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'iiI. By a Lax equation with ~ parameter we shall mean an equation 

(1) A(E) = [B(E),A(E)] 

where 

{ 

A(E> '" 

B(E> -

q 
Ak(tH k :r 

-p 

q 
Bk(tH k :r 

-p 

are finite Laurent series in a variable E whose coefficients are 

matrices depending on a parameter. It is known ([2], [3]) 

that, with the exception of Kowaleski's top, all of the known 

completely integrable Hamiltonian systems may be represented in the 

form (1). We give three cases. 

Example 1. The Euler equations of a free rigid body in ~ are 

([14], [21]) 

(2) 

. 
{ 

M = [M,O] where 

o E so (n) • M" OJ + JO E so (n) 

J '" diag(A 1 •• • •• A n ). Ai > 0 

By Manakov's trick these are equivalent to (1) where 
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{
A 

B - -

= M 

Example 2. The Toda lattice is the Hamiltonian system on 

T-lRn :!! 1R2n corresponding to Hamiltonian function H(x,y) = ~IY~ + 

By Flaschka's substitution 

{ 
the Hamiltonian equations are 

(3) 

Noting that I bk = constant, we normalize by requiring that I bk = o. 
k k 

Then by [24J the equations (3) are of the form (1) where 

0 a 1 -an ( 

Bm = -a 1 
a n-1 

a n ( -a n-1 0 
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Example 3. Nahm's equations [20J, which arise in the study of 

monopoles, are 

By [10J these are equivalent to (1) where 
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'S2. Given (1) we define its spectral curve C to be the normalization 

of the complete algebraic curve whose affine equation is 

Q(Ln) = detlinI - A(Lt)1I = O. 

Since the Lax equations give isospectral flows, C is independent of t. 

We assume that for general p = (Ln) the corresponding eigenspace 

is I-dimensional and is spanned by a vector v(p,t) E V :: a:n. 

There is then a family of holomorphic mappings 

(4) 

given by p I---> a:v(p,t) 

A(~,t). We set 

clearly these give the time evolution of 

where Q1PV(1) is the hyperplane line bundle and 

(5) 

(6) 

is a complex torus giving the Jacobian variety of C (c.f. [4J for 

definitions). Thus associated to (1) is the flow 

(7) t -< L t E J(C) 

and motivated by [2J, [3J we may consider the following 

(8) Problem: Determine the necessary and sufficient 

conditions .Q!! B(~) that the flow ill be linear. 

Now, for an arbitrary family of homomorphic mappings (4), 

reasonably standard deformation theory ([4J) may be used to 
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answer this problem. Moreover, since the tangent space to any 

algebro-geometric moduli space is computed cohomologically, the 

general answer to (8) is expressed in terms of an HI (by (5) this is 

reasonable). 

Suppose now that (4) arises from (1). 

unique since any substitution 

Note that B is not 

B ~ B + P(CA), 

leaves (1) invariant. This suggests that the B in a Lax pair (A,B) 

lives naturally in a cohomology group somewhere. By a very nice 

cohomological computation, this turns out to be the case and allows us 

to answer (8) in a way that is effective for the computation of 

examples. 

To explain the result we assume for simplicity that 

is a polynomial of degree i. View { as a merom orphic function, set 

and denote by HO(<'n(P)) the Laurent tails {¢i} where 

¢. = a. Iz. + ••• + al·,l/zl· I I,ni I 

and where ~ is a local coordinate around Pi. Near Pi we have 

A v(p,t) = 1/ v(p,t) 

=~ Av + Av = nv 

=::> A(v - Bv) = n(v - Bv) (by (1)) 

(9) =~ Bv = v + \v, 
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where Ai is a Laurent tail as above. 

Definition. We defined the residue p(B) E HO(OO(D)) to be the 

collection of Laurent tails C Ai J given by (9). 

(10) Theorem. Let £ C HO(OD(D)) be the Laurent tails of meromorphic 

functions g E HO(OdD)). Then the flow ill ~ linear <==> 

(11) p(B) == ° mod Cp(B),£J. 

IT this ~ satisfied, then using ill li ~ given ~ ~ translate of 

(12) (t,w) "- t l: Resp.(AiW), 
I 
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'S3. This result serves to unify the known linearizibility theorems 

given in [2J, [3J, [10J, [17J. [21] and [22J. 

indicate how it applies in two of the above examples. 

Example 1 reconsidered. In this case 

D = e l ( .. ) = L Pi 
i 

and setting zi = E- l near Pi 

p(B) = L A·/z. 
ill 

Thus p(B) = 0 and so (11) and (12) apply. 

We shall 

Actually. in this case since A = M + J2 E where tM = - M 

and t J 2 = J2 we have that 

Thus j(E .n) = (-E ,-n) gives an involution of C with quotient curve C' 

= C/j. If C and C' have respective genera g and g'. then an easy 

computation using the Riemann-Hurwitz formula gives 

(13) • _ 1 (n ( n - 1 ) [n]] 
g-g-i 2 - '2' 

Since clearly 

j(p(B)) = - p(B) 

the flow (7) actually occurs on the complex torus 

where - denotes the -1 eigenspace of j, By (13) 

(14) 
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On the other hand, in the Euler equation (2), 0 moves on an 

adjoint orbit (J I-l C so(n) and in general 

(15) dim (Ju = n~n-l) - [~J. 

Comparing (14) and (15) we see that our linearization occurs on a 

torus of exactly the correct dimension. 

Example 3 reconsidered. In this case also 

Near Pi we have 

{ 
(A2~2)vi - nivi + O(~) 

BV i = - A2 Ev i + 0(1) 

=::> p(B) = L >.../z. 
i I I 

Clearly then (11) is satisfied and (12) linearizes Nahm's equations (cf. 

[10J for an extensive discussion). 

The remaining integrable systems, such as Toda lattice, heavy 

symmetric top ([22J,[23J), geodesics on an ellipsoid 

([17J,[12J), and Neumann's mechanical problem ([17J,[13]) may 

be treated in a similar way. The details may be found in an upcoming 

paper by the author. 
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