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1. GAUSSIAN SUMS

In the second paragraph I shall discuss the representations of the group of 2 x 2 non-singular
matrices over a non-archimedean field. In the discussion a number of identities for Gaussian
sums will be required. In this paragraph the necessary identities, trivial or not, are stated
and proved.

Let k£ be a non-archimedean local field, let o be the ring of integers in k, let p be the
maximal ideal of o, and let 7 be a generator of p. Let £* be the multiplicative group of k and
let 0* be the group of units. If n > 0 then o, = {a € o” ‘ a—1¢€ p”}. Fix a character &
of k with the property that o is the largest ideal of k on which & is trivial.

If i is a character of 0* and x belongs to k set

M) = | lanyu(a)do
It is clear that if g belongs to 0*
A(p, Br) = p~H(B)A(p, ).
Lemma 1.1. Let p™ be the conductor of p.

(1) If n =0 then A(p, 7™) =1ifm >0, A(p, 7 1) = wl, and A(p, 7)) =0 if m < —1.
(i) If n > 0 then A(u, ™) =0 if m # —n but

B ’ﬂ.|n/2
A ") = .
’ (pﬂ m )| 1 — ’7T|
If n =0 then p is trivial and it is clear that A(u, 7™) = 1 for m > 0. It is also clear that if
m <0

The first part of the lemma follows immediately.

Date: 1967.
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/ Eolam™) () do = / - u(a){ / . &J(ozﬁﬂm)dﬁ} da

If n > 0 the inner integral is equal to

50 ar™
50 ar™y) d
1— |7T|

This is zero if the character y — &(an™ y) is not trivial on p”, that is, if m < —n. On the
other hand if m > —n so that for some ¢, with 0 < ¢ < —n, m + £ > 0 then

[ etermeaa= [ go<awm>u<a>{ / u(ﬁ)dﬁ}da

14

Certainly

The inner integral on the right is zero.

Finally
Burf = [ da [ dseafia- 5)W”)u(%)

_ / da/ox 4B & (Bla — ™) ().

By part (i) of the lemma the integral with respect to 5 is 1 if o € 0%, ‘ﬂllL_‘l ifaco, ;—o
and zero otherwise. Since

|| / ||
pi(er) doc =
7l =1 Jox —ox 1 — x|
(measureo, ) = ]

A7 = 1 (1= 1al)”

If the conductor of p is p™ we shall refer to n as the order of p.

X
n

we have

Lemma 1.2. Suppose i and v are characters of o*. Let the order of uv be r. If r > 1 then
A(p, 7™ ) A, 7") /
Apv,77) B {acox | nrtmatartmeox }
If r =0 then A(p, 7™)A(v,7") is equal to

ple)(pv) (7 a4+ 7T da.

||

|7T| —1 [{aeox |7rm+1a+71'”+1€o><} a

p(a) do + (o) dav.

/{ozeo>< | 7rma+7r”€o}
The product A(p, 7™)A(v, 7") is equal to
| [ @lamasmamep@rdads = [ [ e(a@ma+n)asda.

If » > 1 the right side is equal to

Aunn) [ () ()™ (a4 ) da
{anX | 7rT+ma+7r’“+m€o><}
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If » = 0 the right side equals

/ p(a) do + il / p(ar) do.
{a| 7ma+r"€o} |7T| -1 {a | 7rm+1a+7r"+1€o><}

Now let K be a two-dimensional commutative algebra over k£ with a non-degenerate trace.
There are two possibilities for K. Either it is the direct sum of k£ with itself or it is a separable
quadratic extension of k. In both cases k has exactly one non-trivial automorphism over k.
We will denote this automorphism by s. If x € K then Sx = x + 2° and Nz = z2°. Let O
be the elements of k integral over o and let O* be the group of units of O. If K = k& k set
Il = 7 ® 7w and if n; and ny are any two integers set 712 = ™ @ "2, If K is an unramified
extension of k set II = 7 and if n; = ny set 7™"2 = 7™ If K is a ramified extension choose
7w and II so that NII = 7, if ny = 0 set 7”12 = II"™. Thus the symbol 7”2 has a meaning
only for certain values of n; and ny. We shall adhere to the convention that any expression in
which the symbol 71" occurs with values of n; and ny for which it has no meaning is equal
to zero. If n; > 0, ny > 0 and 7#"™"2 is defined set O,flm = {a € 0% ‘ a—1¢€ 7r”17”20}. If
M is a character of O* then amongst all groups of this type on which M is trivial there is a
maximal one Oy .. (m1,mz) will be called the order of M.

If K=k®&kor K is an unramified extension we set f = 0. Otherwise (II-/) is the inverse
different. The index of NK* in k* is either 1 or 2. If it is 1 let y be the trivial character
of k*; if it is 2 let x be the unique non-trivial character of £* whose restriction to NK* is
trivial. Let xo be the restriction of x to 0*. The order of xq is f.

Before going on I recall some facts whose proofs are either completely trivial or are to be
found in the book “Corps Locaux” of Serre.

Lemma 1.3.

(i) Let ny and ny be non-negative integers. If K =k @ k the map x — Sx takes 720
onto p" with r = min{ny,ny}. The map x — Nz maps Oy, ., onto o).

(i) If K is an unramified extension of k the map x — Sz maps "0 onto p". The map
x — Nx takes O, onto o).

(111) If K is a ramified extension of k the map v — Sz maps 70 onto p™ with r = ["—;f]
If n > f the smallest number m such that N(O, ) = 0X is 2n — f; the largest such

m,0
number is 2n — f + 1. If n < f then N(O, ) is contained in o) and if 0 <m <n
the map N : Oy /Oy o — oy /oy is an isomorphism. If m < f the kernel and the

cokernel of the map N : Oy o/O7 o — o) /o} both have order two.

If 11 is a character of 0* let u'™ be the character of O* defined by p'**(a) = pu(aa®). Let
n be the order of u. If K = k® k or K is unramified the order of '™ is (n,n). If K is
ramified the order of p'*%is (2n — f,0) if n > f; it is (n,0) if n < f, but if n = f all one can
say is that it is (r,0) with r < f.

If M, is a character of O* set

A(My, 777) = /O &o(S(an™")) Mya) da

The following lemma is an immediate consequence of Lemma 1.2 but it is convenient to state
it explicitly.
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Lemma 1.4. Suppose My and Hy are two characters of O*. Let the order of MoHy be (r1,rs).
If ry >0 and ro + f > 0 then

A(M(), Wml’mQ)A(HQ, 7.‘_n1,n2) .
A(M()Ho, 7T_r1_f’_r2) B

My«
/{OLEOX | 7rr1+m1+f,r2+m2a+7rr1+n1+f,7“2+n2eo*} 0( )

. (MOHO)*l(ﬂ.TlerlJrf,Termza + 7TT1+m1+f,T2+ﬂ2> dov.

IfK=k®k and ri =0 and ro = 0 the left hand side is equal to the sum of
/ My(a) da
{ac0x | rm1m2047mm2€0}

||
|| =1

and times

My(a) da + / My() d

/{aEOX ’ 7rm1+1’m20¢+7r”1+1’"260><€90} {anX ‘ 7rm1’m2+1a+7r"1’"2+160690}

i\
and( u ) times

w1
/ My(«) da.
{anX | 7rm1+1,m2+1a+ﬂn1+1,n2+1eox}
If K is an unramified extension and ry = ro = 0 it is the sum of
/ Mo(Oé) do
{aGO* | TMLM2 o r 11,12 GO}

and
|7 |?

|7T|2 —_ 1 /{OCEOX | ﬂml+1,m2+1a+ﬂ.n1+1,n2+160x}

If K is a ramified extension and ry = 0 it is the sum of

My(a) da.

/ My () dov
{QGOX | Trm1+fvm2a+7rn1+f,n2€o}

and
|7

/ My(a) dov.
|| =1 {acox | amtitlmaqpgnatitinzeox }
Lemma 1.5. Let My be a character of O* of order (my,ms) and let 1 and v be characters
of 0* of orders ny and ns respectively. Suppose that My = xouv on o and that the order of
My ' s (01, €y) withny = 0y +lo + f. If b1 = loy, ny = ny, and ny +ny = my +mg + f
then
A(Mo, 7™~ m2)A(yo, m77)  Mo(ITU+mmn2)tstmamna)y A(y, 7= ) A (v, m7"2)
‘A(M(J?,ﬁfm*fﬁmQ)A(Xo’f/T*f)’ o X(ﬂ-nl) |A(u,7T7n1)A(l/, ﬂ—fng)l.

Since both sides of this identity have the same absolute value all we need do is show that
A(My, m=™ = F=m2)A(p, 7=m) A(v, m—72)
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is equal to the product of
A(Xo, W*f)MO(H(f+m1_”1)+s(m2_n2))x_l(7rn1)
and a positive constant. As a start observe that it is equal to

/O da / s / g (S(rmioma) — w7 — e Moa)u (B ()

which equals

W [ daf dﬁ{ [« [Wi (7rs(m=rmma) - wmrg 1)] Yo() dv}

- M(a)r=H(B).
If f > 0 the integral with respect to 7 is zero unless
- S(ﬂ.*mlffﬁmza) —qmTmg ] e pm*f _ pm*erl.
However if this last condition is satisfied it is equal to
S(H(nl—ml—f)+(n1—m2)sa> _ 7'('”1_"26 -1

ﬂ'nlff

A(Xoﬂf_f)Xo

Changing variables we see that the integral is equal to the product of
Axo, 7 )My (H<m—m7—f)+(n2—m2>s>

and

/ Mia)
{(a,lg) ‘ S(ns(nl _nQ)Q)—wnl_”Qﬁ—lepnl_f—pnl_f+1}

S(ﬂs(ru—nz)a) _ 7Tn1_n2ﬁ -1

ﬂ'nl_f

v (B)xo dadp.

If ny > f and n; > n — 2 then the restriction of M to 0* has order n;. Thus m; > 2n; and
mq + ms + f > 2ny > ny + ny contrary to assumption. Consequently we need only consider

the case that ny = f or ny = ny. If ny > f or ny > ny then S(H“(”l_m)a) — ™M~ 5 — 1 can
belong to p™~/ — pm=/+1 only if S(H”(nl_”2)a> — 1 belongs to o*.
Suppose that ny = ny = f and S(a) — 1 € p. Replacing 5 by % in

/ Mo(a)v~ " (B)xo(S(a) — B — 1) dB
{8 Sa—p-1€0%}

we obtain

Mo@hnol-1) | w3l (1 - B(S() ~ 1)) ds.

oX
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Since ny = ny = f, £1 = 0 and My = v**°. Since M = xouv on 0, vxo = p and the order of
vXo is f. If B € 0* and v € o}, then

1—py(Sa—1)=1-B(Sa—1) (mod p’).
Thus the above expression is equal to

Mofaal-1) | V(ﬁ)Xo(ﬁ)Xo(lJrﬁ(Sa—l)){ [, v dv}dﬁ’:&

o></oj>,<71 -1

In all cases we can take the integral over

{(a, f) ’ S<Hg(m_n2)a> —1¢p, S<Hg(m_”2)a> — g 1 epmf — pm—fH}'

Replacing 8 by [S <H"(”1_"2)a> — 1} [ we obtain

Mo(a)v ™ xo (S (H"("l_m)a) - 1) do

. -1 1-— ﬂ-n1—n2/8) d
{/{B ‘ 7r"1_”26—1€p”1—f_pn1—f+1} 4 (5)X0< ari—f 6}7

an expression we label (B).
Suppose ny; > f and consider the first integral. Replacing o by a(1 4 v) with v € IO
does not change the value of the integral. The integrand becomes

Mo(a)r~(Sa — 1)xo(Sa — 1)Mo(1 + v)v? (1 + i(éo‘_“)l)m (1 + 50(4@1)

/{a | (117 )19}

Since ny > 41, My(1 +v) = v(1 4+ Sv+ Nv) = v(1 + Sv). Moreover [”g—”} > [%] = fso
that xo <1 + S(‘“’)> =1. Also ["1T+f] > ["12“] > % so that

- U—1(1+%>:V(1_%>

S(aw)
Sa—1

and

v(1 4+ Sv)r! (1 + ) =v (14 S(6v))

if § = 1 — 5. Integrating over II"'O we obtain 0 unless |0| = |7|* and [W] > ny, that

is, s +ny+ f > 2ny or s > ny — f when we obtain |7|™. Since |0| = |a — 1| we can in all
cases write the first integral of as

/ My(a)v o (S(H”(”l_m)a> - 1) da.
{aEOSlffYO ‘ S(H(’(”l*nz)a)fl%p}
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Since ny — f > ¢; and xo(Na) = 1 this may be written as

Ho(nlfng) -1
/{ “Iyo | T2 — N< a ) da.
ac0*

«
n1—f,0

v
‘ S(Ht’(”rnzm)—lgp}

Set T~ = w so that a = Ham,nz}_nnl,m. The integral is the product of a

positive constant and
(C) Z v Ixo(m™ T2 — g Im N,
{reo/mfo | xr1i-m2—xr1—f Nygp}

If ny > ny every v appearing in this sum is a unit and the sum is equal to

_ qni—n2 __6
Z v 1X0(B> 1+X0<W)]
Since this sum is taken over all of 0* it is equal to

a1 N2 _5€pn1—f_pn1—f+1}
_ N2 __5
> v~ x0(8)xo (ﬁ)

{ﬁEoX/o;ﬁl | ﬂ"lfnz—ﬁepnlff_pmfﬁrl}
If ny = ny then (C]) is the sum of

Z v Ixo(1 — 7 N7y)
1—7r”1‘fN7¢p}

{peor/0;,

{weox /0%,

and
/
DI R
r=1 ’YGOX/O}(,RO

Since the map v — N~ defines an isomorphism of O*/ O;—r,o and o*/ of_r the latter sum is

equal to
Z v xo(1 — w).
p/p’

Since
Z v xo(B8) =0
0% /o

we can subtract it from without changing . The result is
~1 T =
(D) Z v xo(B) (W .
{,BEOX /oﬁfl | 1N 75€pn1*f7pn1*f+1}

Thus and @ are equal in all cases.
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Replace 8 by % in the second integral of to see that it is equal to the product of a
positive constant and

Yo(~1) )3 PIROM Ea—"

ni—f
{Beox/o;fl ’ W”I*nz—ﬁepnlff_pn1ff+1} T

This is the product of xo(—1) and the complex conjugates of @ Since A(xo, 7 71) =
Xo(—1)A(x0, 77) the lemma is proved for f > 0.

If f =0 then in the integral we may replace xo(7v) by 1. If ny = 0 then ny = 0 and
my1 = mg = 0 so that u, v and M, are all trivial. The lemma is also; so we suppose n; > 0.
If ny > ng then K = k@ k. Let My(a ® B) = p1(a)vi(8). Then my is the order of py and
my is the order of vy. Since p vy = pv either my > ny or mg > ny. If mqy > ny then ¢4 = my
so that fo = 0. Then v; = v and p; = p. If my > ny then ¢ = my so that ¢4 = 0 which is
contrary to the assumption that ¢; > f5. Thus the lemma is trivial if n; > ns; so we suppose
that n; = ns. Then my = My = Ny.

The integral (Al is equal to

Lo o f el

The inner integral is different from zero if and only if Sao — 8 —1 € p"~ 1. If n; > 1 this
implies that Sa — 1 ¢ p. Set

M@ (3) [ o) TS0 5= 1) dy = vta ).

If Se —1 € pandny =1 then ¢¥(a, 5) = |7T||7TJ1M0(Q)V_1(B). Since n; = ngy

| wt.pras=o

_ T
oo = [ o Z)
the integral (Al is equal to

/ My(@)y~(Sa — )= (B)p((1 - B)(Sa — 1)) dB da.
o] s0-160} Jor
If Sao — 1 ¢ p then o((1 — B)(Sa — 1)) = ¢(1 — 3). Moreover

[ My (Sa = 1 (@)p(1 - 5)as

is equal to the product of My(a)r=(Sa — 1) and

[ reas [ s

1 n1—19n1

if Se — 1 € p. Thus if
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The first integral is equal to the measure of o . The second is equal to
|| |

T /o?f v H(B)dp = e measure o, .

1

Thus the integral is the product of a positive constant and
/ My(a)v ™ (Sa — 1) da
{a | Sa71§£p}

_ /{a _ Mo(a)r (Nayv (1 - N(O‘; 1)) da.

If K =k&@k and ¢, = 0 the lemma is trivial. Suppose K = k & k and ¢5 > 0. Let
a = a; ® ay. If yis in p? then replacing a by a; @ ay(1 + %) in the integrand does not
change the value of the integral. The integrand becomes

Mo(a)v~ (Na)y™ (1 - N(O‘ — 1) ozl v )

o o as(l+y)

The integral of this over p* is the measure of p2 or zero according as oy — 1 € p™*~*2 or not.
The same observation applies to the first variable. Thus the integral is equal to

/OX Mo(a)y—l(a)y—1<1 —N<O‘; 1>>da.

ny—4Lg,ng—~q

Since ny — by > {1, no — {1 = {5 and ny; — €y + ny — £1 > no the integrand is identically one.
Thus the lemma is proved if K =k & k.

If K is an unramified extension let k; = ko be the smallest integer greater than or equal to
o Let y € mhk20). Replacing o by a1 + y) in the integrand does not change the value of
the integral. Since ky > ¢ and 2k; > n; the integrand becomes

Mo(a)v Y (Na)v (1 — N(“ ; 1)) ! (1 + 78(01:_;>>

%. The integral of this expression over 7**20 is the measure of 7¥1*20
Na(l—N(O‘T))

or zero according as a € O

if v=—

X
n1—ki,na

-1
/ My(a)r Y (Na)v™! (1 — N(a )) da.
aeo’:lfkl,ngfk2 ‘ Sa71¢p} o

Since ny — k1 > ¢ this is equal to
—1
v 1= N(a ) dov.
‘ Saflep} a

/anX

ny—ki,mg—ko

_, Or not. Thus our integral is equal to

If ny is even, k; = %2 and the integrand is identically one. Thus the lemma is proved in
this case. If ny is odd set QT_I =M~k 50 that a = mﬂ Since 2(ny — k) =ng — 1



10 LETTER TO HERVE JACQUET—1967

when n; is odd this integral is the product of a positive constant and

Z v 1 — 7 ING).
{Beo/mio | 7m1-INp#£1}

If 2 (mod p) the equation N5 = x (mod p) has ‘ﬂllTTl solutions modulo 10, otherwise it

has just one. Thus if n; > 1 the sum equals

1 1 1

z€o/p

and if ny = 1 it equals

Tl - Ly = -

L E—
0% /oy

The lemma is completely proved.

If K=Fk®k weset e =1;if K is an unramified extension of k we set ¢ = —1, and if K is
a ramified extension of k we set ¢ = 0. If M is generalized a character of K™, if M, is its
restriction to O*, and v is a character of 0* set

T(M,v,n)

A ) -/ ol n1,n2\s — s ,_n1,m
= (1 — |7T|)(1 —8|W|)%|Tr| Jgrf Z M((Tr 1, 2) )A(MO 1]/1+ iy 15 2)

where the sum is taken over all nq, ny for which 72 is defined.

ni+no=n

Lemma 1.6. Let w and M be homomorphisms of k™ and K> respectively into C*. Suppose
that the restriction of M to k* is wx. Let v and n be characters of 0* and let wy be the
restriction of w to 0. Suppose that the order n of vnwy ' is positive. Then, for all integers k
and /,

w(ﬂ-n)T(Ma s k— TL)T(M, v, l— n)
_ Al T
|Awnwy ' )|

7> Al 7AW 7T (M, p,k +0)
p
where the sum is over all characters of o*.

The formula of the lemma will be referred to as formula (E). Notice that all but a finite
number of terms in the sum on the right are zero. The sum on the right is the product of

(1= Jel) (1 = elel) 7] =5 (Zoe= and
Yoo M) S / da / dB / da50<5(7r"1’”2a)+7r£5+7r’“7>
n1+no=k+l p YO o o

(52 )t

Given v, n, M, k, and ¢ there is a number m such that this integral is zero if the order of
p is greater than m. Thus we may restrict the sum to a sum over the characters of 0* /0y,
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Replace a by Sa, v by 87, and take one of the summations under the integral sign to obtain,
if 11 is the restriction of My to 0%,

Z M ((7™m2) /Oxdoz/ dﬁ/ dv{fo[ ”1’"2a)+7re+7rk7>]

S
- M~ a)n(Nevnu™ an ( )

The summation over p is different from zero if and only if v = Na (mod p)m. If K =
k@ k set Ma) = N(azm=bm2q 4 70¢); if K is an unramified extension of k set A(a) =
7TkN<O./ + W%’%>; if K is a ramified extension set A(a) = 7N (a + II7**+%%). The above
expression is equal to

S M) [ o [ asa(an@) MG @) (B)

ni+no=k+4

If the order 7 of vnu~" is not zero this is equal to
(F) Alwnp,777)
Z M ((m"72)%) / My (a)n(Ne)pv~'n~ ! (7" A(a)) dov.
n14no=Fk+0 {aEOX | 7rr)\(a)€o><}

If the order of vnu~! is zero it is equal to

> M) { /| gy M (V) do

ni1+ne=k+~
||

+ / Myt (a)n(Na)da 3,
|7T| -1 ac0x | ﬂ)\(Oé)EOX} 0
an expression that will be labelled (G).

If K is an unramified extension of k, r = n > 0 and the expression ([F|) is zero unless k — ¢
and k — n are even. There is only one term in ([[]) and the corresponding integral is

I

My (a)n(Na)uv™

k—r k—r £—r £—r
'77_1<N<7T’”r 2T a4t ))da.

Set M§(a) = My(a®). Since My 'n'*s - My v*s = (u~tvn)'+* this integral is equal to
£—n £

A(M Lpylts ng_Tn’k_Tn>A(M(]_1V1+S,7T_T’_Tn>
A((M—lyn)l—ks’ﬂ-—r,—r)

k—r k—r l—r L—1r
A R RN L R N eOX}
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Putting everything together and appealing to Lemmas 1.1 and 1.5, we see that the right side
of is equal to

n k+e k+g Min
v >M(<“’ >)<1—w> |
.A(MO Lpl+s. Wuﬁ%ﬂ)A(MO_IVHS,WZ_T"’“T”)‘

Since A(M 7, 7™™) = A(M~, 7™™) it is equal to the left side.
If K is a ramified extension of k£ and r > 0 there is only one term in the sum and the
integral appearing in that term is

/{ | +k st }Mo_l(Oé)TI(NO!)Hl/_ln_l (N(HT—H:a + HH_SZ))dOz_
a0 | IImtkaII+steOx

Replace a by II™***‘« to obtain
M (I / M; Y (a)n(Na)uw =ty (N(H”ka + H’"”))da.
{aEOX | Hr+ka+HT+Zeo><}

If r > f then r = n, the order of (uv=np™ ) is2n — f0,r+k=2n—f+(k—n+ f),
r+f0=2n—f+(k—n+f). If r < fthen n = f, the order of (ur='n=1)* is (r,0),
andr+k=r+Gk-n+f),r+0=r+U—n+f). Iif r = f then n < f, the order
of (uv=tn )" is (n,0), r+k=n+(k—n+f),r+¢=n+ (k—{(+ f). According to
Lemma 1.4 the above expression is equal to

A(MO 17]14-5 k_n’O)A(M s 1+s é—n,())
A((M 1V’I7)1+8,7T 1, 71”2)
if (ry,79) is the order of (u~'vn)'™. Observe that
A(M()_1V1+S, 7T_Z—n,O) — M(H(n_@(l_s))A(M{)—lVH_s, ﬂ.(é—n,o)).
Appealing to Lemmas 1.1 and 1.5, we see that, if » > 0, the right side of is equal to

2
—f
M(ﬂn(lJrs))M(H(kJrfon)s) (1 . ‘7T|)2|7T‘a A(XO; ™ )
}A(Xoﬂffﬂ
A(MO 1n1+s k_n’O)A(M 1 1+s Z—n,O)
with a = k+§+f —5+5—F= kig—ﬂv + W This is obviously equal to the left side.

If » = 0 the expression is equal to the product of M (H(’““)S) and

M(HéfL%)

/ My (@)(Na) da
{aeoX | nka+nsfeo}

||

ey
| =1 {acox | 1ot +ste0x }

Myt (a)n(Na) da.
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After a change of variables this becomes

M (I My (a)n(Na) da
( ){/{aeox | Tka+TT¢acO} (@)n(He)

y/
{aEOX | Hk+1a+H’5+1EOX}
Since (u~'wvn)'** will also be trivial this is equal to
M(HéizS)A(MO 1771+s k— n’O)A<MO sn1+s an,O)
because n = f in this case. Thus the right side of is equal to

2
A -
M(ﬂn(l—l—s))M(H(k—I—Z—Qn)s) (1 . |7T|)2|7T|]€2H{ ’A(XQ, T f;| }
(X0, 7~
A(M 1771+S kfn,O)A(MOflI/H»s, ﬂ,ffn,[))'

Since X(H"(HS)) =1 and IT"0+9) = 77 it is equal to the left side.

It remains to consider the case that K = k& k. Then r — n is not zero and is equal to
the product of A(vnu=t,7™) and

>y e | M ()(Na)
{anX | ﬂ.n1+m17Z,n2+m2a+ﬂ.m1,m2+260><}

(n14+n2=k+£) (m1+mo=r)
. ,uu_lr]_l <N<ﬂ_n1+m1—£,n2+m2a + Wml,mg—i-i)) dov.

This is equal to

Z Z M(,/Tng,nl)A(Mo 1771—1—5 7Tn1+m1—n—€,n2+m2—n)

(n14+n2=k+£) (m1+ma=r)
A(M 1 1+s 7_‘,mQJern,mlfn)

divided by A((,u_lm])HS, W‘”*_”). Replace m; by my + n, ms by mo — £ + n, interchange
the order of summation and replace n; by ny — my + £, no by ny — mo + £ to see that the
sum is equal to

> > M(Em)M(a™ ) M ()

(m1+mao=~0—n) (n2+ni1=k—n)
A(M 1 1+s ﬂ_nl,ng)A(M 1 1+s 7_‘_mz,m1>.
Appealing to Lemmas 1.1 and 1.5, we see that the right side of is equal to

w(m) (1= [xl) x| 2
Z Z M(W"Q’”l)M(ﬂmz’ml)A(MO_IUHS, W"l’”Q)A(MO_IVHS, T2,
(n1+ng=k—n) (mi1+mo=L—n)
This is of course just the left side.
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Lemma 1.7. Let w and M be homomorphisms of k™ and K> respectively into C*. Suppose
that the restriction of M to k™ is wy. Let v and n be characters of o™ and let wy be the
restriction of w to 0*. If vnwy* is trivial then for all integers k and ¢

_Z —w(r™™")T(M,n,k +m)T(M,v, £ +m)

—00

+ (m)T(M,n, k—1)T(M,v, 0 —1)+ wO(—]_)(SﬂkW(ﬂ'z)

=1

=> A p 7Y Awp 7T (M, p, K+ 0).
p

d¢ 1, is of course Kronecker’s delta. For brevity denote the left side by Lj, and the right
side by Ry. Suppose at first that k < 0 and £ < 0. Then Ly, = wy(—1)w(7*)de . The only
terms which contribute anything to the right hand side are those for which order(p) = —k
and order(p) = —¢. Thus the right side is zero if k # ¢. Suppose order(p) = —¢ and k = /.
The order, (ry,72), of My *p'**is (—¢, () if K = k@ k or K is an unramified extension of k.
It is (—2¢ — f,0) if K is a ramified extension of k. Moreover if ny +ng =k + ¢
A(M()_lp1+s, 7Tn1,n2) — 0

if —ny # r; + f. The orders of n~!p and v~!p are both —¢. The orders of

(Mg ")~ ™ p) '™ = Moy~
and

(Mg pt ) L)+ = Mop—1-*
are independent of £. Moreover the restriction of M; ' p*™* to 0* is equal to xo(n~tp)(r1p).
According to Lemma 1.5

A<]\4[;1p1+s7 ﬂ_frlfflfrz)

M HK*SZ ﬁ 1 B -
M) 0 o, ) RO L e
x(mt) | A(xo, 7 7)| 1 —¢|n]
Since A(n~tp, ) = Upfl(—l)w the term corresponding to a p with order p = —/ is
M(HK_SZ)M((W_TI_JC»—W)S) 1
] (—1)——————.
X(ﬂ' ) ’ﬂ‘g(l . ’W’)

This is clearly equal to
M (%) 1 w(m)wo(—1)
¢ wo(—1) 2 = - 2
x(m) me(1— 7)) |xe(1 — |x))

Since the number of such characters is |x|*(1 — ]7T|)2 the lemma is valid if £ < 0 and ¢ < 0.
Thus to prove the lemma it is enough to show that

Liy1041 —w(m) Ly = Riyr041 = w(m) Ry
for all £ and ¢. The left-hand side is equal to
||
| =1

w(m)

-1 WAH(m)T(M,n,k—1)T(M,v,k—1).
Tl —

T(M,n, k)T (M,v,0) —
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Suppose K is an unramified extension. If £ — ¢ is odd both of these terms are zero and
so is the right side. We suppose then that & — £ is even. If k is even only the first of these
two terms can be different from zero. If k is odd only the second can be. Remembering that
x(7) = —1 so that w(m) = —M(7"!) we apply formula to see that the right side is the

product of (1 - |7T|2)|7T|%M<7T%’%+1> and

|7r| /{

l—k £—k
Tk tIN(a+7"2Z "2 |€o

Ly
‘7'("—1 {aEOX

} My (@)n(Na) do

T2 2 atw ’QEOX}

—1
k1 k41 (41 441 M, (O‘>77(N04) da.
T2 2 atmwm 2 T2 €0X

L)
=1 Jfacor

L=k =k L—k £—

If £ is even 7rk“N<oz + 7z 2 > € o if and only if 7rkN<oz + WT’T) € o so that, if k is

even, this expression equals

(x| + 1) /{QEOX

My H(a)n(Na) do

ﬂg‘gaﬂr%’%eox}
L J
Il* =1 H{acon

(W + 1)A<M0_1771+S’W%’%)A(Mo—lyl-&-s’ Wg,g)'

The identity, for even k, follows immediately. If k is odd the expression above simplifies to

(x| + 1) /{QEOX

-1
k+2 k+2 042 042 MO (Oé)T](NOé) do
wT‘Ta+ﬂ-T‘T€OX}

which equals

k—1 -1
w2 2 at+mw 2 2 €0

TR - 1/{

T 2 2 atw ’2eO><}

which equals
k—1 k

(|=| + 1)A<M0_1’I71+S,WT’%>A<MO_1V1+S,7TT’T>.
The identity, for odd k, follows immediately.
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Suppose f > 0. If u is the restriction of My to 0 then vnu=t = yo. According to , Ry e
is equal to the product of

7f k+¢
(1= Inl) |WIW%A(XO, w—f)M<Hs(k+€>> — xg(—1)|7r|%+fM<Hs(’f+@)

and
M(Hg_sg)/ My ' (a)n(Na) da.
{acox | ftkat11f+teox }
On the other hand

’:‘(i)lT(M, 0, k)T(M, v, () —

is equal to the product of (1 — |7r|)2|7r|%+fX0(—1)]\/[(H4+1+8(k+1)> and

||
| =1

WHm)T(M,n, k — )T (M,v,{ —1)

1
—/ Myt (a)n(Na) do
7| = 1| J{acox | nr+tarnrteco}

|| /
7| =1 J{acox | nr+rtiaiastericox)

1
— / Mo’l(a)n(Na) do
|7T| -1 {aEOX ]Hf+k*1a+nf+ffleo}

M (e)n(Na) da}

|| /
|7T’ —1 {aeox \ Hf+ka+HfHeOX}

Mol(a)n(Na)d(x}.

Some simple rearrangements show that this is equal to
-1 -
| Mg (@)n(Ne) da
(|| = 1)" J{acox | nr+katmstecox}
T
c
(|| = 1)" J{acox | mr+ktiatms+ericox}

The identity follows immediately.
Finally we have to treat the case that K = k & k. It is enough to verify that

Myt (a)n(Na) da.

o0

> IalPw () { Lisi—pis1—p — W(T) Li—pe—p}

p=0
= Il (m){ Riipesip — w(m) Ripep}-
p=0

The left side is equal to
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For brevity set

Y(n, ng;my, my) = / My (a)n(Nea) da.

{aEOX | 7r”1ﬂ"2a+71—m1,m260><}
Apply formula to see that Ry, is the product of (1 _ w)?kaH and
Z M(ﬂ'ﬂz,nl) Z Z¢(Tl1+m1+q—£’n2+m2;ml+q’m2+£)

ni+no=k+~¢ m1+ma2=0 ¢<0

+ |7T=7T_|1 Z M(’ﬂ'nQ’nl) Z w(nl—|—m1—|—1—@,n2+m2;m1+1,m2+€).

ni+na=k+~ m1+mo=0
k+e

Thus, > 7 |7 [Pw(7?) R—pe—p is the product of (1- |7r|)2|7r|7 and

oo M@Em) D> 3 S W+ my+ g — £ng +my +pyma + q,my + £+ p)

ni+no=k+~¢ mi1+mo=0 p<0 ¢<0

|7T| Z M<7Tn2,m)

7| =1
ni+no=k+4

: Z Z@/J(n1+m1+1—€,n2+m2+p;m1+1,m2+€+p).

m1+mo2=0 p<0

Now
w(m)

|mf =1
is equal to the product of (|x| — 1)3w(7r)|7r|% and
Z Z M(’/TnQ’nl)M(’/TmQ’ml)A(MO_1771+5, Wnl’nQ)A(Mo_ll/H_s, 7Tm1’m2).

(TTL1 +meo Zf) (n1 “+no Zk)

T(M,n, k)T'(M,v, ()

Replace ny by ny — mg =ny +mq — £, no by nog — mq = nq +mo — £, and then my by mo + /¢
to obtain
Z M(’]Tn2’n1) Z A(MO_IUHS 7rn1+m1—€,n2+m2)A(MO—1V1+s ﬂ_ml,mg—l-é).
ni+no=k+~4 mi+mo=0
According to Lemma 1.4 this is the sum of
Z Z M<7Tn2’m>z Zw(nl +mi+q—{,n2+ma+p;imi+q,me+{+p)
(n1+n2:k+€) (m1+m2=0) p<0 ¢<0

and

e, S e

(n1 +ng=k+~) (m1 +ma=0)

-Zw(nl—l—ml—i-l—ﬁ,ng—O—mQ +p,m1+1,m2+€+p)

p<0
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e, 2 e

(n1+n2=k+£) (m1+ma2=0)

DY (4 q—Cny+my+1my+qomg + 0+ 1)

q<0

and

(I?ﬂ 1)2 > Y M)

(n1+n2=k+£) (m1+mo=0)

ch(ng+my+1—C0ng+mo+ 1;my+ 1,me + £+ 1).
On the other hand

o9 00
Y () Risipr—p — w(m) D |wlPw(n?) Ry—pe—p
p=0 p=0

is equal to (1 — \7r])2|7r\kTHw(7r) times the sum of

2
|7r|‘7r|_1 Z M (m"2m) Z Yni4+my+1—Cng+mo+1,my+1,my+0+1)

ni+no=k+~¢ mi1+mo=0
and
2
|7T||7T|_ ] S M@Em) > > g+ my 1= Lng +mg +pymy + 1mag + £+ p)
ni+no=k+~¢ mi1+n2=0 p<0
and
|| Z M (7">") Z Zw(n2+m1 +q—Ll,ny+me+1,m1 +q,ma+L+1)
ni+no=k+4 m1+mo=0 ¢<0
and
> M(Emm)
ni+no=k+¢

. Z ZZ¢(TL1+m1+q—€,n2—|—m2—}—p;m1+q’m2+€+p)’

mi+me=0 p<O0 ¢<0

the contributions of the first infinite series, and

|7T| Z M<7Tn2’nl>

r -1
ni+no=k+~£

> N A ma 1= Lny 4 my + pymy + 1,ma + (4 p)

m1+mao=0 p<0
and
=D M@EEm) Y Y Y bl mi g — g my o+ pyma + gyma + ),
n1+no=k+~¢ m1+mo=0 p<0 ¢<0

the contributions of the second. The identity can now be verified by inspection.
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2. REPRESENTATIONS OF THE GENERAL LINEAR GROUP IN TWO VARIABLES OVER A
NON-ARCHIMEDEAN FIELD

This paragraph is, in its essentials, a recapitulation of work of Gelfand, Graev, and
Kirillov. We adhere to the notation of the previous paragraph. Let G = GL(2, k) and let
Go = GL(2,0). A is the group of diagonal matrices and N is the group of matrices of the
term (§%).

A representation o of Gy, on a vector space V', over C, will be called quasi-simple if

(i) The stabilizer of every vector in V' is an open subgroup of Gj.
(ii) If v € k* then o((§ 9)) is a scalar multiple of the identity.

Lemma 2.1. Suppose o is a quasi-simple irreducible representation of Gy, on the vector space
V. V' contains a non-zero vector invariant under Ny if and only if V' is finite-dimensional.

First of all suppose that V' contains a non-zero vector v whose stabilizer contains Ny. Let
H = {g € Gy ‘ o(g)v = Av with A € C}. Since V' is spanned by the set {a(g)v | g€ Gk} it
is sufficient to show that H is of finite index in GGx. Since H contains the diagonal matrices
together with an open subgroup of G the image of H under the determinant function is of
finite index in k*. Thus it is sufficient to show that Hy = {g € G}, | o(g)v = v} contains all
matrices of determinant 1.

Let W be the space of column vectors of length 2 with entries from k. Let us show first
that if w € W and w # 0 there is an h in H and an x in £* such that

w:h(g).

If the second coordinate of w is zero this is clear. Since the stabilizer of v is open in G}, there

is g in Hy such that
Iy [«
I\o) = B

1 2\ [a\ [a+pz
0 1)\p) Ié] '
If the second coordinate of w is not 0 we can choose x so that w is a scalar multiple of the

vector on the right.
In particular Hy contains a matrix of the form (94 ). Since

o)l )= ()
(¢ 0)lo D)l )= C o) (T ) = (o )

H, contains all matrices of the form ( ) Since

GDE Y- )

- <x/(11+9cz) (1)) <1 JBM 1/(11:@) ((1) Z/(lzrm))’

with 8 # 0. Then

and
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if 1 +xz # 0, Hy contains all diagonal matrices of determinant 1. Since

I [ O [ S P

Hj contains all matrices (‘; ffl), a # 0, which have determinant 1. Since

G- )

Hy contains all matrices of determinant 1.
Conversely if V' is finite-dimensional the kernel of ¢ is an open subgroup of GG, and there
is an € > 0 such that (%) belongs to this kernel if |z| < e. Since

a 0\ (1 =z % 0\ (1 ax
0 1)\0 1/\0 1) \0 1
and for any x there is an a in £* such that |az| < e, the kernel of o contains V.

Corollary. If o is a finite-dimensional quasi-simple irreducible representation of Gy, then
o 1s one-dimensional and there is a continuous homomorphism p of k* into C* such that

o(g) = p(det g)

Since the kernel of o contains Ny, together with an open subgroup of G, the above discussion
shows that it contains every matrix of determinant 1. Also the inverse image of the group
of non-zero matrices is of finite index in Gj. Thus if g € Gj there is a A in C* and a
positive integer n such that o(g)" — A = 0. Thus o(g) is semi-simple. The corollary follows
immediately.

Again we fix a character &, of the additive group of k such that the largest ideal on which
o is trivial is 0.

Lemma 2.2. Suppose o is an infinite-dimensional quasi-simple irreducible representation of
G on'V. Let W be the set of all vectors v in V' such that for some ideal a of k

/ama«é f)>vdx:0.

Then W is a subspace of V.. Let U = V/W. Ifv € V let ¢, be the function k* with values in

U defined by
wu(a) =7 W(((g (1))>v

where ¢ 1s the natural mapping from V to U. The map v — @, s an injection of V into the
space of functions on k> with values in U.

Since the stabilizer of v in Ny, is an open subgroup of Nj, the function o((§%))v takes
only a finite number of values on a. Thus the integral involves no limiting processes and is
well-defined. If a C b then

[0 ({3 7))o= 550 (3 4)) | fa00( (3 1))
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where the sum is taken over a system of representatives of b/a. It follows immediately that if
the integral vanishes for a given ideal then it vanishes for all larger ideals. A simple argument
now shows that W is a subspace of V.

If ¢, vanishes identically then for every a in K* there is an ideal a(«) such that

N go(ax)a<((1) f)>v da = 0.

If B € 0* and 0((5?))2} = v then

e (o) e (G T e (O )

Since the set of all 5 in £ such that 0((’3 ?))U = v is an open subgroup of £*, there is for

each integer n an ideal a,, such that if a, C a and a € 0*

/GW(’(G) f))m:z::o.

There certainly is an integer ng such that the function a(((l) f))v is constant on cosets of
p~"0. Let us show that if ¢, vanishes identically and this function is constant on left cosets
of p~ then it is constant on left cosets of p~"~*. This will show that o((§¥))v = v for all .
It will then follow from Lemma 2.1 that v = 0.

Take any £ such that £ >n+ 1 and p~* D a,,. If x € p~¢ then

0(((1) "f)>v:|ﬂf§é: 3 §0(ommx)/p_ema<<(l) ?))vdy.

m=n a€o* /og_m

By assumption the terms of this sum corresponding to m = n are zero. Since &y(an™x) is
constant on left cosets of p~™~! if m > n the assertion follows.

Lemma 2.3.

(i) If w=0((§9))v then pu(B) = pu(fa)
(i) If w=o((§7))v then pu(B) = &o(Ba)p.(B)

(#i) If v is in V there is an integer k and a non-negative integer n such that ¢,(a) =0 if
la| > |7F and p,(Ba) = p.(a) if B € 0.

The first assertion is a matter of definition. To prove the second we have to show that

a<(‘g (1))>a<((1) f)>v—§o(ax>a<(8‘ 2>)U:z

isin W. Let u=0((§9))v. Then

/Wyh((é ?{)>zdy
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/50 ((1 y+1o‘x)>udy—go(ax)/a@a((é ?))udy.

If ax € a we can change variables in the first integral to see that it equals the second term.
Finally it is clear that if o((§$))v = v for |z| < |7|7* and O’((B 0))'0 = v for § € o) then

o) =0 if |a| > |7|¥ and @, (Ba) = ¢,() if B € 0.
Let v be a character of 0* and let V,, = {v eV ’ o((§9))v=r(a)vforal ae OX} It is

is equal to

clear that V is the direct sum of the spaces V,. Let v be the set of all v in V' such that, for
some k = 0, p,(a) = 0if |a| > |z~ “* or |a| < |x|F. Let V, = V, N V. It is also clear that V is
the direct sum of the spaces V,.. Finally let V° be the set of all v in V such that o) # 0 if
la| # 1 and let V2 =V, NV VY is the direct sum of the spaces V.

Lemma 2.4.
(1) For each v the restriction of v to V) defines an isomorphism of V. and U
(it) V,, is the direct sum of the spaces a(( ))Vo kel.

(12) If v is in V, there is a unique vy, in V) such that if u = v — 0((“% 0)>vk then

0 1
pu(@) =0 if o] = |x[*.
(iv) V is spanned by V and the vectors of the form

A(20))r

We start with (iii) of which (ii) is an obvious consequence. The uniqueness of vy, is clear.
If k is negative and |k| is sufficiently large we can take vy = 0. Thus the proof can proceed

by induction on k. Set
7t 0
W=7 — Z o ( 0 1 Uy.
{<k

ou(a) = 0if || > |7*] and @,(a) = @, () if |a| < |7]F. Set
ke 7 0 1 =z
= || k=1, (0 1) /;kl w—o((o 1>>w dz.

Do (T7F0) = ]W]_k_l/ {1 — &o(ax }dm Ou ().
-

The right side is zero if |a| < |7|*! or |a| > |7%|. Tt is @, () if |a| = |7F|. Part (iii) of the
lemma follows.

It is clear that the restriction of ¥ to V2 is an injection. It follows from (iii) that the
restriction of ¢ to V7 is a surjection. Thus U = 37 (V}?). To prove part (i) it is sufficient

with v in V.

Then,
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to show that if u € U and u = ¢(v) for a v in some V) then there is a w in V) such that
u = (w). Given v set

z:/oxf(5)0<(€ (1)))0((3 f))vcw

where x is yet to be determined. Then z is in V,, and since

px(0) = @) | i(éolado) dp

it is in V. In particular

$(2) = (1) = { [ wreon) dﬁ}u.

Choose z so that this integral is not zero and set

w= { | im@a(n) dﬂ}_lz-

It follows from (i) that V # {0}. Choose w different from zero in V. Slnce o is irreducible

UV —

V is spanned by the vectors o(g)w, g € Gy. Either g = (g4) or g = ( Po)(eh). 1
the first case o(g)w is in V. In the second case o(g)w is of the form o((§9 )a(

12

01

(-25)
with w in V. It is easily seen that if v belongs to V' and x belongs to k then o (( )
belongs to V. The last assertion of the lemma follows.

Ifvisin Vlet v=>_ v, with v, in V. Choose vy, so that if u = v, — U((’Tak ?))vkw
then o, (a) = 0 if |a| = |7*]. Set uy, = ¥ (vy,) and write, purely formally,

v~ E E UA,/ZZ.
v l

Let 0((§2)) = w(a)I for a € k* and let wy be the restriction of w to 0*. Let v(ar) =
Ya)if a € 0*. Ifvisin V2, then a((_%))v is in V5. Let

(0595

If ¥(v) = u the map u — wuy, is a linear transformation from U to U. Denote it by T} ,. If v

v~ E E Ug7l,Z€
v l

wola)v™

isin V and

then
0((_(1) é)) Z Z Z w(ﬂ_k)Tm,gu;ﬁ; 2t
v Y4 m—k=~{

It follows from the third part of Lemma 2.4 that if v € V there is a unique v, in V° such
that if u = v — 0(( 0 1))vk then ¢, () = 0 if |a| = |7|*. If w = o((§%))v then vy is
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replaced by w;, = 0(([1) ”'{35))1%. If vp =, vg, with vy, in V2 and wy, = > wy,, with wy,,
in V2 then

w,wzz/

X
v o

k
Vﬁ(ﬁ)g <(1) Bﬂi «T> Vi, dﬁ

Consequently
w<wk,u) = Z A(V:u_la ka)w(vk,u)'

14

v~ E E W’Vze,

v ¢

w ~ Z ; Z A(uv™ 7w )ug,
v p

Thus if

It is also easily seen that

"0
(G D)5
The identity
0 1\ /1 =z 01\ (-1/xz 0 1 —z 0 1\/1 —1/z
-1 0/\0 1/\-1 0/ \ O —z/\O 1 /J\-1 0)\0 1
for x # 0 is easily verified. If v is in V and
’UNZZU&UZZ
v ¢

then

W<(_$ (1))>UNZZ S ) Tt 52

v k l

a((é f)) a<(_(1) é))v ~3% Z;w(ﬂm(w1,wkx>Tk+g,5u€,; .

o k )4

If 6, = 1 if v is trivial and d, = 0 otherwise, then o((} 1)) ((7(1) (1]))1} — a((fl) é))v which

belongs to 1% corresponds to

2.0 422 [A(V“_lv m'z) — 5W—1]w(7r_£)T,€+g,;uw 2.
o k l v
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Finally a((fl) é)) ((5%)) (( 9 ))U corresponds to

Z Z Z [Awp™t 7™z) — Sy |w(m ™ ™) T g T pties p2°
m k

£m,v

On the other hand a((é _11/37)>U corresponds to

Z Z{Z Alvu™t, —We/x)u&l,}ze

and a(( 19) (é _11/9”))1) corresponds to

ZZ ZZW(”_Z)A(WTI’—Wg/l“)TkJre,ﬁW,y 2F,
wok |k

Letting 0’<((1) B )> operate we obtain a vector corresponding to

ZZ Z Algp, = ) A, = [2) e e, 2"

Lvm

Finally if % = 7" with 8 € 0* we apply 0((1693 _Ox>) to obtain

ZZ Z:U’ ﬁQ ( - )A<TH’L_17 _7Tk+2rx)A<Vﬁ_17 _ﬂ-zx)Tk—i—QT-l-fﬁuZuV Zk’

Lvm
Thus we obtain the identities

Z{A(gﬁila me)w(ﬂigim)Tker,ﬁTerf,u - 5Dﬁ—1w<7rieim)Tk+m,ﬁTm+€,u}

m

+ w(—l)(;wflég’k
= Z p(BHw(—z)w(r =V A(u™, =2 ) A =7 /) Terar -
For all we know at present both these sums are infinite. However all but a finite number of

the operators on each side send a given vector in U to zero. Thus as an operational equation
the identity has a sense.
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We can rewrite the identities as

Z{ [A(V‘lu_lwo, B — (5,/#%1} w(ﬁ_é_m)Tker,uTmM,u} + wo(—l)fswwalAz,k

m

= 18wy (=B)w(m ) A(un " =7 B Ay, =7 B) T
n
Recalling that A(v, By) = v (8)A(v,y) we simplify the identities to

Z{ [A(y’l/[lwo, ") — 5yuw0—1]w<ﬂ'm)Tk+m7uTm+g,y} + wo(—l)éwwo_w(ﬂe)

- MVWO_I(_]') Z A(Mn_l7 ﬂ-k)A(U’r}_la We)Tk—i-Zﬂl‘
n

Making use of Lemma 1.1 we can simplify these identities further. If the order n of vuwy*
is positive the identity becomes

(A) AW ' we, m (T Tr—npTo—n
= NVWEI(_l) Z A(Wf& 7Tk>A(V77717 ﬂ-Z)TkJr[ﬂ?’
"
If vuwy ' = 1 the identity becomes

-2

1
(B) Z —w(ﬂ_n>Tk+m,#Tm+é,y + |7T|—_1W(7T)Tk_1,#Té—1,y + w()(—l)(;g’kw(ﬂ'é)

m=—0oQ

= Z A(Mnilv 7Tk>A(Vn717 ﬂ-Z)TkJré,n-
n

Lemma 2.5.
(i) For allk, ¢, p, and v, Ty, Ty, = Ty, Th -
(7) There is no non-trivial subspace of w left invariant by all the operators Ty, ,,.

If vpwy ! is not trivial the identity
TiepToy =TTk,
follows immediately from . If vuwy ! is trivial let u be in U. For a given k and ¢ and for
m < 0 both Tj 4y, ,u and Ty, ,u are zero. For such m
TitmpLormaptt = Togm oy Thtm -

Using the identity and induction on m one shows readily that this relation is valid for all
m.

Suppose that U’ is a nontrivial subspace of U left invariant by all the operators T} . Let
V' be the set of all v in V such that ¢,(a) € U’ for all . If v € V. then v € V" if and only if

W(v) € U'. Thus V' is neither {0} nor V and V' N V2 £ {0}. It is clear that V' and V' NV
are left fixed by the operators a((g Z)) Since V is irreducible it is spanned by V' N 1%
1
0

together with the set o ((§ “f))a(( 9 ))v, v € V'NV. Thus to obtain a contradiction we
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need only show that if v is in V' N V then a(( 9 é))v is in V’. This is however an obvious

consequence of the assumption.

It follows from this lemma that each T}, , is either zero or an invertible linear transformation.
Thus for each p there is an integer k() such that T, = 0 if k& < k(n). Moreover one of
these operators can have a non-trivial eigenvector if and only if it is a scalar.

Now I would like to make some remarks which are not relevant to the main purpose of the
letter. First of all let me observe that if k, ¢, i, v are arbitrary there is a scalar a and scalars
m,p all but a finite number of which are zero such that

TipTow=a+ Y Y Ty
p m

If pvwy ! is not trivial this follows immediately from identity . If pvwy ! is trivial consider
the set of integers p for which Ty, ,Ti1p, is a linear combination of the identity and the
operators T, <. If p <0, Ty4p, Tr4p = 0 and p belongs to this set. Using identity and
a simple induction argument one shows that the set contains all integers. It follows from this
observation and the previous lemma that if u # 0 belongs to U then U is spanned by u and
the set {1, ,u}.

Choose a fixed v and let the order n of u be positive and so large that the orders of
v 1ulwy and vut are also n and T,,, # 0 for some ry > —n. Take { = ry+n > 0 in
identity and cancel T}, , to obtain

A we, 7™M w(m™) Ty = pvwy (=) A(uv ™, 7).

As a consequence for all but a finite number of characters of 0* the operator Ty, is a scalar
for all k. If, for all p, T}, , = 0 if m > —1 then there are only a finite number of operators
in the set {7}, ,} which are not scalars. Consequently U is finite-dimensional and each of
the operators T, , has a non-trivial eigenvector and is thus a scalar. It follows that U has
dimension 1.

It is very unlikely that our assumptions (i) and (ii) together with irreducibility imply that
U is one-dimensional. Consequently we make the further assumption which can certainly be
useful in the case of interest to us at present.

(iii) No representation of G, occurs more than a finite number of times in the restriction

of o to G,.

If p is a representation of G, let V,, be the set of all vectors in V' which transform according
to p. Any operator on V which commutes with all the operators o(g) must leave each of
the finite-dimensional spaces V,, invariant. Thus it must have a non-trivial eigenvector and,
because of the irreducibility, must be a scalar. It follows immediately from the first part of
Lemma 2.4 that the map v — ¢, maps V onto the set of all locally constant functions on £*
with values in U which vanish outside of some compact set. Suppose 1" is an operator on U
which commutes with all the operators 75, ,. If ¢ is a function on £* with values in U define

T by (Te)(a) =T(p(a)). Ifv e V and
v~ Z Zu;wzk

then T'¢, = ¢, where

k
w ~ g E Tup 2",
o k
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Then

a<(_‘1’ g)>~22 S wln ) T b2

m—_l=k

U((—(l) é))w ~ ZZT Z w(m™ YT gues ¢ 2~
wook m—l=k

It follows immediately that 7" takes the image of V' to itself. Thus it determines a linear
transformation of V' which is easily shown to commute with all the operators. As a consequence
of assumption (iii) this linear transformation is a scalar. Thus T is a scalar. In particular all
the operators T, , are scalars and U is one-dimensional.

In the next two lemmas it is assumed that U is one-dimensional. Thus the operators T, ,
are taken to be complex numbers.

Lemma 2.7. Suppose that there is a character 11 of 0* and a ky = —1 such that Ty, ,, # 0.
Let K =k ®k. There is a continuous homomorphism M of K* into C* such that for all £
and v

ﬂ,u = T(Mv V;g)'

Let me observe immediately that it was shown in the previous paragraph that if the
restriction of M to k* is w the identities (A]) and are satisfied if 7}, is replaced by
T(M,v;0). Set po = py wo. It will perhaps require less mental effort if the cases u; = juo
and p1 # o are treated separately.

Suppose first that gy, = po. In identity take v = 1, i # py, and take £ =ky +n >0
to obtain

A 7 )T T Ty gy = 17 (D) Ay 1) Ty
The right side is zero unless £ = —n but if & = —n we can cancel T}, ,, from both sides to
obtain

ppg (=) Alppr',m™) — )| w (T “1, 7)1 2
o) By - LR { A

Thus if w; and wy are two complex numbers such that wiws = w(w) and M is defined by
M(mPa @ w16) = wiwipy (af) for a € 0%, B € 0* then Ty, = T'(M, k, p) for p # .

Take p = v = p; and k = ¢ in identity . If & < —1 the right side is a sum over those n
such that the conductor of u;n~! is p~¢. For such n

Ay 7)) A", 7)) Tor,

T_Qn# =

w(mh) "

5.
)
Since the number of such characters is |7| 7% (1 — |7T|)2 the right side of is equal to w(m").
Since wo(—1) = pi(—1) = 1 we have, for k < —1,

-2
m w(m)
Z —w(7r )Tk+m,u1Tk+m,u1 + W—_lTk_L“lTk_lvul = 0.

= w(m) ppr (DA Mmur L ) Ay 7)) =

m=—0oQ

It follows by induction that T, ,, = 0 if m < —2.
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Now take p =v =y, { = —1,and k > 0 in to obtain
w() 7]
T 1T 9y, = ————Th 1, .
’ﬂ_| 1 E—1,p1 4 —=2,u2 |7T| ] k—1,p1
Since Tj_1,,, # 0 for some k£ > 0 we conclude that w(m)1_, ,, = |7|.
Choose wy and ws to be the two solutions of the equation

- || /2
I P =T .
(|7T‘ ){w(ﬂ')|ﬂ-| + T 1,11
It is easy to see that
i - - <1 — wflx_l\ﬂl/2> (1 — w;lx_1|7r]1/2>
iy, m)x™ =
= (1 — wiz|m|[/2) (1 — woz|7|'/?)

m=—0Q

if || > 0 and |z| is sufficiently small. Thus 7T, ,, = T'(M, p1,m) if m < 0. Taking p = v = 4,
k=0,and £ > 0 in we obtain

S w()
Z (T ") Loy Ty + |7T|—_1T71,u1T2717u1 + WO(_l)éf,kw(ﬂj) = Tops-

Since the same formula is valid if 7}, ,, is replaced by T'(M, p1,p) we can show inductively
that Ty, ., = T(M, p11,m) for all m.

Now suppose ji; # fia. Let n be the order of juypu;'. Take p = v = py, £ = k; + 1, and
k = —1 in identity to obtain

||
| =1

A(MZ/LIla Wﬁn)w(ﬂ-n)Tflfn,,mTf*n,ul = M1M51<_1) Tkl,m :

Thus T1_,, ,, # 0. Now take £ = k; +n, k < —1 to obtain
A(MQ/LIl, W*”)w(W”)Tk,ank’m = 0.

Thus T, =0if & < —1.
Now let us look at the identity with =y, v = po. It k> —n and ¢ > —n the right

side is zero because the order of either pyn=! or puyn=! is at least n. Thus in this case
-2

(C) Z (T ") Tt g Toremops +

m=—0oQ

w(r)

|7r|—_1Tk_17M1T1_17u2 —I— wO(—1)5g7kw(7T£) = 0

In particular take £ = n + 1 to see that if £ > —n + 1 and T}y, = 0 so does Tj_2 ,,.
If £k < —n and ¢ # k the right side of is zero for p = py, v = po because k < —2 and if
the order of p1n~1 is —k so is the order of pon~!. Thus in this case
-2
. w(m
Z —w(m m)Tk+m,u1T€+m,u2 + |7T|(—_)1Tk—17u1T€—1,u2 =0.
The same result is valid if £ < —n and k& # (. Take k = —n to see that T, ,, = 0 if
m < —n— 1.
Thus if T, ,, = 0 for all m > —1 then the only m for which 7, ,, # 0is m = —n — 1.
Taking ¢ = —n — 1 in (C]) we would find that T}, ,, = 0 for m > —n which is contrary to
assumption. At this point p; and us play identical roles.
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Taking k = —n+ 1 in we see that if £ > —n
T€+17M2T—n7m = (|7T| - 1)W(W>T€7M2T—1—nvu1'
Thus 17", ,, # 0 and T}, #0if £ > —n. Set, if £ > —n,

U.)1’7T|1/2 = Te;j,w = (‘71" — 1)W(7T)T—Tl—n,ul .
12 —n,p1

Similarly T7°,, ,, # 0 and T} ,, #0if £ > —n. If { > —n, set

CL)2|7T|1/2 =Tos1 = (‘7T| — 1)W(7T)T—T1—n,;¢2 .
Te,pq TTLH2

Now take v =p =1, ¢ 20, k= —11in to obtain

A(:U’I_I/'L% 7T_n>w(7rn)T—1—n,,u1T€—n,p,1 - N1N51<_1) |7T| _ 1T€—1,p1-
Thus | | .
|l —1 wh™
T 1 = 2__A Lo,
1—n,u1 |7T‘anl CLJ(TI'n) (/’LU’LQ , T )
In the same way
7| — 1 wi™? 1 -m
Ty = WWA(MM L.
Thus if v = %,
(|7r| - 1) 1
T . — AN A -1 —-n
1-nu = 7 |7T|nT_l Wl (:u2 M1, T )7
n— 2 £ n, ,—n — —-n
TK,,ul = 7 1(1 - ‘Wl) ’ﬂ‘2w5+ wl A(ILLQ 1:u1>7T )v € 2 —-n,
(|7r| - 1) 1
T . — AN A -1 —-n
1-nue = 7 |7T|nT_l Wi (:ul M2, T )7
n— 2 £ —-n n — -
Tppy =" (1= |7]) | 2wy " " Ay, w), €= —n.

If we take p different from p; and po, v = py and £ > 0 in identity we obtain

A(MQ/L;l? W_nQ)w(ﬂ—nQ)Tk—TLQ,MTZ—anl = Muz_l(—l)A(Hﬂfla Wk)Tk-&-&m
if ny is the order of pypu~t and ny is the order of pop™'. Thus T, , = 0 if m # —n; — ny but

T*m*nz,# = (1 - ‘71")2|7T‘
If we can show that v = 1 we will have proved that if M (7Pa @ 718) = wiwh i () pa(5)
then T'(M, p, m) = T,, , for all p and all m.
Take =y, v = g and k =4 = —n in . If the order of both nu; ' and nu,* is n, the
value of the corresponding term on the right side is

—nj—n

2 ng, ,—ni, ,—n — -n — —n
=2y M Ay M)A (g e ).

frapia(—1)
If n > 1 there are 1|;||Zf | (1 — 2|n|) such characters 5. The terms corresponding to the other

&(;1)1—_%, If n = 1 there are =27 such
w(ﬁ ) 1_|7r| ‘77|

characters are all zero so the right-hand side is
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characters. However the terms corresponding to n = uy and 1 = s give a total contribution
of
fpapa(—1) |zl papa(—1)  |m?
wim)  (1—|x))* @@ (1))

Thus the right side is again “£2CD 12271 - The Jeft side is

w(mm)  1=[x|

n—1

gl [m| | pape(=1)
— -1
Consequently v*~! = 1. Now take k =¢ = —n+ 1 in to obtain
—pape(—1)
w<7-rn—1)
Thus "2 =1 and v = 1.
It will be convenient to record here the closed expressions for

[e.9]

Z T(M, pu,n)z" =T(M, p, 2).

n=—oo

piipa(—1) 2| = 1) + ppe(=1) _ o

T W)

The series of course converges for |z| > 0 and sufficiently small.

Lemma 2.8.
(i) Let K =k ® k and let M(7Pa @ 718) = wWiwh i (a)ua(B) if a € 0* and 8 € o*.
(a) If py = po then
(1 _ wl_lz’1|7r|1/2> (1 _ w;lz’1|ﬁ|1/2)
(1 — wiz|m|1/?) (1 — waz|m|1/?)
and if i # py and the order of p~tuy isn
2 -n, —n, —n — -n - —ny,—an
T(Mau7z) = (1 - |7T|) |7T| Wy Wy A(#’l 11u’7T )A(Ml 17/”'777- )Z 2 :
(0) If p1 # pa then

T(Mv ,LLl,Z) =

1-— w512_1|7r\1/2>

(1 —w2z|7r|1/2) 27"
1-— wf12_1|7r\1/2>

(1 — wyz[7|'2) L

if n is the order of puy  pg. If pu is different from py and jy and the order of ="
is ny and the order of u=po is ny then

T(M7 Hi, Z) = (1 - ’7(‘) ’W‘in/leinA(lugllula ﬂ—in)

T(M7 Ha2, Z) = (1 - ’TFD ’W‘in/Qw;nA(:ulillu% Wﬁn)

—nj]—n2

T(M,p,2) = (1= |l) ey ™oy ™A ) Ay, 722,
(i) Let K be an unramified extension of k.
(a) Suppose there is a generalized character My of k* such that M(a) = M;(a'™®).
Let My(7P5) = wipa(B) for B € 0*. Then
1—w %272 1-— witz w2 1wt | V2

1 —wi2n] 1 —wz|w|l/2 14 wyz|m|1/2

T(M7 M1 Z) =
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If i # py and the order of upu;* is n so that the order of p' My is also n then
T(M, s 2) = (1~ [n?) || "oy " A (Mg e, 17722

2 —n —-n —n - —n\12_—2n
= (1= )l () A ) Y
(b) If there is no such character then for all p
T (M., 2) = (1 o)~ M(IT)A (M i+, T

if n is the order of My *u'*+s.
(iii) Let K be a ramified extension of k.
(a) Suppose there is a character My of k* such that M(a) = M(a*®). Let
My(x5) = W () if B € 0*. Then

<1 — w2 |2

),
(1 — wiz|m|H/?)
)

T(M, s 2) = (1= |m|) 7|20 A(xo, 7 7)

1 — wpte Y a|1/?

T(M, xopn,2) = (1= |l 7|2 Alxo, 7 f)< (1= wiz|m|l/?)

and if p is different from py and XO,Ul then
2 —n— s n— —n—
T(M,p,2) = (1= |7)*Alxo, 77|~ wy " A(Mg s, 1T )]
le_nl_nQA<,uI /L,7T7HI>A<M27 M77T7n2>27n17n2

2 —ni—
= (1 —Ix[) ||~
if 1y = Xopt1, 1 s the order of My 'p**s, ny is the order of puy i, and ny is the
order of iy .
(b) If there is no such character My then, for all p,
T, 1.2) = (1~ [rl) Il =5 Ao, =) M (00 A0 45, 1 )=t
if n is the order of My u'+s,

The formulas of this lemma follow from the definitions together with Lemmas 1.1 and 1.5.
I would like to observe in cases (ii, a) and (iii, a) that if M’ is the character of (k @ k)*
defined by M'(a @ ) = M (a)M1(5)x(B), then, for all p

T(M,p,2)=T(M p,z).
It follows from Lemmas 2.7 and 2.8 that if the collection {7}, ,} satisfies identities and

the series
> Tnpd™
m

converges for |z| > 0 and sufficiently small and its sum 7),(2) is a rational function. If we
return to the discussion of the representation ¢ we can choose some isomorphism of U with C
and regard the functions ¢, as scalars. Let L’ be the set of all locally constant complex-valued
functions, i.e. invariant under some open subgroup, on k*. If v is a character of 0* let L/,
be the set of all functions ¢ in L’ such that ¢(fa) = v(B)p(a) if 5 € o*. Tt is clear that
L' is the direct sum of the spaces L. If p € L’ we write ¢ = Y, with ¢, € L/, and set
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ug, = ¢, (7). Let L be the set of all functions ¢ in L’ such that, for each v, uy, = 0 for
k < 0 and
z) = Z ukj,,zk

converges for |z| > 0 and sufficiently small and represents a ratlonal function. If H is the

set of all functions in L' with compact support then H C L. His clearly the image of V.
By the way, it will not conflict with our previous notation if when ¢ = > ¢, lies in L’ and

ug, = p, (%) we set
o DD upt
v k

Now suppose {7, ,} is the collection corresponding to the representation o. If v € V and
o =eu) D unst
v k

then
— 0 1 k T ¢
w=al{_q g UNZZ Z W(m) L pu—gp p2
v l m—+k={
Thus ¥ = ¢, is also in L and

b (2) = To(2)p (W™ (m)27").
If T}, ,, = 0 whenever m > —1 then V = V so that
pu(2) = wo(=1)T5(2)¢s (w™' (m)27").
Thus, in this case,
(D) wo(—1)T,(2) T (w™ ' (m)27") = 1.

On the other hand if one notices that MM* = w'™ so that M~ tw! sy~ = (M~1yt+s)=s
one can verify by inspection that

wo(—1)T(M,v,2)T(M,D,w (7)) = 1.
Thus the identity (D]) is valid whenever ¢ is an irreducible representation satisfying (i), (ii),
and (iii).
Now let us suppose that w is a continuous homomorphism of £* into C* and that the
family {7, .} satisfies the relations (A]), (B), and (D). If ¢ belongs to L' and (8 g) belongs to

Gy, let T(( ))gp be the function whose value at « is w(d)&, (%) gp(%). T is a representation

of the group of upper triangular matrices in G on L’. H is an invariant subspace of L’ for
7. It is clear that the operators 7'<( )) leave L invariant. If ¢ € L then, for all x € k,

the function t defined by v(a) = &(az)p(a) — ¢(a) lies in H. Thus the operators ((§%9))

leave any subspace of L containing H invariant. Define T<( 9 é)) by the condition that if
p € Land = T<(_[1) é))gp then
o (2) = To(2)p(w ™ (1)27).
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It is easy to verify that

GG )= DHE )

Thus the operators 7 <(8 Z)) and 7'(( 9 é)) leave the space spanned by H and the functions

T((_(l) é))gp, p € H invariant. Call this space H. Every matrix in G which is not
supertriangular can be written in exactly one way as

=056 D)6 D6 )
Set, 7(g) —T((fgg))f(m))f((gg))7(<gg>)7((gg)). Thus 7(g) is defined for all g in
Gy.

Let us verify that 7(g192) = 7(g1)7(g2). This is clear if g; ~ g9 is a supertriangular matrix.
Thus it is enough to verify this when

(20
n= o 1)(7 o)

The case x + y = 0 is taken care of by identity @ so suppose * +y = u # 0. Then

T G [ [ S [ !
T<gl>7<gz>=7<(_? é))((é ?))T«—? é))
won=o((& ) (6 D) D)6 )

However if one examines the derivation of the identities and one sees that they are
equivalent to the assertion that these two operators have the same effect on an element of H.
To verify that the two operators are equal we need to show that if o € H then

7(9192)7<(_(1) (1))>90=T(91)T(92)T<<_(1) é))w-

The left side is equal to

T (9192 (_? é))so = 7(g1)7 (92 (_? (1)))90 = 7(91)7(92)7 ( (_(1) é))w-

The representation 7 on H certainly satisfies condition (ii). If (‘Cl 3) € Gpand cep

(- (L ()
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It is clear that for any ¢ in H the sets
{g](9)e = ¢},

g 7(9)7<(_(1) (1)))@:7((_? é))w

both contain an open subgroup of the group of upper triangular matrices. Thus the first set
contains an open subgroup of the group of lower triangular matrices. It follows from the
simple identity above that it contains an open subgroup of Gy.

To prove that the third condition is satisfied we need only show that if U is an open
subgroup of the group of upper triangular matrices then the set X, of all ¢ in H such that

U is contained in the isotropy group of both ¢ and 7'(( 9 é)) ¢ is finite-dimensional. If ¢

belongs to H then ¢, has poles only at 0 and co. In general the poles of ¢, at any point
besides 0 and oo are of no higher order than those of T5(z). It is clear that, if o € X, ¢, =0
for all but a finite number of v. Thus to prove the assertion all we need to do is obtain, for
each v, a bound on the order of the pole of ¢, at 0 and oo which is valid for all ¢ in X. A
glance at the form of the operator 7((§ %)) convinces one that there is a number N such that
if U is in the isotropy group of ¢ then p(a) = 0 if || > |7|¥. Thus the order of the pole of
v, (2) at 0 is at most —N. If ¢ is in X the order of the pole of

T, (2)py (W™ (m)2™")
at 0 is also at most —/N. The assertion follows.

Arguments similar to those used to prove Lemma 2.4Ashow that any invariant subspace
of H different from {0} contains a non-zero vector in H and that H is irreducible under
the action of the upper triangular matrices. It follows immediately that 7 is an irreducible
representation of G on H.

Thus to completely classify all irreducible representations of Gy, satisfying (i), (ii), and (iii)
all we need to do is study the families {7}, ,} of complex numbers which satisfy , ,
and @ and have the property that, for all p, T}, , = 0 if m > —1. In this case, which is the
case we shall discuss in the rest of this chapter, H = H.

Before going on let me observe that if ( is another homomorphism of £* into C* and
w is replaced by w¢? and T, , is replaced by C(ﬂm)Tmcalu the relations , , and @
continue to be satisfied. Thus, for our purposes, there is no harm in assuming that w is a
character. R

Define an inner product on H by

(o, ) = /kx o)y (a) da.

It is clear that, if ¢ is an upper triangular matrix, (T(g)gp, T(g)Q/J) = (p, ). It is also clear
that if (p, ) is another inner product with this property it is of the form

(. 0) = au(pu, ).
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Thus if T" is the operator on H defined by
r(Ye) =Y

(T(9)T, 7(9)¥) = (T7(9)¢, T(g9)0),

so that 7(¢)T = T'7(g) for all upper triangular matrices g. Thus each eigenspace of T is
invariant under 7(g); so T is a scalar.

Let ¢, be the function in H, HﬂL’ satlsfylng oo () =1 and (o) = 0if |a| # |7]".
The collection {py,} is an orthonormal basis of H. If pisin H and

oD ugyd
v l
Y = Z Z U Lo, -
v 1

“(05)0 ) )6 )6 )6 )

with a € 0* let us find the effect of 7(g) on ¢. We iterate the effect of the various factors
entering into the expression of 7(g) as a product.

(1)) S b

Applying 7((§ 9)) to this one obtains

then

Z V(@)ZA(uu’l,ﬂéy)um Do -

Ly w

T((TE)" ?)) sends this to

Z I/(Oé) Z A(:U’Vila 7Te+ny)u€+n,,u 905,1/-

Lv “w

Now apply 7((§%)) to obtain

SN Taswr™)o(a) > AW T Y ks e

lv m—k=~{ o

Finally 7 < ( ; 2 )) 7((§%)) transforms this to

Z w(ﬁ) Z Zﬁ(OC)w(Trik)TmﬁA(pyia7T€$>A(uﬁil77rk+ny)uk+n“u Pew-

lv m—k=~{ p,u
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Thus if g has the above form the matrix element (T(g)gok,uw’,,) is equal to

(B (@)Y Bl) TirenpApr™! m'a) Alup™ 7y).

If g = (52) (%5 (g9 (5Y) then (7(9)@wpu, pey) is equal to 0if k # 4+ nbutif k =0+ n
it equals
w(Br(a)Apr™, 7y).
A subset X of GG, will be called pseudo-compact if there is a compact subset Y of G such
that X C U,cp (§2)Y

Lemma 2.9. IfT,,, =0 for m > 1 the functions (T(g)gplw, gpg,,,) have their support in a
pseudo-compact set.

It is clear that the intersection of the support of (T(g)golw, 904,,,) with the group of upper
triangular matrices is a pseudo-compact set. If

(B 0N(1 2\[ 0 1\/ 0\[a O\(1 y
9=%o p)lo 1)\=1 0o)Lo 1)lo 1)lo 1
(B 0\ [(—7"za 1—7"axy
9=\o 16 -1« —n"ay |’
Thus, if N > 0 and n varies over {n | n > —N} while x and y vary over

{z €k \ 7 ["22] < N}

then

and [ varies over k* the matrix g varies over a pseudo-compact set.
For a g of this form set

folg) = w(B)w (@ ) H() Tese-nA(pr ™" mla) Alup ™ 7y).
The support of f, is certainly contained in a pseudo-compact set. As we saw some time ago,
if the order of p is sufficiently large,

Alpry ', 7)) Alwy 'vop, m™)

Tiemp=w(m ™)
g | A(wy  vop, W—m)}Q

where 1 is a fixed character and m is the order of p. Thus, if the order of p is sufficiently
large, f,(g) = 0 unless n = k + £+ 2m, |7 z| = 1, and |7*"y| = 1. The lemma follows.

If ¢ and v are fixed and Cy = {((%g)) ‘ozE kx}

)= [ (0 00) (0 o) d

is a non-degenerate inner product on H. Clearly <7‘(g)<,0, T(g)@/}> = (@, ) for all g in G and
in particular for the upper triangular matrices. Thus there is a positive constant Cy, such
that (¢, ) = Cy,(p,1). Consequently the representation 7 is unitary.

Lemma 2.10. If the family {T,, .} of complex numbers satisfies the relations (A), (B,
and @ there is a two-dimensional semi-simple algebra K over k and a homomorphism M
of K* into C* such that

Ty =T (M, pp,m)
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for all m and p.

Because of Lemma 2.7 we need only prove this when the associated representation 7 acts
on H, is unitary and the matrix element (T(g)golw, Wﬂ,) has compact support. To do this we
need the Plancherel formula of Gelfand and Graev which will require a paragraph by itself.
For now let us assume Lemma 2.10 and go on to its applications to the theory of automorphic
forms.

3. THE LOCAL FUNCTIONAL EQUATION FOR NON-ARCHIMEDEAN FIELDS

For the sake of brevity we shall call an irreducible representation o of Gj which satisfies
(i), (ii), and (iii) of the previous chapter a simple representation.

If n is a continuous homomorphism of Ay, the group of diagonal matrices in Gy, into C*,
let L(n) be the space of all locally constant functions on Gy satisfying ¢(ag) = n(a)e(g)
for all a in A. Since L(n) is invariant under right translations we obtain a representation

g — p(g) of Gy, on L(n).

Lemma 3.1. No infinite-dimensional simple representation of Gy is contained more than
once in the restriction of p to L(n).

We may take the simple representation to be the representation 7 on H considered in the
previous paragraph. Suppose V' is a subspace of L(n) and T is an isomorphism of H with V'
such that

T(7(9)¢) = pl9)Ty
for all ¢. Set A(¢) = Tp(1). Then To(g) = (p(9)T¢)(1) = A(7(g9)¢). Thus T is completely
determined by A. If a € Ay then

A(r(a)p) = n(a)A(p).
Let us verify that up to a scalar factor there is at most one linear function on H with this
property. Let 77((8 g)) = n1(a)n2(b) and, assumed, let 7((§ 3)) = w(a)l. There is no such

function unless mn, = w. If ¢ € H, = HN L), and a € 0* then n(a)A(¢) = v(a)\(p).
Thus A vanishes on H, unless v = 1, the restriction of n; to o*. If ¢ € H,, and ¢ =

T((ﬂal ?))SO —ni(m) 7Yy or, what is the same, if

(A) U(z) = (2 =00t (7m))e(2)
then A(¢) = 0.

If H,, = H,, then {¥(2) | ¥ € H,,} consists of all rational functions with poles nowhere
but at 0 and co. Then 9(z) can be put in the above form if and only if n;*(7) is a zero
of ¥(z). The assertion follows in this case. If H,, # ﬁ,,o either

h(z=m) (2 =)

Ts(2) =
(2) = S =y
or
) _ kTN
T5,(z) = cz P

Here ¢ is a complex constant, k is an integer, and v, ¥, 01, d2 are complex constants. In
the first case we may suppose that ; # 6; for 7, j = 1 or 2 and in the second case we may
suppose that v; # d;. In the first case {w(z) ‘ P E H,,O} consists of all rational functions
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with poles of arbitrary order at 0 and oo, poles of order at most 1 at §; and d5 and no other
poles. In the second case it consists of all rational functions with poles of arbitrary order at 0
and oo, a pole of order at most 1 at d;, and no other poles. In any case ¥(z) is of the form
(A) if and only if the order of its pole at 1, ' () is 1 less than the maximum allowable. This
completes the proof of the lemma.

If £(x) is a non-trivial character of k let L(£) be the set of all locally constant functions
on Gy, satisfying ¢((§4)g) = &(z)p(g) for all z € k. Let p(£) be the restriction of the right
regular representation to L(§).

Lemma 3.2. FEvery infinite-dimensional simple representation of Gy occurs exactly once
in p(§).

Choose 7 in k™ so that £(z) = &(yx). Let the simple representation 7 act on H, as before.
Suppose there is a homomorphism T' of H into L(€) such that T'(7(g)¢) = p(g)(T¢). Set

M) =Te(1). Then /\(7‘(((1) v’f))gp) = &(y2) (). Since T(g) = A(7(g9)¢), T is determined

by A. Conversely if A is such a linear function and T'¢ is defined by T'¢(g) = A(7(g)¢) then
T commutes with the action of Gj.
Such a linear function must annihilate all functions in H of the form

¥(a) = {&(ye) — &olaz) po(a)
with ¢ in H. Since any function in H which vanishes at 7 is a linear combination of such
functions the assertion follows.

Suppose 7T is a simple representation of G. Let K be a two-dimensional semi-simple
algebra over k and let M be a homomorphism of K* into C*. Suppose 7 is associated to
the family {T(M, L4, n)} Let the restriction of M to k* be yw. Suppose ( is a continuous
homomorphism of Ay into C* such that ¢((§9))w(a) = 1. Let g((g%)) = ()G (B).

Let (o be the restriction of (; to 0o and let (;(an™) = (y(a)|r|® for a € 0*. ( is uniquely
determined by (o and s and we shall occasionally write { = (s, {p). Let L(§, ) be the unique
subspace of L(£) which transforms according to the representation .

If n is any continuous homomorphism of A; into C* let n be the homomorphism defined

by 7((9)) =n((52)).

Lemma 3.3. If T is given there is a number N such that if ¢ belongs to L(&,7) and ¢ = (s, (o)

the integral
@<g,<,¢>=/kxw((g 2))<((3‘ ?))da

is defined for Re(s) > N.
(i) Suppose K =k &k and M (rPa @ 710) = wiwiui(aB) if a, € 0*. Suppose also that
neither £ nor 22 is equal to |r|. If p = ¢! set

¥(9,¢.0) = (1= wrlml/2) (1 = walmr] /) (g, . o).

Then, for each g, ®'(g,(, ) is a polynomial in |7|* and |7|~° and for a suitable choice

of g and ¢ it is a constant. Moreover if p~? is the largest ideal on which & is trivial

Cl(wd)q)/<(_(1) é)mmw) = G (g,C. ).
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If i # Gyt set ®'(g,C, ) = ®(g,¢, ). Then, for each g, ®'(g,¢, @) is a polynomial
in |m|™° and |w|® and, for a suitable choice of g and ¢ it is a constant. Moreover, if

§(x) = So(yx),

Gi(7)®' ( (_? (1))97 ¢, w)

= (1 — |n]) 2|7 2w w0y "GN { Al o, 7} (9, €, )

if n s the order of p1(o.
i1) Suppose K = k® k and M (7P & w13) = wiwiu (af) if a, f € 0*. Suppose also that
1Wo
S=lr|. If = (ot set

¥(9,¢.0) = (1= wrlrl %) @(g. ¢, )

Then, for each g, ®'(g,(, ) is a polynomial in |w|* and |w|~* and for a suitable choice
of g and ¢ it is a constant. Moreover,

Cl(ﬂd)‘b/<(_(1) (1))9»9 <p> = —‘Wlirsa(wd)@’(g, ¢ )

)

If i # Gyt set @'(g,¢, ) = ®(g,¢, ). Then, for each g, ®'(g,(, ) is a polynomial
in |m|* and |7|~* and for a suitable choice of g and y it is a constant. Moreover,

C1(7)<I>’<<_(1) D%MD)

= (1= |ml) el ey "GN AGu o, ) F (9. 0).
(747) Supp0|se| K=kaok ?nd M(mPa @ 718) = Wwipi (af) if a, 5 € 0*. Suppose also that
S2=rl. If p =G set

(g,¢, ) = (1 - W2|7T’S+1/2>(I)(97 ¢, ).

Then, for each g, ®'(g,C, ) is a polynomial in |w|* and |w|~* and for a suitable choice
of g and ¢ it is a constant. Moreover,
|7T|—1/2—s~ -

@(wfl)@’((_? é)g,c,so) = TG (9,8 )

1

If i #my ' set ®'(g,¢,9) = ®(g,¢, ). Then, for each g, ®'(g,¢, ) is a polynomial
in |m|* and |7|~* and for a suitable choice of g and y it is a constant. Moreover,

@(v)@’((_? é)f%(m@)

2| _|-n—2ns, ,—n,  —nr —n\ 12/ -~
= (1= |7]) |7 7" 0wy wy "G (V) { A (1o, ) (g, €, p).
(iv) Suppose K = k@ k and M(mPa & w1f) = wiwipi(a)pa(8) if a, B € 0* where py # i
Ifpn =Gt oset

CI)/(g7 Cv @) - <]- - w1|ﬂ-|s+1/2) (I)(ga Cu 90)
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Then, for each g, ®'(g,(, ) is a polynomial in |w|* and |w|~* and for a suitable choice
of g and ¢ it s a constant. Moreover,

@(v)@'((_? 3)g,<,w> — (1= [l) I3y Aotz 7 )G ()9, G, 0)
if n is the order of puy po. If o = (5t set

¥(g,¢.0) = (1= walrl/2) @(g,¢, )

Then, for each g, ®'(g,(, ) is a polynomial in |w|* and |w|~* and for a suitable choice
of g and ¢ it is a constant. Moreover

@(v)@'((_? é)fh@s@) = (L= [ ) e E G (A o, 79, 8o,

If ¢t is different from both py and g set ' (g,¢, ) = ®(g,¢, ). Then, for each g,
d'(g,C, ) is a polynomial in |7|* and |7|~° and for a suitable choice of g and ¢ it is

a constant. Moreover,
01
18 equal to

(1= Jal) ] 7 G () 0y ™ Az 7 A (rGo, 7 ) (9. )
if ny s the order of sy and ng is the order of 1 (o.

(v) Suppose K is an unramified extension of k and there is a homomorphism M, of k*
into C* such that M (o) = Mi(Na). Let My(7PB) = wiu(B) forp ino*. If uy = ('
set

®'(g,¢,9) = (1 —wiln[* )@ (g,¢, ¢).
Then, for each g, ®'(g,(, ) is a polynomial in |w|* and |w|~* and for a suitable choice
of g and ¢ 1t is a constant. Moreover,

g(ﬂ)@'((_ﬁ’ é)g,c,qJ) = G()9(9.C. )

If i # G5 ' set @'(g,C, ) = (g, ¢, ). Then, for each g, ®'(g,¢, ) is a polynomial
in |m|° and |7|~% and for a suitable choice of g and ¢ it is a constant. Moreover,

clww((_? é)g,c,go> = G = )l 2w 2 A (o) ) @' (0, )

if n s the order of p1(o.
(vi) Suppose K is an unramified extension of k and there is no homomorphism My of
k> into C* such that M(a) = My(Na). Set ¥'(g,¢, ) = ®(g,(, ). Then, for all g,
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d'(g,C, @) is a polynomial in |7|* and |7|~* and for a suitable choice of g and ¢ it is
a constant. Moreover,

()’ ( (_(1) (1))97 ¢, w)

= G (1= [ |2 M)A (Mg (wolo) 2, TT) @ (g, € ).
(vii) Suppose K is a ramified extension of k and there is a generalized character My of k*
such that M(a) = My (Na). Let My(7P3) = wPui(B) if B € 0%, If uy = (5" set

q)/(g7 Cv @) - (1 - W1|7T|S+1/2) (I)(ga Cu 90)

Then, for each g, ®'(g,(, ) is a polynomial in |w|* and |m|~
of g and ¢ it s a constant. Moreover,

* and for a suitable choice

<1(7><I>’(<_$ 3)9,@@) — (1= ) lr 5w G () A ) (0,8, ).

If pxo = Gy set
(I),(g7 C7 (,0) = (1 - w1|ﬂ-|s+l/2> (I)(ga Cu 90)

Then, for for each g, ®'(g,(, @) is a polynomial in |7|* and |7|~* and for a suitable
choice of g and ¢ it is a constant. Moreover,

clm@'((_? 3)g,<,w> = (1= Il 15 G Ao, ) (9., ).

If ¢t is equal to meither py nor pixo set ®(g,¢, @) = ®(g,¢,¢). Then, for each g,
d'(g,C, ) is a polynomial in |7|* and |7|~° and for a suitable choice of g and ¢ it is

a constant. Moreover,
01
1s equal to

—n=f_(n+f)s, —n—fF - s T7—n— - / =
(1 - |7T|)2’7T| 7)) Wy f@(’Y)A(Mo HuwoGo) e, 11 f>A(X0,7T Na'(g,¢, ).

(viii) Suppose K is a ramified extension of k and there is no homomorphism My of k*
into C* such that M(a) = My(Na). Set ®(g,(,p) = ®(g,(, ). Then, for each g,
D' (g,C, ) is a polynomial in |7|* and |x|~%. Moreover,

Gi(7)9’ ( (_? é)g, ¢, w)

2 —n=f_(n—f)s ¥ —s(n
(1= Jal) ] =50 () (1)

A0 )A (M 0Go) 2, T ) 0(9,C, ).

18 equal to
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Of course, 5((88)) = a(a)z"g(b) Thus ¢; = (. Since (¢ = w™l, § = w ¢t In
particular, Eo = wy ¢yt so that a) = (o if (2 = wo. If £(z) = &(yx) then the map ¢ — ¥
with ¢(g) = cp((g ?)g) is an isomorphism of L(&y, 7) with L(§, 7).

(G 06(G )t [ o((5 D)e((5 D)

This, together with the previous observation that (s = (y if {;* = wo, makes it clear that it
is enough to prove the lemma for & = &.

Since L(&p, 7) is invariant under right translations it is enough to prove the assertions of
the lemma for ¢ = 1. The map ¢ — T where

Ty(g) = (m(9)v)(1)
is an isomorphism of H and L(&y, 7). If ¢ = T then

/N((g (1))><((3‘ ?))do: [ b)) da

Since H C L the integral on the right converges if Re(s) is sufficiently large and
(I)(l) ¢, ‘P) = wgo—l (’7"|8)
The proof of Lemma 3.1, together with Lemma 2.8, shows that there are at most two points,

which are independent of v and 1, besides 0 and oo where 1,(z) can have a pole. This
shows that for Re(s) sufficiently large the integral on the right converges for all 1. Let

v =7((94))¢. Then

<p<(_‘j }))g, ¢ 90) = v ()

= TwoCo (’W‘S)wwoﬁ) (wil(ﬂ) ’ﬂ-’is)
and _
(I)(l, C7 gp) = ¢w0<0 (w_l(ﬂ-)|77|_s)'
The lemma follows from these two relations, the formulae of Lemma 2.8, and the observations
about {¢(2) ‘ ¢ € H,} made while proving Lemma 3.1. It is a matter of inspection which
must be left to the reader.

Lemma 3.4. There is a vector in H whose isotropy group contains G, only if wy s the
trivial character. If wy s trivial the only cases of the previous lemma for which H contains
such a vector are (1) and (v). In cases (i) and (v) H contains such a vector if and only if
Wy 1S trivial.

It is clear that such a function (or vector) can exist only if wy is trivial and that if vg is the
trivial character of 0, it must lie in Hyy. Suppose there is a function ¢ in Hy, invariant
under G,. Then ¢(z) has no pole at zero and

o(z) = Tyo(z)(p(w_l(ﬂ)z_l).

In all cases, Ty, (Z) has a pole of order at least two at 0. Thus ¢(w™(7)z") has a zero of
order at least two at 0 and ¢(z) has a zero of order at least two at co. Consequently it has



44 LETTER TO HERVE JACQUET—1967

at least two poles in the finite plane. The discussion during the proof of Lemma 3.1 shows
that this is possible only in the cases mentioned. Besides these two poles there can be no
others. Thus the only zeros are at infinity and ¢(z) is a constant multiple of

1 1
(1 —wiz|mV/?) (1 — waz|m|1/?)

in the first case and of

1
1 — wiz?|nm|
in the fifth.
Conversely if wy is trivial, ¢ lies in Hyy and ¢(z) has this form, the isotropy group of ¢
contains (fl) é) and the upper triangular matrices in G,. However G, is generated by (fl] [1))

ad the upper triangular matrices in it.
Lemma 3.5. No one-dimensional simple representation of Gy, is continual in p(§).

According to the corollary to Lemma 2.1 any function on G which transformed according
to a one-dimensional simple representation of GG}, would be invariant on the right, and therefore
on the left, under the group of matrices in G of determinant 1. In particular it would satisfy
©((§3)9) = ¢(g) for all z in k. Such a function could not possibly lie in L().

Let Ly be the space of all functions on Nj\Gj which are G, finite on the right.

Lemma 3.6.
(i) Let K =k @k, let M(a1 ® az) = x1(aq)x2(az) be a continuous homomorphism of
K> into C*, and let T be the representation associated with the family {T(M, 1, m)}
(a) Suppose x1x5 ' is not one of the characters a — 1, a — |a|, a — |a|™t. Then
there are two subspaces Hy and Ho of Lo which transform according to the
representation T and have the property that

o |12
90(@ g)g) =3 x@xa(8)elg)
if o € Hy and
o2
@(<3‘ g)g) = 2 u@ne@e)

if ¢ € Hy. Moreover, any subspace H of Ly which transforms according to T is
contained in Hy + H,.

(b) Suppose x1 = x2. Then there are two subspaces Hy and Hs of Ly which transform
according to the representation T and an isomorphism T of Hy into Hy which
commutes with the action of Gy and is such that

(5 2)e) =l

x1(a)x2(B)e(g)
if o € Hy and

(5 D) =5

(07

B

1/2

xl(a)xQ(ﬂ){w(g) + Tp(g) log

2
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if ¢ € Hy. Moreover, any subspace of Ly which transforms according to T is
contained in Hy + H,.

(c) Suppose x1x5 ' (a) = |a|. Then there is a subspace H, of Ly which transforms
according to the representation T and has the property that

“0(@ 2)g> mE -

x1(@)x2(8)e(g)
if ¢ € H. Moreover Hy is the only subspace of Lo which transforms according to
T.

(i) Let K be a separable extension of k and let M be a continuous homomorphism of K*
into C*. Let T be the representation associated to the family {T(M, m,u)}. If there
is no continuous homomorphism My of k* into C* such that M («) = M;(N«) then
there is no subspace of Lo which transforms according to 7.

(07

As in the proofs of Lemmas 3.1 and 3.2, there is a one:one correspondence between G-
invariant homomorphisms 7" of H, the space on which 7 acts as in paragraph 2, into Ly and

linear functions A on H satisfying )\(7’(((1) ‘f))gp) = M) for all p in H and all z € k. Given

such a linear function (T'¢)(g) = A(7(g)¢). A linear function A is of the required type if and
only if it annihilates all functions of the form

Y(a) = ({(laz) — 1)p(@) peH, vek.

The space spanned by such functions is just H. Now }AIV = H, for all but one or two
characters v. Moreover if H, # ?L, then A(¢,), ¢, € H, can depend only on the coefficients
of the principal parts of ¢, (z) at the finite poles different from 0.

Part (ii) of the lemma follows immediately. For part (i) let y;(7Pa) = wfu;(«) if o € 0. If

we are in case (i, a) set
— A ( E (Py) i SD )
! Ml( )l 11/2

wy ||

= A2 (Z %) = Re(s)pp, (2 )|w2|7r|1/2-

Then \ is a linear combination of A; and As. If we are in case (i, b) let
aq (05}

) ()
R S 2 —
(Z w2|7T|1/2> wi|m|1/2

be the principal part of ¢, (2) at W and set Ai(p) = M (X ¢,) = a1 and Xo(p) =

Ao (Z gol,) = ag. Then A is a linear combination of A\; and Ay. If we are in case (i, c) let

>‘1 (Z 901/> - 90111( )l

In all Cases H; is the image of H under the map 7; associated to A;. In case (i, b) take
Ty = — =TTy The other assertions of the lemma follow from the form of the mapping

associated to a given linear function, the fact that 7((§ 9))e = x1(a)x2(@)¢, and the fact
that if ¢ = T((’rpa 0)>g0 with a € 0* then ¢, (z) = v(a)z Py, (2).

1 .
wy | [1/2

10g|7r\
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4. THE LOCAL FUNCTIONAL EQUATIONS RECONSIDERED

In mathematics also “our beginnings never know our ends.” In order to give the main
theorem a more striking form than was previously possible I want to reformulate the local
functional equations. First of all let me recall the functional equations of the Hecke L-series.

Suppose K is a local field. We shall associate to each generalized character y of K* a
function £(s, x) of the complex variable s. We shall introduce a local factor (s, x). (s, x)
will depend upon the choice of a character £ of K. (Notice that the symbol &, like the symbol
s, is used to denote two different objects.)

If K is a global field, x a generalized character of K*\I, and & a character of K\ A let x,
and &, be the restrictions of x and § to K, and K, respectively. Define £(s, x,) and &(s, x;)
to be the local factors corresponding to &,. The (modified) zeta function associated to x will

be
[T x0) = €05, %)
p
It will satisfy the functional equation
6(87 X) = 8(8, X)€(1 -5 X_l)a
8(57 X) = H 8(87 XP)?
P

both products are taken over all primes, both finite and infinite.
Let us describe the functions £(s, x) and &(s, x) for local fields.

(i) K =R. Let x(a) = (sgna)™|a|", with m = 0 or 1, and let £(z) = €>™*. Then
5(3, X) = ﬂ-—é(S—&-r-q-m)F(w) |

2
(isgnn)™
(s, x) = Tai

(ii) K = C. Let |a| be the square of the ordinary absolute value. Let x(«) = |0z|7"< S )

|QIT
with mn = 0 and m +n > 0. Let £(2) = '™ Re%= Then

m+n

E(s, x) = 2(2m) (4773 )F<S+r+m;-n)

“m+n s—1
e(s, x) =" x(w)[w]*">.

(iii) K is non-archimedean. Let 8~ be the largest ideal on which ¢ is trivial. If IT is a
generator of 3 and the conductor of x is 0

1
R TIITY

e(s,x) = x () I~z
If the conductor of x is PB" with n > 0
(s, x) =1,

n s—1 1 - |H‘ Q —
(o0 =SB [ g8 ) 3 da
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Before restating the local functional equations let me introduce some conventions. Let k
be a local field. Let us introduce some language which, though rather bizarre, will be useful.
If £ = R a simple representation of Gy, is an irreducible quasi-simple representation of {o, 2}
(the notation is that of paragraph 2 of my letter to Weil). If £ = C a simple representation
of Gy is an irreducible quasi-simple representation of 2l (the notation is that of paragraph 4
of my letter). If &k is non-archimedean the simple representations of G have been introduced
in the previous paragraph. If 7 is an infinite-dimensional simple representation of G and &
is a character of k the space L(&,7) has been defined.

If x is a homomorphism of £* into C* and s a complex number and ¢ belongs to L(&, 7)

set
@(g,s,so,x)z/kxw«g g)g>x(a)la|sda.

The integral converges for Re(s) sufficiently large. We shall introduce factor{r] £(s,7,x) and
(s, T, x) and set
®(g, 5,0, X)
(g, 5,0 X) = —FT—
( ) £(s,7,X)

Then the local functional equation will be

01 _
Cb/((—l o>9’—s,so, (nx) 1) =e(s, 7, X)®(g, 5,0, %)

iiﬂ 7((§9)) =n(a)I. I shall write down the factors £(s, 7, x) and (s, 7, x) but I will leave
to the reader the task of verifying that the local functional equation takes the above form.
He will probably require paper and pencil. Since the analytical properties of the functions
d'(g, s, 1, x) follow immediately from previous results I shall not formulate them explicitly
either.
i) k=R
(a) Let M be a continuous homomorphism of R* x R* into C*. Let

tl mi tg mo
M ((t1,12)) = [ta] [t (m) (\t_l)

with m; and mgy equal to 0 or 1. Suppose (s; — s3) — (m; — my) is not an odd
integer. Set x1(t) = M((t,1)), x2(t) = M((1,t)). Let 7 = 75 be the simple
representation 7, introduced in paragraph 2 of my letter to Weil. Set

g(S, T, X) = 5(% + s, X1X>€(%7 S, X2X> )

1 1
6(377-7X):E §+37X1X € §+37X2X .

(Notice when verifying this that there is an error in part (i) on page 3.34 of the
letter to Weil.E] The second factor in the denominator on the right should be

IThey, too, will depend on the choice of a character of k.

21 Jeave it to the reader to give a meaning to T((g‘ g)) in the case of the real or complex field.

3in Lemma 3.6 (1998)
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(b) Let M be a continuous homomorphism of C* into C*. Suppose

m . —n
el

M(e) = (Nov)

m+n

o™

with mn =0, m +n > 0. Let w be the homomorphism

m+n

151

(thtg) — |t1t2|r ; sgnt1

of R* x R* into C* and let 7 = 7); be the unique infinite-dimensional irreducible
representation deducible from 7. If £ is a character of R then £'(2) = £(2 + Z) is
a character of C. If x is a homomorphism of R* into C* then /() = x(Na) =
X(a@) is a homomorphism of C into C*. Set

£(s,7,x) = £(S+ %,MXI)

1
e(s,m,x) = (¢ sgnu)a(s +3 MX/>.

Of course the expressions on the left are for the character ¢ and those on the
right are for the character ¢’

(¢) Suppose M is a continuous homomorphism of R* x R* into C* of the form
(t1,t2) — |tite]"sgnty or (t1,t2) — |tite]|"sgnts. In the first case let x;(t) =
[t|"sgnt, x2(t) = |t|"; in the second case set x1(t) = [t|", x2(t) = |t|"sgnt. The
representation 7, introduced in paragraph 2 of my letter to Weil is irreducible.
Let 7 = 13y be mp. Set

£(s,7,x) = f(l + 37X1X)§(l + S;XQX)a

2 2
1 1
5(8a7_7X>:€ §+87X1X € §+SaX2X .

(ii) k£ = C. Let M be continuous homomorphism of C* x C* into C*. Let M ((t1,t2)) =
mi mo
|t1]°[E2]* <_|t1t|11/2> <—\t2t|21/2> and suppose that neither 252 — (1 + —'mlgml) nor

2
paragraph 4 of my letter to Weil is irreducible. Let 7 = 73 be my;. Set

£(s,7,x) = 5(8 + %7X1X>f(5 + %»czx),

e(s, 7x) = 5(3 + %,Xh)()e(s + %,ng>,
if x1(t) = M((t,1)) and x2(t) = M ((1,1)).

(iii) k is a non-archimedean field.
(a) Let M be a continuous homomorphism of k* x k* into C*. Let M ((a,f)) =

x1(a)x2(B). Suppose that neither y1x; " nor x1x; ' is the character o — |a|. Let

28— <1 + M) is a non-negative integer. The representation m;; introduced in
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T = 7y be the simple representation associated to the family {T(M ) s m)} Set

§(s,mx) = 5(8 + 1,X1X>§(5;7X2X>7

2
1 1
6(877_7X):8 S+§7X1X € S+§7X2X .

(b) Suppose K is an unramified extension of k and M is a continuous homomorphism
of K* into C*. Let 7 = 73 be the representation associated to the family
{T(M, u,m)}. If £ is a character of k then £'(z) = £(Sz) is a character of K. If
X is a continuous homomorphism of £* into C* let x’ be the homomorphism
a — x(Na) of K* into C*. Seff]

1
6(877_7 X) = 6(8 + §7MX/)

e(s,7,x) = p(K/k)a(s + % MX’).

The factors on the left are taken with respect to & and those on the right with
respect to £’

(c¢) Suppose K is a ramified extension of £ and M is a continuous homomorphism
of K* into C*. Let 7 = 73 be the representation associated to the family
{T(M,p,m)}. If £ is a character of k then &'(z) = £(Sz) is a character of K. If
X is a continuous homomorphism of £* into C* let x’ be the homomorphism
a — x(Na) of K* into C*. Set

£(ovrn) = €5+ 300,

c(5,7x) = /R (54 5,00,

/1) = (=) o) [ 6 )6 @),

if p~ is the largest ideal on which ¢ is trivial. Notice that this expression is
independent of the choice of 7 but not of £. xq is of course the unique non-trivial
character of £ /N K*.

(d) Suppose M ((t1,t2)) = x1(t1)x2(t2) is a continuous homomorphism of k* x k*
into C* and suppose x1X5 ' (a) = |a|. Let 7 be the representation associated to
the family {T(M, u,m)},

5(877—7 X) - £(S + %7X1X)7

2d+1) 2d+1)(s—1/2)

e(s,m,x) = —xa (P :
41f p=? is the largest ideal of k on which ¢ is trivial and if g is the unique non-trivial character of k* /N K*
then p(K/k) = xo(n?). It is independent of the choice of 7.
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if the conductor of yy; is o and

2
2| _1—d—2n n n)s o -1, —
(s, ) = (1 )|~ (n24020) 220 { [ e(m ot@ da}

if the order of xx; is n.

(e) Suppose M((thtg)) = x1(t1)x2(t2) is a continuous homomorphism of k* x k*
into C* and suppose x; 'xa2(a) = |a|. Let 7 be the representation associated to
the family {T'(M, y1,m)}. Set

5(577—7 X) = 5(3 + %7X2X)7

2d+1)|ﬂ_|(2d+1)(s—1/2)

e(s, 7, x) = —xxa(m
if the conductor of xx; is o and

2
2 _j—d—2n n n)s o -1, —
s, x) = (1= ) =2 (220 442 { (i oet@ da}

if the order of s is n.

The representations of (d) and (e) are anomalous. I do not know if they have any role to
play in the theory of automorphic forms. Before coming to the main theorem there is an
observation we should make. Suppose k is a local field, K a two-dimensional semi-simple
algebra over k, and ¢ a character of k. If k£ is non-archimedean and K is a field we have
introduced the symbol p(K/k) = p(K/k,€). If k = R and K = C and £(z) = €™ get
p(K/k,&) =i sgnu. If K is not a field set p(K/k,&) = 1. Now let k be a global field, K a
two-dimensional semi-simple algebra over k, and ¢ a character of A/k. If p is a prime of k
let K, = K ® k, and let §, be the restriction of £ to k,. I claim that

HP(Kp/k'pvfp) =1
P
This is clear if K is not a field. If K is a field the (modified) zeta function of K is

Hg S, 1q3 £K S, 1)
On the other hand if y is the unique non-trivial character of Iy /k* NI it is
Hﬁ s, 1p)E(s, Xp)-
Taking as our character of Ay /K the character  — £(Sx) we find that

CEk(s 1)
le—sl H531‘43 Hssl (S, Xp)-

Checking things case by case we find that, for all p,

H€ s, 1) ¢ (K /Ky, &) = (5, 1p)e(s, xp)-
Blp
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The result follows. It is of course well known. I remark it because it shows immediately that

the main theorem is applicable to the Hecke L-series over a quadratic extension of the ground
field.

APPENDIX

There are a few facts which it will be useful to have at our disposal when proving the
main theorem. For lack of a better place I record them here. Suppose 7((§9)) = n(a)I. Let

¢ = ((x, s) be defined by
4((3‘ 2)) ~ n()x(sa~) |

w— (I)I('v S, P X)
is a homomorphism of L(&, 7) into the unique subspace of L(({) transforming according to
the representation 7 (cf. Lemma 3.1 and Lemmas 3.1 and 5.1 of the previous letter). Since
we know that, for a suitable choice of g and ¢, ®'(g, s, , x) is a non-zero exponential in s,
this homomorphism can never be zero.
On the other hand we know (cf. Lemma 3.5 and the appendix to paragraph 7 of the
previous letter) that for some 7 and some continuous homomorphisms w of

v {6

into C* there is a “Gy-invariant” map of L(, 7) into the space of function on Gy, satisfying
gp((é (% g)g}) = w((% 2))90(;]). The image of L(&,7) will, in particular lie in L(w’) if

1/2

((58)) =13
w— (I)/('7 5, ¥, X)

Suppose L({,7) is an invariant subspace of L(w’) which transforms according to the
representation 7. Suppose N; and N, are two spaces of functions on Gj invariant under
the right regular representation (of {0, 24}, A, or Gy according as k is real, complex, or
non-archimedean). Suppose N; and Nj are irreducible and transform according to 7. Suppose
also that there are isomorphisms 7} and Ty of Ny and Ny, respectively, with L((, 7) such that
it el

Then the map

aekx,ﬁekx}

w((% g)) Thus if w’ = {(s, x) it must be a constant multiple of the map

(0%

(6 2) (s )foor-ms

Tl@(g)}

where ¢;, i = 1,2 is a non-zero constant. Set T = T, 'T}. Then, if ¢ € Hy, cop — ;T €
L(¢ 7). Thus Ny + L(G,7) = N+ LG, 7). T ¢((55)) = n(B)x(Ba~)|Ba~![? then the set

of functions p
T (s 0.0, pe L 7),

would be a possible choice for N;. On the other hand if 7 = 1), where M is a homomorphism

/
of k* x k* into C* of the form M ((c, 8)) = x(a3) and w’((%‘ 2)) _ el 2)((04@) then both

o

B
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L(w',7) and Ny can be take to lie in the space of functions on Gy, satisfying ¢ ((§%)g)
v(9).

5. THE MAIN THEOREM

Now let k be a global field and let A be the adele ring of k. The corrected form of
Lemma 7.1 of the previous letter is

Lemma 5.1. There is a constant ¢y such that if g belongs to Ga there is a v in Gy such
that Hp max(|c|p, |dp|) < coldet g['/? if g = (g Z)

There seems little point in including a proof of this.

Let us take the space £ as in the previous letter except for making the modification in
condition (iii) required by the change in Lemma 7.1.

Suppose that V' is a complex vector space and for each real prime p we have a representation
of {0y, 2,} in V, for each complex prime a representation of 2, on V. If any two operators
associated to distinct primes commute we shall, for the purposes of this paragraph, say that
we have a “representation” of G on V.

Suppose in particular that for each prime p we are given a simple representation 7, of
G, (in the sense of the previous paragraph) on a vector space V,. Suppose moreover that
for almost all non-archimedean primes V, contains a non-zero vector invariant under G,,.
Since this vector is determined up to a scalar factor we have in all but finitely many of the
V, a distinguished one-dimensional subspace and we can form the tensor product ®p Ve
The natural “representation” of G on V will be denoted ®p Tp. A “representation” of G a
equivalent to such a representation will be called a simple representation of G4 .

Certainly we have a “representation” of Go on L. An invariant subspace of £ which
transforms according to a simple representation of G5 will be called a characteristic space of
automorphic forms. Suppose L is a characteristic space of automorphic forms and let ¢ be a

character of K\ A. If p € L set
)g> dz,

volg) = measurle(k\A) /k\A i ( ((1)

pi(g) = measurle(k\ A) /k \A¢<((1) f) g)@dz.

o(9) =vol9) + Y @1((3 (1)>9>.
ackX

Suppose the “representation” of G on L is equivalent to ®p Tp- If one of the 7, is
finite-dimensional it follows rather easily from Lemma 3.5 of this letter and the corollaries to
Lemma 3.2 and 5.4 of the previous letter that, for all ¢ in L, p1(g) = 0. Then p(hg) = ¢(g)
if he Gyorh=((4%)) with z € A. The argument used in the proof of Lemma 2.1 shows
rather easily that, if GY is the group of matrices of determinant 1 in G, ¢ is a function
on GA\GY. Consequently L is one-dimensional. We exclude this case from the following
discussion.

— 8

As before

SNotice that in part (ii) of Lemma A in the appendix to paragraph 7 of the previous letter one should
have s = 0 and m = 0.
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With this case excluded the function ¢; can never vanish identically. For a suitable choice
of ¢ it is of the form

p1(9) = 1 ng :Hﬁop(gp)
p p

with ¢, in L(&,, 7,). Moreover we can suppose that for almost all non-archimedean primes
Lemma 5.2. Suppose g is different from zero for some @ in L. Then there is a continuous
homomorphism M of k*\I x k*\I such that T, = Ty, for any prime for which Ty, is defined.
If Ty, is not defined and p is archimedean then T, is the unique infinite-dimensional simple
representation deducible from mag, . If Tag, is not defined and p is non-archimedean 7, is the
simple representation associated to the family {T(M,, p,m)}. Let M ((a, ) = n(c).

(i) Suppose M ((a, 3)) = n(B)x(Ba)Bat[*. If M((a,1)) # M((L,)) there are

constants ¢y and co such that when ;1 is of the above form

1 1 1
800(9) —01H(I)/(gp>50—§a<ﬂp7)(p> +02H®/<gpa_§_507¢pa(n IX 1)p>-
p p

If M((o, 1)) = M((1, ) there are constants ¢; and cy such that when ¢y is of the
above form

1 d 1
ng(g) =0 H(I)/ (gpu S0 + 57 SOP7XP) + 02% Hq)/ (gPJ So — 57 90p7Xp) .
p p

(i) Suppose M((B,a)) = n(B)x(Ba™)|Ba |2, If M((a,1)) # M((1,a)) there are

constantsﬂ c1 and co such that when ¢y is of the above form

1 1 1
vo(g) = c2 H(P/(gp,sO — 5 sop,xp) +o ] (gp, =5 = 50,20 (171X l)p)-
p P

If M((a,1)) = M((1,)) there are constants c¢; and ¢y such that when ¢ is of the
above form

1 d 1
900(9) = C2 1;[(13/ (gp, So — 5790;:7)(1:) + Cl% 1;[(1)/ <9p> So — 5790an1:)-

The proof of this lemma will be based on the appendix to paragraph 4 and Lemma E of
the appendix to paragraph 7 of the previous letter. However the proof of that lemma was
written up rather hastily so I do not have complete confidence in it. I will examine it more
carefully later. If it turns out to be unsatisfactory I shall let you know. In order to get on to
the main point I will take Lemma 5.2 for granted.

In proving the main theorem I shall not enter into questions of convergence. Anything
which is not discussed in the previous letter is taken care of by Lemma 5.2 Thus if y is a
continuous homomorphism of £*\7 into C* and ¢ is of the above form

[ ((3‘ ?)g> x(@)laf" da

5The constants of parts (i) and (ii) are the same.
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converges absolutely for Re(s) sufficiently large. It is equal to

[T1¢Csmx) ¢ TT2 (95050 000 x0)
p

p
On the other hand it is equal to

LA 0e) (G5 20) bwrer e

This is equal to the sum of]

(6 ) ) e
/{a|lal<1} g0<(?)é ?)9>_¢0<(g ?)g) x(@)|al® da.

The first of these integrals is an entire function of s.
On the other hand if ¢((§ 2)g) = n(a)p(g) for a € 1

/{ e w((g N4 3)g>—¢o<(3‘ D3 é)g) (1707 (@)l da
S (3D D)
—¢o<(“gl N é)g) ax(@)laf* da
S ¢<(g (E)g)_%((g ?)g> vl
n /{ o %((g (f)g)—n(a)wo((“gl (f)g) x(@laf*do.

Let us suppose that ¢, is not zero for all ¢ and consider the last integral. Let M be the
homomorphism of Lemma 5.2 and let M ((a, 8)) = x1(a)x2(3). If neither x;x nor xax is
trivial on the ideles of norm one this integral is zero. Suppose that y;y is trivial on the ideles

and

At first we shall discuss the case of a number field. Afterwards the necessary modifications for a function
field will be indicated. The argument of the previous letter was not correct for a function field.
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of norm one but xox is not. Let xjx(«) = || 7*°. Then the integral is equal to

1
1 dt
ClHq) (gp7$0 790]37)(]3)/ oot t
0
0 1 1 o D1t
_C2Hq)/(<—1 0)gp7_5 27()0%(77 1X 1))/0' t ¢ n
p
:LH(I)' s 1
%—FS—SO Gp, S0 2a90anp
p
Co A/ 01 1 o
+— @ y - 5 J *
A (L ———

On the other hand if y2x is trivial on the idéles of norm one and y x is not, let xox () = |a| .
Then the integral is equal to

C2 , 1
1T o o P ) Y )
%+3—301;[ (gp Ty X")
¢ (01y 1 o
+%—s+301;[@(<1 O>g"’ 0= 20 (17X |-

0
H(I)/<< )Qpaso 7§0paxp> H‘I)’(Qp,SO 7§0p7xp)

it is clear, in thls case at least, that these expressions do not change if ¢ is replaced by

(—1 0)ga x by n7tx~! and s by —s.
Now suppose that x; # x2 but both x;x and y,x are trivial on the idéles of norm 1. Let

x1x(@) = o], xax(a) = |a|7%2. Then the integral is equal to

! 1 Co 1
l+8_81H(D/(gpasl_§v(pp7Xp) +T_S2H(I)/(gp’82—§,g&p7xp)
1 / 01 1 1 -1
t—— ¢ y T 92 T o5 )
%_SJFSQI;[ <(_1 O)Qp 527 50 r M Xy
C2 / 01 1 1
t—— o ’y —q ) .
%—s—l—sll:I ((—1 O)gp 51750 %r (X" e

When Y is replaced by n=tx~!, s; is replaced by —s, and s, is replaced by —31. Thus this

expression is not changed if s is replaced by —s, ¥ by n~1x ™!, and g by (71 0 )g

Since
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Finally suppose that x; = x2 and y1x(a) = |a|~*°. Then the integral is equal to

d / 1 ' l-i-s—s dt
02%1;[(1) (9}:730—578%’)(13)/0 12 0?
1 ! dt
P’ — cylogt)tz e
+ H (9;1750 7()0p7Xp)/0 (Cl Co 108 ) t

d , 01 1 ) e adt

—CQEIE[CI) ((—1 0)9[37_80_5’(10137(7])();3 )A t 0 27
0 1 1 ~ ! o1 dt
_H(b,((—l 0)9}37_30_590137(77)();31)/0 (Cl+c210gt)t o 27‘

This is of course equal to

Cy d ’ 1
2 = ) _ -
%Jrs—sodsl;[ (gp,so 2’%’X’°)
C2 d , 0 1
I ) e
+%—S+Sod81;[ <( 1 )gp? So 2790337(77)()
‘@ Co / 1
+ <I>(g 80— 5, x)
1 2 P ) PPy AP
§+S—SO (%4—5—50) } b 2
p

01 1 _
q)’((_l 0)gp7_50_§a90p7<77X)p1>-

It is clear that this does not change if s is replaced by —s, x by n71x 7!, and g by ( 95 )g.
Putting everything together we see that

_l’_
P (st

Hf(SanaXp) HCD/(gp»_SaSDp,Xp)
b

p
is meromorphic in the whole complex plane and equals

Hf( S5 T, (1X), ) H‘P/(( 1 é)gpa—s,%(nx)H)

The second factor is equal to

Hg(svaaXp) H@/(9p>5790p79<p>
P

p
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Thus if
(s, L, x) H§ S, Tpy Xp)s

e(s,L,x) = H88Tp,Xp

(s, L, x) is meromorphic in the entire complex plane and satisfies the functional equation

5(_87 L7 (UX)_l)f(S, La X) = 5(87 L7 X)
To investigate its poles we use the fact that for a suitable choice of ¢ and ¢

H (I),(gpa 87 90137 XP)
p

is an exponential in s. Thus if neither x;x nor yox is trivial on the ideles of norm 1 it has no
poles. If ¢y = 0 for all ¢ in L then it has no poles for any choice of y. To find the principal
parts at the poles in the other cases we observe that

1
1T, (I)/gasagpax (I)(g,So 7()0>X)
T s~ s 1;[ (9 ps Xp) H p P> Xp
and
1 /
1. 2 H®(9p75780p7Xp H Gp; So — a‘PmXp
(§+5_30) p p

1
- (2 8_80) Hq) <9p750 7@}37)(}3)
are entire functions of s.

Thus if x1x is trivial on the ideles of norm 1 there are simple poles at sy — % and s —I—% with
residues —c; and coe (so + %, L, X) respectively. If xox is trivial on the ideles of norm 1 but
X1X is not there are simple poles at sq — % and sg + % with residues —cy and cls(so + %, L, X)
respectively. If y; #£ x2 but both XlX and yox are trivial on the ideles of norm 1 there are
simple poles at s; — %, S9 — 2, s+ 1 5, and s + % with residues —cy, —cs, 628(81 + %, L, X),
015(32 + %, L, X) respectively. If y; = xo there are poles of order two at sy — % and sg + %
The principal part at sg — % is

Co C1
C(s—s0+1/2)2 s—so+1/2

The principal part at sy + % is determined by the functional equation.
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For a function field we write our integral as the sum of

/{a|a|>1} g0((3 (1)){])—@0((3 (1))9) x(a)lel” do
+/{a|a|>1} 90(@ (1)) (—(1) 3))9)_@0((3 (1)) <_(1] é)g> (M)~ (@)|a]™* da
and
/|a|<1(p<(g (1))9> x(@)faf da
and
_/{a|a|=1} %((3 ?)g>x(a)|a|sda+[{a||a<1}%<(a01 ?)g)n(oz)x(aNOélsda-

The first two of these expressions are clearly entire functions of s which do not change when
g is replaced by (_{§)g, s by —s, and x by n~'x L.

Again let us consider the last expression when ¢ is not zero for all ¢ and at least one of
X1X or xz2x is trivial on the ideles of norm 1. If x;x is but xox is not, let x1x(a) = |a]~*.
The expression equals

C1 1
T iste H‘I’/ <9n=50 - 57%»@)
C2 , 0 1 1 1
o 1 —lis s H(I) ((_1 0>gp7_80 - 5790137(77 X )P :

If xox is trivial but y;x is not, and xox(a) = ||~ it equals

C2 1
1 — q—%—s—l-so H(D/ (gp, S0 — 5’ 90P7XP>
p
C1 , 0 1 1 4
B 1_q—%+s—so HQJ ((_1 0>gp,—80 - 2790p7<77 X )P :

p

If x1 # x2 but both y;x and x2x are trivial on the ideéles of norm 1 let xjx(«) = |o| ™" and
X2x(@) = |a|7%2. The expression equals

(&1 1 Co 1
T 1 e H‘I’/ <9p,81 - 57%,)@) I S ch’ <9p,32 - 5790an;3>
p p

l—q_2 1—q_2

C1 , 01 1 1
N 1_q*%+5752 H(I) ((—1 O)gp’_82 B 579013(7] X )P

p

C2 , 01 1 11
_l_q—;+s_51Hq’<(—1 o>gpv—31—§»%,(n X" |-

p
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Finally suppose that x; = x2 and y1x(a) = |a|~*°. The expression yields

Co d , 1
1 — g s—stsods 1;[q> (g*” 0Ty g0"’X")

C2 d / 01 1 1
T iewds 1;[@ ((_1 O)gp, =05 ¥ps (1),

d —1_sts
= 1 — q P O>
C1 ds( , 1
N 1— q—%—s—l—so T |p| ® (gp7 S0 — 5790)37)(]3)

(1 — q_§_5+50>2
e = <1 - q_%ﬁ_so)

T 1o g A

The functional equation follows as before. The principal parts at the poles can also be
determined. Since I am principally interested in the case of a number field I shall not bother
to discuss them explicitly. Moreover for the converse theorem I shall limit myself to the case
of a number field. The statement and the proof for a function field will differ only in minor
points.

For the converse theorem we suppose that, for each prime p, we are given an infinite-dimen-
sional simple representation 7, of G, on V. We suppose that for almost all non-archimedean
primes there is a non-zero vector in V,, whose isotropy group contains G,,. For such a prime
there will be a continuous homomorphism M, ((ev, 8)) = xj(c)x}(8) of k) x kY into C* such
that 7, = 757,. We suppose that there is a constant N > 0 such that for all such p

xo(m)| < I~

xo(m)| = In ™~

if 7 is a generator of the maximal ideal of o,. Let 7,((§ 2)) = mp(a)I if o € k. We suppose
that

n(@)=n|[Jaw | =] m(cw)
p p

which is a continuous homomorphism of I into C* is trivial on k*.
If x is a continuous homomorphism of £*\ into C* the product

Hé(sﬂ—paxp) = €O(S7X)

converges for Re(s) sufficiently large. We suppose that for each y it is meromorphic in the
whole plane, that it has only a finite number of poles, that it is bounded in the regions
obtained by removing circles about its poles from any vertical strip of finite width, and that
the functional equations

50(—5, (UX)fl)fo(&X) = &o(s, X)),
50(87X) = Hg(sva7XP)7
p

with
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are satisfied.

We suppose that there are two continuous homomorphisms y; and s of £*\I into C*
with x1x2 = 1 and two complex numbers ¢; and ¢y such that &y(s, y) has no poles unless
either y;x or xaY is trivial on the ideles of norm 1.

(i) If x1x is trivial on the ideles of norm 1 but yax is not and if x;x(a) = |a|~*° there are
simple poles at sy — % and sg + % with residues —c¢; and cyeg (so + %, X) respectively.
(ii) If xox is trivial on the ideles of norm 1 but x;y is not and yax(a) = || ~*° there are
simple poles at sg — % and sg + % with residues —cy and cqeg (30 + %, X) respectively.

(iii) If x1x(a) = |of| ™ and yox(a) = |a|™*2 with s; # so there are simple poles at

S1— %, 82— 3, S1+ 3, S+ 5 with residues —c;, —ca, c2g0(s1+ 5, X), c1€0(s2 + 1, X)
respectively.

(iv) If x1x(a) = xax(a) = || ~*° there are poles of order two at sy — 3 and so + 3. The

principal part at sg — % is
Co C1
(s—so+3)° s—so+1/2

The principal part at so + % is determined by the functional equation.
We allow the possibility that ¢; or ¢, or both are zero. In particular if

wl(g) =¢1 ng :Hq)/(gpv_%790F7X1,;)
p p

is not, for any choice of the collection {y,} with ¢, in L(&,,7,) such that G,, lies in the
isotropy group of ¢, for almost all non-archimedean primes and ¢,(1) = 1 for almost all
non-archimedean primes, a function satisfying ¢, ((é ”1”)) = 11(g) for all x in A we demand
that ¢; = 0. Also if x; # x2 we demand that ¢, = 0 if for the same choices of the collection

{¢p} the functions
1 B
valg) = ][ @ (gp: —5790an2,;)
p

do not all satisfy 5 ((§%)g) = 2(x) for all z € A. If x; = x» we demand that ¢ = 0 if
d 1 _
¢2(g) = % H P’ <gp7 _57 Pp; Xl,;)
P

does not satisfy this condition. Notice that given y; and y» and the collection {7,} we can,
according to the appendix to the previous paragraph, decide whether or not v and 1y satisfy
these conditions. Notice also that our theorem will be most interesting when both ¢; and ¢y
are zero.

In any case the converse theorem states that when all these conditions are satisfied there is
a characteristic space of automorphic forms which transforms according to the “representation”
&, 7»- To prove it we show that if the collection {1} is chosen as above and

p1(9) = [ (9)
P
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while .
=0 H<1> (gp, - ,sop,xlp) + H<I> (gp, —5,%»@‘,;)

if x1 # x2 and

_clnfb (gp, a‘Panlp) +02 H‘I),(gp, 7§0an1p)

if x1 = x2 then

a 0
o(9) = polg) + D _ ¢ ((0 1)9)
is a function on Gi\Ga.

By its very construction it is invariant under left translations by upper triangular matrices
in GG, so the only problem is to show that gp(( 01 )g) = ¢(g). Let us show that for each g the

functions gp(( Po)(g ?)g) and ¢((§{)g) on I are equal. Let () be the function obtained

from the second of these functions by subtracting o ((§ $)g) if || > 1 and gpo(( 0)(59) g>

if |a] < 1. Let 1o(ar) be the function obtained from the other function by the same process.
It is enough to show that ¢ () = 19(«r). Now if x is any character of k*\ [

Ui(a)x(a)lal® dor = pai(s, x)
kX\T
is defined for Re(s) sufficiently large and, as we shall see,
Va(a)x(a)lal” dor = pa(s, X)
kX\T
is defined for Re(s) sufficiently small. It is enough to show that, for each x, u1(s,x) and
Ha(s, x) are entire functions of s which equal each other. We must also show that they are

bounded in vertical strips.
The first integral is equal to the sum of

&o((s, x) H (g, 5, Lps Xp)
P

and

/|a<1 <P0<(g (1)) 9>X(a)|a|sda _ /|a|<1 o0 ((0401 (1)) (_(i é)g) n(a)x(a)|al* da.

The second integral is the sum of

/kX\fl((a; D (1))9>nx(a)lalsda,

5 —S 77 X H(I),<<_ [1))9!37_5790!37(7”();1)7

which equals
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a”t 0 0 1 s a 0 s
/|| %(( 0 1) (_1 O)Q)HX(Q)M —%((0 1>9>X(04)!04| da,
al>1
which equals the sum of
O[il 0 -1 —s
_/|a<1%<(0 1)9))( (a)|a] ™" da

/a|<1 70 ((g (1)) <—? (1)> 9) n~ X" (a)|al 7 da

The functional equation assumed for &y(s, x) together with the local functional equations
show that the first term in the expression for ps(s,x) is the same as the first term in the
expression for s(s, x). The second term in the expression for (s, x) is an integral we have
already investigated. We know that its poles cancel the assumed poles of the first term and
that it is given by an analytical expression which does not change when g is replaced by

and of

and

<( 9 é))g, s is replaced by —s, and x is replaced by n~tx~!. But the second term in the
expression for ps(s, x) is given by the same analytical expression except that s is replaced by
—s, g by <( 9 é))g, and x by 71y, One shows as in the previous letter that p;(s, x) and

p2(s, x) are bounded in vertical strips. The converse theorem is thus proved.
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