transformation leaving Wn invariant has an
eigenvector and any linear transformation commuting with σ(X) for all X in A is a scalar.
If π1 and X → π1

(
adσ(X)

)
were equivalent there would be an operator A such that

A−1π1(X)A = π1

(
adσ(X)

)
for all X. Thus A2π1(X)A−2 = A

(
π1

(
adσ(X)

))
A−1 = π1(X)

and A2 is a scalar. We may suppose that A2 = I. If x lies in H1 and X lies in A then
π(X)

(
x⊕ π(σ)Ax

)
= y ⊕ π(σ)π(A)y if y = π(X)x and π(σ)

(
x⊕ π(σ)Ax

)
= y ⊕ π(σ)Ay if

y = Ax so that
{
x⊕ π(σ)Ax

}
is a proper invariant subspace.

Lemma 2.5. Suppose π is an irreducible quasi-simple representation of {σ,A} on H. There

is a continuous homomorphism ω of AR into C× such that π is of type |m|, π(D) = s2−1
2
I,

π(J) = (s1 + s2)I and, if s −m is not an odd integer, A(π) = (−1)m2I. If ω is any such
homomorphism and π is infinite-dimensional then π is deducible from πω.

Choose s so that π(D) = s2−1
2
I and define s1 and s2 by s1 − s2 = s and π(J) = (s1 + s2)I.

Choose m2 to be 0 or 1 and define m1, which is 0 or 1, by the condition that π is of type
|m| if m = m1 −m2. If s−m is not an odd integer A(π) is defined and commutes with π(σ)
and all π(X). By the previous two lemmas Hn is finite-dimensional. Consequently A(π) is a
scalar. Since A2(π) = I, A(π) = ±I. Choose m2 so that A(π) = (−1)m2I. If s−m is an odd
integer m2 may be chosen to be either 0 or 1. It follows from Lemma 2.1 that if s−m is not
an odd integer then A(πω) = (−1)m2I.
Suppose first that s − m is not an odd integer. Lemmas 2.3, 2.4 and the corollary to

Lemma 2.1 imply that π, the restriction of π to A, is irreducible and equivalent to πω.
Let B be a map from H to L(ω) such that Bπ(X) = πω(X)B for all X. I claim that
Bπ(σ) = πω(σ)B. It is enough to verify that Bπ(σ)x = πω(σ)Bx for x in Hn. Clearly
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BA(π) = A(πω)B. Since A2(π) = I, Bπ(σ)x = Bπ(σ)A2x. If n ⩾ 0

Bπ(σ)x =
Bπ(σ)A(π)π(σ)π(W )nx∏n−1

k=0

(
s+ 2k − (n− 1)

)
=

bA(π)π(W )nx∏n−1
k=0

(
s+ 2k − (n− 1)

)
=

A(πω)πω(W )nBx∏n−1
k=0

(
s+ 2k − (n− 1)

)
= πω(σ)Bx

and if n ⩽ 0

Bπ(σ)x =
Bπ(σ)A(π)π(σ)π(V )|n|x∏|n|−1
k=0

(
s+ 2k −

(
|n| − 1

))
=

BA(π)π(V )|n|x∏|n|−1
k=0

(
s+ 2k −

(
|n| − 1

))
=

A(πω)πω(V )|n|Bx∏|n|−1
k=0

(
s+ 2k −

(
|n| − 1

))
= πω(σ)Bx.

If s−m is an odd integer and π is infinite-dimensional it follows from Lemmas 2.3, 2.4 and
the corollary to Lemma 2.1 that H = H1 ⊕H2. Let V

′ ⊇ V ′′ be subspaces of L(ω) invariant
under A such that π1 is equivalent to the representation of A on V ′/V ′′. Let W ′ be the
intersection of all subspaces of L(ω) which contain V ′ and are invariant under {σ,A}. Let
W ′′ be the union of all subspaces of L(ω) which are contained in V ′′ and are invariant under
{σ,A}. By the corollary to Lemma 2.1 the representation π̃ω of {σ,A} on W = W ′/W ′′

is irreducible. By Lemma 2.3, W is the direct sum of two subspaces W1 and W2 invariant
under A. We may suppose that the representation of A on W1 is equivalent to π1. Let B1 be
a map of H1 to W1 such that B1π(X) = πω(X)B1 for X in A. Let B2 = π̃ω(σ)B1π(σ) and
set B = B1 ⊕B2. It is immediate that Bπ(σ) = π̃ω(σ)B and Bπ(X) = π̃ω(X)B for all X.

It is not difficult to see that every finite-dimensional representation of {σ,A} is deducible
from some πω. As a consequence A(π) can be defined by the formulae of Lemma 2.6. If π is
deducible from πω then A(π) = (−1)m2I.

Corollary. Suppose λ(D), λ(J), and m, which is to be 0 or 1, are given numbers. Let λ(D) =
s2−1
2

. If s−m is not an odd integer there are two irreducible quasi-simple representations π
of {σ,A} of type m for which π(D) = λ(D)I and π(J) = λ(J) = λ(J)I. For one A(π) = I
and for the other A(π) = −I. If s−m is an odd integer there are three such representations.
One is infinite-dimensional. The other two are finite-dimensional. For one of these A(π) = I
and for the other A(π) = −I.

Since s is not unambiguously determined neither is A(π). However once a representation πω
from which π is deducible is specified s can be taken to be s1 − s2. Such a choice was implicit
at various places in the preceding paragraph.
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3. The local functional equation for GL(2,R)

If π is an irreducible quasi-simple representation of {σ,A} and π1 is a representation of
{σ,A} on W we shall say that π is contained in π1 if there is an invariant subspace V of W
such that the restriction of π1 to V is equivalent to π. We shall say that π is contained at
most once in π1 if there is at most one such subspace. If V ′ were another such subspace
either V ∩ V ′ = {0} or V = V ′; thus to show that π is contained at most once in π1 one has
merely to show that two such subspaces must have a non-zero element in common. Similar
notions can be introduced for representations of {σ,A0}.
If η is a continuous homomorphism of AR into C× let L(η) be the space of all infinitely

differentiable U -finite functions on GR satisfying φ(ag) ≡ η(a)φ(g) for all a in AR. If φ lies
in L(η) so does ρ(σ)φ and ρ(X)φ for X in A. Thus we have a representation ρ(η) of {σ,A}
on L(η).

Lemma 3.1. No irreducible quasi-simple representation of {σ,A} is contained more than
once in ρ(η).

Let π be an irreducible quasi-simple representation of {σ,A} and let π0 be its restriction
to {σ,A0}. Suppose π is deducible from πω. Let L

0(η) be the space of infinitely differentiable
U -finite functions on G0

R satisfying φ(ag) ≡ η(a)φ(g) for all a in AR ∩G0
R and let ρ0(η) be

the representation of {σ,A0} on L0(η). It is enough to show that π0 is contained at most
once in ρ0(η).
Suppose H ⊆ L0(η) and the restriction of ρ0(η) to H is equivalent to π0. The integers n

for which Hn ̸= {0} are determined by π. To prove the lemma we need only show that, for
some such n, Hn is uniquely determined by π. Let η1(t) = η

(
( t 0
0 1 )
)
, η2(t) = η

(
( 1 0
0 t )
)
, and let

ηi(t) = |t|ri
(
g
|t|

)ℓi
with ℓi = 0 or 1. If φ lies in Hn set ψ(x) = φ

(
( 1 x
0 1 )
)
; then

φ(g) = η(a)ψ(x)einθ

if

g = a

(
1 x
0 1

)(
cos θ sin θ

− sin θ cos θ

)
with a in AR ∩ G0

R. Consequently φ is uniquely determined by ψ. Let φ1 = ρ(V )φ,
φ2 = ρ(W )φ, and let ψ1 and ψ2 be the corresponding functions on R. Since

ρ(U)φ

((
1 x
0 1

))
= inψ(x)

ρ(Z)φ

((
1 x
0 1

))
= rψ(x)− 2x

dψ

dx

ρ(X)φ

((
1 x
0 1

))
=
dψ

dx

and

V = Z + 2iX − iU

W = Z − 2iX + iU
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one has

ψ1(x) = −2(x− i)
dψ

dx
+ (r + n)ψ

ψ2(x) = −2(x+ i)
dψ

dx
+ (r − n)ψ.

Moreover ρ(D)φ = ρ
(
WV
2

− iU − U2

2

)
φ corresponds to the function

2(x2 + 1)
d2ψ

dx2
+ (4x− 2rx− 2in)

dψ

dx
+

(r − 1)2 − 1

2
ψ.

Consequently

(A) 2(x2 + 1)
d2ψ

dx2
+ (4x− 2rx− 2in)

dψ

dx
+

[
(r − 1)2 − s2

]
2

ψ = 0.

Finally ρ(σ)φ corresponds to (−1)ℓ2ψ(−x).
There are a number of separate cases to consider. If s − m is an odd integer and π is

infinite-dimensional take n0 = |s|+ 1. Then Hn0 ̸= {0} and ρ(W )φ = 0 if φ ∈ Hn0 . Thus

−2(x+ i)
dψ

dx
+ (r − n0)ψ = 0.

This equation determines ψ up to a scalar factor.
If s−m is not an odd integer or π is finite-dimensional and if m = 0 then H0 ̸= {0}. If

φ lies in H0 then ψ must satisfy equation (A) and the condition ψ(−x) = (−1)ℓ2+m2ψ(x)
because A(π0) = (−1)m2I. Thus ψ is determined up to a scalar factor.
If s −m is not an odd integer or π is finite-dimensional and if |m| = 1 then H1 ̸= {0}.

Referring to the definition of A(π) in Lemma 2.2 we see that ψ satisfies equation (A) and
the equation

−2(x+ i)
dψ

dx
+ (r − 1)ψ(x) = (−1)ℓ2+m2sψ(−x).

This equation implies a non-trivial linear relation between the values of ψ and its first
derivative at x = 0. Thus ψ is determined up to a scalar factor.
If ξ(x) = eiux, with u ̸= 0, is a non-trivial character of R let L(ξ) be the space of all

infinitely differentiable U -finite functions on GR satisfying

(i) φ

((
1 x
0 1

)
g

)
≡ ξ(x)φ(g) for all x in R,

(ii) if g belongs to GR and X belongs to A there is a constant M such that∣∣∣∣∣∣ρ(X)φ

((
t1 0
0 t2

)
g

)∣∣∣∣∣∣ ⩽M
{
|t1|M + |t2|M

}
for |t1| ⩾ |t2|.

Let ρ(ξ) be the representation of {σ,A} on L(ξ).

Lemma 3.2. No irreducible quasi-simple representation of {σ,A} is contained more than
once in ρ(ξ).

Let π be such a representation and let π be deducible from πω. Let L
0(ξ) be the space of

all infinitely differentiable U -finite functions on G0
R satisfying
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(i) φ

((
1 x
0 1

)
g

)
≡ ξ(x)φ(g),

(ii) if g lies in G0
R and X lies in A0 there is a constant M such that∣∣∣∣∣∣ρ(X)φ

(t1/2 0

0 t−1/2

)
g

∣∣∣∣∣∣ ⩽MtM

for t ⩾ 1.

Let ρ0(ξ) be the representation of {σ,A0} on L0(ξ). It is enough to show that π0 is
contained at most once in ρ0(η). The proof of this will be similar to the proof of the previous
lemma.

Suppose H is an invariant subspace of L0(ξ) and the restriction of ρ0(ξ) to H is equivalent
to π0. If φ lies in Hn set

ψ(t) = φ


 t

|t|1/2 0

0 1
|t|1/2


, t ∈ R×.

Since φ(g) = ξ(x)ψ(t)einθ if

g =

(
1 x
0 1

) t
|t|1/2 0

0 1
|t|1/2

( cos θ sin θ
− sin θ cos θ

)
the function φ is determined by ψ. Let φ1 = ρ(V )φ, φ2 = ρ(W )ρ, and let ψ1 and ψ2 be the
corresponding functions on R×. Since

ρ(U)φ


 t

|t|1/2 0

0 1
|t|1/2


 = inψ(t)

ρ(Z)φ


 t

|t|1/2 0

0 1
|t|1/2


 = 2t

dψ

dt

ρ(X)φ


 t

|t|1/2 0

0 1
|t|1/2


 = iutψ(t)

one has

ψ1(t) = 2t
dψ

dt
− (2ut− n)ψ

ψ2(t) = 2t
dψ

dt
+ (2ut− n)ψ.

Moreover ρ(D)φ corresponds to 2t d
dt

(
tdψ
dt

)
− 2tdψ

dt
+ (2nut− 2u2t2)ψ so that

(B) 2t
d

dt

(
t
dψ

dt

)
− 2t

dψ

dt
+ (2nut− 2u2t2)ψ =

s2 − 1

2
ψ.
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Finally ρ(σ)φ corresponds to (−1)nψ(−t).
Suppose that s −m is an odd integer and π is infinite-dimensional. Take n0 = |s| + 1.

Then Hn0 ̸= {0} and ρ(W )φ = 0 if φ belongs to Hn0 . Consequently

2t
dψ

dt
+ (2ut− n0)ψ = 0.

If ψ is to satisfy this equation and the growth condition it must vanish for ut < 0 and be a
multiple of |t|n0/2e−ut for ut > 0. Thus it is determined up to a scalar factor.
Before discussing the remaining cases we should comment on equation (B). It may be

written as
d2ψ

dt2
+

(
−u2 + nu

t
+

(1− s2)

4t2

)
ψ = 0.

Dropping the terms in 1
t
and 1

t2
we obtain the equation d2ψ

dt2
− u2ψ = 0. As a consequence the

original equation has one solution on the positive real axis of the form tµe−|u|t
(
1 +O

(
1
t

))
and one of the form tνe|u|t

(
1 +O

(
1
t

))
. Only the first will satisfy the growth conditions. On

the negative real axis it has solutions of the forms tµ
′
e|u|t
(
1 +O

(
1
t

))
and tν

′
e−|u|t

(
1 +O

(
1
t

))
.

Only the first satisfies the required growth conditions. Thus the space of solutions of
equation (B) which satisfy the growth conditions has dimension two.
If s−m is not an odd integer or π is finite-dimensional and if m = 0 then H0 ̸= {0}. If

φ belongs to H0 then ψ(−t) = (−1)m2ψ(t) because A(π0) = (−1)m2I. This supplementary
condition will determine ψ up to a scalar factor.

If s−m is not an odd integer or π is finite-dimensional and if |m| = 1 then H1 ̸= {0}. If φ
belongs to H1 then

2t
dψ

dt
+ (2ut− 1)ψ(t) = (−1)(m2+1)sψ(−t).

This supplementary condition determines ψ up to a scalar factor.
Suppose ψ(t) satisfies equation (B) with n = 1 and

ψ′(t) =
1

s
(−1)m2+1

{
−2t

dψ

dt
(−t)− (2ut+ 1)ψ(−t)

}
.

Then

(−1)m2+1

s

{
−2t

dψ′

dt
(−t)− (2ut+ 1)ψ′(−t)

}
=

(−1)m2+1

s

{
2t
d

dt

(
ψ′(−t)

)
− (2ut+ 1)ψ′(−t)

}
which equals

2

s2

{
t
d

dt

[
2t
dψ

dt
+ (2ut− 1)ψ

]
− (2ut+ 1)

2

[
2t
dψ

dt
+ (2ut− 1)ψ(t)

]}
.

Simplifying we obtain

2

s2

{
2t
d

dt

(
t
dψ

dt

)
− 2t

dψ

dt
+

(
−2u2t2 + 2ut+

1

2

)
ψ

}
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which is just ψ itself.

Corollary. Let π be an irreducible quasi-simple representation of {σ,A}. π is contained in
ρ(ξ) if and only if π is infinite-dimensional.

It is enough to show that π0 is contained in π0(ξ) if and only if π0 is infinite-dimensional.
Suppose H is a non-trivial finite-dimensional subspace of L0(ξ). Let τ be the representation
of {σ,A} on H and let τ̃ be the contragredient representation. If

Xx =

(
0 x
0 0

)
the only eigenvalue of τ̃(Xx) is zero because τ̃ is finite-dimensional. Let φ̃ be the element in
the dual of H defined by φ̃(φ) = φ(1). φ̃ is not zero and(

τ̃(Xx)φ̃
)
(φ) = −φ̃

(
τ(Xx)φ

)
= −

(
τ(Xx)φ

)
(1) = −iuφ(1)

so −iu is an eigenvalue of τ̃(Xx). This is a contradiction.
Suppose π is infinite-dimensional and deducible from πω. Let L0(ξ, s) be the space of

functions in L0(ξ) satisfying ρ(D)φ = s2−1
2
φ. The dimension of L0(ξ, s)n is two. Let

L0(ξ, s,m) =
∑

n−m
2

∈Z

L0(ξ, s)n

and let ρ0(ξ, s,m) be the representation of {σ,A} on L0(ξ, s,m).
Suppose W1 ⫌ W2 are two invariant subspaces of L0(ξ, s,m) and W = W1/W2. The

representation of {σ,A} on W is quasi-simple. Choose n so that Wn is not empty. The
dimension of Wn is at most two. Among all the non-zero subspaces of Wn obtained by
intersecting Wn with an invariant subspace of W there is a minimal one W 0

n . Let W
′ be the

intersection of all invariant subspaces containing W 0
n and let W ′′ be the sum of all invariant

subspaces of W ′ which do not contain W 0
n . W

′′ does not contain W 0
n and the representation

of {σ,A} on V = W ′/W ′′ is irreducible.
If s −m is not an odd integer Lemma 2.1 and Lemma 2.5 and its corollary imply that

Vn ̸= {0} if n−m
2

is an integer. Because the dimension of L0(ξ, s)n is two we conclude that there

is no chain L0(ξ, s,m) ⫌ W1 ⫌ W2 ⫌ {0} of invariant subspaces. The operator A
(
ρ0(ξ, s,m)

)
is defined and L0(ξ, s,m) is the direct sum of L+ =

{
φ
∣∣∣ A(ρ0(ξ, s,m)

)
φ = φ

}
and L− ={

φ
∣∣∣ A(ρ0(ξ, s,m)

)
φ = −φ

}
. We have seen that neither of these is empty. Consequently

they are both irreducible and the corollary to Lemma 2.5 implies that the restriction of
ρ0(ξ, s,m) to one of them is equivalent to π0.
If s − m is an odd integer the same kind of argument shows that there is no chain

L0(ξ, s,m) ⫌ W1 ⫌ W2 ⫌ W3 ⫌ W4 ⫌ {0} of invariant subspaces. As a consequence
L0(ξ, s,m) must contain an invariant irreducible subspace. The restriction of ρ0(ξ, s,m)
to this subspace will be equivalent to π0 which is the only infinite-dimensional irreducible
representation deducible from π0

ω.
We return to the study of the functions ψ(t). The Mellin transforms

θ+(z) =

∫
R×

ψ(t)|t|z−1 dt

θ−(z) =

∫
R×

ψ(t)(sgn t)|t|z−1 dt
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are defined for Re z sufficiently large. Equations (B) are equivalent to the difference equations[
(2z + 1)2 − s2

]
θ+(z) + 4nuθ−(z + 1)− 4u2θ+(z + 2) = 0[

(2z + 1)2 − s2
]
θ−(z) + 4nuθ+(z + 1)− 4u2θ−(z + 2) = 0.

If, as before, ψ corresponds to φ, ψ1 corresponds to φ1 = ρ(V )φ, and ψ2 corresponds to
φ2 = ρ(W )φ let θ+i and θ−i be the Mellin transforms of ψi. Then

(C)

θ+1 (z) = −2zθ+(z)− 2uθ−(z + 1) + nθ+(z)

θ−1 (z) = −2zθ−(z)− 2uθ+(z + 1) + nθ−(z)

θ+2 (z) = −2zθ+(z) + 2uθ−(z + 1)− nθ+(z)

θ−2 (z) = −2zθ−(z) + 2uθ+(z + 1)− nθ−(z).

If φ is replaced by ρ(σ)φ then θ+(z) is replaced by (−1)nθ+(z) and θ−(z) is replaced
by (−1)n+1θ−(z).

If π is an infinite-dimensional irreducible quasi-simple representation of {σ,A} let L0(ξ, π)
be the unique subspace of L0(ξ) which transforms according to π0.

Lemma 3.3. Suppose π is an infinite-dimensional irreducible quasi-simple representation
of {σ,A} which is deducible from πω. If L0(ξ, π)n ̸= 0 let θ+n (z) and θ−n (z) be the Mellin
transforms corresponding to some non-zero element in L0(ξ, π)n.

(i) If s−m is not an odd integer, m = 0, and m2 = 0, then

θ+0 (z) = α0

(
2

|u|

)z
Γ

(
z + 1

2
+ s

2

2

)
Γ

(
z + 1

2
− s

2

2

)
θ−0 (z) = 0

θ+2 (z) = α1

(
2

|u|

)z
zΓ

(
z + 1

2
+ s

2

2

)
Γ

(
z + 1

2
− s

2

2

)

θ−2 (z) = 2α1 sgnu

(
2

|u|

)z
Γ

(
z + 3

2
+ s

2

2

)
Γ

(
z + 3

2
− s

2

2

)
.

(ii) If s−m is not an odd integer, m = 0, and m2 = 1, then

θ+0 (z) = 0

θ−0 (z) = β0

(
2

|u|

)z
Γ

(
z + 1

2
+ s

2

2

)
Γ

(
z + 1

2
− s

2

2

)

θ+2 (z) = 2β2 sgnu

(
2

|u|

)z
Γ

(
z + 3

2
+ s

2

2

)
Γ

(
z + 3

2
− s

2

2

)

θ−2 (z) = β1

(
2

|u|

)z
zΓ

(
z + 1

2
+ s

2

2

)
Γ

(
z + 1

2
− s

2

2

)
.
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(iii) If s−m is not an odd integer, |m| = 1, and m2 = 0 then

θ+1 (z) = γ0

(
2

|u|

)z
Γ

(
z + 3

2
+ s

2

2

)
Γ

(
z + 1

2
− s

2

2

)

θ−1 (z) = γ0 sgnu

(
2

|u|

)z
Γ

(
z + 1

2
+ s

2

2

)
Γ

(
z + 3

2
− s

2

2

)
.

(iv) If s−m is not an odd integer, |m| = 1, and m2 = 1 then

θ+1 (z) = γ1

(
2

|u|

)z
Γ

(
z + 1

2
+ s

2

2

)
Γ

(
z + 3

2
− s

2

2

)

θ−1 (z) = γ1 sgnu

(
2

|u|

)z
Γ

(
z + 3

2
+ s

2

2

)
Γ

(
z + 1

2
− s

2

2

)
.

(v) If s−m is an odd integer and n0 = |s|+ 1 then

θ+n0
(z) =

δ0

|u|z+
n0
2

Γ

(
z +

1

2
+

|s|
2

)
θ−n0

(z) =
δ0

|u|z+
n0
2

sgnuΓ

(
z +

1

2
+

|s|
2

)
.

The letters α0, α1, β0, β1, γ0, γ1, δ0 denote constants.

If s−m is not an odd integer and m = 0 the supplementary conditions on θ+0 (z) and θ
−
0 (z)

corresponding to A(π0) = (−1)m2I are θ+0 (z) = (−1)m2θ+0 (z), θ
−
0 (z) = (−1)m2+1θ−0 (z). The

first and second functions in parts (i) and (ii) of the lemma satisfy these conditions as well
as the difference equations. Taking the inverse Mellin transform we obtain a function ψ(t)
which satisfies the growth condition as well as the differential equation (B). The function
defined by φ(g) = ξ(x)ψ(t) if

g =

(
1 x
0 1

) t
|t|1/2 0

0 1
|t|1/2

( cos θ sin θ
− sin θ cos θ

)
will lie in L0(ξ, s,m)0. Moreover A

(
ρ0(ξ, s,m)

)
φ will equal (−1)m2φ so that φ will lie in

L0(ξ, π)0. Thus the first two equations of parts (i) and (ii) are valid. The last two can be
obtained from the first two by applying relations (C).

In the first four cases π is equivalent to πω. It follows from Lemma 2.5 that π is equivalent
to πω̃ if

ω̃

((
α1 0
0 α2

))
= ω

((
α2 0
0 α1

))
.

Replacing ω by ω̃ interchanges cases (iii) and (iv) so we need discuss case (iii) alone.
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Substituting the function
(

2
|u|

)z
Γ

(
z+ 3

2
± s

2

2

)
Γ

(
z+ 1

2
∓ s

2

2

)
(taking only all the upper signs or

all the lower signs) into the expression
[
(2z + 1)2 − s2

]
θ(z)− 4u2θ(z + 2) one obtains[

(2z + 1)2 − s2

2
− 2

(
z +

3

2
± s

)(
z +

1

2
∓ s

)]

× |u|
(

2

|u|

)z+1

Γ

(
z + 3

2
± s

2

2

)
Γ

(
z + 1

2
∓ s

2

2

)
which equals

−4u

sgnu

(
2

|u|

)z+1

Γ

(
(z + 1) + 1

2
± s

2

2

)
Γ

(
(z + 1) + 3

2
∓ s

2

2

).
Consequently the functions of part (iii) satisfy the difference equations. The supplementary
conditions on θ+1 (z) and θ

−
1 (z) corresponding to the relation A(π) = I are

sθ+1 (z) = 2zθ+1 (z)− 2uθ−1 (z + 1) + θ+1 (z)

−sθ−1 (z) = 2zθ−1 (z)− 2uθ+1 (z + 1) + θ−1 (z).

These will be satisfied by the functions of part (iii) because

(2z + 1∓ s)

(
2

|u|

)z
Γ

(
z + 1

2
∓ s

2

2

)
Γ

(
z + 3

2
± s

2

2

)

= 2u sgnu

(
2

|u|

)z+1

Γ

(
(z + 1) + 1

2
± s

2

2

)
Γ

(
(z + 1) + 3

2
∓ s

2

2

)
.

The formulae of part (iii) can now be proved in the same way as those of parts (i) and (ii).
The simplest way to prove part (v) is to appeal to the explicit form for the corresponding

function ψ(t) found during the proof of Lemma 3.2.

Lemma 3.4. Suppose ψ(t) corresponds to φ in L0(ξ, π)n and π is deducible from πω.

(i) If s−m is not an integer, m = 0, m2 = 0 then, in a neighbourhood of 0, ψ(t) has a
convergent expansion of the form

|t|
s+1
2

∞∑
p=0

apt
p + |t|

−s+1
2

∞∑
p=0

bpt
p.

(ii) If s−m is an even integer, m = 0, and m2 = 0 then, in a neighbourhood of 0, ψ(t)
has a convergent expansion of the form

|t|
−|s|+1

2

∞∑
p=0

apt
p +

(
log|t|

)
t
|s|+1

2

∞∑
p=0

bpt
p.

(iii) If s −m is not an integer, m = 0, and m2 = 1 then, in a neighbourhood of 0, ψ(t)
has a convergent expansion of the form

(sgn t)|t|
s+1
2

∞∑
p=0

apt
p + (sgn t)|t|

−s+1
2

∞∑
p=0

bpt
p.



LETTER TO ANDRÉ WEIL, PART 2—1967 19

(iv) If s−m is an even integer, m = 0, and m2 = 1, then, in a neighbourhood of 0, ψ(t)
has a convergent expansion of the form

(sgn t)|t|
−|s|+1

2

∞∑
p=0

apt
p + (sgn t)|t|

|s|+1
2 log|t|

∞∑
p=0

bpt
p.

(v) If s−m is not an integer, |m| = 1, and m2 = 0 then, in a neighbourhood of 0, ψ(t)
has a convergent expansion of the form

(sgn t)|t|
s+1
2

∞∑
p=0

apt
p + |t|

−s+1
2

∞∑
p=0

bpt
p.

(vi) If s−m is an even integer, |m| = 1, and m2 = 0 then, in a neighbourhood of 0, ψ(t)
has a convergent expansion of the form

|t|
−s+1

2

∞∑
p=0

apt
p + (sgn t)|t|

s+1
2 log|t|

∞∑
p=0

bpt
p

if s is positive and one of the form

(sgn t)|t|
s+1
2

∞∑
p=0

apt
p + |t|

−s+1
2 log|t|

∞∑
p=0

bpt
p

if s is negative.
(vii) If s−m is not an integer, |m| = 1, and m2 = 1, then, in a neighbourhood of 0, ψ(t)

has a convergent expansion of the form

|t|
s+1
2

∞∑
p=0

apt
p + (sgn t)|t|

−s+1
2

∞∑
p=0

bpt
p.

(viii) If s−m is an even integer, |m| = 1, and m2 = 1 then, in a neighbourhood of 0, ψ(t)
has a convergent expansion of the form

(sgn t)|t|
−s+1

2

∞∑
p=0

att
p + |t|

s+1
2 log|t|

∞∑
p=0

bpt
p

if s is positive and one of the form

|t|
s+1
2

∞∑
p=0

apt
p + (sgn t)|t|

−s+1
2 log|t|

∞∑
p=0

bpt
p

if s is negative.
(ix ) If s−m is an odd integer then ψ(t) is zero unless nut > 0 and in this region ψ(t) has

a convergent expansion of the form

|t|
|s|+1

2

∞∑
p=0

att
p.

We know that if ψ(t) corresponds to φ then 2tdψ
dt

− (2ut− n)ψ corresponds to ρ(V )φ,

2tdψ
dt

+ (2ut− n)ψ corresponds to ρ(W )φ, and (−1)nψ(−t) corresponds to ρ(σ)φ. Because
each of these operations take a function with an expansion of one of the given forms to a
function with an expansion of the same form and π0 is irreducible it will be enough to show
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that there is at least one n for which the lemma is valid. If s−m is not an odd integer we
shall take n = |m| and if s−m is an odd integer we shall take n = |s|+ 1.
The indicial equation of the equation (B) does not depend on n. It is (2λ− 1)2 − s2 = 0

and has the roots λ1 = s+1
2
, λ2 = −s+1

2
with difference λ1 − λ2 = s. If n = 0 the series

tλi
∑∞

p=0 cpt
p, t > 0 satisfies the equation if and only if[(

2(λi + p)− 1
)2 − s2

]
cp = 4u2cp−2.

Thus if s is not an integer ψ(t) has an expansion of the form

t
s+1
2

∞∑
p=0

a2pt
2p + t

−s+1
2

∞∑
p=0

b2pt
2p

valid for t positive and close to 0. If s is an even integer one of the two linearly independent
solutions given by the method of Frobenius must contain a logarithmic term because it will
not be possible to solve these equations recursively when λi is the smaller of the roots. Since
the equation is invariant under the substitution t→ −t the logarithmic solution must be of
the form

t
−|s|+1

2

∞∑
p=0

c2pt
2p + t

|s|+1
2 log t

∞∑
p=0

d2pt
2p

and ψ(t) has an expansion of the form

t
−|s|+1

2

∞∑
p=0

a2pt
2p + t

|s|+1
2 log t

∞∑
p=0

b2pt
2p

valid for t positive and close to 0. Cases (i) to (iv) of the lemma follow immediately because,
since n = 0, ψ(t) is even in the first two and odd in the second two.

Just as in the previous lemma, (vii) and (viii) are redundant since they are covered already

by (v) and (vi) which we now treat. If n = 1, t
±s+1

2

∑∞
p=0 cpt

p, t > 0, satisfies equation (B) if
and only if

1

2

[
(±s+ 2p)2 − s2

]
cp + 2ucp−1 − 2u2cp−2 = 0

or
(±2ps+ 2p2)cp + 2ucp−1 − 2u2cp−2 = 0.

For convenience let cp = 0 if p < 0. If s is not an integer choose c±0 and define c±p inductively

by (±s+ 2p)c±p + 2uc±p−1 = ±s(−1)pc±p or, equivalently, (±s+ p)c±p + uc±p−1 = 0 when p is

odd and pc±p + uc±p−1 = 0 when p is even. This equation will be satisfied for all p if c±p = 0
when p is negative. If p is odd

(±ps+ p2)c±p + uc±p−1 − u2c±p−2 = −u
[
(p− 1)c±p−1 + uc±p−2

]
= 0

and if p is even

(±ps+ p2)c±p + uc±p−1 − u2c±p−2 = −u
[(
±s+ (p− 1)

)
c±p−1 + uc±p−2

]
= 0.

Thus, if s is not an integer, ψ(t) will have an expansion of the form

t
s+1
2

∞∑
p=0

c+p t
p + t

−s+1
2

∞∑
p=0

c−p t
p
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valid for t positive and close to zero. Since m2 = 0

−sψ(−t) = 2t
dψ

dt
+ (2ut− 1)ψ(t).

The expression

2t
d

dt

t±s+1
2

∞∑
p=0

c±t t
p

+ (2ut− 1)t
±s+1

2

∞∑
p=0

c±p t
p

is equal to

t
±s+1

2

∞∑
p=0

[
(±s+ 2p)c±p + 2uc±p−1

]
tp = ±st

±s+1
2

∞∑
p=0

c±p (−t)p.

Case (v) of the lemma for n = 1 follows immediately.
Since

t
d

dt

(
log tA(t)

)
= t

dA

dt
log t+ A(t)

t
d

dt

(
t
d

dt

(
log tA(t)

))
= t

d

dt

(
t
dA

dt

)
+ 2t

dA

dt

the series

t
−|s|+1

2

∞∑
p=0

cpt
p + t

|s|+1
2 log t

∞∑
p=0

dpt
p, t > 0,

will satisfy equation (B) when s is an odd integer and n = 1 if and only if[(
|s|+ 2p

)2 − s2
]

2
dp + 2udp−1 − 2u2dp−2 = 0

or (
|s|p+ p2

)
dp + udp−1 − u2dp−2 = 0

and (
−|s|p+ p2

)
cp+ ucp−1 − u2cp−2 +

(
−|s|+ 2p

)
dp−|s| = 0.

Choose c0 and c|s| and define the other coefficients by
(
|s|+ 2p

)
dp + 2udp−1 = (−1)p|s|dp or

pdp + udp−1 = 0 if p is even and
(
|s|+ p

)
dp + udp−1 = 0 if p is odd and(

−|s|+ 2p
)
cp + 2ucp−1 + 2dp−|s| = (−1)p+1|s|cp

or
pcp + ucp−1 + dp−|s| = 0

if p is even and (
−|s|+ p

)
cp + ucp−1 + dp−|s| = 0

if p is odd. Take cp and dp to be 0 if p is negative. These equations are consistent and
determine the remaining cp and all dp uniquely. We have already seen that the coefficients dp
will satisfy (

|s|p+ p2
)
dp + udp−1 − u2dp−2 = 0.

If p is even (
−|s|p+ p2

)
cp + ucp−1 − u2cp−2 +

(
−|s|+ 2p

)
dp−|s|
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equals [
|s| − (p− 1)

]
ucp−1 − u2cp−2 + pdp−|s| = udp−|s|−1 +

(
|s|+

(
p− |s|

))
dp−|s| = 0

and if p is odd (
−|s|p+ p2

)
cp + ucp−1 − u2cp−2 +

(
−|s|+ 2p

)
dp−|s|

equals

−u
[
(p− 1)cp−1 + ucp−1

]
+
(
p− |s|

)
dp−|s| = udp−|s|−1 +

(
p− |s|

)
dp−|s| = 0.

Thus if c0 and c|s| are suitably chosen

ψ(t) = t
−|s|+1

2

∞∑
p=0

cpt
p + t

|s|+1
2 log t

∞∑
p=0

dpt
p

for t positive and close to 0.
Since m2 = 0

−sψ(−t) = 2t
dψ

dt
+ (2ut− 1)ψ.

The right hand side is equal to

t
−|s|+1

2

∞∑
p=0

c′pt
p + t

|s|+1
2

∞∑
p=0

d′pt
p

with

c′p =
(
−|s|+ 2p

)
cp + 2ucp−1 + 2dp−|s| = −|s|(−1)pcp

d′p =
(
|s|+ 2p

)
dp + 2udp−1 = (−1)p|s|dp.

Case (vi) of the lemma follows.
The assertion for case (ix) with n = |s|+ 1 was established while proving Lemma 3.2.
If ψ(t) is the function of the lemma and x is a real number the functions

θ+(z, x) =

∫
R×

eitxψ(t)|t|z−1 dt

θ−(z, x) =

∫
R×

eitxψ(t)|t|z−1 sgn t dt

are defined for Re z sufficiently large.

Lemma 3.5. θ±(z, x) are meromorphic in the whole complex plane and bounded in regions
of the form |Reu| ⩽ constant, |Imu| ⩾ constant ≫ 0

(i) If s − m is not an odd integer, m = 0, and m2 = 0 then θ+(z,x)

Γ

(
z+1

2+ s
2

2

)
Γ

(
z+1

2− s
2

2

) and

θ−(z,x)

Γ

(
z+3

2+ s
2

2

)
Γ

(
z+3

2− s
2

2

) are entire functions of z.

(ii) If s − m is not an odd integer, m = 0, and m2 = 1 then θ+(z,x)

Γ

(
z+3

2+ s
2

2

)
Γ

(
z+3

2− s
2

2

) and

θ−(z,x)

Γ

(
z+1

2+ s
2

2

)
Γ

(
z+1

2− s
2

2

) are entire functions of z.
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(iii) If s − m is not an odd integer, |m| = 1 and m2 = 0 then θ+(z,x)

Γ

(
z+3

2+ s
2

2

)
Γ

(
z+1

2− s
2

2

) and

θ−(z,x)

Γ

(
z+1

2+ s
2

2

)
Γ

(
z+3

2− s
2

2

) are entire functions of z.

(iv) If s −m is not an odd integer, |m| = 1, and m2 = 1 then θ+(z,x)

Γ

(
z+1

2+ s
2

2

)
Γ

(
z+3

2− s
2

2

) and

θ−(z,x)

Γ

(
z+3

2+ s
2

2

)
Γ

(
z+1

2− s
2

2

) are entire functions of z.

(v) If s−m is an odd integer then θ±(z,x)

Γ
(
z+ 1

2
+

|s|
2

) are entire functions of z.

Let m(t) be an infinitely differentiable function with compact support on the line which is
even and equal to 1 in a neighbourhood of 0. θ±(z, x) is the sum of

θ̂±(z, x) =

∫
R×

eitxψ(t)|t|z−1(sgn t)
1±1
2 m(t) dt

and ∫
R×

eitxψ(t)|t|z−1(sgn t)
1±1
2

(
1−m(t)

)
dt.

The second integral is an entire function of z which is bounded in vertical strips. Thus it

is enough to prove the lemma with θ±(z, x) replaced by θ̂±(z, x). The function eitxψ(t) +

(−1)
1±1
2 e−itxψ(−t) is, for t > 0, a linear combination of convergent series of the form

tα(log t)β
∞∑
p=0

cpt
p

where α is s+1
2

or −s+1
2

and β is 0 or 1. Given a series of this form and a real number c there
is a P such that ∫ ∞

0

tα(log t)β

∑
p⩾P

cpt
p

tz−1m(t) dt

is analytic for Re z > c and bounded in vertical strips of finite width contained in this region.
The first assertion of the lemma is a consequence of the relations∫ ∞

0

tα+p+z−1m(t) dt =
−1

α + p+ z

∫ ∞

0

tα+p+zm′(t) dt∫ ∞

0

tα+p+z−1 log tm(t) dt =
−1

(α + p+ z)2

∫ ∞

0

[
(α + p+ z)tα+p+z log t− tα+p+z

]
m′(t) dt

and the condition that m′(t) vanish near zero. To prove the remaining assertions one shows
that the zeros of the denominator on the right are cancelled by the poles of the Γ-factor.
This is easy but the various cases of Lemma 3.4 must be examined separately. I leave it to
the reader to do so.

If η is any homomorphism of AR into C× then η̃ will be the homomorphism defined by

η̃

((
α1 0
0 α2

))
= η

((
α2 0
0 α1

))
.
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If ζ is a homomorphism of A×
R into C× such that

ζ

((
α 0
0 α

))
ω

((
α 0
0 α

))
≡ 1

and z and ℓ are defined by

ζ


 t

|t|1/2
1

|t|1/2


 = |t|z(sgn t)ℓ,

with ℓ = 0 or 1, then ζ is determined by z and ℓ and we shall sometimes write ζ = ζ(z, ℓ).

Lemma 3.6. Suppose π is an infinite-dimensional representation of {σ,A} and π is deducible
from πω. Let L(ξ, π) be the unique subspace of L(ξ) which transforms according to π. If φ
belongs to L(ξ, π) and ζ = ζ(z, ℓ) the function

Φ(g, ζ, φ) =

∫
R×

φ

((
t 0
0 1

)
g

)
ζ

((
t 0
0 1

))
d×t

is defined for Re z sufficiently large.

(i) If s−m is not an odd integer set

Φ′(g, ζ, φ) =
Φ(g, ζ, φ)

Γ

(
z+|m1−ℓ|+ 1

2
+ s

2

2

)
Γ

(
z+|m2−ℓ|+ 1

2
− s

2

2

) .
(ii) If s−m is an odd integer set

Φ′(g, ζ, φ) =
Φ(g, ζ, φ)

Γ
(
z + 1

2
+ |s|

2

) .
Then Φ′(g, ζ(z, ℓ), φ) is an entire function of z and Φ

(
g, ζ(z, ℓ), φ

)
is bounded in regions of

the form |Re z| ⩽ constant, |Im z| ⩾ constant ≫ 0. Moreover if s−m is not an odd integer(
2

|u|

)−z

Φ′

((
0 1

−1 0

)
g, ζ, φ

)
= (i)|m1−ℓ|+|m2−ℓ|(sgnu)m

(
2

|u|

)z
Φ′(g, ζ̃, φ)

and if s−m is an odd integer(
1

|u|

)−z′

Φ′

((
0 1

−1 0

)
g, ζ, φ

)
= (i)|s|+1(sgnu)m

(
1

|u|

)z′
Φ′(g, ζ̃, φ).

It is enough to prove the lemma for φ in L(ξ, π)n. If φ̃ is the restriction of φ to G0
R let

ψ(t) be the function on R× corresponding to φ̃. Then, if

g =

(
t1 0
0 t2

)(
1 x
0 1

)(
cos θ sin θ

− sin θ cos θ

)
,
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φ

((
t 0
0 1

)
g

)
is equal to

e
i
tt1
t2
ux
ω

(|tt1t2|1/2 sgn t2 0

0 |tt1t2|1/2 sgn t2

)ψ(tt1
t2

)
einθ.

Thus

φ

((
t 0
0 1

)
g

)
ζ

((
t 0
0 1

))
is equal to

ζ−1

((
t1 0
0 t2

))
e
ei

tt1
t2
ux
ζ


 tt1

t2

∣∣∣ t2tt1 ∣∣∣1/2 0

0
∣∣∣ t2tt1 ∣∣∣1/2


ψ
(
tt1
t2

)
einθ

and Φ
(
g, ζ(z, ℓ), φ

)
is equal to

ζ−1

((
t1 0
0 t2

))
θ+(z, ux)einθ, if ℓ = 0,

ζ−1

((
t1 0
0 t2

))
θ−(z, ux)einθ, if ℓ = 1.

All assertions of the lemma except the functional equations follow immediately from Lemma 3.5.

If η = ζ̃−1 the maps

φ→ Φ′(g, ζ̃, φ),

φ→ Φ′

((
0 1

−1 0

)
g, ζ, p

)
are {σ,A} invariant maps of L(ξ, π) into L(η). According to Lemma 3.1 one must be a scalar

multiple of the other. To see what the multiple is we choose g = 1 so that Φ(g, ζ̃, φ) is equal
to θ+n (−z) if ℓ− |m| = 0 and is equal to θ−n (−z) if

∣∣ℓ− |m|
∣∣ = 1 and choose n in such a way

that Lemma 3.3 can be applied.

Φ

((
0 1

−1 0

)
g, ζ, φ

)
is equal to (i)nθ+n (z) if ℓ = 0 and to (i)nθ−n (z) is ℓ = 1. In the first column below we write

the values of Φ′(1, ζ̃, φ) for the values of n and ℓ in the last column; in the second column we

write the values of Φ′
((

0 1
−1 0

)
ζ, φ

)
. Comparing them we obtain the lemma. In all but the
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last line s−m is not an odd integer.

Φ′(1, ζ̃, φ) Φ′

((
0 1

−1 0

)
, ζ, φ

)
α0

(
2
|u|

)−z
α0

(
2
|u|

)z
ℓ = 0, m = 0, m2 = 0, n = 0.

2α1 sgnu
(

2
|u|

)−z
−2α1 sgnu

(
2
|u|

)z
ℓ = 1, m = 0, m2 = 0, n = 2.

2β1 sgnu
(

2
|u|

)−z
−2β1 sgnu

(
2
|u|

)z
ℓ = 0, m = 0, m1 = 1, n = 2.

β0

(
2
|u|

)−z
β0

(
2
|u|

)z
ℓ = 1, m = 0, m2 = 1, n = 0.

γ0 sgnu
(

2
|u|

)−z
iγ0

(
2
|u|

)z
ℓ = 0, |m| = 1, m2 = 0, n = 1.

γ0

(
2
|u|

)−z
iγ0 sgnu

(
2
|u|

)z
ℓ = 1, |m| = 1, m2 = 0, n = 1.

γ1 sgnu
(

2
|u|

)−z
iγ1

(
2
|u|

)z
ℓ = 0, |m| = 1, m2 = 1, n = 1.

γ1

(
2
|u|

)−z
iγ1 sgnu

(
2
|u|

)z
ℓ = 1, |m| = 1, m2 = 1, n = 1.

If s−m is an odd integer the two values are

δ0

(
1
|u|

)−z+n/2
(sgnu)ℓ (i)|s|+1δ0

(
1
|u|

)z+n/2
(sgnu)ℓ n = |s|+ 1, m = 0.

δ0

(
1
|u|

)−z+n/2
(sgnu)ℓ−1 (i)|s|+1δ0

(
1
|u|

)z+n/2
(sgnu)ℓ n = |s|+ 1, |m| = 1.

4. Representations of GL(2,C)

In this paragraph and the next GC will be GL(2,C) and G0
C will be SL(2,C). U will be

the group of unitary matrices in GC and U0 will be U ∩G0
C. GC and G0

C will be considered
as real Lie groups. The Lie algebra of GC is

g =


(
a b
c d

)
⊕

(
a b

c d

);

its complexification is

gC =

{(
a b
c d

)
⊕
(
a′ b′

c′ d′

)}
.

The Lie algebra of G0
C is

g0 =


(
a b
c d

)
⊕

(
a b

c d

) ∣∣∣∣∣∣ a+ d = 0

;

its complexification is

g0C =

{(
a b
c d

)
+

(
a′ b′

c′ d′

) ∣∣∣∣∣ a+ d = a′ + d′ = 0

}
.
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The Lie algebra of U is

u =


(
a b

−b d

)
⊕

(
a b

−b d

) ∣∣∣∣∣∣ a = −a, d = −d

;

its complexification is

uC =

{(
a b
c d

)
⊕
(
−a −c
−b −d

)}
.

Finally u0 = u ∩ g0 and u0C = uC ∩ g0C. When there is no risk of confusion an element of uC
will be identified by giving its first component.

Let Vn be the space of binary forms of degree n and let Ṽn be its dual. We write the
elements of Vn as

ψ(x, y) =
∑
|k|⩽n

n
2
−k∈Z

ψkx
n
2
+ky

n
2
−k.

ψk will be called the kth component of ψ. If |k| > n
2
let ψk = 0. Let σn be the representation

of U0 on Vn defined by

σn

(
a b
c d

)
ψ(x, y) = ψ(ax+ cy, bx+ dy).

Denote the corresponding representation of u0C by σn also. If ψ1 = σn( 0 0
1 0 )ψ then ψk−1

1 =(
n
2
+ k
)
ψk = ckψ

k where ck ̸= 0 for −n
2
< k ⩽ n

2
and if ψ2 = σn( 0 1

0 0 )ψ then ψk+1
2 =(

n
2
− k
)
ψk = dkψ

k where dk ̸= 0 for −n
2
⩽ k < n

2
.

Let A be the universal enveloping algebra of gC and A0 that of g0C. If π is a representation
of A on a vector space W then π0 will be the restriction of π to A0. Let Wn be the set of all
vectors in W which transform under u0C according to σn. π will be called quasi-simple4 if

(i) W =
⊕

nWn

(ii) If Z lies in the centre of A then π(Z) is a scalar. Suppose π1 and π2 are two
representations of A on W1 and W2 respectively. π2 will be said to be deducible
from π1 if there are two invariant subspaces W3 and W4 of W1 with W3 ⊇ W4 and π2
is equivalent to the representation of A on W3/W4. The same notions will be used for
representations of A0.

Set

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
Z =

(
1 0
0 −1

)
.

The centre of the universal enveloping algebra A0 is generated by

D = (X ⊕ 0)(Y ⊕ 0) + (Y ⊕ 0)(X ⊕ 0) +
1

2
(Z ⊕ 0)2

= 2(Y ⊕ 0)(X ⊕ 0) + Z ⊕ 0 +
1

2
(Z ⊕ 0)2

= 2(X ⊕ 0)(Y ⊕ 0)− Z ⊕ 0 +
1

2
(Z ⊕ 0)2

4I use the expression in a different way than Harish-Chandra.
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and

D′ = (0⊕X)(0⊕ Y ) + (0⊕ Y )(0⊕X) +
1

2
(0⊕ Z)2

= 2(0⊕ Y )(0⊕X) + (0⊕ Z) +
1

2
(0⊕ Z)2

= 2(0⊕X)(0⊕ Y )− (0⊕ Z) +
1

2
(0⊕ Z)2.

The centre of A is generated by D, D′, J = ( 1 0
0 1 )⊕ 0, and J ′ = 0⊕ ( 1 0

0 1 ).
Let ω be a continuous homomorphism of the group AC of diagonal matrices into C×. If

NC is the group of matrices of the form ( 1 z
0 1 ) let L(ω) be the space of infinitely differentiable

U -finite functions on NC\GC satisfying ψ(ag) =
∣∣∣α1

α2

∣∣∣ω(a)φ(g) if a = ( α1 0
0 α2

)
is in AC. The

restriction of ρ to L(ω) defines a representation πω of A on L(ω). Define ω1 and ω2 on

C× by ω1(t) = ω
(
( t 0
0 1 )
)
and ω2(t) = ω

(
( 1 0
0 t )
)
. Let ωi(t) = |t|si

(
t
|ti|

)mi

and set s = s1−s2
2

,

m = m1−m2

2
.

Lemma 4.1. L(ω)n ̸= {0} if and only if n
2
− |m| is a non-negative integer and then L(ω)n

is irreducible under u0C. Moreover

πω(D) =
(s+m)2 − 1

2
I, πω(J) =

{
s1 + s2

2
− i

(
m1 +m2

2

)}
I,

πω(D
′) =

(s−m)2 − 1

2
I, πω(J

′) =

{
s1 + s2

2
+ i

(
m1 +m2

2

)}
I.

The first assertion is an immediate consequence of the Iwasawa decomposition and the
Frobenius reciprocity law. Set

Z1 =

(
1 0
0 −1

)
⊕
(
1 0
0 −1

)
, Z2 =

(
i 0
0 −i

)
⊕
(
−i 0
0 i

)
,

X1 =

(
0 1
0 0

)
⊕
(
0 1
0 0

)
, X2 =

(
0 i
0 0

)
⊕
(
0 −i
0 0

)
,

Y1 =

(
0 0
1 0

)
⊕
(
0 0
1 0

)
, Y2 =

(
0 0
i 0

)
⊕
(

0 0
−i 0

)
,

W1 =

(
0 −1
1 0

)
⊕
(
0 −1
1 0

)
, W2 =

(
0 i
i 0

)
⊕
(

0 −i
−i 0

)
.

Then

Z ⊕ 0 =
Z1 − iZ2

2
, 0⊕ Z =

Z1 + iZ2

2
,

X ⊕ 0 =
X1 − iX2

2
, 0⊕X =

X1 + iX2

2
,

Y ⊕ 0 =
Y1 − iY2

2
, 0⊕ Y =

Y2 + iY2
2

.
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It is clear that ρ(D) = λ(D), that ρ(D′) = λ(D′) and that λ(Xi)φ = 0 if φ belongs to L(ω).
Thus

ρ(D)φ = λ(Z ⊕ 0)φ+
1

2
λ
(
(Z ⊕ 0)2

)
φ

ρ(D′)φ = λ(0⊕ Z)φ+
1

2
λ
(
(0⊕ Z)2

)
φ.

Combining this with the relations λ(Z1)φ = −2(s+ 1)φ and λ(Z2)φ = −2imφ one obtains
the asserted values for πω(D) and πω(D

′). The other two relations of the lemma are very
simple to verify.

Lemma 4.2. If neither −s− 1− |m| nor s− 1− |m| is a non-negative integer then πω is
irreducible. If −s− 1− |m| = n0

2
− |m| is a non-negative integer then∑
|m|⩽n⩽n0
n
2
−|m|∈Z

L(ω)n =M(ω)

is invariant and the representations of A on M(ω) and L(ω)/M(ω) are irreducible. If
s− 1− |m| = n0

2
− |m| is a non-negative integer then∑

n>n0
n
2
−|m|∈Z

L(ω)n =M(ω)

is invariant and the representations of A on M(ω) and L(ω)/M(ω) are irreducible.

Set

U+ = X ⊕−Y, U = Z ⊕−Z, U− = Y ⊕−X,
V + = X ⊕ Y, V = Z ⊕ Z, V − = Y ⊕X.

These six elements form a basis of g0C. U+, U , and U− form a basis of u0C. The space
pC spanned by V +, V , and V − is invariant under the adjoint action of u0C and the map
V + → x2, V → −2xy, V − → −y2 extends to a u0C-invariant map of pC to V2. The map
W ⊗ φ → πω(W )φ, W ∈ pC, φ ∈ L(ω)n extends to a u0C invariant map of pC ⊗ L(ω)n
into L(ω). It follows from the existence of the Clebsch-Gordan series that the image lies
in L(ω)n−2 + L(ω)n + L(ω)n+2. To prove the lemma all we need do is show that the image
contains a non-zero element in L(ω)n+2 if and only if s ̸= −

(
n
2
+ 1
)
and that if n

2
> |m| it

contains a non-zero element in L(ω)n−2 if and only if s ̸= n
2
.

Let n
2
− k ∈ Z. If |k| ⩽ n

2
let δk(x, y) = x

n
2
+ky

n
2
−k and if |k| > n

2
let δk(x, y) = 0. If |k| ⩽ n

2

let γk be the element of Ṽn such that γk

(∑
j ψ

jx
n
2
+jy

n
2
−j
)
= ψk; if |k| > n

2
let γk = 0. If

g = ( 1 z
0 1 )au with a =

(
α1 0
0 α2

)
in AC and u in U0 set

φn,k(g) =

∣∣∣∣α1

α2

∣∣∣∣ω(a)γmσn(u)δk |k| ⩽ n

2
.

The functions φn,k form a basis of L(ω)n.
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Using the method described on pp. 129–130 of Weyl’s book on quantum mechanics to
decompose pC ⊗ Vn or V2 ⊗ Vn into a direct sum of irreducible subspaces one finds that(

n

2
+ k

)(
n

2
+ k + 1

)
ρ(V +)φn,k−1

−
(
n

2
+ k + 1

)(
n

2
− k + 1

)
ρ(V )φn,k

−
(
n

2
− k

)(
n

2
− k + 1

)
ρ(V −)φn,k+1

is equal to (
n

2
+ k + 1

)
!

(
n

2
− k + 1

)
!a(n, ω)φn+2,k

and

ρ(V +)φn,k−1 + ρ(V )φn,k − ρ(V −)φn,k+1 =

(
n

2
+ k − 1

)
!

(
n

2
− k − 1

)
!b(n, ω)φn−2,k

if |k| ⩽ n
2
− 1. The image contains a non-zero element in L(ω)n+2 if and only if a(n, ω) ̸= 0

and a non-zero element in L(ω)n−2 if and only if b(n, ω) ̸= 0. Since φn+2,m(1) = 1 and
φn−2,m(1) = 1 if n

2
> |m| all we need do to find a(n, ω) and b(n, ω) is to take k = m and

evaluate the left sides of the above expressions at 1.

Now V = Z1, V
+ =

(
X1 +

W1

2

)
− i
(
X2 − W2

2

)
, and V − =

(
X1 +

W1

2

)
+ i
(
X2 − W2

2

)
.

Since

ρ(Z1)φn,k(1) = 2(s+ 1)φn,k(1),

ρ(X1)φn,k(1) = ρ(X2)φn,k(1) = 0,

ρ(W1)φn,k(1) = γmσn

(
0 −1
1 0

)
δk,

ρ(W2)φn,k(1) = γmσn

(
0 1
1 0

)
δk,

one has ρ(V )φn,k(1) = 2(s+ 1)γmγk and

ρ(V +)φn,k(1) = −γmσn
(
0 1
0 0

)
δk; ρ(V −)φn,k(1) = γmσn

(
0 0
1 0

)
δk.

Thus (
n

2
+m+ 1

)
!

(
n

2
−m+ 1

)
a(n, ω)

is equal to

−
(
n

2
+m

)(
n

2
+m+ 1

)(
n

2
−m+ 1

)(
n

2
+m+ 1

)(
n

2
−m+ 1

)
(s+ 1)

−
(
n

2
−m

)(
n

2
−m+ 1

)(
n

2
+m+ 1

)
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which equals

−2

[(
n

2
+ 1

)2

−m2

][
s+

n

2
+ 1

]
,

and (
n

2
+m− 1

)
!

(
n

2
−m− 1

)
!b(n, ω) = −

(
n

2
−m+ 1

)
+ 2(s+ 1)−

(
n

2
+m+ 1

)
= 2

(
s− n

2

)
.

Lemma 4.3. Suppose π is an irreducible quasi-simple representation of A on the vector
space H. There is at least one continuous homomorphism ω of A×

C into C× such that

π(D) =
(s+m)2 − 1

2
I, π(J) =

{
s1 + s2

2
− i

(m1 +m2)

2

}
I,

π(D′) =
(s−m)2 − 1

2
I, π(J ′) =

{
s1 + s2

2
+ i

(m1 +m2)

2

}
I,

and such that Hn0 ̸= 0 for at least one n0 with n0

2
− |m| a non-negative integer. If ω is any

such homomorphism then π is deducible from πω.

The lemma is a special case of a theorem of Harish-Chandra (Representations of semi-simple
Lie groups, II, T.A.M.S., v. 76, 1954). It implies that Hn is irreducible under u0C. A similar
assertion is valid for A0.

Lemma 4.4. Suppose λ(D), λ(D′), λ(J), and λ(J ′) are four given numbers. Apart from
equivalence there are at most two quasi-simple irreducible representations of A satisfying

π(D) = λ(D)I, π(D′) = λ(D′)I, π(J) = λ(J)I, π(J ′) = λ(J ′)I.

If there are two, then one of them is finite-dimensional.

If there is one such representation there is an ω such that λ(D) = (s+m)2−1
2

, λ(D′) = (s−m)2−1
2

,

λ(J) = s1+s2
2

− i (m1+m2)
2

, λ(J ′) = s1+s2
2

+ i (m1+m2)
2

. If ω′ is such that these representations are

satisfied by s′1, s
′
2, m

′
1, m

′
2, one must have s1+s2

2
=

s′1+s
′
2

2
and m1+m2

2
=

m′
1+m

′
2

2
. In particular

m −m′ =
m1−m′

1

2
− m2−m′

2

2
= m1 −m′

1 is integral. The relations (s+m)2 = (s′ +m′)2 and
(s−m)2 = (s′ −m′)2 are satisfied if and only if one of the following holds.

(i) s = s′ m = m′ (iii) s = m′ m = s′

(ii) s = −s′ m = −m′ (iv) s = −m′ m = −s′.
If s−m is not integral only the first two are possible. πω and πω′ are irreducible by Lemma 4.2
and equivalent by Lemma 4.3. If s −m is integral one can choose ω so that s ⩾ |m|. It
follows from Lemma 4.3 that every quasi-simple irreducible representation deducible from
πω′ is deducible from πω. There are only two such representations deducible from πω and one
of them is finite-dimensional. It is clear that Lemma 4.4 could also be formulated for A0.
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5. The local functional equation for GL(2,C)

If η is a continuous homomorphism of AC into C× let L(η) be the space of all U -finite
infinitely differentiable functions on G satisfying

φ(ag) = η(a)φ(g)

for all a in AC. If φ lies in L(η) and X lies in A then ρ(X)φ lies in L(η) so that we have a
representation ρ(η) of A on L(η).

Lemma 5.1. No irreducible, quasi-simple representation is contained more than once in ρ(η).

Let π be an irreducible, quasi-simple representation. Suppose it is deducible from πω
and suppose its restriction to u contains σn. If π occurs in L(η) then η1η2 = ω1ω2 and for
the proof we may as well assume that this is the case. Let L0(η) be the space of infinitely
differentiable U0-finite functions on G0

C satisfying φ(ag) = η(a)φ(g) for a in A0
C and let ρ0(η)

be the representation of A0 on L0(η). We have to show that π0 is contained at most once
in ρ0(η).

Let H ⊆ L0(η) be A0-invariant and suppose that the restriction of ρ0(η) to H is equivalent

to π0. There is a map φ→ Φ of Hn to Vn and a function Ψ(g) on G0 with values in Ṽn such

that φ(g) = Ψ(g)Φ and Ψ(gk) = Ψ(g)π(k). Let ω1(t) = |t|s1
(
t
|t|

)m1

, ω2(t) = |t|s2
(
t
|t|

)m2

,

η1(t) = |t|r1
(
t
|t|

)ℓ1
, η2(t) = |t|r2

(
t
|t|

)ℓ2
. If z = x + iy let ψ(z) = Ψ

(
( 1 z
0 1 )
)
. Ψ is uniquely

determined by ψ. Let us rewrite the equations

ρ(D)Ψ =

(
(s1−s2)+(m1−m2)

2

)2
− 1

2
Ψ =

(s+m)2 − 1

2
Ψ,

ρ(D)Ψ =

(
(s1−s2)−(m1−m2)

2

)2
− 1

2
Ψ =

(s−m)2 − 1

2
Ψ

in terms of ψ. D may be written as

2

(
X1 − iX2

2

)(
Y1 − iY2

2

)
−
(
Z1 − iZ2

2

)
+

1

2

(
Z1 − iZ2

2

)2

=
(X1 − iX2)(X1 + iX2)

2
+

(X1 − iX2)(W1 − iW2)

2
− (Z1 − iZ2)

2
+

(Z1 − iZ2)
2

8
and D′ may be written as

2
(X1 + iX2)

2

(Y1 + iY2)

2
− (Z1 + iZ2)

2
+

1

2

(
Z + iZ2

2

)2

=
(X1 + iX2)(X1 − iX2)

2
+

(X1 + iX2)(W1 + iW2)

2
− (Z1 + iZ2)

2
+

(Z1 + iZ2)
2

8
.

It is easily seen that

ρ(X2
1 +X2

2 )Ψ

((
1 z
0 1

))
=
∂2ψ

∂x2
+
∂2ψ

∂y2
= 4

∂2ψ

∂z∂z

if
∂

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
∂

∂z
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
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and that r = r1−r2
2

and ℓ = ℓ1−ℓ2
2

.

ρ
(
(X1 − iX2)(W1 − iW2)

)
Ψ

((
1 z
0 1

))
= 4

∂ψ

∂z
σn

(
0 0
1 0

)

ρ
(
(X1 + iX2)(W1 + iW2)

)
Ψ

((
1 z
0 1

))
= −4

∂ψ

∂z
σn

(
0 1
0 0

)

ρ(Z1)Ψ

((
1 z
0 1

))
=

(
2rψ − 2x

∂ψ

∂x
− 2y

∂ψ

∂y

)

ρ(Z2)Ψ

((
1 z
0 1

))
=

(
2iℓψ − 2y

∂ψ

∂x
− 2x

∂ψ

∂y

)
.

Putting everything together one obtains the equations

2
∂2ψ

∂z∂z
+ 2

∂ψ

∂z
σn

(
0 0
1 0

)
+

1

2

[
(r + ℓ− 1) + 2z

∂

∂z

]2
ψ =

(s+m)2

2
ψ

2
∂2ψ

∂z∂z
− 2

∂ψ

∂z
σn

(
0 1
0 0

)
+

1

2

[
(r − ℓ− 1) + 2z

∂

∂z

]2
ψ =

(s−m)2

2
ψ.

There is an auxiliary equation corresponding to the relation

ψ(e2iθz)σn

(
eiθ 0

0 e−iθ

)
= e2iℓθψ(z).

It is

−2y
∂ψ

∂x
+ 2x

∂ψ

∂y
+ ψσn

(
i 0
0 −i

)
= 2iℓψ

or

z
∂ψ

∂z
− z

∂ψ

∂z
= ψ

{
ℓI − 1

2
σn

(
1 0
0 −1

)}
.

Since ψ(z) is an analytic function of x and y it can be expanded in a power series
∞∑

p,q=0

zpzqψp,q.

According to the auxiliary equation,

(p− q)ψp,q = ψp,q

{
ℓI − 1

2
σn

(
1 0
0 −1

)}
.

Thus ψkp,q = 0 unless p− q = ℓ− k. Substituting in the first two equations one obtains

2(p+ q + 2)ψkp+1,q+1 + 2ckψ
k−1
p+1,q +

1

2

[
(r + ℓ− 1) + 2p

]2
ψkp,q =

(s+m)2

2
ψkp,q

2(p+ q + 2)ψkp+1,q+1 − 2dkψ
k+1
p,q+1 +

1

2

[
(r − ℓ− 1) + 2q

]2
ψkp,q =

(s−m)2

2
ψkp,q.
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Here ψjp,q = 0 if |j| > n
2
and ck ̸= 0 if −n

2
< k ⩽ n

2
. The second equation can be used to

determine the numbers ψ
n/2
p,q inductively. Then the first can be used to determine the numbers

ψkp,q for k <
n
2
.

Let ξ(z) = eiRe(wz) with w ̸= 0 be a character of C and let L(ξ) be the space of all infinitely
differentiable U -finite functions on GC satisfying

(i) φ

((
1 z
0 1

)
g

)
= ξ(z)φ(g).

(ii) If X ∈ A and g ∈ G there is a constant M such that∣∣∣∣∣∣φ
((

t1 0
0 t2

)
g

)∣∣∣∣∣∣ ⩽M
(
|t1|M + |t2|M

)
if |t1| ⩾ |t2|.

Let ρ(ξ) be the representation of A on L(ξ).

Lemma 5.2. Every quasi-simple irreducible representation of A is contained at most once
in L(ξ).

Let π be such a representation. Suppose π is deducible from πω and the restriction of π to
u contains σn. Let L

0(ξ) be the space of all infinitely differentiable U0-finite functions on G0
C

such that

(i) φ
(
( 1 z
0 1 )g

)
= ξ(z)φ(g).

(ii) If X ∈ A0 and g ∈ G0
C there is a constant M such that∣∣∣∣∣∣ρ(X)φ

(t1/2 0

0 t−1/2

)
g

∣∣∣∣∣∣ ⩽MtM for t ⩾ 1.

Let ρ0(ξ) be the representation of A0 on L0(ξ). It is enough to show that π0 is contained
at most once in ρ0(ξ).

Suppose H ⊆ L0(ξ) is invariant and the restriction of ρ0(ξ) to H is equivalent to π0. There

is a function Ψ(g) on G0
C with values in Ṽn such that Hn is the set of functions of the form

Ψ(g)Φ, Φ ∈ Vn. Ψ(gu) = Ψ(g)σn(u) if u ∈ U0. Let ψ(t) = Ψ

((
t1/2 0
0 t−1/2

))
for t > 0. Ψ is

completely determined by ψ. It is necessary to write the equations ρ(D)Ψ = (s+m)2−1
2

Ψ and
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ρ(D′)Ψ = (s−m)2−1
2

Ψ in terms of ψ. It is easy to verify that

ρ(X2
1 +X2

1 )Ψ

(t1/2 0

0 t−1/2

) = −t2|w|2ψ(t)

ρ
(
(X1 − iX2)(W1 − iW2)

)
Ψ

(t1/2 0

0 t−1/2

) = 2tiwψ(t)σn

(
0 0
1 0

)

ρ
(
(X1 + iX2)(W1 + iW2)

)
Ψ

(t1/2 0

0 t−1/2

) = −2tiwψ(t)σn

(
0 1
0 0

)

ρ(Z1)Ψ

(t1/2 0

0 t−1/2

) = 2t
∂ψ

∂t

ρ(Z2)Ψ

(t1/2 0

0 t−1/2

) = ψ(t)σn

(
i 0
0 −i

)
.

Thus

1

2
t
d

dt

(
t
dψ

dt

)
− t

dψ

dt

{
I − 1

2
σn

(
1 0
0 −1

)}
+

1

2
ψ

{
I − 1

2
σn

(
1 0
0 −1

)}2

− t2|w|2

2
ψ + tiwψσn

(
0 0
1 0

)
=

(s+m)2

2
ψ

1

2
t
d

dt

(
t
dψ

dt

)
− t

dψ

dt

{
I +

1

2
σn

(
1 0
0 −1

)}
+

1

2
ψ

{
I +

1

2
σn

(
1 0
0 −1

)}2

− t2|w|2

2
ψ + tiwψσn

(
0 −1
0 0

)
=

(s−m)2

2
ψ.

In terms of components these equations are

(A)

1

2

[
t
d

dt
+ k − 1

]2
ψk − t2|w|2

2
ψk + cktiwψ

k−1 =
(s+m)2

2
ψk,

1

2

[
t
d

dt
− k − 1

]2
ψk − t2|w|2

2
ψk − dktiwψ

k+1 =
(s−m)2

2
ψk,

where ψj = 0 if |j| > n
2
. Since ck ̸= 0 for −n

2
< k ⩽ n

2
and dk ̸= 0 for −n

2
⩽ k < n

2
these

equations allow one to solve for all ψk in terms of ψn/2 or ψ−n/2.
For k = n

2
the second equation is

1

2

[
t
d

dt
− n

2
− 1

]2
ψn/2 − t2|w|2

2
ψn/2 =

(s−m)2

2
ψn/2
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which may be written as

1

2

d2ψn/2

dt2
+

(
−1

2
− n

2

)
1

t

dψn/2

dt
+

−|w|2

2
+

(
n
2
+ 1
)2

2t2

ψn/2 = (s−m)2

2t2
ψn/2.

Dropping the terms in 1
t
and 1

t2
one obtains an equation with the solutions e±|w|t. Thus

the given equation has one solution of the form t−µe−|w|t
(
1 +O

(
1
t

))
and one of the form

t−νe|w|t
(
1 +O

(
1
t

))
. Since ψn/2(t) = O(tM) as t → ∞ it must be a multiple of the first

solution. The lemma follows.
To find µ we examine the formal solution

ψn/2(t) = t−µe−|w|t
∞∑
n=0

ant
−n.

If a−1 = a−2 = 0 the first derivative is

e−|w|t

{
∞∑
n=0

−
(
|w|an + (µ+ n− 1)an−1

)
t−n−µ

}
and the second derivative is

e−|w|t

{
∞∑
n=0

(
|w|2an + |w|(2µ+ 2n− 1)an−1 + (µ+ n− 1)(µ+ n− 2)an−2

)
t−n−µ

}
.

Substituting into the equation, dividing by e−|w|t, and equating coefficients of tµ−1 we obtain
µ+ n

2
= 0.

For k = −n
2
the first of the equations (A) is

1

2

[
t
dψ−n/2

dt
− n

2
− 1

]2
ψ−n/2 − t2|w|2

2
ψ−n/2 =

(s+m)2

2
ψ−n/2.

This is the equation just discussed except that −m is replaced by m. Thus if |k| = n
2
then

ψk(t) = t|k|e−|w|t
(
1 +O

(
1
t

))
as t→ ∞.

During the preceding discussion we have assumed the existence of H and thus the existence
of solutions of equations (A) which satisfy the required growth condition. We continue with
our discussion of this assumption. Since 0 is a singular point of the first kind for the first
equations of (A) there is an N such that, for all k, ψk(t) = O

(
1
tN

)
as t→ 0. Thus

θk(u) =

∫ ∞

0

ψk(t)tu−1 dt

is defined for Reu sufficiently large. These functions satisfy the difference equations

|w|2θk(u+ 2) =
[
(u− k + 1)2 − (s+m)2

]
θk(u) + 2ickwθ

k−1(u+ 1)

|w|2θk(u+ 2) =
[
(u+ k + 1)2 − (s−m)2

]
θk(u)− 2idkwθ

k+1(u+ 1).

Lemma 5.3. If |k| = n
2
then θk(u) is a multiple of(

2

|w|

)u
Γ

(
u+ 1 + s+ |k −m|

2

)
Γ

(
u+ 1− s+ |k +m|

2

)
.
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Since n
2
⩾ |m| the second of the difference equations is, when k = n

2
, just

|w|2θk(u+ 2) =

(
u+ 1 + s+

∣∣∣∣n2 −m

∣∣∣∣
)(

u+ 1− s+

∣∣∣∣n2 +m

∣∣∣∣
)
θk(u)

which is an equation satisfied by the function of the lemma. Thus the inverse Mellin
transform of that function, which is bounded by a power of t, satisfies the differential equation
determining ψn/2 and must be a multiple of ψn/2. A similar argument proves the lemma
when k = −n

2
.

Lemma 5.4. If |m| = n
2
the functions

θk0(u) =
2u

|w|u

(
iw

|w|

)k−n
2

Γ

(
u+ 1 + s+ |k −m|

2

)
Γ

(
u+ 1− s+ |k +m|

2

)
satisfy the difference equations. They are the only solutions of the equations for which

θ
n/2
0 (u) =

2u

|w|u
Γ

(
u+ 1 + s+

∣∣n
2
−m

∣∣
2

)
Γ

(
u+ 1− s+

∣∣n
2
+m

∣∣
2

)
.

The uniqueness is evident from the form of the equations. It is convenient to treat the
cases m = n

2
and m = −n

2
separately when verifying that they satisfy the equations. If m = n

2

then |w|2θk0(u+ 2)− 2ickwθ
k−1
0 (u+ 1) is equal to

2u

|w|u

(
iw

|w|

)k−n
2

×

{(
u+ 1 + s+

n

2
− k

)(
u+ 1− s+

n

2
+ k

)
− 2

(
n

2
+ k

)(
u+ 1 + s+

n

2
− k

)}

× Γ

(
u+ 1 + s+ n

2
− k

2

)
Γ

(
u+ 1− s+ n

2
+ k

2

)
=

(
u+ 1 + s+

n

2
− k

)(
u+ 1− s− n

2
− k

)
θk0(u)

and |w|2θk0(u+ 2) + 2dkiwθ
k+1
0 (u+ 1) is equal to

2u

|w|u

(
iw

|w|

)k−n
2

×

{(
u+ 1 + s+

n

2
− k

)(
u+ 1− s+

n

2
+ k

)
− 2

(
n

2
− k

)(
u+ 1 + s+

n

2
− k

)}

× Γ

(
u+ 1 + s+ n

2
− k

2

)
Γ

(
u+ 1− s+ n

2
+ k

2

)
or (

u+ 1− s+
n

2
+ k

)(
u+ 1 + s− n

2
+ k

)
θk0(u).

It is not necessary to treat the case m = −n
2
because the equations are not changed if θk is

replaced by θ−k, m by −m, and w by −w.
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Corollary. The quasi-simple irreducible representation π is contained in ρ(ξ) if and only if
π is infinite-dimensional.

It is enough to show that π0 is contained in ρ0(ξ) if and only if π0 is infinite-dimensional.
Suppose H is a finite-dimensional invariant subspace of L0(ξ). Let τ be the restriction of
ρ0(ξ) to L0(ξ) and let τ̃ be the representation contragredient to τ . If Xz = ( 0 z

0 0 ) lies in g
0 all

the eigenvalues of τ̃(Xz) must be zero because τ̃ is finite-dimensional. On the other hand if

φ̃ is the element of H̃, the dual space of H, defined by φ̃(φ) = φ(1), φ ∈ H, then(
τ̃(Xz)φ̃

)
(φ) = −φ̃

(
τ(Xz)φ

)
= −ρ(Xz)φ(1) = −izwφ(1)

so that −izw is an eigenvalue of Xz. This is a contradiction.
Suppose π is deducible from πω. LetW be the set of all functions in L0(ξ) satisfying ρ(D)φ =

(s+m)2−1
2

φ, ρ(D′)φ = (s−m)2−1
2

φ, and φ
(
g
( −1 0

0 −1

))
= (−1)2mφ(g). If θ =

{
n
∣∣ Wn ̸= {0}

}
then W =

∑
n∈θWn. Combining the results of the previous lemma with the arguments

used to prove Lemma 5.3 one sees that when n
2
= |m| the equations (A) have a solution

satisfying the desired growth conditions. Thus Wn is not zero for n =
∣∣m
2

∣∣. Although it is not
important at present, I observe that if s−m is integral then W|2s| is also not zero. The proof
of Lemma 5.2 shows that Wn is irreducible under u0, the Lie algebra of U0. Consequently
every invariant subspace is of the form W (σ) =

∑
n∈σWn where σ is a subset of θ. Suppose

σ0 ⫌ σ3 and W (σ0) and W (σ3) are invariant. Let n0 ∈ σ0, n0 /∈ σ3. There is a minimal
element in

{
σ
∣∣ W (σ) is invariant, σ3 ⊆ σ ⊆ σ0, n0 ∈ σ1

}
; let it be σ1. There is a maximal

element in
{
σ
∣∣ W (σ) is invariant, σ3 ⊆ σ ⊆ σ1, n0 /∈ σ

}
; let it be σ2. The representation

of A0 on W (σ1)/W (σ2) is irreducible. Thus there is an irreducible representation deducible
from the representation of A0 on W (σ0)/W (σ3). Suppose W itself is not irreducible and
let W (σ1) be a proper invariant subspace. If W (σ1) were not irreducible there would be a
proper invariant subspace W (σ2). No two of the irreducible representations deduced from
the representations on W/W (σ1), W (σ1)/W (σ2), W (σ2) could be equivalent because the
restrictions to u0C would not be equivalent. This would contradict Lemma 4.4. For the
same reason the representation on W/W (σ1) is irreducible. Thus either W is irreducible
or W contains a proper invariant irreducible subspace W1 such that W/W1 is irreducible.
Combining Lemma 4.4 with the earlier observations about finite-dimensional representations
one sees that if π is infinite-dimensional the representation of A0 on W is equivalent to π0 if
W is irreducible and that if W is not irreducible the representation of A0 on W1 is equivalent
to π0.

We return to the study of the functions ψk(t).

Lemma 5.5. If s−m is not an integer then, near 0, ψk(t) can be expanded in a series of
the form

ψk(t) = t|k−m|+1+s

∞∑
p=0

akpt
2p + t|k+m|+1−s

∞∑
p=0

bkpt
2p.

If s−m is an integer t and |k +m| − s ⩾ |k −m|+ s then

ψk(t) = t|k−m|+1+s

∞∑
p=0

akpt
2p + t|k+m|+1−s log t

∞∑
p=0

bkpt
2p
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but if |k +m| − s ⩽ |k −m|+ s then

ψk(t) = t|k−m|+1+s log t
∞∑
p=0

akpt
2p + t|k+m|+1−s

∞∑
p=0

bkpt
2p.

As before when k = n
2
the second equation of (A) is

1

2

[
t
d

dt
− n

2
− 1

]2
ψn/2 − t2|w|2

2
=

(s−m)2

2
ψn/2.

The indicial equation 1
2

[
λ− n

2
− 1
]2

= (s−m)2

2
has the roots λ1 = n

2
+ 1 − s + m and

λ2 =
n
2
+1+ s−m and λ1 −λ2 = 2(m− s). The series tλi

∑∞
p=0 apt

p will satisfy the equation
if and only if {[

λi + p− n

2
− 1

]2
− (s−m)2

}
cp = |w|2cp−2.

Since
∣∣n
2
±m

∣∣ = n
2
±m the assertion of the lemma for k = n

2
follows from an application of

the method of Frobenius.
To prove the lemma for general k we use induction and the equation

−ckiwψk−1(t) =
1

2t

{[
t
d

dt
+ k − 1

]2
ψk − (s+m)2ψk − t2|w|2ψk

}
.

The symbol A(t) will stand for a convergent series of the form
∑∞

p=0 apt
2p and B(t) will stand

for a convergent series of the form
∑∞

p=1 bpt
2p. The series represented by these symbols will

vary but not within a given formula. One has

1

2t

{[
t
d

dt
+ k − 1

]2
t|k∓m|+1±sA(t)− (s+m)2t|k∓m|+1±sA(t)− t2|w|2A(t)

}

=
1

2t

{[(
|k ∓m|+ k ± s

)2 − (s+m)2
]
a0t

|k∓m|+1±s + t|k∓m|+1±sB(t)

}
.

If k > ±m so that |k − 1 ∓ m| = |k ∓ m| − 1, this is of the form t|k−1∓m|+1±sA(t). If

k ⩽ ±m then |k∓m| = ±m− k and
(
|k ∓m|+ k ± s

)2 − (s+m)2 = 0 and it is of the form

t|k−1∓m|+1±sB(t) because |k− 1∓m| = |k∓m|+1. The first statement of the lemma follows
immediately.

If F (t) is any function[
t
d

dt
+ k − 1

]
log tF (t) = F (t) + log t

[
t
d

dt
+ k − 1

]
F (t)

and [
t
d

dt
+ k − 1

]2
log tF (t) = 2

[
t
d

dt
+ k − 1

]
F (t) + log t

[
t
d

dt
+ k − 1

]2
F (t).
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Thus

1

2t

{[
t
d

dt
+ k − 1

]2
t|k∓m|+1±s log tA(t)

−(s+m)2t|k∓m|+1±s log tA(t)− t2|w|2t|k∓m|+1±s log tA(t)
}

is equal to the sum of a term of the form t|k−1∓m|+1±s log tA(t) and

(B)
1

t

{(
|k ∓m| ± s+ k

)
t|k∓m|+1±sa0 + t|k∓m|+1±sB(t)

}
Suppose s−m is an integer and the assertions of the lemma are true for a given k. Let

|k ∓ m| ± s ⩾ |k ± m| ∓ s (Either all the top signs or all the bottom signs are taken).
If
(
|k ∓m| ± s

)
−
(
|k ±m| ∓ s

)
, which is an integer, is at least two then |k ∓ m| ± s ⩾

|k − 1±m|+ 1∓ s and the expression (B) is of the form t|k−1±m|+1∓s. Since |k − 1∓m| ± s
will still be greater than or equal to |k − 1±m| ∓ s the induction goes through.

The remaining possibility is |k∓m|±s = |k±m|∓s. If k > ∓m then |k−1±m| = |k±m|−1
so that |k−1∓m|±s ⩾ |k−1±m|∓s and the expression (B) is of the form t|k−1±m|+1∓sA(t).
If k > ±m then |k − 1∓m| = |k ∓m| − 1 so that |k − 1±m| ∓ s ⩾ |k − 1∓m| ± s and the
expression (B) is of the form t|k−1∓m|+1±sA(t).

Thus we have only to treat the case that k ⩽ ∓m, k ⩽ ±m and |k ∓m| ± s = |k ±m| ∓ s.
Then |k ∓m| = ±m− k and |k ±m| = ∓m− k so ±m− k ± s = ∓m− k ∓ s or m+ s = 0
and |k ∓ m| ± s + k = ±(m+ s) = 0. Thus |k − 1 ∓ m| ± s = |k − 1 ± m| ∓ s and the
expression (B) is of the form t|k−1±m|+1∓sA(t).

Let ψ(t) be the function with components ψk(t). If 2ℓ is an integer and z is a fixed complex
number set

θ(u, ℓ; z) =

∫ ∞

0

 1

4π

∫ 4π

0

eitRe(eiθz)ψ(t)σn

(
e

iθ
2 0

0 e−
iθ
2

)
e−iℓθ dθ

tu−1 dt.

The integral converges for Reu sufficiently large. The kth component of θ(u, ℓ; z) is

θk(u, ℓ; z) =

∫ ∞

0

{
1

4π

∫ 4π

0

eitRe(eiθz)ei(k−ℓ) dθ

}
ψk(t)tu−1 dt.

Lemma 5.6. For each ℓ and z the function

θk(u, ℓ; z)

Γ
(
u+1+s+|ℓ−m|

2

)
Γ
(
u+1−s+|ℓ+m|

2

)
is an entire function of u. Moreover θk(u, ℓ; z) is bounded in any region of the form |Reu| ⩽
constant, |Imu| ⩾ constant ≫ 0.

Let m(t) be an infinitely differentiable function with compact support on the real line
which is 1 in a neighbourhood of 0. Then θk(u, ℓ; z) is the sum of

θ̂k(u, ℓ; z) =

∫ ∞

0

{
1

4π

∫ 4π

0

eitRe(eiθz)ei(k−ℓ) dθ

}
ψk(t)tu−1m(t) dt
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and ∫ ∞

0

{
1

4π

∫ 4π

0

eitRe(eiθz)ei(k−ℓ) dθ

}
ψk(t)tu−1

(
1−m(t)

)
dt.

The second integral defines an entire function of u which is bounded on vertical strips so it

will be enough to prove the lemma with θk(u, ℓ; z) replaced by θ̂k(u, ℓ; z).
The inner integral is equal to

∞∑
r=0

(it)r

2rr!
· 1

4π

∫ 4π

0

(eiθz + e−iθz)rei(k−ℓ)θ dθ.

It is zero if k− ℓ is not integral. If k− ℓ is integral let ∆ be the set of integers r satisfying (i)
r ⩾ |k − ℓ| and (ii) r+ℓ−k

2
is integral. Then this expression equals∑

r∈∆

(it)r

2r
zr+ℓ−k(
r+ℓ−k

2

)
!

zr+k−ℓ(
r+k−ℓ

2

)
!
.

If a real number c is given there is an R such that

∫ ∞

0


∑
r∈∆
r⩾R

(it)r

2r
zr+ℓ−k(
r+ℓ−k

2

)
!

zr+k−ℓ(
r+k−ℓ

2

)
!

ψk(t)tu−1m(t) dt

is analytic and bounded for Reu > c. We need only study the analytic properties of∫ ∞

0

ψk(t)tr+u−1m(t) dt r ∈ ∆.

The same observation when combined with Lemma 5.5 shows that when s −m is not an
integer we need only study∫ ∞

0

t|k±m|∓s+r+u+2pm(t) dt r ∈ ∆, p ∈ Z, p ⩾ 0

and that when s−m is integral and |k ∓m| ± s ⩾ |k ±m| ∓ s we need only study∫ ∞

0

t|k±m|∓s+r+u+2pm(t) dt r ∈ ∆, p ∈ Z, p ⩾ 0

and ∫ ∞

0

t|k∓m|±s+r+u+2pm(t) log t dt r ∈ ∆, p ∈ Z, p ⩾ 0.

The second assertion of the lemma is going to be obvious and only the first will have to be
dealt with explicitly. The first is going to follow from the observation that if s−m is not an
integer the denominator in the lemma has poles of order 1 at −1∓ s− |ℓ∓m| − 2, q ∈ Z,
q ⩾ 0 and no zeros and that if s−m is an integer and |ℓ∓m| ± s ⩾ |ℓ±m| ∓ s it has poles
of order at least one at −1± s− |ℓ±m| − 2q and poles of order two at −1∓ s− |ℓ∓m| − 2q,
q ∈ Z, q ⩾ 0.
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It has to be shown that these poles cancel the singularities of the numerator.∫ ∞

0

ta+um(t) dt =
−1

a+ u+ 1

∫ ∞

0

ta+u+1m′(t) dt∫ ∞

0

ta+u log tm(t) dt =
−1

(a+ u+ 1)2

∫ ∞

0

[
(a+ u+ 1)ta+u+1 log t− ta+u+1

]
m′(t) dt.

Since m′(t) vanishes near 0 the first integral has at most a pole of order one at −(a+ 1) and
no other singularities while the second has at most a pole of order two at −(a+ 1).

If s−m is not an integer the lemma will follow if it is shown that, for r ∈ ∆, |k±m|+ r =
|ℓ ± m| + 2q, q ∈ Z, q ⩾ 0. This is so because r = |k − ℓ| + 2p, p ∈ Z, p ⩾ 0 and
|k ±m|+ |k − ℓ| − |ℓ±m| is a non-negative even integer. If s−m is an integer one has to
show in addition that if |ℓ∓m| − |ℓ±m| ± 2s > 0 and |k±m| − |k∓m| ∓ 2s > 0 (either all
upper or all lower signs are taken so there are only two possibilities) then

|k ±m| ∓ s+ |k − ℓ| = |ℓ∓m| ± s+ 2q q ∈ Z, q ⩾ 0.

The left side is
|k ∓m| ± s+ |k − ℓ|+

{
|k ±m| − |k ∓m| ∓ 2s

}
.

The expression in brackets, which is a non-negative integer, is by assumption positive.
If π is an infinite-dimensional irreducible quasi-simple representation of A let L(ξ, π) be

the unique subspace of L(ξ) such that the restriction of ρ(ξ) to L(ξ, π) is equivalent to π.
It follows from the proof of Lemma 4.4 that there is an ω such that π is equivalent to πω.
As usual let ω1(α) = ω

(
( α 0
0 1 )
)
, ω2(α) = ω

(
( 1 0
0 α )

)
for α ∈ C× and let ωi(te

iθ) = tsieimiθ for
t > 0.

If η is any character of AC then η̃ is the character defined by η̃
((

α1 0
0 α2

))
= η

((
α2 0
0 α1

))
.

If ζ is a character of A×
C such that ζ

(
( α 0
0 α )

)
ω
(
( α 0
0 α )

)
≡ 1 and u and ℓ are defined by

ζ

((
t1/2eiθ/2 0

0 t−1/2e−iθ/2

))
= tueiℓθ then ζ is uniquely determined by u and ℓ and we shall

occasionally write ζ = ζ(u, ℓ).

Lemma 5.7. Suppose ζ
(
( α 0
0 α )

)
ω
(
( α 0
0 α )

)
≡ 1. If φ ∈ L(ξ, π) and ζ = ζ(u, ℓ) the function

Φ(g, ζ, φ) =

∫ ∞

0

 1

2π

∫ 2π

0

φ

(teiθ 0
0 1

)
g

ζ
(teiθ 0

0 1

) dθ

dtt
is defined for Reu sufficiently large. Set

Φ′(g, ζ, φ) =
Φ(g, ζ, φ)

Γ
(
u+1+s+|ℓ+m|

2

)
Γ
(
u+1−s+|ℓ−m|

2

) .
Then Φ′(g, ζ(u, ℓ), φ) is an entire function of u and Φ

(
g, ζ(u, ℓ), φ

)
is bounded in regions of

the form |Reu| ⩽ constant, |Imu| ⩾ constant ≫ 0. Moreover(
2

|w|

)−u

Φ′

((
0 1

−1 0

)
g, ζ, φ

)
= γ(ℓ,m)

(
iw

|w|

)−2ℓ(
2

|w|

)u
Φ′(g, ζ̃, φ)

if γ(ℓ,m) = (−1)|ℓ|+ℓ for |ℓ| ⩾ |m| and γ(ℓ,m) = (−1)|m|+ℓ for |ℓ| ⩽ |m|.
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It is enough to prove the lemma for φ in L(ξ, π)n. There is a Φ in Vn such that if g = a( 1 z
0 1 )u

with a =
(
t1eiθ1 0

0 t2eiθ2

)
and u in U then φ

((
teiθ 0
0 1

)
g
)
ζ
((

teiθ 0
0 1

))
is equal to the product of

e
itt1
t2

Re(ei(θ+θ1−θ2)wz)
ω

(√tt1t2ei(θ+θ1+θ2) 0

0
√
tt1t2e

i(θ+θ1+θ2)

)ζ
(teiθ 0

0 1

)
and

ψ

(
tt1
t2

)
σn


e i(θ+θ1−θ2)

2 0

0 e
i(θ2−θ−θ1)

2

u
Φ

which equals the product of

ζ−1

(t1eiθ1 0

0 t2e
iθ2

)ei tt1t2 Re(ei(θ+θ1+θ2)wz)
ζ



√

tt1
t2
ei

(θ+θ1−θ2)
2 0

0
√

t2
tt1
ei

(θ2−θ−θ2)
2




and

ψ

(
tt1
t2

)
σn


ei (θ+θ1−θ2)

2 0

0 ei
(θ1−θ−θ2)

2

u
Φ.

Consequently Φ
(
g, ζ(u, ℓ), φ

)
is equal to

ζ−1

(t1eiθ1 0

0 t2e
iθ2

)θ(u,−ℓ, wz)σn(u)Φ.
The first two assertions of the lemma follow immediately.

If η = ζ̃−1 the maps

φ −→ Φ′(g, ζ̃, φ),

φ −→ Φ′

((
0 1

−1 0

)
g, ζ, φ

)
are easily seen to be A-invariant maps of L(ξ, π) into L(η). It follows from Lemma 5.1 that
one is a multiple of the other. To see what the multiple is choose g = 1 and φ as above with
Φ = δℓ. Then

Φ′(1, ζ̃, φ) =
θℓ(−u)

Γ
(

−u+1+s+|ℓ−m|
2

)
Γ
(

−u+1−s+|ℓ+m|
2

)
= fℓ(−u)

(
2

|w|

)−u(
iw

|w|

)ℓ−n
2

if the functions θℓ(u) are normalized as in the appendix.
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Since σn
(

0 1
−1 0

)
δℓ = (−1)

n
2
+ℓδ−ℓ,

Φ′

((
0 1

−1 0

)
, ζ, φ

)
=

(−1)
n
2
+ℓθ−ℓ(u)

Γ
(
u+1+s+|ℓ+m|

2

)
Γ
(
u+1−s+|ℓ−m|

2

)
= (−1)

n
2
+ℓf−ℓ(u)

(
2

|w|

)u(
iw

|w|

)−ℓ−n
2

.

Taking n
2
= |m| if |ℓ| ⩽ |m| and n

2
= |ℓ| if |ℓ| ⩾ m we see that(

2

|w|

)−u

Φ′

((
0 1

−1 0

)
, ζ, φ

)
= γ(ℓ,m)

(
iw

|w|

)−2ℓ(
2

|w|

)u
Φ′(1, ζ̃, φ)

because as is shown in the Appendix, f±n
2
(u) = 1 and, as is shown in Lemma 5.4, fk(u) = 1

if n
2
= |m|.

Appendix. Unfortunately the preliminary material of this paragraph was not sufficient to
give the constant occurring in the functional equation. A little more information about the
functions θk(u) is necessary. Normalize them by setting

θn/2(u) =

(
2

|w|

)u
Γ

(
u+ 1 + s+ n

2
−m

2

)
Γ

(
u+ 1− s+ n

2
+m

2

)
.

It is an immediate consequence of the difference equations that none of the functions θk(u),
|k| ⩽ n

2
, n

2
− k ∈ Z, can vanish identically.

Lemma A. Let αk = min
{
n
2
− |k|, n

2
− |m|

}
. Then θk(u) is of the form

fk(u)

(
2

|w|

)u(
iw

|w|

)k−n
2

Γ

(
u+ 1 + s+ |k −m|

2

)
Γ

(
u+ 1− s+ |k +m|

2

)
where fk(u) is a polynomial in u of degree αk. Its coefficients are polynomials in s which do
not depend on w.

We shall show that if θk(u) is of this form with a polynomial of degree βk, the same is true
of θk−1(u) with a polynomial of degree βk−1 where βk−1 − βk ⩽ αk−1 − αk. This is enough
to prove the lemma because βn

2
= αn

2
= 0 and if βk0 were less than αk0 for some k0 then βk

would be less than αk for all succeeding k. Since α−n
2
= 0 this is impossible.

The first difference equations show that 2ck
|w|u+1

2u+1

(
iw
|w|

)n
2
−(k−1)

θk−1(u+ 1) is the product of

1

2
fk(u+ 2)

[
u+ 1 + s+ |k −m|

][
u+ 1− s+ |k +m|

]
− 1

2
fk(u)[u− k + 1 + s+m][u− k + 1− s−m]

and

Γ

(
u+ 1 + s+ |k −m|

2

)
Γ

(
u+ 1− s+ |k +m|

2

)
.

If k > |m| then αk−1 = αk + 1, |k − 1±m| = |k ±m| − 1, the second factor is

Γ

(
(u+ 1) + s+ |k − 1−m|

2

)
Γ

(
(u+ 1) + 1− s+ |k − 1 +m|

2

)
,
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and the first factor is a polynomial in u and s of degree at most βk + 1 in u.
Suppose |m| ⩾ k > −|m|, such that αk = αk−1. Let ±m ⩾ 0. The first factor is the

product of (u+1±s±m−k)
2

and

fk(u+ 2)
[
u+ 1∓ s+ |k ∓m|

]
− fk(u)[u− k + 1∓ s∓m]

which is a polynomial of degree at most βk. Moreover |k−1±m| = |k±m|−1, |k−1∓m| =
|k ∓m|+ 1, and |k ±m| = ±m− k; so the product of u+1±s±m−k

2
and the second factor is

Γ

(
(u+ 1) + 1 + s+ |k − 1−m|

2

)
Γ

(
(u+ 1) + 1− s|k − 1 +m|

2

)
.

If−|m| ⩾ k > n
2
then |k−m| = m−k, |m+k| = −m−k, |k−1−m| = |k−m|+1, |k−1+m| =

|k +m|+ 1, and αk−1 = αk − 1. The first factor is the product of
(
u−k+1+s+m

2

)(
u−k+1−s−m

2

)
and 2

(
fk(u+ 2)− fk(u)

)
which is either zero or a polynomial of degree at most βk − 1.

Moreover the product of
(
u−k+1+s+m

2

)(
u−k+1−s−m

2

)
and the second factor is

Γ

(
(u+ 1) + 1 + s+ |k − 1−m|

2

)
Γ

(
(u+ 1) + 1− s+ |k − 1 +m|

2

)
.

It follows from the corollary to Lemma 5.4 that the equations (A) and thus the difference
equations have a solution at least when s−m is not an integer. We could have used the same
ideas to show that they had a solution for all s and m. This also follows from the above lemma.
To indicate explicitly the dependence of fk(u) on s and m we write fk(u) = fk(u, s,m). The
function f−n

2
(u, s,m) is independent of u.

Lemma B.
f−n

2
(u, s,m) ≡ 1.

For the proof we observe that the functions

θ̂k(u) = f−k(u, s,−m)

(
2

|w|

)n(
− iw

|w|

)−k−n
2

× Γ

(
u+ 1 + s+ |k −m|

2

)
Γ

(
u+ 1− s+ |k +m|

2

)
also satisfy the difference equations. From uniqueness and the relation

θ̂n/2(u) = f−n
2
(u, s,−m)

(
− iw

|w|

)−n

θn/2(u)

we conclude that

f−k(u, s,−m)

(
− iw

|w|

)−k−n
2

= f−n
2
(u, s,−m)fk(u, s,m)

(
− iw

|w|

)−n(
iw

|w|

)k−n
2

or
f−k(u, s,−m) = f−n

2
(u, s,−m)fk(u, s,m).

Choosing k = −n
2
we see that

f−n
2
(u, s,−m)f−n

2
(u, s,m) ≡ 1.

Since both terms on the right are polynomials in s they must be independent of s and
f−n

2
(u, s,m) = ϵ(m).
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When s = 0 the difference equations do not change whenm is replaced by−m. Consequently
fk(u, 0,−m) = fk(u, 0,m) and

f−k(u, 0,m) = ϵ(m)fk(u, 0,m).

If m is an integer we can take k = 0 and conclude that ϵ(m) = 1. If m is a half-integer take
k = 1

2
. Then ck =

n+1
2
. We have just seen that if ±m ⩾ 0,

(n+ 1)f− 1
2
(u+ 1, 0,m) = f 1

2
(u+ 2, 0,m)

[
u+ 1±m+

1

2

]
− f 1

2
(u, 0,m)

[
u+ 1− 1

2
∓m

]
=
[
f 1

2
(u+ 2, 0,m)− f 1

2
(u, 0,m)

]
[u+ 1] +

[
f 1

2
(u+ 2, 0,m) + f 1

2
(u, 0,m)

][
|m|+ 1

2

]
.

The degree of both sides is n
2
− |m|. Let a be the coefficient of u

n
2
−|m| in f 1

2
(u, 0,m). The

coefficient of u
n
2
−|m| in the polynomial on the left is (n+ 1)ϵ(m)a. The coefficient of u

n
2
−|m|

in the polynomial on the right is 2
(
n
2
− |m|

)
a+ 2

(
|m|+ 1

2

)
a = (n+ 1)a. Thus ϵ(m) = 1.

6. The local functional equation at a non-archimedean prime

Let K be a non-archimedean local field, let O be the ring of integers in K, and let π be a
generator of the prime ideal in O. Let GK = GL(2, K) and let GO = GL(2, O). If A is the
group of diagonal matrices and N the group of matrices of the form(

1 x
0 1

)
then the Haar measure on GK may be so normalized that∫

GK

f(g) dg =

∫
AK/AO

∣∣∣∣α1

α2

∣∣∣∣−1

da

∫
NK

dn

∫
GO

dk f(nak)

if

a =

(
α1 0
0 α2

)
.

The Hecke algebra H is just the algebra, under convolution, of functions on GK which have

compact support and are bi-invariant under GO. Let H̃ be the algebra, under convolution, of
functions with compact support on AK/AO which satisfy

f(a) = f(a).

If

a =

(
α1 0
0 α2

)
then

a =

(
α2 0
0 α1

)
.

Lemma 6.1. If f ∈ H and a ∈ AK set

f̃(a) =

∣∣∣∣α1

α2

∣∣∣∣1/2 ∫
NK

f(an) dn.

The map f → f̃ is an isomorphism of H with H̃.
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To show that f̃ lies in H̃ one has to show that f̃(a) = f̃(a). This is clear if a = a, so
suppose a ̸= a. Since a is conjugate to a in GK the integrals∫

AK\GK

f(g−1ag) dg

and ∫
AK\GK

f(g−1ag) dg

are equal if they exist. But∫
AK\GK

f(g−1ag) dg =

∫
NK

dn

∫
GO

dk
(
f(k−1n−1ank)

)
=

∫
NK

f
(
a(a−1n−1an)

)
dn.

A simple change of variables shows that the last integral equals∣∣∣α2

α1

∣∣∣1/2∣∣∣1− α2

α2

∣∣∣ f̃(a).
Combining this with the relation ∣∣∣α2

α1

∣∣∣1/2∣∣∣1− α2

α2

∣∣∣ =
∣∣∣α1

α2

∣∣∣1/2∣∣∣1− α1

α1

∣∣∣
one sees that f̃(a) = f̃(a).

If f = f1 ∗ f2 then

f̃(b) =

∣∣∣∣β1β2
∣∣∣∣1/2 ∫

NK

{∫
GK

f1(bvg)f2(g
−1) dg

}
dv.

The Haar measure has been so normalized that this equals∣∣∣∣β1β2
∣∣∣∣1/2 ∫

AK/AO

da

∫
NK

du

∫
NK

dv

{
f1(bvua)f2(a

−1u−1)

∣∣∣∣α1

α2

∣∣∣∣−1
}
.

Simple manipulation shows that this equals∣∣∣∣β1β2
∣∣∣∣1/2 ∫

AK/AO

da

{∫
NK

f1(bav) dv

}{∫
NK

f2(a
−1u) du

}
= f̃1 ∗ f̃2(b).

GK is the disjoint union of the double cosets

GO

(
πm 0
0 πn

)
GO = GOa(m,n)GO m ⩽ n.

The characteristic function of such a double coset will be denoted by fm,n. If a(m
′, n′)NK

meets GOa(m,n)GO then m+ n = m′ + n′ and m ⩽ m′; moreover

a(m,n)NK ∩GOa(m,n)GO = a(m,n)(GO ∩NK).
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Thus f̃m,n
(
a(m′, n′)

)
= 0 unless m+ n = m′ + n′ and m ⩽ m! Moreover

f̃m,n
(
a(m,n)

)
= 1.

It follows readily that the map f → f̃ is an isomorphism. Consequently every homomorphism
of H into C is of the form

χω(f) =

∫
AK/AO

f̃(a)ω(a) da

where ω is a homomorphism of AK/AO into C×.
If η is a homomorphism of AK into C× let η1 and η2 be the functions on K× defined by

η1(α) = η

((
α 0
0 1

))
, η2(α) = η

((
1 0
0 α

))
.

Lemma 6.2. Let η be a homomorphism of AK into C× and ω a homomorphism of AK/AO
into C×. There is up to a scalar factor at most one function φ on GK satisfying

(i) φ(ag) = η(a)φ(g) for all a in AK,
(ii) ∫

GK

φ(gh)f(h) dh = χω(f)φ(g)

for all f in H.

If there is any non-zero solution of this equation then η1η2 = ω1ω2 so that η1 and η2 have
the same conductor. Let it be (πa). φ is determined by its restriction to NK . If y ∈ O× then

φ

((
1 x
0 1

))
= φ

((
1 x+ y
0 1

))
and if α ∈ O× then

η1(α)φ

((
1 x
0 1

))
= φ

((
α αx
0 1

))
= φ

((
1 αx
0 1

))
.

If x = π−b and b < a there is an α in O× such that α ≡ 1 (mod πb) and η1(α) ̸= 1. Then

η1(α)φ

((
1 x
0 1

))
= φ

((
1 x+ (α− 1)x
0 1

))
= φ

((
1 x
0 1

))
so that

φ

((
1 y
0 1

))
= 0.

To prove the lemma we need only show that if

φ

((
1 π−a

0 1

))
= 0

then

φ

(1 π−b

0 1

) = 0
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for b > a. If O is the disjoint union
⋃q
i=1 xi + (π) then GOa(0, 1)GO is the disjoint union

q⋃
i=1

(
π xi
0 1

)
GO ∪

(
1 0
0 π

)
GO.

Thus if b ⩾ a

χω(f0,1)φ

(1 π−b

0 1

) =
∑
i

φ

(π π−b + xi
0 1

)+ φ

(1 π−(b−1)

0 π

)
= η1(π)

∑
i

φ

(1 π−(b+1)(1 + πbxi)
0 1

)
+ η2(π)φ

(1 π−(b−1)

0 1

)
= qη1(π)φ

(1 π−(b+1)

0 1

)+ η2(π)φ

(1 π−(b−1)

0 1

)
because η1(1 + πbx) = 1.

Lemma 6.3. Let ξ be a non-trivial character of K and ω a homomorphism of AK/AO
into C×. Apart from a scalar factor there is exactly one function φ on GK which satisfies

(i)

φ

((
1 x
0 1

)
g

)
= ξ(x)φ(g)

(ii) ∫
G

φ(gh)f(h) dh = χω(f)φ(g)

for all f in H.

Suppose φ satisfies these relations. Take an AK and set φ′(g) = φ(ag). The function φ′

satisfies (ii). Moreover

φ′

((
1 x
0 1

)
g

)
= φ

(1 α1 × α−1
2

0 1

)
ag

 = ξ(α1 × α−1
2 )φ′(g);

thus if ξ′(x) = ξ(α1 × α−1
2 ) it satisfies (i) with ξ replaced by ξ′. Assume then for simplicity

that O is the largest ideal on which ξ is trivial.
If φ is to satisfy (i) it must be of the form

φ

((
1 x
0 1

)
ak

)
= ξ(x)Φ(a)

with Φ a function on AK/AO. The function φ is well-defined if and only if ξ(x)Φ(a) = Φ(a)
when α−1

1 ×α2 is in O. Thus Φ(a) = 0 unless α1α
−1
2 is in O. The relations (ii) will be satisfied
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if and only if

(A) Φ

((
α 0
0 α

)
a

)
= ω1(α)ω2(α)Φ(a)

and

(B)

∫
G

φ(gh)f0,1(h) dh = χω(f0,1)φ(g).

We can satisfy (A) and the previous conditions while specifying in an arbitrary manner the
value of Φ at a = ( π 0

0 1 ), α ⩾ 0. (B) will be satisfied for all g if it is satisfied for g =
(
πα 0
0 1

)
when it becomes∑

i

φ

((
πα+1 παxi
0 1

))
+ φ

((
πα 0
0 π

))
= q1/2

(
ω1(π) + ω2(π)

)
φ

((
πα 0
0 1

))
.

If α < −1 all terms on both sides are zero. If α = −1 the right side is 0 and the left side is∑
i

ξ

(
xi
π

)φ
((

1 0
0 1

))
= 0.

If α ⩾ 0 the left side is

qφ

((
πα+1 0
0 1

))
+ ω1(π)ω2(π)φ

((
πα−1 0
0 1

))
.

Some simple algebra then shows that (ii) will be satisfied if and only if

(X)
∞∑

n=−∞

xnqn/2Φ

((
πn 0
0 1

))
=

1(
1− ω1(n)x

)(
1− ω2(n)x

)Φ((1 0
0 1

))
.

The lemma follows.
If (π−δ) is the largest ideal of K on which ξ is trivial let φ(g, ω, ξ) be that solution of (i)

and (ii) which takes the value 1 at
(
πδ 0
0 1

)
. If ξ′(x) = ξ(βx) then

φ(g;ω, ξ′) = φ

((
β 0
0 1

)
g, ω, ξ

)
.

Let ζ be a character of AK such that ζ1ζ2 = ω−1
1 ω−1

2 . Set ζ1(α) = ζ0(α)|α|s where ζ0(π) = 1.
ζ is uniquely determined by s and ζ0 and we shall sometimes write ζ = ζ(s, ζ0).

Lemma 6.4. Let ζ be a homomorphism of AK into C× such that ζ1ζ2 = ω−1
1 ω−1

2 . If
ζ = ζ(s, ζ0) the function

Φ(g, ζ;ω, ξ) =

∫
K×

φ

((
α 0
0 1

)
g;ω, ξ

)
ζ

((
α 0
0 1

))
d×α

is defined for Re s sufficiently large. If ζ0 = 1 then

Φ′(g, ζ;ω, ξ) =

(
1− ω1(π)ζ1(π)

q1/2

)(
1− ω2(π)ζ1(π)

q1/2

)
Φ(g, ζ;ω, ξ)
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is, for each g, a polynomial in qs and q−s and if (π−δ) is the largest ideal on which ξ is trivial
then

ζ1(π
δ)Φ′

((
0 1

−1 0

)
g, ζ;ω, ξ

)
= ζ̃1(π

+δ)Φ′(g, ζ̃, ω, ξ)

where ζ̃
((

α1 0
0 α2

))
= ζ
((

α2 0
0 α1

))
. If δ = 0 then

Φ′(1, ζ;ω, ξ) = 1.

If the conductor of ζ0 is (πγ), γ > 0, and

g(ξ, γ) =

∫
O×

ξ

(
α

πγ+δ

)
ζ1(α) d

×α

then Φ(g, ζ;ω, ξ) is a polynomial in qs and q−s and

ζ1(π
γ+δ)

g(ξ, ζ)
Φ

((
0 1

−1 0

)
g, ζ;ω, ξ

)
= ζ1(−1)

ζ̃1(π
γ+δ)

g(ξ, γ̃)
Φ(g, ζ̃, ω, ξ).

If ξ′(x) = ξ(πβx) then

(Y)
Φ(g, ζ;ω, ξ′) =

∫
K×

φ

(πβα 0
0 1

)
g;ω, ξ

ζ((α 0
0 1

))
d×α

= ζ−1
1 (πβ)Φ(g, ζ;ω, ξ)

and g(ξ′, ζ) = g(ξ, ζ); so it is enough to prove the lemma for δ = 0.
If g = a( 1 x

0 1 )k with a =
(
α1 0
0 α2

)
in AK and k in GO then∫

K×
φ

((
α 0
0 1

)
g;ω, ξ

)
ζ

((
α 0
0 1

))
d×α

is equal to

ζ−1

((
α1 0
0 α2

))∫
K×

φ

((
α 0
0 1

)(
1 x
0 1

)
;ω, ξ

)
ζ

((
α 0
0 1

))
d×α.

Because φ
(
( α 0
0 1 )(

1 x
0 1 );ω, ξ

)
= ξ(αx)φ

(
( α 0
0 1 );ω, ξ

)
the function

φ

((
α 0
0 1

)(
1 x
0 1

)
;ω, ξ

)
− φ

((
α 0
0 1

)
;ω, ξ

)
has, for a given x, compact support on K×. Since the integral

ζ−1

((
α1 0
0 α2

))∫
K×

φ

((
α 0
0 1

)
;ω, ξ

)
ζ

((
α 0
0 1

))
d×α
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exists for Re s sufficiently large so does that of the lemma. Moreover the difference between
Φ(g, ζ;ω, ξ) and this expression is a polynomial in qs and q−s. If ζ0 = 1 the expression equals

ζ−1

((
α1 0
0 α2

)) ∞∑
n=−∞

ζ1(π
n)φ

((
πn 0
0 1

))
=

ζ−1

((
α1 0
0 α2

))
(
1− ω1(π)ζ1(π)

q1/2

)(
1− ω2(π)ζ1(π)

q1/2

)
and if the conductor is (πγ) and γ > 0 it equals zero. All assertions of the lemma except the
functional equations follow.

Let η = ζ̃−1. If ζ0 = 1 then Φ′
((

0 1
−1 0

)
g, ζ;ω, ξ

)
and Φ′(g, ζ̃;ω, ξ) both satisfy the assump-

tions of Lemma 6.2. Since they both take the value 1 at g = 1 they are equal. If the conductor
of ζ0 is (πγ) and γ > 0 then

Φ

((
1 π−γ

0 1

)
, ζ̃;ω, ξ

)
=

∫
K×

ξ(απ−γ)φ

((
α 1
0 1

)
, ω, ξ

)
ζ

((
α 0
0 1

))
d×α.

The last integral is easily seen to equal g(ξ, ζ̃). Since(
0 1

−1 0

)(
1 π−γ

0 1

)
=

(
−π−γ 0
0 π−γ

)(
1 +π−γ

0 1

)(
+1 0
−πγ −1

)
the value of Φ

((
0 1

−1 0

)
, ζ;ω, ξ

)
is ζ−1

1 (πγ)ζ̃−1
1 (π−γ)ζ1(−1)g(ξ, ζ). The functional equation

again follows from Lemma 6.2.

7. The Main Theorem

Let k be either the rational number field or the field of rational functions in one variable
over a finite field and let K be a finite separable extension of k. Let S∞ be the set of
archimedean primes of K. Let A be the adèle ring of K and let I be the group of idèles.

If R is any commutative ring with unit let GR be the group of 2× 2 matrices from R which
have a determinant which is a unit of R. AR will be the group of diagonal matrices in GR. If
p is a non-archimedean prime let UKp be GOp , where Op is the ring of integers in Kp, and if p
is an archimedean prime let UKp be the group of unitary matrices which lie in GKp .

Lemma 7.1. 5 There is a constant c0 such that if g belongs to GA there is a γ in GQ such
that max

{
|c|, |d|

}
⩽ c0|det g|1/2 if γg =

(
a b
c d

)
.

Fix a measure on A. This determines a measure on A⊕A. K ⊕K is a discrete subgroup
of A⊕A and the quotient A⊕A/K ⊕K has finite measure c1. The lattice Lg = (K ⊕K)g,
is discrete and the quotient A⊕A/Lg has measure c1|det g|. The non-zero elements of Lg
are, for all practical purposes, the last rows of the matrices γg, γ ∈ GQ. There is a positive

constant c2 such that the measure of
{
(x, y)

∣∣∣ max
{
|x|, |y|

}
⩽ d0

}
is at least c2d

2
0.

5(1998) As observed in the comments this lemma is not what is needed. Indeed, neither it nor its proof
make much sense. The correct lemma, which there is at this stage no need to state, would replace max{
|c|, |d|

}
by
∏

p max
{
|c|p, |d|p

}
. See Lemma 5.1 of the following letter. ((2023 ed): The letter to which the

author refers is this long one to Hervé Jacquet: https://publications.ias.edu/rpl/paper/55.)

https://publications.ias.edu/rpl/paper/55
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Let c0 be any number larger than 2
√

c1
c2
. If Lg contained no non-zero (c, d) with

max
{
|c|, |d|

}
⩽ c0|det g|1/2

the measure of the projection of
{
(x, y)

∣∣∣ max
{
|x|, |y|

}
⩽ c0

2
|det g|1/2

}
on A⊕A/Lg would

be greater than c1|det g|.
L will be the space of functions φ on GK\GA satisfying conditions (i), (ii), and (iii) below

(i) If U =
∏

p UKp then φ is U -finite on the right.
(ii) If p is an archimedean prime the function φ(hg), g ∈ GKp , is infinitely differentiable.

If p is any such prime let Ap be the universal enveloping of GKp . If, for each p, Xp belongs

to Ap the function
{∏

p ρ(Xp)
}
φ is defined.

(iii) If c1 is any constant there are constants M1 and M2 such that6∣∣∣∣∣∣∣
∏

p

ρ(Xp)

φ(g)
∣∣∣∣∣∣∣ ⩽M1

{|det g|+ 1

|det g|

}{
|det g|1/2

max
{
|c|, |d|

}}
M2

on the set max
{
|c|, |d|

}
⩽ c1|det g|1/2.

If p is a non-archimedean prime the group GKp operates on L. If p is a complex prime Ap

acts on L. If p is a real prime let σp be the element
(
1 0
0 −1

)
of GKp ; the pair {σp,Ap} acts

on L.
If p is a non-archimedean prime, a representation of GKp on a vector space Hp will be

called quasi-simple if the isotropy group of every vector in Hp is an open subgroup of GKp . It
follows from Lemma 6.1 that the space of vectors whose isotropy group contains UKp has
dimension at most 1 if the presentation is irreducible.
Suppose that for every prime p we are given a quasi-simple irreducible representation

of either GKp , Ap, or {σp,Ap}, according to the nature of the prime, on a vector space Hp.
Suppose there is a finite set S0 of primes which contains S∞ such that if p is not in S0 there is
a non-zero vector in Hp which is fixed by Up. For each p not in S0 choose such a vector X0

p . If
S contains S0 let HS =

⊗
p∈S Hp. If S2 ⊇ S1 ⊇ S0 let δS1,S2 be the injection of HS1 into HS2

which sends
⊗

p∈S1
Xp to ⊗

p∈S1

Xp

⊗

 ⊗
p∈S2−S1

X0
p


and let H be the injective limit of the spaces HS. Let A be the system consisting of all the
GKp , p not in S∞, Ap, p complex, and {σp,Ap}, p real. The system A acts on H.

For our purposes a divisor D is just a function p → mp from the non-archimedean primes
to the non-negative integers such that mp = 0 for almost all p. p|D means that mp > 0 and
p ∤ D means that mp = 0 or p ∈ S∞. If p is not in S∞ let UD

Kp
be the set of

(
a b
c d

)
in UKp for

which c ≡ 0 (mod pmp) and let UD =
∏

p/∈S∞
UD
Kp
. Let ÛD

Kp
be the set of

(
a b
c d

)
in UD

Kp
for

which a ≡ d ≡ 1 (mod pmp) and let ÛD =
∏

p/∈S∞
ÛD
Kp
. UD is in the normalizer of ÛD.

6See previous footnote.
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Lemma 7.2. There is a D such that HD =
{
x
∣∣∣ π(u)x = x for all u in ÛD

}
contains a

non-zero vector. Moreover HD is the sum of one-dimensional subspaces invariant under UD.

Although we have not troubled to be explicit it is clear how
∏

p/∈S∞
GKp operates on H.

Given any divisor D let ŨD
Kp

be the set of
(
a b
c d

)
in UKp which are congruent to I modulo pmp

and let ŨD =
∏

p/∈S∞
ŨD
Kp
. Given x ̸= 0 in H there is a D′ such that ŨD′

is contained in the

isotropy group of x. Choose for each non-archimedean prime an αp so that (αp) = pm
′
p and

set g =
∏

p/∈S∞

(
αp 0
0 1

)
. Then, if mp = 2m′

p and D is the divisor {mp}, gÛDg−1 is contained

in ŨD′
and ÛD is contained in the isotropy group of π(g−1)x. The second assertion of the

lemma is immediate because UD/ÛD is a finite abelian group.

If ϵ is any homomorphism of UD into C× which sends ÛD to 1, let

HD
ϵ =

{
x
∣∣∣ π(u)x = ϵ(u)x for all u in UD

}
.

ϵ is determined by its restriction to the diagonal matrices. Let ϵ̃ be the homomorphism
satisfying

ϵ̃

((
a 0
0 d

))
= ϵ

((
d 0
0 a

))
.

If g is any matrix in GA such that gp = I, if p ∈ S∞ or p ∤ D and gp =
(

0 1
αp 0

)
with (αp) = pmp

if p|D then gUDg−1 = UD and π(g)HD
ϵ = HD

ϵ̃ .
Let H be a subspace of L such that the representation of A on H is equivalent to that on H.

We want to study some of the Dirichlet series associated to H. Let HD
ϵ be the subspace of H

corresponding to HD
ϵ . We suppose that HD

ϵ is not {0}.
Choose a non-trivial character ξ of A which is trivial on K. If φ belongs to L set

φ0(g) =
1

measure(K\A)

∫
K\A

φ

((
1 x
0 1

)
g

)
dx,

φ1(g) =
1

measure(K\A)

∫
K\A

φ

((
1 x
0 1

)
g

)
ξ(x) dx.

By the Fourier inversion formula

φ(g) = φ0(g) +
∑
α∈K×

−φ1

((
α 0
0 1

)
g

)
.

Let GD
A be the set of all g in GA such that gp ∈ UD

Kp
if p|D. Since GA = GKG

D
A, any function

in L is determined by its restriction to GD
A.

If p is a non-archimedean prime which does not divide D and φ belongs to HD
ϵ then φ

must be an eigenfunction of the corresponding Hecke operators. Let it be an eigenfunction
corresponding to the homomorphism ωp. Varying φ in HD

ϵ does not change ωp. It follows
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from Lemmas 3.2, 5.2, and 6.3 that HD
ϵ is spanned by functions φ for which

φ1

((
α 0
0 1

)
g

)
= aα

∏
p∈S∞

φp

((
αp 0
0 1

)
gp

)

∏
p/∈S∞
p∤D

φ

((
αp 0
0 1

)
gp, ωp, ξp

)ϵ(gD)
for g in GD

A. aα is a constant which depends on α and αp is the image of α in Kp. gD is the
projection of G on

∏
p|DGKp . ξp is the restriction of ξ to Kp and φp, p ∈ S∞, is a function

in L(ξp, πp) determined solely by φ. Let ID =
{
ι ∈ I

∣∣ |ιp| = 1 if p|D
}
. If β lies in K× ∩ ID

then aαβ = ϵ
(
( 1 0
0 1 )
)
aα.

We shall only consider those φ for which the functions φ1

(
( α 0
0 1 )g

)
are of the above form.

φ(g) is the sum of φ0(g) and

∑
α∈K×/K×∩ID

aα
∑

β∈K×∩ID

∏
p∈S∞

φp

((
αpβp 0
0 1

)
gp

)

∏
p/∈S∞
p∤D

φ

((
αpβp 0
0 1

)
gp, ωp, ξp

)
×ϵ

((
β0 0
0 1

)
gD

)
if βD is the projection of β on

∏
p|DK

×
p . In an appendix to this paragraph we shall discuss

the form of the function ϕ0. Lemma E of the appendix will eventually be used to show that
φ is the sum of a cusp form and a function which is represented by an Eisenstein series. For
the present we consider only the case that φ0(g) ≡ 0.
Then φ(g) is a cusp form. Let η be the homomorphism of K×\I into C× defined by

φ

((
α 0
0 α

)
g

)
= η(α)φ(g).

It is no real restriction to assume that
∣∣η(α)∣∣ = 1 and we shall do so. It then follows from

the general theory of automorphic forms that φ is bounded.
If M1 = supg∈GA

∣∣φ(g)∣∣ and
M2 = sup

g∈GD
A

∣∣∣∣∣∣
∏
p∈S∞

φp(gp)

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
∏
p/∈S∞
p∤D

φ(gp, ωp, ξp)

∣∣∣∣∣∣∣∣∣
∣∣ϵ(gD)∣∣

then

|aα| ⩽
M1

M2

.

If φ ̸≡ 0, as we certainly suppose, M2 is not zero. Of course it is not ∞ either for then all
the aα would be zero. In any case aα is a bounded function.
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If the number M2 is finite the function φ(gp, ωp, ξp) is bounded. Appealing to the formula7

at the top of p. 6.10 we see that the inequalities

(A)
∣∣ωp,1(π)

∣∣ ⩽ |π|−1/2
∣∣ωp,2(π)

∣∣ ⩽ |π|−1/2

must be satisfied.
If K is the real or complex field, π a quasi-simple irreducible representation of {σ,A} or

A respectively, and ζ a homomorphism of AK into C× satisfying the condition of Lemma
3.6 or 5.7, let Γ(ζ, π) be the function defined by

Γ(ζ, π)Φ′(g, ζ, φ) = Φ(g, ζ, φ), φ ∈ L(ξ, π).

Φ(g, ζ, φ) and Φ′(g, ζ, φ) are the functions introduced in Lemmas 3.6 and 5.7.8 Γ(ζ, π) also
depends on ξ but we do not take this into account explicitly.

Let χ be a character of K× ∩ ID\ID. If s is a complex number define ζ = ζ(s, χ) by

ζ

((
α 0
0 β

))
= η−1(β)|αβ−1|sχ(αβ−1).

Let ζp be the restriction of ζ to AKp .

Lemma 7.3. The integral∫
K×∩ID\ID

φ

((
α 1
0 1

)
g

)
ζ

((
α 0
0 1

))
dα

converges absolutely for Re s sufficiently large and G in GD
A. It is equal to zero if

ζ

((
αp 0
0 1

))
ϵ

((
αp 0
0 1

))
is not identically 1 in O×

p . There is a constant M > 0 such that aα = 0 if |αp| > M for some
p|D. Consequently the series ∑

α∈K×/K×∩ID
aα
∏
p|D

ζp

((
αp 0
0 1

))
converges absolutely for Re s sufficiently large. Let R be the set of non-archimedean primes
which do not divide D for which ζp is not trivial on AOp. The product∏

p/∈S∞∪R
p∤D

1(
1− ωp,1(π)ζp,1(π)|π|1/2

)(
1− ωp,2(π)ζp,2(π)|π|1/2

)
7(1998) labeled (X) in this version in which the pagination differs from that of the manuscript.
8In the digressions to establish notation we allow ourselves to use, in a new sense, symbols whose meaning

has otherwise been fixed for the course of this paragraph.
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also converges absolutely for Re s sufficiently large. The integral is the product of the above
two expressions with∏

p∈S∞

Γ(ζp, πp)Φ
′(gp, ζp, φp)




∏
p/∈S∞∪R

p∤D

Φ′(gp, ζp, ωp, ξp)


∏

p∈R

Φ(gp, ζp, ωp, ξp)

ϵ(gD).
According to Lemma 6.4 only a finite number of terms in the last product are different

from 1. The absolute convergence of the other infinite product follows immediately from
the inequalities (A). For each p the character ξp is non-trivial. If p|D, x ∈ Op, α ∈ K×

p , and

g ∈ GD
A

φ1

((
α 0
0 1

)
g

)
= φ1

((
α 0
0 1

)
g

(
1 x
0 1

))
.

If

gp =

(
ap bp
cp dp

)
this equals

φ1

(1 αpap
dp

0 1

)(
α 0
0 1

)
g

 = ξp

(
αpap
dp

x

)
φ1

((
α 0
0 1

)
g

)
.

Thus if aα is not zero, α must lie in the largest ideal of Kp on which ξp is trivial. The existence
of the constant M follows immediately.
Recalling that, for almost all p, φ(gp, ωp, ξp) equals 1 if gp lies in UKp , we see that∫

K×∩ID\ID

∣∣∣∣∣∣φ
((

γ 0
0 1

)
g

)
ζ

((
γ 0
0 1

))∣∣∣∣∣∣ dγ
is at most the sum over K×/K× ∩ ID of the product of

|aα|
∏
p∈S∞

∫
K×

p

∣∣∣∣∣∣φp

((
αpγp 0
0 1

)
gp

)
ζp

((
γp 0
0 1

))∣∣∣∣∣∣ dγp
and ∏

p/∈S∞
p∤D

∫
K×

p

∣∣∣∣∣∣φ
((

αpγp 0
0 1

)
gp, ωp, ξp

)
ζp

((
γp 0
0 1

))∣∣∣∣∣∣ dγp.
Changing variables in the integral and recalling the product formula we see that the sum is
the product of ∑

K×/K×∩ID
|aα|

∏
p|D

∣∣∣∣∣∣ζp
((

α1 0
0 1

))∣∣∣∣∣∣
and ∏

p∈S∞

∫
K×

p

∣∣∣∣∣∣φp

((
γp 0
0 1

)
gp

)
ζp

((
γp 0
0 1

))∣∣∣∣∣∣ dγp
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and ∏
p/∈S∞
p∤D

∫
K×

p

∣∣∣∣∣∣φ
((

γp 0
0 1

)
gp, ωp, ξp

)
ζp

((
γp 0
0 1

))∣∣∣∣∣∣ dγp.
The first term is certainly finite for Re s sufficiently large. The convergence of the integrals

over K×
p , p ∈ S∞, was proved in Lemmas 3.6 and 5.7. It remains to show that if Re s

is sufficiently large each of the integrals in the infinite product is finite and the product
converges. It was proved in Lemma 6.4 that for a given p the integral is finite if Re s is
sufficiently large. Thus we can, in our considerations, drop any finite set of terms from the
product.

The first formula9 on the top of p. 6.10 shows that if gp is a unit and Op is the largest ideal
on which ξp is trivial then∫

K×
p

∣∣∣∣∣∣φ
((

γp 0
0 1

)
gp, ωp, ξp

)
ζp

((
γp 0
0 1

))∣∣∣∣∣∣ dγp
is at most

1(
1− |π|s

)(
1− |π|s

)
if Re s > 0. The infinite product converges if Re s > 1.

Thus the integral is finite. A simple formal manipulation which is now justified shows that
it is the product of ∑

α∈K×/K×∩ID
aα
∏
p|D

ζp

((
αp 0
0 1

))
and ∏

p|D

∫
O×

p

ϵ

((
γp 0
0 1

)
gp

)
ζp

((
γp 0
0 1

))
dγp

and ∏
p∈S∞

∫
K×

p

φp

((
γp 0
0 1

)
gp

)
ζp

((
γp 0
0 1

))
dγp

and ∏
p/∈S∞
p∤D

∫
K×

p

φ

((
γp 0
0 1

)
gp, ωp, ξp

)
ζp

((
γp 0
0 1

))
dγp.

The remaining statements of the lemma are now just a matter of definition.
We shall be able to state the next lemma more succinctly if we first introduce some notation.

First let K be the real or complex field and let π be a quasi-simple irreducible representation
of {σ,A} or A respectively. Let ξ be a character of K and ζ a continuous homomorphism
of AK into C× which satisfies the condition of Lemma 3.6 or 5.7. Define ϵ(ζ, ξ, π) by the
relation

Φ′

((
0 1

−1 0

)
g, ζ̃, φ

)
= ϵ(ζ, ξ, π)Φ′(g, ζ, φ).

9(1998) Labeled (X) for convenience.
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The exact form of the factor is given in Lemmas 3.6 and 5.7. If K is a non-archimedean field,
ω a homomorphism of AK/AO into C×, ζ a continuous homomorphism of AK into C× which
satisfies the condition of Lemma 6.4, and ξ a character of K define ϵ(ζ, ξ, π) by the relation

Φ′

((
0 0

−1 0

)
g, ζ̃, ω, ξ

)
= ϵ(ζ, ξ, ω)Φ′(g, ζ, ω, ξ)

if ζ is trivial on AO and by the relation

Φ

((
0 1

−1 0

)
g, ζ̃, ω, ξ

)
= ϵ(ζ, ξ, ω)Φ(g, ζ, ω, ξ)

if it is not. The form of this factor is given in Lemma 6.4.
Choose A in K× so that (Ap) = pmp if p|D and set

φ̂(g) = φ

g∏
p|D

(
0 1
Ap 0

).
φ̂ lies in HD

ϵ̃ . If ζ is the homomorphism of AA into C× introduced in Lemma 7.3, let Ξ(x, χ)
be the product of  ∑

α∈K×/K×∩ID
aα
∏
p|D

ζp

((
αp 0
0 1

)) ∏
p∈S∞

Γ(ζp, πp)

and ∏
p/∈S∞∪R

p∤D

1(
1− αp,1(π)ζp,1(π)|π|1/2

)(
1− wp,2(π)ζp,2(π)|π|1/2

) .
Given φ the functions φp are determined only up to a scalar factor. Thus there is an
undetermined constant in the numbers aα and hence in the function Ξ(s, χ). However we can
certainly suppose that, for p archimedean, φ̂p, the function associated to φ̂, is the same as
φp. This assumption is implicit in the statement and proof of the following lemma.

Lemma 7.4. Ξ(s, χ) is an entire function of s. It satisfies the functional equation10

Ξ(s, χ) =

∏
p|D

ζp

((
−Ap 0
0 1

)) ∏
p∈S∞

ϵ(ζp, ξp, πp)
∏
p∤D

ϵ(ζp, ξp, ωp)

Ξ̂
(
−s, (χη)−1

)
.

The integral in Lemma 7.3 is the sum of

(B)

∫
|α|⩾1

φ

((
α 0
0 1

)
g

)
ζ

((
α 0
0 1

))
dα

and ∫
|α|⩽1

φ

((
α 0
0 1

)
g

)
ζ

((
α 0
0 1

))
dα.

10Ξ̂
(
−s, (χη)−1

)
is the function obtained on replacing φ by φ̂.



60 LETTER TO ANDRÉ WEIL, PART 2—1967

The latter integral is equal to∫
|α|⩾1

φ

((
α 0
0 1

)(
0 1
A 0

)
g

)
η−1(α)ζ−1

((
α 0
0 1

))
dα

or

(C)

∫
|α|⩾1

φ̂

(α 0
0 1

)(
0 1
A 0

)
g
∏
p|D

(
0 A−1

p

1 0

)ζ̃((α 0
0 1

))
dα.

If the first integral converges for Re s sufficiently large, as it does, it must converge for all s.
The resulting function of s is entire. Since the substitution of −s for s, (χη)−1 for χ, φ̂ for φ,

and
(

0 1
A 0

)
g
∏

mp>0

(
0 A−1

p

1 0

)
for g interchanges the integrals (B) and (C), the latter integral is

also an entire function.
We conclude that the product of Ξ(s, χ) and

(D)

∏
p∈S∞

Φ′(gp, ζp, φp)




∏
p/∈S∞∪R

p∤D

Φ′(gp, ζp, ωp, ξp)


∏

p∈R

Φ(gp, ζp, ωp, ξp)

ϵ(gD)
is an entire function of s.
It is clear that if p is an archimedean prime the function Ξ(s, χ) is not changed if φ is

replaced by a non-zero linear combination of functions obtained from φ by operations of
{σp,Ap} or Ap, according to the nature of the prime. Thus to prove the lemma we can choose
the functions φp in any way convenient. I claim that these functions and g in GD

A can be so
chosen that almost all of the factors in (D) are 1 and the rest are of the form aebs with a ̸= 0.
It will follow that Ξ(s, χ) is entire.
gD may as well be taken to be I. If we take gp = I for p /∈ R ∪ S∞, p ∤ D then according

to Lemma 6.4 and the formula11 at the top of p. 6.12 each of the functions Φ′(gp, ζp, ωp, ξp) is
of this form and all but a finite number are identically 1. If p ∈ R then, according to the
formulae at the top of p. 6.12 and the bottom of p. 6.1312

Φ

((
1 π−γp

0 1

)
, ζp, ωp, ξp

)
will be of this form for a suitable choice of γp. For a real prime choose gp = I and φp so that
the formulae on p. 3.3713 can be applied. For a complex prime choose gp = I and φp as on
pp. 5.28 and 5.29.14

Now let us see what happens to the expression (D) when the substitution mentioned above

is performed. The substitution replaces ζ by ζ̃ and ϵ by ϵ̃. The factor ϵ(gD) is not changed.

11(1998) Labeled (Y).
12(2023 ed.) Just before the start of section 7.
13(1998) Now p. 33. (2023 ed.) The formulae in the table on p. 26 after “In all but the last line s−m is

not an odd integer.”
14(1998) At the very end of the chapter, just before the appendix. (2023 ed.) P. 43. Page 5.28 starts at “If

η = ζ̃−1 the maps. . . ”.
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The functions occurring in the other factors are not changed but some of the variables are.

gp is replaced by
(

0 1
Ap 0

)
gp and ζp is replaced by ζ̃p. Thus the expression (D) is multiplied by

∏
p∤D

ζ̃−1
p

((
1 0
0 −Ap

))
∏

p∈S∞

ϵ(ζp, ξp, πp)



∏
p/∈S∞
p∤D

ϵ(ζp, ξp, ωp)


which equals ∏

p|D

ζp

((
−Ap 0
0 1

))
∏

p∈S∞

ϵ(ζp, ξp, πp)



∏
p/∈S∞
p∤D

ϵ(ζp, ξp, ωp)

.
The lemma follows.

We want to prove a converse to this lemma. Suppose we are given the divisor D and hence

UD, a homomorphism ϵ of UD/ÛD into C×, and a non-trivial character ξ of A/K. Suppose
that we are given bounded functions aα and âα on K× such that

aαβ = ϵ

((
1 0
0 1

))
aα âαβ = ϵ̃

((
β 0
0 1

))
âα

if β lies in K× ∩ ID. Suppose moreover that aα = 0 if, for some p dividing D, αp does not
lie in the largest ideal of Kp on which ξp is trivial. We will also have to be given, for each
archimedean prime p, an irreducible quasi-simple representation of {σp,Ap} or Ap according
to the nature of the prime and, for each non-archimedean prime which does not divide D, a
character ωp of AKp/AOp which satisfies∣∣ωp,1(π)

∣∣ ⩽ |π|−1/2
∣∣ωp,2(π)

∣∣ ⩽ |π|1/2.
If p is archimedean let πp be deducible from πωp . We shall also suppose that the homomorphism

η(α) =
∏
p∈S∞

ωp

((
αp 0
0 αp

)) ∏
p/∈S∞
p∤D

ωp

((
αp 0
0 αp

)) ∏
p|D

ϵ

((
αp 0
0 αp

))

of ID into C× is trivial on K× ∩ ID.

Lemma 7.5. Choose for each archimedean prime a function φp in L(ξp, πp). If g ∈ GD
A the

series

∑
α∈K×

aα

∏
p∈S∞

φp

((
αp 0
0 1

)
gp

)

∏
p/∈S∞
p∤D

φ

((
αp 0
0 1

)
gp, ωp, ξp

)ϵ(gD)
converges absolutely. Moreover the convergence is uniform on compact subsets of GD

A. Let
φ(g) be its sum. If x belongs to K and xp lies in Op for p|D then φ

(
( 1 x
0 1 )g

)
= φ(g) and, if

α, β lie in K× ∩ ID, φ
((

α 0
0 β

)
g
)
= φ(g).
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Choose a compact subset C of GD
A. According to the discussion15 on p. 6.8 there is for

each non-archimedean prime p which does not divide D a number Mp such that if g ∈ O

φ

((
αp 0
0 1

)
gp, ωp, ξp

)
= 0

if |αp| > Mp. Moreover almost all of the numbers Mp can be taken to be 1. Because of the
assumption on the function {aα} the sum in the lemma can be replaced by a sum over a
finite set if K is a function field and by a sum over a lattice in K if K is a number field. If
K is a function field the first two assertions of the lemma are immediate. Suppose K is a
number field.
Combining the formula16 at the top of p. 6.10 with our assumption on the magnitude

of the numbers ωp,1(π) and ωp,2(π) we see that there is a positive constant b and for each
non-archimedean prime p which do not divide D a constant Cp such that∣∣∣∣∣∣φ

((
αp 0
0 1

)
gp, ωp, ξp

)∣∣∣∣∣∣ ⩽ Cp|αp|−b

if g is in C. For all but a finite number of primes Cp can be taken to be 1.
Because of the product formula we are reduced to considering the sum∑ ∏

p∈S∞

|αp|b
∣∣∣∣∣∣φ′

p

((
αp 0
0 1

)
gp

)∣∣∣∣∣∣
over the non-zero points of a lattice in K. On pages17 3.9 and 5.9 we have discussed the
behaviour of the functions ψ(t) and ψn/2(g) as |t| → ∞. The first of the equations (A) on
p. 5.8 can be used to determine the asymptotic behaviour of all the functions ψk(t). In
Lemmas 3.4 and 5.4 we have discussed the behaviour of these functions as |t| → 0. Putting
all the information together we see that these are positive constants c and d and a constant Q
such that ∣∣∣∣∣∣φp

((
αp 0
0 1

)
gp

)∣∣∣∣∣∣ ⩽ Q|αp|−ce−d|αp|

if g is archimedean and g lies in C. The absolute and uniform convergence of the sum follows.
The last two statements of the lemma can be proved for both types of field simultaneously.

If x ∈ K and xp ∈ Op for p|D and aα ̸= 0 then, by assumption, ξp(αpxp) = 1 if p ∤ D. Thus∏
p∤D

ξp(αpxp) = 1.

15(1998) Now following Lemma 6.3.
16(1998) See previous footnotes. (2023 ed.) The formula labeled (X).
17Between Lemma 3.2 and its corollary and just before Lemma 5.3.
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The product∏
p∈S∞

φp

((
αp 0
0 1

)(
1 xp
0 1

)
gp

)
×


∏
p/∈S∞
p∤D

φ

((
αp 0
0 1

)(
1 xp
0 1

)
gp, ωp, ξp

)ϵ
((

1 xD
0 1

)
gD

)

is equal to

∏
p∤D

ξp(αpxp)

∏
p∈S∞

φp

((
αp 0
0 1

)
gp

)

∏
p/∈S∞
p∤D

φ

((
αp 0
0 1

)
gp, ωp, ξp

)ϵ
((

1 xD
0 1

)
gD

)
.

Since ϵ
((

1 xD
0 1

)
gD

)
= ϵ(gD) the relation φ

(
( 1 x
0 1 )g

)
= φ(g) follows.

The relation φ

((
β 0
0 β

)
g

)
= φ(g) for β ∈ K× ∩ ID is, essentially, one of the assumptions.

To complete the proof of the lemma we need only show that φ
((

β 0
0 1

)
g
)
= φ(g) when β lies

in K× ∩ ID. After replacing g by
(
β 0
0 1

)
g in the sum defining φ we can change variables in

the summation, replacing α by αβ−1. The sum becomes

∑
α∈K×

aα,β−1

∏
p∈S∞

φp

((
αp 0
0 1

)
gp

)

∏
p/∈S∞
p∤D

φ

((
αp 0
0 1

)
gp, ωp, ξp

)ϵ
((

βD 0
0 1

)
gD

)
.

The relation φ
((

β 0
0 1

)
g
)
= φ(g) is thus a consequence of the assumption

aαβ−1ϵ

((
βD 0
0 1

))
= aα.

With the same choice of functions φp the function {âα} determines a function φ̂. Of course ϵ
must be replaced by ϵ̃.

Let χ be a character of K× ∩ ID\ID such that

χ(αp)ϵ

((
αp 0
0 1

))
= 1

for p|D and αp in O
×
p . If s is a complex number define ζ = ζ(s, χ) as before by

ζ

((
α 0
0 β

))
= η(β)|αβ−1|sχ(αβ−1).
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The function Ξ(s, χ) given as the product of ∑
α∈K×/K×∩ID

aα
∏
p|D

ζp

((
αp 0
0 1

))
∏

p∈S∞

Γ(ζp, πp)


and ∏

p/∈S∞∪R
p∤D

1(
1− ωp,1(π)ζp,1(π)|π|1/2

)(
1− ωp,2(π)ζp,2(π)|π|1/2

)
is defined for Re s sufficiently large. If {aα} is replaced by {âα} and χ by χ−1η−1 we can

define a similar function Ξ̂(s, χ−1η−1).

Lemma 7.6. If there is an A in K× with (Ap) = pmp for p|D and if, for all possible choices
of χ, Ξ(s, χ) is an entire function of s which is bounded in vertical strips and satisfies the
functional equation

Ξ(s, χ) =

∏
p|D

ζp

((
−Ap 0
0 1

))
∏

p∈S∞

ϵ(ζp, ξp, πp)



∏
p/∈S∞
p∤D

ϵ(ζp, ξp, ωp)

Ξ̂(−s, χ−1η−1)

then, for all g in GD
A,

φ̂

(0 1
A 0

)
g
∏
p|D

(
0 A−1

p

1 0

) = φ(g).

Let φ1(g) be the function on the left side of this equation and let ID0 be the idèles of norm 1
in ID. We have to show that for each g in GD

A

φ1

((
α 0
0 1

)
g

)
= φ

((
α 0
0 1

)
g

)
for all α in ID0 . Since both sides are continuous functions on K× ∩ ID0 \ID0 which is compact,
we just have to compare Fourier coefficients. Any character of ID0 ∩K×\ID0 is obtained by
restricting a character χ of K× ∩ ID to ID0 . Set

µ(χ, g) =

∫
K×∩ID\ID0

φ

((
α 0
0 1

)
g

)
χ(α) dα,

µ1(χ, g) =

∫
K×∩ID\ID0

φ1

((
α 0
0 1

)
g

)
χ(α) dα.

µ(χ, g) and µ1(χ, g) are both identically zero if χ(αp)ϵ
((

αp 0
0 1

))
≠ 1 for some p|D and some

αp in O
×
p . Thus we need only consider the χ satisfying the conditions of the lemma.
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The functions

χ(α)µ

(
χ,

(
α 0
0 1

)
g

)

χ(α)µ1

(
χ,

(
α 0
0 1

)
g

)
are continuous functions on ID0 \ID which is isomorphic to R+ if K is a number field and
to Z if K is a function field. As in the proof of Lemma 6.3, the Mellin transform∫

ID0 \ID
χ(α)µ

(
χ,

(
α 0
0 1

)
g

)
|α|s dα =

∫
K×∩ID\ID

φ

((
α 0
0 1

)
g

)
ζ

((
α 0
0 1

))
dα

is defined for Re s sufficiently large and the Mellin transform∫
ID0 \ID

χ(α)µ1

(
χ,

(
α 0
0 1

)
g

)
|α|s dα

which equals ∫
K×∩ID\ID

φ̂

(α 0
0 1

)(
0 1
A 0

)
g
∏
p|D

(
0 A−1

p

1 0

)ζ̃((α 0
0 1

))
dα

is defined for Re s sufficiently small.
To prove the lemma in the case of a function field we need only verify that both the Mellin

transforms are entire functions of s and that they are equal. In the case of a number field we
must show in addition that they are bounded in each vertical strip of finite width.18

As in Lemma 7.3 the first integral is the product of Ξ(s, χ) and

(E)

∏
p∈S∞

Φ′(gp, ζp, φp,)




∏
p/∈S∞∪R

p∤D

Φ′(gp, ζp, ωp, ξp)


∏

p∈R

Φ(gp, ζp, ωp, ξp)

ϵ(gD).
R is the set of non-archimedean primes which do not divide D such that ζ is not trivial
on AOp . According to Lemmas 3.6, 5.7, and 6.4 each of the functions occurring in the product
is an entire function of s and all but finitely many are identically 1. Thus the first Mellin

transform is an entire function of s. The second is the product of Ξ̂(−s, χ−1η−1) and the

18This seems to be the simplest condition which allows the application of an inversion theorem to establish
the identity of the original functions.
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factors ∏
p∈S∞

ζ̃−1
p

((
1 0
0 −Ap

))
Φ′

((
0 1

−1 0

)
gp, ζ̃p, φp

)
∏

p/∈S∞∪R
p∤D

ζ̃−1
p

((
1 0
0 −Ap

))
Φ′

((
0 1

−1 0

)
gp, ζ̃p, ωp, ξp

)
∏

p∈R

ζ̃−1
p

((
1 0
0 −Ap

))
Φ

((
0 1

−1 0

)
gp, ζ̃p, ωp, ξp

)ϵ(gD).
It is also an entire function of s and, by the definitions of the factors ϵ(ζp, ξp, πp) and ϵ(ζp, ξp, ωp)
together with the functional equation satisfied by the function Ξ(s, χ), equal to the first
Mellin transform.
One of the Mellin transforms is bounded in vertical strips of a right half-plane, the other

is bounded in vertical strips of a left half-plane. Thus to show they are bounded we can
apply the Phragmen-Lindelöf theorem for strips. The function 1

Γ(as+b)
, a real, grows no

faster than an exponential in vertical strips so it is enough to show that we can multiply
the Mellin transforms by a product of functions of the form Γ(as+ b), a real, and obtain a
function which is bounded in regions of the form Re s < constant , |Im s| ≫ 0. By assumption
Φ(s, χ) is bounded in such regions. The factors in the product (E) corresponding to the
non-archimedean primes were shown in Lemma 6.4 to be bounded in vertical strips of finite
width. If p is an archimedean prime Γ(ζp, πp) is a function of this form and

Γ(ζp, πp)Φ
′(gp, ζp, φp) = Φ(gp, ζp, φp)

was shown in Lemmas 3.6 and 5.7 to be bounded in regions of the form |Re s| ⩽ constant ,
|Im s| ≫ 0.

Theorem 7.7. If the assumptions of Lemma 7.6 are satisfied, the function φ is a function
on GK ∩GD

A\GD
A.

The set of all
(
a b
c d

)
in GK ∩GD

A which satisfy

φ

((
a b
c d

)
g

)
≡ φ(g)

is a subgroup of GK ∩GD
A. By Lemma 7.5 it contains all those matrices for which c = 0. If

b = 0 then

φ

((
a 0
c d

)
g

)
= φ̂

(0 1
A 0

)(
a 0
c d

)
g
∏
mp>0

(
0 A−1

p

1 0

)
= φ̂

(d c
A

0 a

)(
0 1
A 0

)
g
∏
mp>0

(
1 A−1

p

1 0

).
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Applying Lemma 7.5 to φ̂ we see that the last expression is equal to

φ̂

(0 1
A 0

)
g
∏
mp>0

(
0 A−1

p

1 0

) = φ(g).

The theorem is a consequence of the following lemma.

Lemma 7.8. GK ∩GD
A is generated by the matrices in it of the form

(
a b
0 d

)
and

(
a 0
c d

)
.

Indeed (
a b
c d

)
=

(
a 0

c d− bc
a

)(
1 b

a

0 1

)
.

If the matrix on the left is in GK ∩GD
A so are both the matrices on the right.

Appendix. Some preliminary remarks are necessary before the nature of the function φ0(g)
can be determined. It is convenient to treat the various types of fields separately.
We consider the real field first and use the notation of paragraphs 2 and 3. Let L be the

space of infinitely differentiable functions on NR\GR which are U -finite on the right.

Lemma A. Let π be the infinite-dimensional irreducible quasi-simple representation of
{σ,A}. Suppose π is deducible from πω. Let H be a subspace of L which transforms according
to π.

(i) If s−m is not an odd integer and s ̸= 0 then ω ̸= ω̃ and H is contained in L(ω)+L(ω̃).
(ii) If s = 0 and m = 0 let L′(ω) be the space spanned by the functions

φ′
n

((
1 x
0 1

)(
α1 0
0 α2

)(
cos θ sin θ

− sin θ cos θ

))
defined as ∣∣∣∣α1

α2

∣∣∣∣1/2ω
((

α1 0
0 α2

))log

∣∣∣∣α1

α2

∣∣∣∣+ |n2 |∑
k=1

1

2k − 1

einθ,
n
2
∈ Z. L′(ω) is an invariant irreducible subspace of L and the representation of {σ,A}

on L′(ω) is equivalent to π. H is contained in L(ω) + L′(ω).
(iii) If s−m is an odd integer suppose, as we may, that s ⩾ 0. Define ω′ by

ω′

((
α1 0
0 α2

))
= sgn(α2α2)ω

((
α1 0
0 α2

))
.

Then H is contained in L(ω) + L(ω′).

ω′ is of course defined for any ω. In Paragraph 2 we saw that if s−m is not an odd integer
and s ≠ 0 then π is equivalent to the representation of {σ,A} on L(ω) and L(ω̃) but is not
contained in the representation of {σ,A} on L(ω′) or L(ω̃′). We also saw that if s−m is an
odd integer and s ̸= 0 the representation π is contained once in the representation of {σ,A}
on L(ω) and L(ω′) but is not contained in the representation of {σ,A} on L(ω̃) or L(ω̃′).
Thus if s ̸= 0 we need only show that H is contained in L(ω) + L(ω̃) + L(ω′) + L(ω̃′).
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Suppose s = 0 and m = 0. It is clear that

ρ(σ)φ′
n = ω

((
1 0
0 −1

))
φ′
n, ρ(J)φ′

n = (s1 + s2)φ
′
n, ρ(U)φ′

n = inφ′
n.

On the other hand taking u = 0 in the formulae19 on pp. 3.7 and 3.8 we see that

ρ(V )φ′
n

((
1 x
0 1

)(
α1 0
0 α2

)(
cos θ sin θ

− sin θ cos θ

))
is equal to∣∣∣∣α1

α2

∣∣∣∣1/2ω
((

α1 0
0 α2

))(n+ 1) log

∣∣∣∣α1

α2

∣∣∣∣+ 1 + (n+ 1)

|n2 |∑
k=1

1

2k − 1

ei(n+2)θ

and that

ρ(W )φ′
n

((
1 x
0 1

)(
α1 0
0 α2

)(
cos θ sin θ

− sin θ cos θ

))
is equal to∣∣∣∣α1

α2

∣∣∣∣1/2ω
((

α1 0
0 α2

))(−n+ 1) log

∣∣∣∣α1

α2

∣∣∣∣+ 1 + (−n+ 1)

|n2 |∑
k=1

1

2k − 1

ei(n−2)θ.

Thus ρ(V )φ′
n = (n+ 1)φ′

n+2 and ρ(W )φ′
n = (−n+ 1)φ′

n−2. It follows from Lemma 2.1 that
the representation on L′(ω) is equivalent to πω and hence to π. The representations of {σ,A}
on L(ω′) and L′(ω′) are not equivalent to π. Again we need only show that H is contained in
L(ω) + L′(ω) + L(ω′) + L′(ω′).

Suppose φ lies in H. There are functions φn(α1, α2) on R× ×R+, only a finite number of
which do not vanish identically, such that for α2 > 0.

φ

((
1 x
0 1

)(
α1 0
0 α2

)(
cos θ sin θ

− sin θ cos θ

))
=
∑
n

φn(α1, α2)e
inθ.

Moreover there are functions ψn(t) on R× such that

φn(α1, α2) = ω

(|α1α2|1/2 0

0 |α1α2|1/2

)ψn(α1

α2

)
.

Since φ is in L, ρ(D)φ = λ(Z)φ+ 1
2
λ(Z2)φ and the equation ρ(D)φ = s2−1

2
φ reduces to the

equations

−2t
dψn
dt

+ 2t
d

dt

(
t
dψn
dt

)
=
s2 − 1

2
ψn

or

4

(
t
d

dt
− 1

2

)2

ψn = s2ψn.

19(1998) See previous footnotes. (2023 ed.) ψi on p. 13.
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If s ̸= 0 four linearly independent solutions of this are (sgn t)a|t| 1±s
2 , a = 0 or 1 and if s = 0

four linearly independent solutions of this are (sgn t)a|t|1/2 and (sgn t)a|t|1/2 log|t|, a = 0 or 1.
The lemma follows for all representations except the one for which s = 0 and |m| = 1.

If s = 0 and |m| = 1 the space H1 contains a non-zero vector. If φ lies in H1 the function ψn
is zero if n ̸= 1. According to the first formula on p. 3.820 the equation ρ(W )φ = 0 is equivalent
to

2t
dψ1

dt
− ψ1(t) = 0.

Thus ψ1(t) is a linear combination of |t|1/2 and (sgn t)|t|1/2. Thus H meets L(ω) + L(ω′).
Since H is irreducible, H is contained in L(ω) + L(ω′).
For the complex field we use the notation of paragraphs 4 and 5. Let L be the space of

infinitely differentiable functions on NC\GC which are U -finite on the right.

Lemma B. Let π be an infinite-dimensional irreducible quasi-simple representation of A.
Suppose π is deducible from πω. Let H be a subspace of L which transforms according to π.

(i) If s−m is not integral then ω ̸= ω̃ and H is contained in L(ω) + L(ω̃). If s−m is
integral define ω′ by

ω′

((
α1 0
0 α2

))
= |α1α2|

s1+s2
2

∣∣∣∣α1

α2

∣∣∣∣m( α1

|α1|

)m1+m2
2

+s(
α2

|α2|

)m1+m2
2

−s

.

π is deducible from πω, πω̃, πω′, and πω̃′.
(ii) If |s| > |m| we can assume with no loss of generality that s > |m|.

Then H is contained in L(ω) + L(ω′) + L(ω̃′).
(iii) If |s| = |m| and s ̸= 0 either ω = ω′ or ω = ω̃′. In this case H is contained in

L(ω) + L(ω̃).

(iv) If s = 0 and m = 0 define γ0 and δk as on21 p. 4.8 and let cn =
∑n/2

k=1
1
k
if n is a

non-negative even integer. If t > 0 set ψn(t) = log t + cn. Let L′(ω) be the space
spanned by the functions

φ̂n,k

((
1 z
0 1

)(
α1 0
0 α2

)
u

)
= ω

((
α1 0
0 α2

))∣∣∣∣α1

α2

∣∣∣∣ψn
(∣∣∣∣α1

α2

∣∣∣∣
)
γ0σn(u)δk

with n
2
∈ Z, −k ∈ Z, and |k| ⩽ n

2
. L′(ω) is an irreducible invariant subspace of L

and the representation of A on L′(ω) is equivalent to π. The space H must lie in
L(ω) + L′(ω).

The most complicated part of the lemma to verify is the assertion that L′(ω) is invariant
and irreducible so we verify that first.

20(2023 ed.) The first formula on p. 3.8 is ψ2 (not ψ1) on page 13.
21(1998) Just after Lemma 4.2.
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For convenience set φ̂n,k(g) = 0 if k ∈ Z and |k| > n
2
. Just as22 in Paragraph 4 the existence

of the Clebsch-Gordan series allows us to assert that the function

φ+
n+2,k

((
1 z
0 1

)(
α1 0
0 α2

)
u

)
which equals(

n

2
+ k + 1

)(
n

2
+ k

)
ρ(V +)φ̂n,k−1 −

(
n

2
+ k + 1

)(
n

2
− k + 1

)
ρ(V )φ̂n,k

−
(
n

2
− k

)(
n

2
− k + 1

)
ρ(V −)φ̂n,k+1

is of the form(
n

2
+ k + 1

)
!

(
n

2
− k + 1

)
!ω

((
α1 0
0 α2

))∣∣∣∣α1

α2

∣∣∣∣ψ+
n+2

(∣∣∣∣α1

α2

∣∣∣∣
)
γ0σn+2(u)δk,

that the function

φ0
n,k =

(
n

2
+ k

)
ρ(V +)φ̂n,k−1 + kρ(V )φ̂n,k +

(
n

2
− k

)
ρ(V −)φ̂n,k+1

is of the form

φ0
n,k

((
1 z
0 1

)(
α1 0
0 α2

)
u

)

=

(
n

2
+ k

)
!

(
n

2
− k

)
!ω

((
α1 0
0 α2

))∣∣∣∣α1

α2

∣∣∣∣ψ0
n

(∣∣∣∣α1

α2

∣∣∣∣
)
γ0σn(u)δk,

and that the function

φ−
n−2,k = ρ(V +)φ̂n,k−1 + ρ(V )φ̂n,k − ρ(V −)φ̂n,k+1

is of the form

φ−
n−2,k

((
1 z
0 1

)(
α1 0
0 α2

)
u

)

=

(
n

2
+ k − 1

)
!

(
n

2
− k − 1

)
!ω

((
α1 0
0 α2

))∣∣∣∣α1

α2

∣∣∣∣ψ−
n−2

(∣∣∣∣α1

α2

∣∣∣∣
)
γ0σn−2(u)δk.

In these three formulae δk is respectively x
n
2
+1+ky

n
2
+1−k, x

n
2
+ky

n
2
−k, and x

n
2
+k−1y

n
2
−k−1 and

γ0 lies in the dual of Vn+2, Vn, and Vn−2 respectively.

22The right hand sides of the formula on p. 4.9 (2023 ed.: p. 30 here) are not correct. They should be(
n

2
+ k + 1

)
!

(
n

2
− k + 1

)
!a(n, ω)φn+2,k

and (
n

2
+ k − 1

)
!

(
n

2
− k − 1

)
!b(n, ω)φn−2,k
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To show that L′(ω) is invariant we need only verify that ψ+
n+2 is a multiple of ψn+2, that

ψ0
n is a multiple of ψn, and that ψ−

n−2 is a multiple of ψn−2. If n = 0 only ψ+
n+2 is defined.

Evaluating φ+
n+2,0 at

(
t1/2 0
0 t−1/2

)
we see that23

[(
n
2
+ 1
)
!
]2
tψ+

n+1(t) is equal to(
n

2
+ 1

)(
n

2

)
t(log t+ cn)γ0σn

(
0 −1
0 0

)
δ−1

− 2

(
n

2
+ 1

)2

t
d

dt
(t log t+ cnt)

−
(
n

2

)(
n

2
+ 1

)
t(log t+ cn)γ0σn

(
0 0
1 0

)
δ1,

which equals (cf. p. 4.2)

−2

(
n

2
+ 1

)2(
n

2
+ 1

)
t

(
log t+ cn +

1
n
2
+ 1

)
= −2

(
n

2
+ 1

)3

tψn+2(t).

In the same way we see that
(
n
2
!
)2
tψ0

n(t) is equal to[
−
(
n

2

)
γ0σn

(
0 1
0 0

)
δ−1 +

(
n

2

)
γ0σn

(
0 0
1 0

)
δ1

]
(t log t+ cnt),

which equals [
−
(
n

2

)(
n

2
+ 1

)
+

(
n

2

)(
n

2
+ 1

)]
(t log t+ cnt) = 0.

Finally
[(

n
2
− 1
)
!
]2
tψ−

n−2(t) is equal to[
−γ0σn

(
0 1
0 0

)
δ−1 − γ0σn

(
0 0
1 0

)
δ1

]
(t log t+ cnt) + 2t

d

dt
(t log t+ cnt)

which equals

−n

(
t log t+ cnt−

t
n
2

)
= −ntψn−2(t).

23The formula at the top of p. 4.10 (2023 ed.: p. 30) is not correct. It should be

V − =

(
X1 +

W1

2

)
+ i

(
X2 −

W2

2

)
.
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If the functions φn,k are defined as on p. 4.924 then, as we have seen25 when s = 0 and
m = 0(

n

2
+ k

)(
n

2
+ k + 1

)
ρ(V +)φn,k−1

−
(
n

2
+ k + 1

)(
n

2
− k + 1

)
ρ(V )φn,k

−
(
n

2
− k

)(
n

2
− k + 1

)
ρ(V −)φn,k+1

is equal to

−2

(
n
2
+ k + 1

)
!(

n
2
+ 1
)
!

(
n
2
− k + 1

)
!(

n
2
+ 1
)
!

(
n

2
+ 1

)3

φn+2,k

and
ρ(V +)φn,k−1 + ρ(V )φn,k − ρ(V −)φn,k+1

is equal to (
n
2
+ k − 1

)
!(

n
2
− 1
)
!

(
n
2
− k − 1

)
!(

n
2
− 1
)
!

(−n)φn−2,k.

Moreover one shows readily that(
n

2
+ k

)
ρ(V +)φn,k−1 + kρ(V )φn,k +

(
n

2
− k

)
ρ(V −)φn,k+1

is equal to zero. It follows immediately that the representation on L′(ω) is equivalent to the
representation on L(ω).
The remarks of the lemma can now be verified rather easily. Choose n so that Hn ̸= 0.

There is a function Ψ(g) on GC with values in V̂n such that Hn is the set of functions of the
form Ψ(g)Φ, Φ ∈ Vn. Moreover Ψ(gu) = Φ(g)σn(u) if u ∈ U0 and Ψ

(
( α 0
0 α )g

)
= ω

(
( α 0
0 α )

)
Ψ(g).

Let ψ(t) = Ψ

((
t1/2 0
0 t−1/2

))
; Ψ is determined by ψ. According to the formulae26 on p. 5.8

the equations ρ(D)Ψ = (s+m)2−1
2

Ψ and ρ(D′)Ψ = (s−m)2−1
2

Ψ reduce to[
t
d

dt
+ k − 1

]2
ψk = (s+m)2ψk[

t
d

dt
− k − 1

]2
ψk = (s−m)2ψk.

If either (s+m) ̸= 0 or (s−m) ̸= 0 these equations imply that each ψk is a power of t.
Thus Hn, and hence H, is contained in a space of the form

∑r
i=1 L(ωi) for some ω1, . . . , ωr.

Parts (i), (ii) and (iii) of the lemma follow from Lemma 4.2 and the proof of Lemma 4.4.
If s +m = 0 and s −m = 0 then s = m = 0. Then ψk ≡ 0 if k ̸= 0 and ψ0(t) is a linear
combination of t and t log t. Part (iv) of the lemma also follows.

24(2023 ed.) P. 29.
25According to a remark in a previous footnote the left hand sides of the equation on p. 4.10 (2023 ed.:

p. 30) should be
(
n
2 +m+ 1

)
!
(
n
2 −m+ 1

)
!a(n, ω) and

(
n
2 +m− 1

)
!
(
n
2 −m− 1

)
!b(n, ω).

26(1998) Between Lemmas 5.2 and 5.3.
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For a non-archimedean local field we use the notation of paragraph 6. If ω is a homomor-
phism of AK/AO into C× define the function φω by

φω

((
1 x
0 1

)(
α1 0
0 α2

)
u

)
=

∣∣∣∣α1

α2

∣∣∣∣1/2ω
((

α1 0
0 α2

))
u ∈ GO.

If ω ̸= ω̃ then φω ̸= φω̃. If ω = ω̃ define φ′
ω by

φ′
ω

((
1 x
0 1

)(
α1 0
0 α2

)
u

)
=

∣∣∣∣α1

α2

∣∣∣∣1/2ω
((

α1 0
0 α2

))
log

∣∣∣∣α1

α2

∣∣∣∣.
Lemma C. Suppose φ is a function on NK\GK which satisfies φ(gu) ≡ φ(g) for u in GO

and suppose that for all f in H∫
GK

φ(gh)f(h) dh = χω(f)φ(g).

If ω ̸= ω̃, φ is a linear combination of φω and φω̃ and, if ω = ω̃, φ is a linear combination of
φω and φ′

ω.

Choosing f to be the characteristic function of a(1, 1)GO and GOa(0, 1)GO we obtain the
relations

φ

((
πα1 0
0 πα2

))
= ω(π)φ

((
α1 π
w1 α2

))

qφ

((
πα1 0
0 α2

))
+ φ

((
α1 0
0 πα2

))
= q1/2

w((π 0
0 1

))
+ ω

((
1 0
0 π

))
× φ

((
α1 0
0 α2

))
.

It is easy to see that these relations are satisfied by φω, φω̃ and, if ω = ω̃, by φ′
ω. If ω ̸= ω̃ then

φω
(
( 1 0
0 1 )
)
= φω̃

(
( 1 0
0 1 )
)
̸= 0 but φω

(
( π 0
0 1 )
)
̸= φω̃

(
( π 0
0 1 )
)
. Subtracting from φ a suitable linear

combination of φω and φω̃ we obtain a function ψ which satisfies the relations and vanishes at
( 1 0
0 1 ) and ( π 0

0 1 ). If ω = ω′ then φω
(
( 1 0
0 1 )
)
̸= ω but φ′

ω

(
( 1 0
0 1 )
)
= 0 while φ′

ω

(
( π 0
0 1 )
)
≠ 0. We

can again subtract from φ a suitable linear combination of φω and φ′
ω and obtain a function ψ

which satisfies these relations and vanishes at ( 1 0
0 1 ) and ( π 0

0 1 ). To prove that, in either case,
ψ vanishes identically we need only show that it vanishes at the matrices

(
πm+n 0

0 πn

)
. The

first relation implies this is so if n = 0 or 1. Taking
(
α1 0
0 α2

)
=
(
πm+n 0

0 πn

)
and substituting in

the second relation we see that if this is so if for all m and n = n0 and n0 + 1 it is true for all
m and n = n0 − 1 and that if this is so for all m and n = n0 and n0 − 1 it is true for all m
and n = n0 + 1. The lemma follows by induction.
Let S be a finite set of primes containing the archimedean primes and the primes which

divide D. Let IS =
{
ι
∣∣ ιp is a unit if p /∈ S

}
. We suppose S is so large that ID(K× ∩ ID)IDS

if IDS = IS ∩ ID. Let GS =
∏

p∈S GKp ×
∏

p/∈S GOp and let GD
S = GD

A ∩GS. According to the

previous three lemmas the restriction of φ0 to GD
S is a linear combination of functions of the
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form27

ψ


∏

p∈S

(
1 xp
0 1

)(
αp 0
0 βp

)
up


∏

p/∈S

up


 =

∏
p∈S

∣∣∣∣∣αp

βp

∣∣∣∣∣
1/2
η
∏

p∈S

(
αp 0
0 βp

)ζ
∏

p∈S

up

∏
p∈S1

log

∣∣∣∣∣αp

βp

∣∣∣∣∣.
Here

(
1 xp
0 1

)( αp 0
0 βp

)
up lies in UD

Kp
if p|D, η is a homomorphism of the group of diagonal

matrices with entries from IDS into C× such that η

((
αp 0
0 βp

))
= 1 if p /∈ S and αp, βp lie in

O×
p , and S1 is a subset of S. If γ and δ belong to K×∩IDS then φ0

((
γ 0
0 δ

)
g
)
= φ0(g). Moreover∑

p∈S log|γp| = 0 is the only linear relation satisfied by all the vectors
{
log|γp|

∣∣ p ∈ S
}
as γ

varies over K× ∩ IDS . A simple argument then shows that the restriction of φ0 to GD
S is of

the form

φ0


∏

p∈S

(
1 xp
0 1

)(
αp 0
0 βp

)
up


 =

∏
p∈S

∣∣∣∣∣αp

βp

∣∣∣∣∣
1/2 r∑

i=1

η(i)

∏
p∈S

(
αp 0
0 βp

)ζ(i)1

∏
p∈S

up

+ ζ
(i)
2

∏
p∈S

up

∑
p∈S

log

∣∣∣∣∣αp

βp

∣∣∣∣∣
.

The homomorphisms η(1), . . . , η(r) are to be distinct and for each i either ζ
(i)
1 or ζ

(i)
2 is to be

different from zero. If α and β lie in K× ∩ IDS then η(i)
(∏

p∈S

(
αp 0
0 βp

))
= 1.

Each η(i) determines a homomorphism of the diagonal matrices with entries from ID

into C×. This homomorphism, which will be 1 on the matrices with entries from K× ∩
ID we again call η(i). The value of φ0 at

∏
p

(
1 xp
0 1

)( αp 0
0 βp

)
up is the same as its value at{∏

p∈S

(
αp 0
0 βp

)
up

}{∏
p/∈S

(
αp 0
0 βp

)}
which is∏

p

∣∣∣∣∣αp

βp

∣∣∣∣∣
1/2


r∑
i=1

η(i)

∏
p

(
αp 0
0 βp

)ζ(i)1

∏
p∈S

up

+ ζ
(i)
2

∏
p∈S

up

∑
p

log

∣∣∣∣∣αp

βp

∣∣∣∣∣
.

Define η̃(i) by

η̃(i)

∏
p

(
αp 0
0 βp

) = η(i)

∏
p

(
βp 0
0 αp

).
Lemma D. If i ̸= j then η(j) = η̃(i).

27In this formula and the similar ones following the absolute value at the complex primes is the square of
the usual absolute value.
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Let

η(i)
−1

η(j)

((
α 0
0 β

))
= |α|a|β|bχ

((
α 0
0 β

))

η̃(i)
−1

η(j)

((
α 0
0 β

))
= |α|c|β|dχ′

((
α 0
0 β

))
for α, β in ID. Here a, b, c, d are real numbers and χ and χ′ are characters in the usual
sense. Lemma C implies that if p /∈ S the restriction of either η(i)

−1
η(j) or η̃(i)

−1
η(j) to{(

αp 0
0 βp

) ∣∣∣∣ αp, βp ∈ K×
p

}
is trivial. This can only happen if a = b = 0 or c = d = 0. Suppose

that a ̸= 0 or b ̸= 0. Then c = d = 0 and η̃(i)
−1
η(j) is an ordinary character. It is known

that the values η̃(i)
−1
η(j) takes on the matrices

(
αp 0
0 βp

)
, αp, βp ∈ K×

p , p /∈ S are dense in

the set of values which η̃(i)
−1
η(j) takes on. It follows that η(j) = η̃(i). In the same way we

show that if c ̸= 0 or d ̸= 0 then η(i) = η(j). This is of course excluded. It remains to treat
the case a = b = c = d = 0. In this case the values taken by the vector-valued function

(η(i)
−1
η(j), η̃(i)

−1
η(j)) on the matrices

(
αp 0
0 βp

)
, αp, βp ∈ K×

p , p /∈ S are dense in the set of

all values it assumes. It follows from Lemma C that (1− η(i)
−1
η(j))(1− η̃(i)

−1
η(j)) vanishes

identically. If η̃(i) ̸= η(j) there is an
(
α 0
0 β

)
such that η̃(i)

−1
η(j)
((

α 0
0 β

))
̸= 1. Then, necessarily

η(i)
−1
η(j)
((

α 0
0 β

))
= 1. Since η(i) ̸= η(j) there is a

(
γ 0
0 δ

)
such that η(i)

−1
η(j)
((

γ 0
0 δ

))
̸= 1.

Then η̃(i)
−1
η(j)
((

γ 0
0 δ

))
= 1. One sees immediately that (1− η(i)

−1
η(j))(1− η̃(i)

−1
η(j)) will not

vanish at
(
αγ 0
0 βδ

)
. This is a contradiction.

Lemma E. There are two possible forms for the function φ0.

(i) There is a homomorphism ω of the diagonal matrices with entries from ID into C×,
which is 1 on the matrices with entries from K× ∩ ID, such that ω ̸= ω̃ and two

functions ζ and ζ ′ on
∏

p∈S UKp such that if g =
∏

p

(
1 xp
0 1

)( αp 0
0 βp

)
up lies in GD

A then

φ0(g) equals∏
p

∣∣∣∣∣αp

βp

∣∣∣∣∣
1/2

ω
∏

p

(
αp 0
0 βp

)ζ
∏

p∈S

up

+ ω̃

∏
p

(
αp 0
0 βp

)ζ ′
∏

p∈S

up

.
(ii) There is a homomorphism ω of the diagonal matrices with entries from ID into C×,

which is 1 on the matrices with entries from K× ∩ ID, such that ω = ω̃ and two

functions ζ and ζ ′ on
∏

p∈S UKp such that if g =
∏

p

(
1 xp
0 1

)( αp 0
0 βp

)
up lies in GD

A then

φ0(g) equals∏
p

∣∣∣∣∣αp

βp

∣∣∣∣∣
1/2

ω
∏

p

(
αp 0
0 βp

)
ζ
∏

p∈S

up

+ ζ ′

∏
p∈S

up

∑
p∈S

log

∣∣∣∣∣αp

βp

∣∣∣∣∣
.
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