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§1. The theorem

Let R” be the n-dimensional real number space with the coordinates x, « - «, x,,.
In a neighborhood U of R” consider d families of hypersurfaces defined by

(1) u,(xy, « + +, x,)=const, 1<i<d.

We suppose the functions u, to be smooth, with grad u;+#0. Each family is called
a foliation, of codimension one, and its hypersurfaces the legves. The totality of
the d foliations is called a d-web. We require further that the tangent hyperplanes
to the d leaves through a point of U be in general position. Clearly the ith foliation
will remain unchanged if u, is replaced by a function v,(x,) with ;0.

An equation of the form :

(2) Z fi(us)du; =0

is called an abelian equation. Such an equation is invariant under the changes
u;—v(u;) @;+£0) and is therefore a property of the web. For example, when n=2,
d=3, an abelian equation can, by proper choices of the u,, be written

(3) U+ uy+ u,=0.

It follows that the web can be mapped locally into three families of parallel straight
lines. Not every 3-web in the plane has this property. Those which do are called
hexagonal. They have interesting geometrical properties ; cf. [1].

The number of linearly independent abelian equations (over the reals) is called
the rank. Tt was proved in [4] that the rank r of a d-web of codimension one in
R™ has an upper bound depending only on d and :

1

(4) réﬂ(d;n)zm

@d—1—s5)d—n+ys),

where s is defined, uniquely, by the conditions
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(5) s=—d+1, modn—1, 0<s<n—2.

It is an elementary fact that z(d, n) is an integer; this will also follow from § 3.
We have the following theorem :

Theorem 1. Consider a d-web of codimension one in R™ of maximum rank
a{d, n). Suppose that nz=3, d=2n. Then the web is linearizable, that is, thereis a
coordinate system in a neighborhood relative to which all the leaves are hyperplanes.

This theorem was proved by G. Bol for n=3 [1]. It is not true for n=2, nor
for d<2n, d#n+1; cf. [1], [3].

§2. Sketch of proof

Suppose the abelian equations be

(6) 2, fiu)du, =0, 1£dsn=n(d, n),

which are linearly independent. Let
(7) Zi(x):[f}i(ui)’ ""ﬁ,’r(ui)]’ 1§i§d’ X e U,

be the point in an auxiliary projective space P*~! of dimension = —1 having the right-
hand side as its homogeneous coordinates. For the sake of brevity we will not
distinguish in the following the homogeneous coordinate vector and the point it re-
presents in the projective space. Equation (6) can be written

(62) 3 Z,®du;=0.

For 1 <a<n we multiply (6a) by
du, N\ -+ Ndu,_,Ndu, . /\--- Ndu,,.
By the general position requirement of the web we have
du, N\« - - Ndu, #0.
It follows that

(8) Za:Z piZs, n—|—1§s§d

Hence among the Z, there are at most d—n linearly independent ones. The as-
sumption of maximum rank implies that exactly d—n of Z, are linearly independent.
Let

(9) Pd—n—l(x):{Zl(x), cee, Zd(x)}CPﬂ—l
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be the si)ace spanned by Z,(x). By sending x to P?~""*(x) we have a mapping
(10) . U-Gr(d—n—1,z—-1),

where the right-hand side is the Grassmann manifold of all linear spaces of dimension
d—n—1in P=~'. The mapping (10) will be called the Poincaré mapping. It was
used by Poincaré in his work on double surfaces of translation and g-divisors on
abelian varieties. :

Using the Poincaré mapping we can prove the theorem in the case d=2n im-
mediately. We have z(2n, n)=n-+1 and P*~'=P", Hence (10) becomes

(10a) U—-Gr (n—1, n)=pP*"

and is a mapping between spaces of the same dimension. In fact, it sends a point
of U into a hyperplane of P” and a leaf of the web into a point of P, as seen from
(7). The linearization theorem follows by duality in P*. From now on we suppose
d>2n,

Substituting (8) into (6a) and using the fact that Z, are linearly independent,
we get

(i) X pidus, + du, =0,

Let PT#, x ¢ U, be the projectivized cotangent space to R™ at x. Then du, (30)

defines a point in PT#*. We will call it the normal to the ith leaf or simply the ith

web normal. Equation (11) gives the relation between the d web normals.
Differentiating (8), we get

12) az.=y, pidZ,, mod Z,,

or

(122) Z/\Qdu, =Y p:Z®du,,  mod Z;,
where

By our general position requirement we have
du Ndity (A -+ Adity,_,70.
We multiply (12a) by

du Nditg A - NI« - - Aditg_r (du, omitted),
t=a, n4+1,...,2n—1,
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It follows that
PiZ.=0, mod Z,, Z;,, -+ -, 7},

and the same is true of Z; itself. Hence Z,, -+, Z,, Z{, - - -, Z}, span a space of
dimension <2d—3n. The maximum rank hypothesis implies that this maximum
dimension is attained. We can therefore set

(14) {Z.(%), Zi(x)}=P*"(x).

Geometrically Z,(x) describes a curve in P*~!. P4 ""!(x) is the space spanned by
their corresponding points and P**~*"(x) is the space spanned by the corresponding
tangent lines.

Substituting (11) into (12a), we get

Z.Qdu,+ 3 pipiZ;®@du,=0,  mod Z;, 1<a, f=n,
8,8

which gives

(15) 0upZi+ 20 PoP3Z,=0,  mod Z,
and
(152) 2 PipiZ.=0, mod Z;, a+p.

These are n(n—1) relations. Our maximum rank hypothesis requires that they
determine only n—1 of the Z;, the Z, being determined by (15) with f=«. Hence
among the coefficents pip}, a= B of (15a) there are

in(n—D—n—1)=4n—-1)(n-2)
linearly independent relations. Every such relation is of the form

(16) 2 aa,spiperO, Aug=0Ag,-
wfrakep
In T we can take du, as a basis. A covector is of the form }7, g.du, and has
the coordinates g, relative to this basis. An equation of the form

an Zﬂ Ap9.9,=0, Au=dyg,

defines a hyperquadric in PT¥*. We proved above that the d web normals lic on
ool/2m=1n-2 hyperquadrics. Under our assumption d>2n they lic on a uniquely
determined rational normal curve common to these hyperquadrics. We will denote
the curve by D,. Our maximum rank web leads to the following geometric structure
in R": Given in a neighborhood U of R" a d-web of maximum rank =(d, n), there
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is defined a field of rational normal curves D, in PT¥, x e U, such that the d web
normals at x lie on D .

It can be proved that, as a consequence of the equation (6a), the 4 points
Z,(x) € P2~»7!(x) also lic on a rational normal curve E(x). Moreover, D, and E(x)
are in a projective correspondence under which dut and Z;(x) correspond and the
cross ratio of four points is preserved.

We pursue further the study of the Poincaré mapping. A tangent direction
through x is a point of PT, and corresponds by duality to a hyperplane of PT%.
The latter meets D, in n— 1 points, which correspond to n—1 points, or an (n—2)~
dimensional chord, on E(x). This correspondence is reciprocal. Furthermore, to
a curve x(?) in U corresponds in P*~! a family E(f) C P4~ "~'(¢) with n — 1 distinguished
points on E(z). This can be pictured as a ruled variety P2~""1(¥) with n—1 directrix
curves transversal to the generators.

The fundamental fact concerns the curves in U to which correspond ruled
varieties whose n— 1 directrix curves reduce to points. These curves are the integral
curves of a certain system of ordinary differential equations of the second order.
They are the paths of a projective structure or a normal projective connection in
U; cf. [2]. The situation is perhaps more clearly illustrated by the table:

UcCR* Pt
point x E(x)cPi"(x)
du;, e D,CPT} : Z,(x) e E(x), D,XE(x)
direction ¢ PT, (n—2)-dim chord of E(x)
curve ruled variety of P4~*~! with n—1 directrix
curves
path ‘ ruled variety with »— 1 directrix points
totally geodesic hypersurface E(x) through a point of Castelnuovo surface

The last line needs explanation. It would seem that all the E(x), x € U, describe
an (n+ 1)-dimensional subvariety
(18) V=) E(

zeU

of P~~!, But this is not so. For through a point p, € ¥V there are o ®~! E(x). This
can be seen as follows: Let E; 3 p,.  Another E through p, is determined by pick-
ing n—?2 points p,, -+, Py_, o0 E; such that E contains p,, -- -, p,_,; there are
oot E’s through these p’s. It follows that V is a two-dimensional surface, to be
called the Castelnuovo surface. To all the E through a point of ¥ correspond the
points of a hypersurface in U. The latter is totally geodesic in the sense that any
two points on it, which are sufficiently close, can be joined by path lying completely
on it. Among these totally geodesic hypersurfaces are the leaves of the web. Thus
the leaves of the d foliations are now imbedded in a two-parameter family of totally
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geodesic hypersurfaces of a generalized projective geometry.

It remains to prove that the latter is locally flat, i.e., there exists a local co-
ordinate system relative to which the paths are straight lines. This follows from
the existence of the oo? totally geodesic hypersurfaces. More precisely, we have
the theorem : Suppose in U there be a normal projective connection and a field of
rational normal curves D,CPT¥, x ¢ U, such that tangent to every hyperplane cor-
responding to a point of D, there is a totally geodesic hypersurface. Then the pro-
jective connection is flat.

The details of the proof of Theorem 1 can be found in [5].

Once the linearization theorem 1 is proved, the complete local description of
the web is given by the theorem [6]:

Theorem 2. Consider a d-web of codimension one in a neighborhood U of
R™ whose leaves are hyperplanes and which satisfies an abelian equation (2) with
1:(u;)#0. Then the leaves belong to an algebraic curve of degree d in the dual
projective space.

We remark that for Theorem 2 to be valid only one abelian equation is needed.
Moreover, it holds for n=2, d=n+-1.

§3. Castelnuovo’s bound

Our problem is closely related to one studied by Castelnuovo [3]: In the com-
plex projective space P consider a non-degenerate algebraic curve C of degree d
(“non-degenerate” means that C does not lie in any P*"%). To determine the
maximum genus of C. Castelnuovo proved that the genus g of C has the bound

(19) . g§K{d—— Kjl (n—l)—l}, K:[Z:} ]

and that the bound is attained.
We wish to verify that the right-hand side of (19) is equal to =(d, n). In fact,
the definition of K is

d—1 —K s’
n—1 n—1

which gives

Substituting K into (19), we get

1

=D

d—1—-s)Yd—n+s).
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The right-hand side is seen to be #(d, n), if we notice

§=n—1—s, 0<s<n-—2,

s’ =0, O=s.
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