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LINEARIZING FLOWS AND A COHOMOLOGICAL 
INTERPRETATION OF LAX EQUATIONS 

By PHILLIP A. GRIFFITHS* 

In recent years a number of flows given by completely integrable 
Hamiltonian systems have been shown to be linearizable on the (real points 
of) the Jacobian variety J(C) of an algebraic curve C associated to the prob- 
lem. Adler and van Moerbeke [2], [3] have proved that, with the exception 
of Kowaleska's top, each of the then known finite dimensional completely 
integrable systems has an associated Lax equation 

dA (~, t) 
(i) dit = [B( , t), A (, t)] 

containing a rational parameter t. 
In this paper we shall consider an arbitrary such Lax equation given 

by (i) above, and associate to it an algebraic curve C (its spectral curve) 
together with a dynamical system {L, } on its Jacobian J(C). Our main 
results give necessary and sufficient conditions on the B in the Lax pair 
(A, B) that the flow t F-+ Lt be linear on J(C). Using this we may then easily 
verify the linearity of the classical flows in [2] as well as the recent one 
studied by Hitchin [10]. 

Our main philosophical point is the advantage gained by not specify- 
ing anything about B other than there be a Lax equation (i). In fact, B is 
not unique and so we may suspect that it should be naturally considered as 
a cohomology class somewhere. This happens as follows: The eigenvectors 
of the isospectral deformation give a family of holomorphic mappings 
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1446 PHILLIP A. GRIFFITHS 

from the fixed curve C to a projective space; essentially f, gives the time 
evolution of A (, t). Suppose that the image curve has degree d and set 

L, = f,*(OpV(1)) E Picd(C) -J(C). 

Applying more or less standard cohomological techniques from deforma- 
tion theory, we may easily give necessary and sufficient conditions that the 
map 

(iii) t d- Lt 

be linear for any family of holomorphic maps (ii). These conditions are 
cohomological, and the miracle is that in the situation arising from an iso- 
spectral deformation the Lax equations turn out to have a very natural and 
elegant cohomological interpretation. In carrying this out the crucial tech- 
nical concept is the residue p(B) associated to the B(s) in the Lax equation 
(i) (cf. Section 7); p(B) is a collection of "Laurent tails" lying over t = 0, oo 

on the spectral curve, and our main results give necessary and suffi- 
cient conditions for the flow (iii) to be linear expressed in terms of p(B) in a 
way that is easily checked in examples. 

In this paper sections 1 and 2 are preliminary giving a little back- 
ground material and listing the examples to be discussed. 

In section 3 we pose and informally discuss the main problem to be 
addressed. Then in section 4 we study the spectral curve and compute its 
genus, as well as some special features of its structure, in the examples. 

Sections 5, 6, 7 are the main part of this work. A standard algebro- 
geometric principle is that the tangent space to any deformation lies in a 
suitable cohomology group (cf. [4], which contains an elementary account 
of deformation theory), and in section 5 we recall how this goes for the 
eigenvector maps (ii). Then in section 6 we give our first main theorem 
expressing the tangent vector to (iii) in terms of the B in the Lax equation. 
The aforementioned miracle is given by the simple computation (6.7)- 
(6.9). Another standard algebro-geometric principle is that on an alge- 
braic curve "higher cohomology" may always be eliminated using duality 
theory (cf. the proof of (7.2) below). In section 7 this principle is applied to 
the problem at hand, and in this way we are led to the residue p(B) of the 
Lax operator and our second main theorem. 

Finally, in section 8 we show how our theorems apply to yield the 
results of Adler-van Moerbeke and Hitchin in the examples. It will be 
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noted that in each case the verification of the conditions on p(B) that the 
flow (iii) be linear is simple and natural. 

(1) (cf. [1] and [5]). A symplectic manifold (M, ) is given by a 2n- 
dimensional manifold having a closed 2-form co of maximal rank 

dco=0, C) 
n 0. 

Standard examples include the cotangent bundle T*X of an n-dimensional 
manifold X and coadjoint orbits '? C g*, where g is the Lie algebra of a 
Lie group G and (9,, = {Adgu:g E G} is the orbit of A E g* under the 
coadjoint representation. Given a function H on M the Hamiltonian vector 
field XH is defined by 

4(XH, V) = (dH, v> 

for all vectors v E TM. The Poisson bracket of two functions G, H is de- 
fined by 

{G, H} = C(XG, XH). 

Under Poisson bracket the C' functions 93(M) form a Lie algebra, and the 
mapping 

5(M) V(M) 

w w 

H H XH 

to the vector fields V(M) is a Lie algebra homorphism. 
A Hamiltonian system is the dynamical system or flow given by a 

Hamiltonian vector field on a symplectic manifold. Such a Hamiltonian 
system (M, c, H) is said to be completely integrable in case there are n 
functions H = H1, H2, ..., Hn satisfying 

{Hi, Hj I = 0 (i.e., the Hi are in involution) 

HdH A A A dHn * 0 on a dense open set of M. 
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For generic c = (c, .. ., c,) the level set 

MC= {H1 = cl, * ,Hn =Cn 

will be an n-manifold, and since 

XH,Hj = {(H, Hj } = 0 

the integral curves of each XHi will lie in MC. Since, moreover, [XH., Xh.] = 

0 the vector fields XH. will be tangent to MC and will Poisson commute 
there. In fact, in case MC is compact and connected it follows that it will be 
an n-torus R /Z' = T and each XH. = Ei aija/axJ will define a linear flow 
there. Thus, completely integrable Hamiltonian systems have an especially 
nice structure. 

In this paper we are interested in realizing the linear flows given by 
some completely integrable systems.(*1) This shall mean that the torus T 
should be given in a more or less explicit manner and similarly for the 
vector field Ej aija/axi. For us "more or less explicit" means that T con- 
sists of the real points on the Jacobian variety of an explicitly given alge- 
braic curve C whose invariants, such as its genus g and space H0(QC) of 
holomorphic differentials, are readily computable in examples. Similarly, 

Ej aija/axi should be easily determined in practice. 
One of the most remarkable developments in recent mathematics is 

the interplay between completely integrable systems and algebraic curves 
(cf. [3], [7], [161, and [18] and the references cited there). Our work may 
be viewed as one unifying observation, from an algebro-geometric view- 
point, of a particularly beautiful aspect of this theory that we shall recall 
briefly in the next section. 

(2) In recent years a number of extremely interesting completely in- 

tegrable Hamiltonian systems have been found (a few of these are classical) 
and extensively investigated. Among these we mention: 

(*1)Instead of "realizing the linear flow" one frequently simply says "linearizing the 
flow." The difference between proving that a Hamiltonian system is completely integrable 
and realizing it is roughly this: Showing that (M, &, H) is completely integrable gives qualita- 
tive information, such as quasi-periodicity and ergodicity of the flow on a general MC (cf. [51). 
On the other hand, realizing-it will mean that the system is actually solved in the sense that 
the integral curves will be expressible in terms of abelian functions defined on an explicitly 
given T. 
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Example 1. The Euler equations of a free rigid body moving about a 
fixed point ([14], [21]). In this case, M is a coadjoint orbit in so(n)* (which 
is isomorphic to so(n) via the Killing form). 

Example 2. The Euler-Poisson equations for a symmetric heavy 
rigid body ([15], [22], [23]). In this case M is a coadjoint orbit in the semi- 
direct product of SO(n) with its Lie algebra. 

Example 3. The Toda lattice and its generalizations ([2], [24]). Here 
the motion takes place on coadjoint orbits in a Kac-Moody Lie algebra. 

Example 4. Nahm's equations ([10], [20]) in which M is essentially 
an adjoint orbit in u(n). 

Example 5. The geodesics on an ellipsoid E ([12], [17]) in which 
M = T*E, and the Neumann's problem [13], [17] of Newtonian motion on 
a sphere Sn with a quadratic potential in which again M = T*Sf. 

A common feature of all these systems is that they can be written in 
Lax form with a parameter t. More precisely, we consider matrix functions 

q 
A Q, t) = A Ak(t)ik 

k =-p 

which are finite Laurent series in a variable t and whose coefficients lie in a 
linear Lie algebra g C gl(n). 

Definition. By a Lax equation with a parameter we shall mean an 
equation 

[(1) A(t) = [B( ), A(s)] ( = d/dt). 

Here, B(Q) is to be also a finite Laurent series in t whose coefficients 
are in g. In practice these coefficients will be functions of the Ak, but for 
the moment it is clearer not to assume this. In a very beautiful series of 
papers, built upon a great deal of previous work by t-hemselves and other 
mathematicians, Adler and van Moerbeke [2], [3] showed that all of the 
above examples (except for (4) which did not yet exist) were completely 
integrable Hamiltonian systems (cf. also [8], [23]). Moreover, they showed 
that each could be written as a Lax equation with a parameter and that the 
linearized flow could be realized on the Jacobian of an algebraic curve as- 
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sociated to (1). More precisely, we define the spectral curve C associated to 
(1) to be given by the characteristic polynomial 

(2) Q(Q, -) = det 11 -I-A (Q, t)jj = 0 

(this will be explained in more detail below). We note that by (1) the poly- 
nomial Q(Q, -) is independent of t; i.e., the flow 

t i-+ A( , t) 

is isospectral. Then it was proved in [2], [3] that for each of examples 1-3, 
5 the corresponding Hamiltonian flow may be realized as a linear flow on 
the real part of the Jacobian J(C) of the spectral curve (or on an abelian 
variety closely related to the Jacobian). For example 4 this was proved in 
[10]. 

We shall now discuss the form of the Lax equations with a parameter 
associated to each of the examples above. 

Example 1. For the free rigid body we let Q E so(n) be variable, J = 

diag(X1, ..., Xj) (Xi > 0), and M = QJ + JO. Then the Euler equations 
are 

(3) M = [M, Q]. 

The basic observation, due to Manakov [14], is that (3) is equivalent to 

(4) (M + j22) = [M + j24 9 + g] 

which is a Lax equation with a parameter of the form (1) with B = -(Q + 
Ji). We note that since M + tM = 0, 

Q(Q, qj) = (-O)fQ(-~, -). 

Thus there is an involution of the spectral curve 

j:C -* C 

given by 

MI _0 
{?_ 
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We note that Q moves on an adjoint orbit (9, C so(n), and for 
general ,u 

(5) dim(? = n(n - 1)/2 - 
n 

To linearize the flow given by (3) we need 1/2 dim (90A integrals of motion 
that are in involution. A nice count of how (4) gives this many integrals 
appears in [21], where their involutivity is also proved. 

Example 2. The Euler-Poisson equations are 

(6) 
[M, Q] + [F, XI 

where P, Q E so(n), M = QJ + JO with J = diag (XI, . . ., X,) as in Exam- 
ple 1, and x E so(n) is fixed. It is proved in [22] and [23] that these may be 
written in the particular form 

(7) (r + M + IM c + Xf 

of a Lax equation with a parameter if, and only if, 

(XI =_ 2 = X'3 =..=Xn= 

(Lagrange top) 

tand X12 *0, all other xij = 0 (i < j) 

or 

XI = * **= Xn = ae, x arbitrary (heavy symmetric top) 

in which case 

C = (a + O)x 

The Equations (6) are physically meaningful when n = 3 but seem to be a 
definition when n 2 4; accordingly, we shall concentrate on the Lagrange 
top in the case n = 3. A very nice treatment of this case, which may serve 
as a general introduction to the work of Adler-van Moerbeke, may be 
found in [25]. 
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Example 3. On R2n with coordinates (x1, ..., x, 1, ..*, .) and 
symplectic form co = Ei dx1 A dtj we consider the Hamiltonian function 

1 n n 

H(x, t) = ? S t + E exi-xi+1, Xn+ = X 
2 i=i = 

whose corresponding flow is given by 

*k a 

(8) 21k 
a H 

(tjk -Xk 

This is the famous Toda lattice. By the Flaschka transformation 

?e1(xk-xk?1), bk ak = -e(X-tI bk=-k 
22 

the Equations (8) are transformed into 

(bk =2(ak ak-I) ao = an 
(9) 

i k = ak(bk+l bk), bn+l =b 

We set 

b1 al an"1j 

aI b2 

bno a an-I 

_an an- 1 bn 

0 a, -ant 

-a, 0 

(10) B 

0 an-1 

an -an- 0 
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From the first equation in (9) we have 

E bk = 0, 
k 

and if we normalize by requiring that 

, bk = 0 
k 

then (9) are equivalent to the Lax equations with a parameter 

(I1) A = [B, A] 

where A, B are given above. We note that 

ak(O) * 0 * ak(t) * 0 for all t, 

and we make the usual requirement that all ak * 0. 

Observe that since tA( ) = A Q -1) 

Q(Q, t1) = Q(Q-1, t1). 

Thus there is again an involution of the spectral curve 

j:C C 

given by 

(12) i Q 710 = (-0 

We also note that in addition to the integral Sk bk = 0, we need n - 1 
further integrals in involution to show that the Toda lattice is a completely 
integrable Hamiltonian system. 

The literature on the Toda lattice is enormous. In addition to [2] and 
[3], two important papers for its study via algebraic curves are [16] and 
[24]. 

Example 4. Nahm's equations are 

1 
(13) T - 2EEijk[Tj, Tk] 

2 j,k 
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where 

i, j,k= 1,2,3 

ri/k = sgn(i, j, k) = ik 

Ti E u (n). 

In contrast to our other examples, they did not (as far as this author 
knows) arise from a (generalized) classical mechanical system, but rather 
in the construction of monopoles as explained in [20] and [10]. 

If we set 

(A ) AO + (A I + 2A2 and 

(14) I dA _) I 
IB())=-A - --A1- 

where 

{AO = T, + iT2 

(15) A1l =-2iT3 

A2 = T, - iT2, 

then it is straightforward to verify that Nahm's equations (13) are equiva- 
lent to the Lax equations with a parameter 

A = [B,A] 

(what is not straightforward is to guess the substitution (15)-cf. [10]). 

Example 5. The geodesics on an ellipsoid and Neumann's forced 
harmonic motion are discussed in many places (e.g. [17]). Here we shall 
simply follow [2], pages 275-277 and 302, and explain how they may be 
written as a Lax equation with a parameter. For this we let W = Rn or Cn, 
make the identification W 0 W -Hom(W, W), and define maps 

rxy:WX W -- Hom(W, W) 

AXX: W -Hom(W, W) 

AXY: W X W -Hom(W, W) 
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by 

(rxy = x oy - y Xgx (i.e., (rXY)iJ =xiyj - xjyi) 

AXX = x Ox (i.e., (AXA)i1 = xix;) 

AXY = x ?y + yOx (i.e., (AXY)ij = xiyj + xjyi) 

Remark that 

{Image r = skew-symmetric matrices of rank 2 

Image A = matrices of rank 1 

Image A = symmetric matrices of rank < 2, 

and that the rank of a matrix is invariant when it moves on an adjoint 
orbit. 

We also set 

{ oe = diag(al, . a.., oe ) j > 0, 

0 = diag(fl, *.., 13,) 

Kr = -lry -l- 

Then the equations for geodesics on an ellipsoid and for Neumann's system 
are respectively 

(16) (-AXX + Xy + 2a)= [-Axx + rxy + 2, r + ] 

(1 7) (AXY - ?e+ XY + 22e) = [A XY-a +trxy + 20e, r + t] 

Remark. Equation (16) is equivalent to 

{ (i) Axx= [Axx, r] 

(ii) PXy = Irxy, F] - [AXX 1] 

Since tr =- , tAxx = AXX and so AXX moves in the space of matrices of 
rank 1. In (ii) 
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{(I'yv, w) = 0 if (v, x) = (v, y) = (w, x) = (w,9y) = 0, 

from which it follows that rxy moves in the space of skew-symmetric matri- 
ces of rank 2. 

In addition to [17], the relationship between the geodesics on an ellip- 
soid and Neumann's system to algebraic curves is discussed in [12] and 
[13]. 

(3) The purpose of this paper is to address the following 

Problem. Given any Lax equation with parameter (2.1), determine 
necessary and sufficient conditions on B that the corresponding flow on 
J(C) be linear. 

We shall explain in a moment what the corresponding flow on J(C) is. 
Our answer to this problem is expressed by Theorems (6.3) and (7.7) below 
(cf. also (7.8), (7.10) and (7.11)). Using these one may recover the results 
of Adler-van Moerbeke and Hitchin by verifying that the conditions of the 
general theorems are satisfied in the particular examples. 

We shall express our results in the language of algebraic geometry, as 
it is in this setting that the problem is perhaps most naturally posed. In- 
deed, even though the eigenvalues of A (Q, t) are fixed as time evolves, the 
eigenvectors of A (Q, t) will change with t. This leads to the eigenvector 
mappings 

ft :C -+ PV, 

and we set 

Lt = f *(OpV(1)) E Picd(C), 

where O9pv(l) is the standard hyperplane bundle on PV and Picd(C) is the 
set of line bundles of degree d on C. Choosing a reference line bundle Lo E 
Picd(C), it is well known that the mapping 

L H L 0L -1 

induces an isomorphism Picd(C) _ J(C). Moreover, there are canonical 
identifications 
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TLt(PiCd(C)) -H'(0 

and so we may write 

dLt E H'(c). 
dt 

Our problem then becomes to determine the conditions on B that the ac- 
celeration vector d2Lt/dt2 =: d/dt(dLt/dt) be a multiple of dLt/dt; i.e., 
that we have 

(1) d2Lt/dt2 = ,utdLt/dt. 

(In our examples it will turn out that At = 0, so that t is a natural linear 
parameter.) We shall find that this question has a very simple and elegant 
answer, whose main point is to understand the cohomological meaning of 
the Lax equation (2.1). As a portent of this we note that the Lax equation is 
invariant under a substitution 

B -B+P(A,() 

where P(x, t) E C[x, t]. Thus B lives naturally in a quotient space, and this 
suggests that it has invariant cohomological meaning. 

In this paper we shall use the standard notations of algebraic geome- 
try as in [4] and [9], and some of which we shall momentarily recall. Aside 
from a little deformation theory, which is explained in [4], everything is 
quite elementary once one grants the essential point that the computations 
may be done simply and naturally using sheaf cohomology, as this is where 
infinitesimal deformations live naturally. 

For a smooth variety X we let 

{x = structure sheaf 

Ox = tangent sheaf 

Ox(l) = hyperplane bundle in case X C pN; 

remark that we identify line bundles with invertible sheaves with linear 
equivalence classes of Cartier divisors. If C is a smooth curve and D = 
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E nipi, ni 0 O, an effective divisor on C, then Oc(D) is the sheaf of mero- 
morphic functions with poles no worse than D. Thus 

H0(Oc(D)) = {f meromorphic on C: (f) + D > 0}; 

this vector space is also frequently denoted by ?(D). We shall denote by 
Qlc the sheaf of holomorphic 1-forms on C; then the Jacobian variety 

J(C) : Pico(C) = line bundles of degree zero 

- H'(OC)/H1(C, Z) 

via the exponential sheaf sequence 

= HO(2C)*/H1(C, Z) 

via the duality given by Abel's theorem. 

(4) We shall also use the following particular notations: 

{ V is a complex vector space of dimension m; 

P = P1 with homogeneous coordinates [ 0, ( II 

and affine coordinate t = I/to; 

<(9l() is the standard line bundle over P; 

we also set V = VO(C Op and V(k) = V (D Op(k); the context should avoid 
confusing the sheaf V and vector space V. 

Remark. In dynamical systems problems one is of course interested 
in real solutions to the equations (e.g., to the Lax equations (2.1)). How- 
ever, it will be convenient to work complex analytically, and then at the 
end put in the real structure as given by the fixed point of an involution 
corresponding to complex conjugation. 

We assume given the following data: 

n 

A(t, t) Ak OAO + *.. + VilAnE H0(P, Hom(V, V(n))); 
k=O 
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N 

B(t, ) = E Be e E H?(P, Hom(V, V(N))); and a Lax equation 
e=o 

(1) A = [B,A] ( =d/dt). 

Remarks. (i) The case where A and B are finite Laurent series may 
be handled by a completely straightforward extension of the method we 
shall use in the polynomial case. Our only Laurent series example is the 
Toda lattice, and the referee remarks that it may be reduced to the polyno- 
mial case by multiplying A by t and replacing B by B + A, since the latter 
does not contain -1. 

(ii) If A is suitably generic, then for general (Q, t) the matrix B(Q, t) is 
determined by the Lax equation (1) only up to polynomials in A and t. In 
any case it is certainly not unique. 

In the following we will generally not distinguish between t as a ho- 
mogeneous coordinate [20, 41] and as an affine coordinate 4,/20; hope- 
fully the context will make clear which we mean. If Y P is the bundle 
space of the line bundle O9p(n), then there is defined over Ythe tautological 
section 

E e H?(Y, x*Op(nf)) (*2) 

Thus the characteristic polynomial 

Q( , -) = det -qI - AQ(, t) II H?(Y, 7r8*Op(mn)). 

The divisor of Q will be a complete curve C0 C Y and 

Xi: CO -+ P 

(*2) Points of Y are pairs (Q, v) where t E P and v E (9p(n)t; then 

'qQ, Y) = P. 

Remark that Y compactifies naturally to the rational ruled surface 

Fn = P(op(n)p (9 p). 

In many examples we will have n = 2 and then Y = T(P) is the tangent bundle of PI. 
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is a branched covering with 

Tr(o) = {(w, n71), , (-, 7nm )} 

where - m, ..*, t7m are the roots of the characteristic equation. We assume 
that Co is irreducible and denote its normalization by C -+ C0. 

Clearly 7r-1(P\{ oo C)-C2 with coordinates (Q, -) and C0 is a com- 
pactification of the affine curve det I - A( , t) I = 0 in C2. 

Example. For the free rigid body in R3 we have 

Q( , -q) = detjII -qI2- - M 

= q3 + ,33 + ... 

where 6 =-det J2 . Thus C0 is the compactification of a cubic curve in C 2; 

we will see below that in general C does in fact have genus one (in general 
means that A (, 0) is chosen generically). 

On the other hand, several of our examples will not satisfy such a 
genericity condition; in many of these cases the genus of the spectral curve 
is most easily computed using automorphisms of C arising from special 
features of A, such as A E so(n) C gf (n). 

Definition. We shall call C the spectral curve associated to the Lax 
equation (1). 

Let t E P be a general point and write 

m 

Q(-, n) = 11 (7-q 
v=1 

Assuming that the curve C0 = C is smooth, we shall show that the genus g 
of the spectral curve is given by 

(2) mn(m=-1) m + 1, 2 

thereby confirming our claim that the curve in the example just above has 
genus one. 

To prove (2) we consider the discriminant 

A = H (Nv- y)2 
tL<v 
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This is a well-defined function of t = (2, 1) E C2 , and clearly 

A(Xit) = X<2n(2)A(&) 

Thus 

A E HO(P, 9p(mn(m - 1))). 

Suppose now that at some point t E P, k of the eigenvalues, say 
I ..... fk, come together and cyclically permute as t turns around t. For 

a suitable local coordinate t centered at t we will have 

q 
=vt/k = e27ri/k and 1 c v c k. 

Since 

HI (vyt1/k - AVtl/k)2 = c k-I 0, 
1 <A<v<k 

we see that the order of vanishing of A at t exactly gives the sum of the 
ramification indicies of the points of C lying over t. Moreover, by our as- 
sumption that C = CO is smooth the only way that we can have -q(v) = 

( ) (v' ? ,u) is for there to be branching as above; i.e., we have a picture 

and not 

It follows that C P is an m-sheeted covering whose ramification divisor 
has degree given by 

r = deg (A) = mn(m-1). 

The Riemain-Hurwitz formula (cf. [4] or [9]) 
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2g - 2 = -2m + r 

then gives (2). 

Remark. In case CO is singular the formula will be 

mn(m - 1) g = 2 -f + 1- 
2 

where 6 measures the number and type of singularity of CO. For instance 
we will encounter singular curves in Examples 2, 3, 5 below. 

Example 1. For the free rigid body problem discussed in Example 1 
in section 2 we find that the spectral curve has genus 

(3) g = (n-1)(n-2)/2 

The involution has the n distinct points over t = oo (since -0o = oo), 
together with the origin (0, 0) in case n is odd, as its fixed points. By the 
Riemann-Hurwitz formula, the quotient curve C' = C/j has genus 

{(n - 2) 2 
4 n Omod2 

(4) g'= 
(n - 1)(n - 3) 
< 4 n 1 mod2. 

Associated to the double covering C -- C' is the Prym variety Prym (C/C') 
(cf. [4] for a definition), which may be described as 

HO(Qc)*/Hl (C, Z)- 

where V+ are the ? 1 eigenspaces for a vector space on which j acts. From 
(3) and (4) it follows that (cf. [3]) 

n (n - 2) _ 

4 n O (2) 

dim Prym (C/C') = 

(n n 1(2) 
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On the other hand, comparing with (2.5) we obtain 

(5) dim Prym (C/C') = -dim (9 y ~~~2 

This suggests that the motion of the free rigid linearizes on Prym (C/C'), 
which in fact turns out to be the case (cf. [3] and section 8 below). 

Example 2. Referring to the Lagrange top in the case n = 3 discussed 
in Example 2 in section 2 above we set 

(6) A(t) = r + MS + Ct2 E so(3)[t]. 

From 

7 -a, -a3 

det a1 7 -a2 2 + (a2 + a2 + a2)) 

a3 a2 2 

we infer that 

Q( , -) = detj1 -IA(t)jj = A( 2 + IA 1j2) 

where IA 12 is the sum of the squares of the entries of A. By (6) 

(7) IA12 = _Yo + _Yi + 7Y2 2 + 73 3 + 74 4 

where 'yo = rp 2, 4 = I C 1 2. It follows that the spectral curve is reducible 
with one component (-q = 0) corresponding to the zero eigenvalue of any 
matrix in so(3). The other component 

q2 + IA( )12 = 0 

is by (7) an elliptic curve, generally smooth, and realized by (Q, q) - as a 
2-sheeted branched covering of pl with sheet interchange given by 

(M, 71) = (Q, -07) 

Example 3. Referring to the Toda lattice given by Example 3 in sec- 
tion 2 above, we have 



1464 PHILLIP A. GRIFFITHS 

A(t) = A-It l + AO + Ajt 
where 

b0 an 

A-,= . A l ` A_ . 

0 0 

'b, a, 

a, b2 

AO= 

bn-I an-I 

an-I bn 

It follows that 

Q(Q, -) = det 11 A(I)A I) 

= al I. an_l(t + t 1) + P(o) 

where P(-q) = -,n + C1'qn-I + ... + Cn is a polynomial in -. Multiplying 
by a ... * a 0I O we are led to the affine curve in C* X C given by 

(8) RQ9 -) = t + t-' + P(-) = 0 

In general this affine curve will be smooth, but its completion CO in p2 will 

be singular as soon as n 2 4. 
To compute the genus of the normalization C of CO we observe that 

the involution j given by (2.12) realizes C as a 2-sheeted covering 

(9) C -- P1 = 71-sphere. 

The fixed points of j, which coincide with the branch points of (9), occur 
when 42 = 1; i.e., when t = ?1. In general there are n of these for each 
value t = + 1, = -1. Thus there are 2n branch points in all, and by the 
Riemann-Hurwitz formula the genus of C is given by 

(10) g = n-1. 
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Referring to Example 3 in section 2 we note that this is the number of 
required additional integrals of motion. 

Example 4. In general the spectral curve C associated to Nahm's 
Equations (2.13) will be smooth and have genus given by (2) as 

g = (n - 1)2 

This is in agreement with [10], where a detailed discussion of the structure 
of C may be found. In particular, for this example the reality question is 
somewhat subtle due to (2.15). 

Example 5. The spectral curves associated to geodesics on an ellip- 
soid and Neumann's problem are given by 

{Q1(, -) = detfj9 - -2e - gPxy + rxxII = 0 
(1 1) 

(Q2( , ) = detlln 1 -1 - - y + all = 0. 

Each of these is of the form 

(12) det 11 -I- 2a - 
pl = 0 

where P is a rank 2 matrix. Set T = 9I - 42a so that (12) is 

0 = det 11 T-P PI = det T det ll l- T1P 11 

= det T(1 - Trace T-1P + Trace(A 2T-1P)) 

since T- lP has all k X k minors equal to zero for k 2 3. Using this obser- 
vation, which is due to Moser in the problem at hand, it is straightforward 
to compute the Qj(Q, -). Actually, following [2] for the computation of the 
genus, it is more convenient to reparametrize so that the spectral curves 
are given by ([2], page 303) 

{Qi(t, _) = 42 + < - -)-lX, y> = 0 

Q2( , ) = -2 1 + (-2<(-q - o) lx, y> + ((< - a0-lx, x> 

(_ -ly, y> - ((n -cX, y>2) = 0 

These are hyperelliptic curves of the form (in C X C*) 
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S2 = R (-q) 

where (loc cit) R (-) is a rational function of the form 

(- n- l + (*3) 

It follows that in each case the genus is n - 1. Remark that in each of these 
two problems we need n - 1 commuting integrals of motions in addition to 
total energy in order to render the system completely integrable. 

(5) We now assume that for a general point p = (Q, -) E C 

dim ker 11 II-A (A, t) 11 = 1 

Then there is determined, uniquely up to nonzero scalars, a vector 
v(p, t) E V satisfying 

(1) A( , t)v(p, t) = r/v(p, t) 

The assignment 

p e Cv(p, t) C V 

consequently determines a family of holomorphic mappings, depending 
holomorphically on t, (*4) 

(2) ft: C +PV. 

Definition. We shall call (2) the eigenvector mappings associated to 
the Lax equation (2.1). 

We set 

Lt = f *(OpV(1)) E Picd(C), L =Lo, 

(*3)In [2] the c depends on x and y but it is a constant of motion. 
(*4) Here we are using the following fact: Given a smooth algebraic curve C and a holo- 

morphic mapping 

(3) f: C\{P1, ... PN } P , Pi E C, 
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and will address the problem stated in section 3 above. For this some gen- 
eral remarks will be useful. 

Given a smooth algebraic curve C, a complex manifold X, and a non- 
constant holomorphic mapping 

(4) f:C-+X, 

we define the normal sheaf Nf on C by the exact sequence 

(5) ? Oc f *Ox Nf +O. 

Here Oc, Ox are the respective tangent sheaves of C, X andf* is the differ- 
ential of f. It is important to remark that f* is injective as a sheaf map but 
will fail to be injective as a bundle map at points of C that are ramified over 
their images. According to Horikawa's theory ([111, cf. also Chapter V of 
[4]) the Kodaira-Spencer tangent space to the moduli space of the situation 
(4) is given by H?(C, Nf ).(*S) 

such thatf *(xi /xo) extends to meromorphic function on C where [xo, x 1, . XN] are homo- 
geneous coordinates on pN, then (3) extends uniquely to a holomorphic mappingf: C -) pN. 

This is false when C is singular; the meromorphic function x/y is not defined at the origin for 
the curve 

and this is the reason that we have passed to the normalization of the spectral curve CO. A 
more satisfactory theory would work directly with CO and its generalized Jacobian taking into 
due account the situation when the eigenvector mapping fails to give a Cartier divisor (cf. 
[19]). 

(*5) For example, when X = p1 the normal sheaf Nf will be a skyscraper sheaf supported 
on the ramification divisor of f: C -p 1. The statement that HO(C, Nf ) _ HO(P 1, f*Nf ) gives 
the tangent space to the deformations of the map means geometrically that "we deform 
f : C -p P1 by moving the branch points. " At the other extreme when f is an embedding, Nf is 
the usual normal bundle to f (C) C X and HO(C, Nf) represents the infinitesimal displace- 
ments of f (C) in X. Note that "moduli of the situation (4)" means families 

ft: Ct- X 

where the abstract curve together with the map to X both vary. 
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If 

ft: Ct -X, fo = f, 

is a deformation of (4), then we shall write 

(6) j E H?(C, Nf) 

for the corresponding infinitesimal deformation at t 0. If, in local prod- 
uct coordinates (z, t) on U t Ct and w = (w', ..., win) on X, ft is given by 

(z, t) I-+ w(z, t), 

then the section (6) is locally given by 

aw(z, t) aw(z, 0) 
modulo 3 At t=o az 

The exact cohomology sequence of (5) gives 

H0(OC) HO(f*Ox) H0(Nf) H'(0c). 

Recalling that H'(Oc) is the tangent space to the moduli space of C as an 
abstract curve (cf. [4]), then it is easy to verify that 

b(f) =: C E H'(Oc) 

is the tangent to the family of curves { Ct }. Thus, the tangent space to de- 
formations of (4) where the curve C remains fixed is given by 

HO(f*Ox)/HH(Oc) C H0(Nf). 

It is this situation that we are interested in. 
Now suppose that 

X=PV 

is a projective space and recall the Euler sequence 

0 - OPV v Opv(l) OPV -o 0. 

Pulling this back via f we obtain a diagram 
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0 

oc 

VOL 

o > Oc f*OPv > Nfy O, L f*Opv(l), 

I 
0 

a piece of whose cohomology diagram is 

H0(V L) 

(7) HO(OC) HO(f *Opv) H0(Nf) > H'(Oc) 

H1(Oc) 

Suppose that we have a family of holomorphic mappings 

ft :C -* PV. 

Locally we may choose a coordinate z on C and position vector mapping 

(z, t) a- v(z, t) E- V\{O} 

such that ft(z) = C - v(z, t) C V(*6). Set 

* (Z) av(z t)| modulo v(z, t). 
at t-0 

(*6)By a position vector mapping we shall mean a local lifting of ft to V\{O }. Clearly, 
position vector mappings exist and any two differ by a nonvanishing holomorphic function. 
Note that the fibre 

(f 
{* 

OPV(- 1) = C * 1V(Z t) 
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Another choice of position vector is given by 

iv(z, t) = p(z, t)v(z, t), p * 0, 

and then 

v = pv + pv. 

Recalling that the inclusion (9ccA V (0 L is given locally by (p p* v 
(p E (9c) it follows that 

(8) vc eHO(C, V?L/Oc) = HO(C, f*OPv) 

is well-defined. Clearly we have 

(9) j (v)=v 

in (7). 
As discussed above we are interested in the tangent vector 

dLt | H'(0 ) 
dt t=O 

It is a standard and easily verified fact that in (7) 

(10) L = 6 w 

where v is the infinitesimal variation of the mappings ft: C -+ P V as de- 
scribed above. In particular, 

(11) L = O X v = T(w) for some we H0(VOL) in (7). 

(6) We now come to our first main result. Recalling that 

(1) B(Q, t) E H?(C, Hom(V, V(N))), 

we let 

D = (to) 

be the divisor N - r(oo) on C where C P is the branched covering of the 
spectral curve over the a-sphere. Then 
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(B/a e H0(Hom(V, V(D)), and 

(v e H0(V?(L) 

where V(D) -V(N) are the sections of V? (C(Dc)(*7). It follows that 

( tN ) v V c H0(V?L(D)), 

and our first cohomological interpretation of the Lax equation is given by 
the 

THEOREM. Referring to (5.7) we have 

(3) V T( NV) 

Explanation. From the diagram 

o 0 0 

O 0 c ' Oc(D) OD(D) 0 

Iv Iv 

(4) 0 -W?V L --V &L(D) > V 'L (g OD(D) >O 

O f *Opv f *0pv(D) f *OPv OX OD(D) ? 

0 0 0 

(*7)The difference here is that in (1) B(Q, t) is a holomorphic section of the bundle 
Hom(V, V) 0 Oc(N) where Oc(N) = x*Op(N), whereas in (2) B/lf is a matrix in 
Hom(V, V) with meromorphic functions in H0(OC(D)) as entries. In other words, in (1) we 
are viewing t = [t o0, 1 ] as a homogeneous coordinate on p 1 pulled up to C, whereas in (2) we 
are viewing t = 1 /t as a function in HO(Oc(D)). 
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we obtain 

0 0 

H0(OC(D)) HO(OD(D)) 

V 

(5) H0(V?L) >H0(VV?L(D)) J--H0(V?L (9, OD(D)) 

HO(f*OpV) HO(f*Opv(D)) J Ho(f*Opv( (9OD(D)) 

61 

HO(OD(D)) H'(0C) 

and then the theorem means that 

(i) Bv/lN E Ho(VOL(D)) 

(ii) T(Bv/lf) = i(v) 

This may be compared with (5.11). 
From the commutativity of the diagram (5) and (5.10) we obtain the 

(6) COROLLARY. L = 0 if, and only if, there exists a meromorphic 
function <o E H0(Oc(D)) such that 

By 
B + q,v E H?(V? L) 

is holomorphic. 
Indeed, the existence of <p is equivalent to the existence of b E 

H0(V?L) with i(b) = Bv/l)N + spv E HO(VOL(D)), and then by (5.10) 

L = 6V = 67S(b) = 0. Q.E.D. 

Proof of the theorem. The following simple computation is the 
whole point. Working in C2 with coordinates (Q, 71) where A(Q, t) and 

B(Q, t) are polynomials in t E C whose coefficients are holomorphic func- 
tions of t, we have that 

B(, t) = B 
0 
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where on the right hand side B E H?(Hom(V, V(N)) is considered as a 
homogeneous polynomial in t o, 1 . For a general point p = (, 71) E C we 
have by (5.1) 

A(Q, t)v(p, t) = -qv(p, t) 

where p + v(p, t) is the position vector mapping. Letting = "d/dt at 
t = 0" this gives 

(7) Av + Av = rlv 

Using the Lax equation (2.1) this becomes 

(8) A(v - Bv) = - - By). 

By our assumption that the eigenspaces of A are generically 1-dimensional 
this implies that 

(9) Bv= + Xv 

for some X. But then clearly 

r(Bv) = i e VOL/C v. Q.E.D. 

(7) Before giving our second main result concerning the problem 
posed in section 3, we shall discuss a few generalities concerning algebraic 
curves. 

Let C be a smooth curve of genus g and 

D = nipi, ni 2 O, 

an effective divisor on C. If zi is a local coordinate centered at pi, then by a 
Laurent tail we shall mean an expression 

ai,n. ai,j 
(Pi = '+ ... + - 

zi7 Zi 

The Mittag-Leffler problem is this: 

Given Laurent tails spi, when does there exist a meromorphic function op E 

H0(OC(D)) (i.e., (sp) + D 2 0) such that sp - spi is holomorphic near pi? 
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If as usual we denote by HN(Qc) the space of holomorphic 1-forms on C, 
then for so E H(Oc(D)) and co E H(Qc) we have the residue theorem 

(1) S Resp,(spO * ) = 0. 

We note that 

Respi(op * c) = Respi(spi * c) 

depends only on the Laurent tail of sp at pi. The main classical result con- 
cerning the Mittag-Leffler problem is this (cf. [4]): 

(2) Given Laurent tails spi, the necessary and sufficient condition that 
there exist (p E H0(OC(D)) such that sp - spi is holomorphic near pi is that 

(3) S Respi((sOi co) = 0 

for all X E H?(Oc) (*8) 

We shall sketch the proof of this result as it is quite pertinent to the 
problem posed in section 3. In the exact sheaf sequence 

(4) O -Oc -Oc(D) --OD(D) --? 

the last term OD(D) is a skyscraper sheaf that may be identified with the 
collections { pi } of Laurent tails. The cohomology sequence of (4) together 
with its dual are 

{ (i) HN(OC(D)) - HO(/9D(D)) H'(Oc) H'(Oc(D)) 0 

( (ii) H'((9c(-D)) H HO(/9D(D))* ? H(QC) ?H(QC(-D)) 

(*8) Informally we may say that "the only constraints on Laurent tails to be the principal 
parts of a meromorphic function are those imposed by the residue theorem." The number of 
independent equations (3) is g - i(D) where i(D) = dim H?(Qc(-D)) is the number of 
linearly differentials w E H0(QC) vanishing on D. It follows that (here we set h0(OC(D)) = 
dim H0(Oc(D)) 

h0(Oc(D)) = degD - g + 1 + i(D), 

which is just the Riemann-Roch theorem. We may view (3) as a quantitative form of this 
theorem. 
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(here, dual vector spaces are aligned vertically). The basic fact is that for 
o E HN(QC) 

(6) < (a*, { P})> = Respi(pi * co). 

The assertion (2) is an immediate consequence of (6) together with the ex- 
actness of the above sequences. 

Referring to (6.9) and noting that v and v are holomorphic around D, 
we infer that X induces a well-defined section of (9D(D). A fundamental 
invariant of the Lax equation (2.1) is given by the 

Definition. The residue of B, denoted by p(B), is the section of 

OD(D) induced by X in (6.9). 
Our second main result is the 

THEOREM. Referring to (i) in (5), we have 

(7) L = a(p(B)) 

To state the first corollary we let 

S C HO(OD(D)) 

be the Laurent tails of functions in H0(Oc(D)). Recalling that B(Q, t), and 
therefore also p(B), depends on t, from (7) we may deduce the following 

COROLLARY. The necessary and sufficient condition that {Lt } C 
Picd(C) be linear is that 

(8) p(B) 0 mod span{SC, p(B)} 

Here, this equation takes place in the fixed vector space HO(D (D)) -Ck 
where k = deg D. 

For the second corollary we let pi(B) be the residue of B atpI. We also 
recall that the Jacobian of C is 

J(C) = HO(QC)*/1H(C, Z), 
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so that a linear flow on J(C) is given, up to a fixed translation, by a bilinear 
map 

(9) (t, w) F- t < X,> 

where X E HN(Qc)*. Recalling (3) we have our main conclusion concerning 
the problem posed in section 3: 

COROLLARY. Condition (8) is equivalent to 

(10) E Resp,(bj(B)co) = AE Resp,(p1(B)co) 
1 1 

for all X E NH(Qc). If this is satisfied then the linear flow is given in the 
form (9) by 

(11) I~~~~~t, co) 1- t E Respi(pj(B)o). 

Proof of Theorem (7). Referring to the commutative diagram (6.5), 
we let 

E eH0(V?9L(D)) 

satisfy 

r(E) = i(w) 

for some w E HO(f *0pv) (in practice we will haveE = Bv/l and w = v as 
in Theorem (6.3)). Then by commutativity 

rj(E)= jr(E) 

- ji(w) 

=0, 

and so there exists X E H0(OD(D)) with 

u(X) = j(E). 
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Now the HO(OD(D)) in the upper right hand corner of (6.5) is the same as 
the one in the lower left, and by commutativity 

6(W) = 61(X) 

This implies the result. Q.E.D. 

Remark. We have commented several times on the nonuniqueness 
of the B in the Lax Equation (2.1). In particular, the condition (10) should 
be invariant under a substitution 

B i- B + P(, A) 

where P(Q, q) is a polynomial in two variables. To see why this should be so 
we remark that if D' is any divisor with D' ? D then we have an inclusion 

OD(D) C OD,(D ); 

in particular the residue p(B) e H(OD,(D')) is defined. Moreover, the im- 

ages S C HO(OD(D)) of H0(Oc(D)) -NO H(OD(D)) and S' C 
HO(OD'(D')) of H0(OC(D')) -N H0(/9D(D')) are related by 

s = s' n fO(l9HD(D)). 

Let now D' 2 D correspond to B' = B + P(, A). Atp = (, q) E C we 
have 

B'v = Bv + P(Q, )v, 

from which it follows that 

(12) p(B') = p(B) + p(P(Q, O), =*p(B') p(B) mod S' 

since, by the definition (6.9), p(PB, q)) is given by the Laurent tails of the 
rational function P(Q, q) E H0(Oc(D')). In particular, (10) and (12) are 
consistent with (3). 

(8) We now give some examples. 

Example 1. We consider the free rigid body as discussed in section 
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4. As noted in Example 1 in section 2, this is a Lax equation with a parame- 
ter where 

(1) B =-(Q + J). 

It follows that D = EI=1 pi where the Pi are the n distinct points lying over 
t = oo. Moreover, if zi is a local coordinate around pi (e.g., we may take 
Z= n), it follows from (6.9) and (1) that the residue 

xi p (B) = -S Xi 

where J = diag(X1, ..., X,n) Clearly then p(B) = 0 so that the flow is 
linearized on J(C). Moreover, recalling the involution j of C, we have 

j(B)= -(Q - J) 

and it follows that 

j(p(B)) =-p(B). 

From (7.11) we see that the linear flow on J(C) is trivial on HN(Qc)+ = 

{ E HN(Qc):j*w = w}, and hence the flow is actually linearized on 
Prym(C/C'). According to the discussion in Example 1 of section 4 (cf. 
(4.5)), this is a torus of exactly the right dimension. 

Example 2. We consider the Lagrange top discussed in Example 2 
of section 4. The spectral curve is a 2-sheeted covering 

iX:C -*p = p1w 

branched over 4 points (, with all , + oo. Since 

B(Q) = Q + Xit 

it follows that 

D = rG'(oo) = p + q 
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where 

{, = E $ + * * * nearp 

(CZ + ( 
77 =- +.* * * nearq 

The residue p(B) E HO(OD(D)) is given by 

1 {p(B) =- + *. nearp 

p(B)-= + nearq 

and thus (6.8) is satisfied. 
We refer to [22] for further discussion of the Lagrange top and heavy 

symmetric top in n dimensions as well as se(n)-analogue of the heavy sym- 
metric top. The flow corresponding to the latter is linearized in the same 
way as Example 1 just above ([22], page 443), and presumably the flow 
corresponding to the former may also be linearized using our general 
results (although in this case the spectral curve P(Q, q) = 0 will be quite 
singular). 

Example 3. We consider the Toda lattice as discussed in Example 3 
of section 2 and section 4. Since in this case the Lax equation (2.11) has a 
Laurent parameter our results of the two preceding sections must be modi- 
fied slightly. We consider the hyperelliptic covering (4.9) and set i7-'(oo) 

=P +q 

p 

coo 

From the affine equation (4.8) of C it follows that the divisor 

(Q) = np - nq 
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(the poles of t occur on one sheet lying over a neighborhood of oo and the 
zeroes on the other sheet, and each has multiplicity n). Consequently, set- 
ting 

D = np + nq 

it results from (2.10) that 

B E HN(C, Hom(V, V(D)). 

Just as in section 7 above, we may define the residue 

p(B) EiH(OD (D)) 

and then (6.3), (7.10) and (7.11) are valid. 

Remark. It may be verified that the functions 

1, 91 'q 9.1n, t E HN?(OC(D)) 

give a basis. Consequently, the image S C HO(OD(D)) of H0(OC(D)) 
HO(OD(D)) has dimension n + 1 = g + 2 (by (4.10)). The mapping 

HO(,9D(D))/S H1(O9c) 

is thus an isomorphism (this also follows from the exact cohomology se- 
quence of 0 -? Oc (9c(D) O(9D(D) -+ 0 and H'(O9c(D)) = (0)). 

Following [19] we may compute the eigenvector mapping as follows: 
Let E = r1 + * * * + rg be a general divisor of degree g satisfying 

(2) h0(OC(E + (k - l)p - kq) = 0 

for all k. Since by the Riemann-Roch theorem 

ho(OC(E + kp - kq)) 2 1 

we find from (2) that 

ho(OC(E + kp - kq)) = 1 
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for all k. Let fk Ec H0(OC(E + kp - kq)), 1 c k < n, be a basis where 

fn= and set 

/fi 

Then, as proved in [19], for suitable choice of E this v will be an eigenvec- 
tor for the spectral curve C 

(3) A Q)V = 7V for (, q) E C 

We will determine the residue of B at q; a similar discussion will hold 
at p. We will also restrict to the case n = 3, from which the general case 
will be clear. Recalling that f3 = i, (3) is 

(blfl + a2f2 + a3 = 7fl 

(4) alf1 + b2f2 + a2A = nf2 

aAfl + a2f2 + b3A = n12 

According to our general theory we must compute the residue of B using a 
holomorphic eigenvector v, and we take 

V = -lV 

Multiplying (4) through by t-', everything becomes holomorphic except 
the last equation which gives 

(5) a3fl = iq + holomorphic terms. 

The residue of B is defined by (cf. (6.9)) 

Bv = p(B)v + holomorphic terms. 

By (2.10) and (4) the left hand side of this equation is 



1482 PHILLIP A. GRIFFITHS 

a1f2l - a3F1 0 

-a1flt7' + a2 = + holomorphic terms, 

a3fl - a2f2 ) 

where the equality follows from (5). Consequently 

p(B)= '7 

and then obviously p(B) = 0. By (7.10) the Toda lattice is linearized on 
J(C); note that (cf. (4.10)) 

dim J(C) = g = n - 1 

is exactly the required number of integrals in the problem. 

Remark. In this work we have taken the Lax equation (2.1) as given 
and from it deduced the spectral curve, eigenvector mappings ft: C -* PV, 
and flow t -* {Lt }. Conversely, in each of our examples, given the spectral 
curve plus some additional data such as Lt plus a suitable fixed divisor, we 
may reconstruct the eigenvector mappings. For instance, in the Toda lat- 
tice we have just said how to do this. This is just a part of a very beautiful 
"dictionary" that has been highly developed in recent years (cf. [6], [7], 
and [18]). 

Example 4. We consider the spectral curve C associated to Nahm's 
equations as discussed in Example 2 of sections 2, 4. For the branched 
covering C -* P given by t we set 

n 

D = pi-1 = F'(??). 
i= 1 

Let zi be a local coordinate around pi (e.g., zi = - will do) and set 

xi 1 
(6) ij= 2 + Z + (holomorphic terms) 

near pi. From (2.14) we have nearpi that 
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A A0 + z; + - 
Zi 2 zi 

A2 

The eigenvector vi satisfies 

Avi =ivi, 

from which it follows first that 

A2Vi(pi) =iVi(Pi), 

and secondly that the residue 

xi p (B) = _E X 
i Zi 

where Xi is the same as in (6). Consequently p(B) = 0 and by (7.10) the 
flow on J(C) corresponding to Nahm's equations is linear and given by 
(7.11). 

Example 5. Referring to Example 5 in section 4, for the computa- 
tion of the residue of p(B) it is more convenient to take the equations 
(4.11), since even though the affine curves are quite singular they are 
"smooth over t = oo" (this means that the map C -* P from the normal- 
ization is unmodified over t = oo). The exact same argument as in Exam- 
ple 4 above shows that (7.10) is satisfied and so the flow is linearized on 
J(C). 

HARVARD UNIVERSITY 

REFERENCES 

[1] R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin/Cummings, 1978. 
[2] M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras, 

and curves, Advances in Math., 38 (1980), 267-317. 



1484 PHILLIP A. GRIFFITHS 

[3] , Linearization of Hamiltonian systems, Jacobi varieties, and representation the- 
ory, Advances in Math., 38 (1980), 318-379. 

[4] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Topics in the Geometry of Alge- 
braic Curves, Springer-Verlag, New York, 1984. 

[5] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New 
York 1978. 

[6] B. A. Dubrovinin, V. B. Mateev, and S. P. Novikov, Uspeki Mat. Nauk., 31 (1976), and 
Russian Math Surveys, 1 (1976). 

[7] B. A. Dubrovinin, Theta functions and non-linear equations, Usp. Mat. Nauk., 36 
(1981), 11-80. 

[8] I. Frenkel, A. Reimann, and M. Semenov-Tian-Shansky, Graded Lie algebras and 
completely integrable dynamical system, Soviet Math. Dokl, 20 (1979), 811- 
814. 

[9] R. Hartshome, Algebraic Geometry, Springer-Verlag. 
[10] N. Hitchin, On the construction of monopoles, preprint. 
[11] E. Horikawa, On deformations of quintic surfaces, Invent. Math., 31 (1975), 43-85. 
[12] H. Knorrer, Geodesics on the ellipsoid, Invent. Math., 59 (1980), 119-144. 
[13] , to appear. 
[14] S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an 

n-dimensional rigid body, Functional Anal. and App., 11 (1976), 328-329. 
[15] A. S. Mishchenko and A. T. Fomenko, Euler equations on finite dimensional Lie 

groups, Math USSR Izvestija, 12 (1978), 371-389. 
[16] H. P. McKean, Integrable systems and algebraic curves, in Global Analysis, Lecture 

Notes in Math., vol. 755 (1979), 83-200. 
[17] J. Moser, Various aspects of integrable Hamiltonian systems, CIME, Bressanone, Prog- 

ress in Math number 8, Birkhauser-Boston, (1980), 233-289. 
[18] D. Mumford, An algebro-geometrical construction of commuting operators and of solu- 

tions to the Toda lattice equation, in Proc. Kyoto Conference in Algebraic Ge- 
ometry, PubI. Math Society Japan (1977). 

[19] P. van Moerbeke and D. Mumford, The spectrum of difference operators and algebraic 
curves, Acta Math., 143 (1979), 93-154. 

[20] W. Nahm, All self-dual multimonopoles for all gauge groups, preprint CERN, (1981). 
[21] T. Ratiu, The motion of the free n-dimensional rigid body, Indiana Univ. Math. J., 24 

(1980), 609-629. 
[22] T. Ratiu, Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid 

body, Amer. J. Math., 104 (1982), 409-448. 
[23] A. Reimann and M. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine 

Lie algebras, and Lax equations, Invent. Math., 54 (1979), 81-101. 
[24] P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math., 37 (1976), 45-81. 
[25] J. L. Verdier, Algebres de Lie, systemes hamiltoniens, courbes algebriques, Sem. Bour- 

baki, 566 (1980/81). 


	Article Contents
	p.1445
	p.1446
	p.1447
	p.1448
	p.1449
	p.1450
	p.1451
	p.1452
	p.1453
	p.1454
	p.1455
	p.1456
	p.1457
	p.1458
	p.1459
	p.1460
	p.1461
	p.1462
	p.1463
	p.1464
	p.1465
	p.1466
	p.1467
	p.1468
	p.1469
	p.1470
	p.1471
	p.1472
	p.1473
	p.1474
	p.1475
	p.1476
	p.1477
	p.1478
	p.1479
	p.1480
	p.1481
	p.1482
	p.1483
	p.1484

	Issue Table of Contents
	American Journal of Mathematics, Vol. 107, No. 6 (Dec., 1985), pp. 1265-1507
	Volume Information
	Front Matter
	Divisor Class Groups and Deformations [pp.1265-1303]
	Supercuspidal Duality for the Two-Fold Cover of SL and the Split O [pp.1305-1324]
	Multilinear Square Functions and Partial Differential Equations [pp.1325-1368]
	The Selberg Trace Formula VI: Implications of Estimability [pp.1369-1437]
	Stably Free Modules [pp.1439-1444]
	Linearizing Flows and a Cohomological Interpretation of Lax Equations [pp.1445-1484]
	On Obtaining a Positive Line Bundle from the Weil-Petersson Class [pp.1485-1507]
	Back Matter



