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1. Gaussian sums

In the second paragraph I shall discuss the representations of the group of 2×2 non-singular
matrices over a non-archimedean field. In the discussion a number of identities for Gaussian
sums will be required. In this paragraph the necessary identities, trivial or not, are stated
and proved.
Let k be a non-archimedean local field, let o be the ring of integers in k, let p be the

maximal ideal of o, and let π be a generator of p. Let k× be the multiplicative group of k and
let o× be the group of units. If n ⩾ 0 then o×n =

{
α ∈ o×

∣∣ α− 1 ∈ pn
}
. Fix a character ξ0

of k with the property that o is the largest ideal of k on which ξ0 is trivial.
If µ is a character of o× and x belongs to k set

∆(µ, x) =

∫
o×
ξ0(αx)µ(α) dα.

It is clear that if β belongs to o×

∆(µ, βx) = µ−1(β)∆(µ, x).

Lemma 1.1. Let pn be the conductor of µ.

(i) If n = 0 then ∆(µ, πm) = 1 if m ⩾ 0, ∆(µ, π−1) = |π|
|π|−1

, and ∆(µ, πm) = 0 if m < −1.

(ii) If n > 0 then ∆(µ, πm) = 0 if m ̸= −n but∣∣∆(µ, π−n)
∣∣ = |π|n/2

1− |π|
.

If n = 0 then µ is trivial and it is clear that ∆(µ, πm) = 1 for m ⩾ 0. It is also clear that if
m < 0

1 +
−1∑
k=m

1− |π|
|π|k

∆(µ, πk) = 0.

The first part of the lemma follows immediately.
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Certainly ∫
o×
ξ0(απ

m)µ(α) dα =

∫
o×/o×n

µ(α)

{∫
o×n

ξ0(αβπ
m)dβ

}
dα.

If n > 0 the inner integral is equal to

ξ0(απ
m)

1− |π|

∫
pn
ξ0(απ

my) dy.

This is zero if the character y → ξ0(απ
my) is not trivial on pn, that is, if m < −n. On the

other hand if m > −n so that for some ℓ, with 0 ⩽ ℓ < −n, m+ ℓ ⩾ 0 then∫
o×
ξ0(απ

m)µ(α) dα =

∫
o×/o×ℓ

ξ0(απ
m)µ(α)

{∫
o×ℓ

µ(β)dβ

}
dα.

The inner integral on the right is zero.
Finally ∣∣∆(µ, π−n)

∣∣2 = ∫
o×
dα

∫
o×
dβ ξ0

(
(α− β)π−n

)
µ

(
α

β

)
=

∫
o×
dα

∫
o×
dβ ξ0

(
β(α− 1)π−n

)
µ(α).

By part (i) of the lemma the integral with respect to β is 1 if α ∈ o×n ,
|π|

|π|−1
if α ∈ o×n−1 − o×n ,

and zero otherwise. Since
|π|

|π| − 1

∫
o×n−1−o×n

µ(α) dα =
|π|

1− |π|

∫
o×n

µ(α) dα,

we have ∣∣∆(µ, π−n)
∣∣2 = 1

1− |π|
(measure o×n ) =

|π|n(
1− |π|

)2 .
If the conductor of µ is pn we shall refer to n as the order of µ.

Lemma 1.2. Suppose µ and ν are characters of o×. Let the order of µν be r. If r ⩾ 1 then

∆(µ, πm)∆(ν, πn)

∆(µν, π−r)
=

∫
{α∈o× | πr+mα+πr+m∈o× }

µ(α)(µν)−1(πr+mα + πr+m) dα.

If r = 0 then ∆(µ, πm)∆(ν, πn) is equal to∫
{α∈o× | πmα+πn∈o}

µ(α) dα +
|π|

|π| − 1

∫
{α∈o× | πm+1α+πn+1∈o× }

µ(α) dα.

The product ∆(µ, πm)∆(ν, πn) is equal to∫
o×

∫
o×
ξ0(π

mα + πnβ)µ(α)ν(β) dα dβ =

∫
o×

∫
o×
ξ0
(
β(πmα + 1)

)
dβ dα.

If r ⩾ 1 the right side is equal to

∆(µν, π−r)

∫
{α∈o× | πr+mα+πr+m∈o× }

µ(α)(µν)−1(πr+mα + πr+m) dα.
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If r = 0 the right side equals∫
{α | πmα+πn∈o }

µ(α) dα +
|π|

|π| − 1

∫
{α | πm+1α+πn+1∈o× }

µ(α) dα.

Now let K be a two-dimensional commutative algebra over k with a non-degenerate trace.
There are two possibilities for K. Either it is the direct sum of k with itself or it is a separable
quadratic extension of k. In both cases k has exactly one non-trivial automorphism over k.
We will denote this automorphism by s. If x ∈ K then Sx = x+ xs and Nx = xxs. Let O
be the elements of k integral over o and let O∗ be the group of units of O. If K = k ⊕ k set
Π = π⊗ π and if n1 and n2 are any two integers set πn1,n2 = πn1 ⊕ πn2 . If K is an unramified
extension of k set Π = π and if n1 = n2 set πn1,n2 = πn1 . If K is a ramified extension choose
π and Π so that NΠ = π, if n2 = 0 set πn1,n2 = Πn1 . Thus the symbol πn1,n2 has a meaning
only for certain values of n1 and n2. We shall adhere to the convention that any expression in
which the symbol πn1,n2 occurs with values of n1 and n2 for which it has no meaning is equal
to zero. If n1 ⩾ 0, n2 ⩾ 0 and πn1,n2 is defined set O×

n1,n2
=
{
α ∈ O×

∣∣ α− 1 ∈ πn1,n2O
}
. If

M is a character of O× then amongst all groups of this type on which M is trivial there is a
maximal one O×

m1,m2
. (m1,m2) will be called the order of M .

If K = k⊗ k or K is an unramified extension we set f = 0. Otherwise (Π−f ) is the inverse
different. The index of NK× in k× is either 1 or 2. If it is 1 let χ be the trivial character
of k×; if it is 2 let χ be the unique non-trivial character of k× whose restriction to NK× is
trivial. Let χ0 be the restriction of χ to o×. The order of χ0 is f .

Before going on I recall some facts whose proofs are either completely trivial or are to be
found in the book “Corps Locaux” of Serre.

Lemma 1.3.

(i) Let n1 and n2 be non-negative integers. If K = k ⊕ k the map x→ Sx takes πn1,n2O
onto pr with r = min{n1, n2}. The map x→ Nx maps O×

n1,n2
onto o×r .

(ii) If K is an unramified extension of k the map x→ Sx maps πn,nO onto pn. The map
x→ Nx takes O×

n,n onto o×n .

(iii) If K is a ramified extension of k the map x→ Sx maps πn,0O onto pr with r =
[
n+f
2

]
.

If n ⩾ f the smallest number m such that N(O×
m,0) = o×n is 2n− f ; the largest such

number is 2n − f + 1. If n < f then N(O×
n,0) is contained in o×n and if 0 ⩽ m < n

the map N : O×
m,0/O

×
n,0 → o×m/o

×
n is an isomorphism. If m < f the kernel and the

cokernel of the map N : O×
n,0/O

×
f,0 → o×n /o

×
f both have order two.

If µ is a character of o× let µ1+s be the character of O× defined by µ1+s(α) = µ(ααs). Let
n be the order of µ. If K = k ⊗ k or K is unramified the order of µ1+s is (n, n). If K is
ramified the order of µ1+s is (2n− f, 0) if n > f ; it is (n, 0) if n < f , but if n = f all one can
say is that it is (r, 0) with r ⩽ f .

If M0 is a character of O× set

∆(M0, π
n1,n2) =

∫
O×

ξ0
(
S(απn1,n2)

)
M0(α) dα.

The following lemma is an immediate consequence of Lemma 1.2 but it is convenient to state
it explicitly.
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Lemma 1.4. Suppose M0 and H0 are two characters of O∗. Let the order of M0H0 be (r1, r2).
If r1 > 0 and r2 + f > 0 then

∆(M0, π
m1,m2)∆(H0, π

n1,n2)

∆(M0H0, π−r1−f,−r2)
=∫

{α∈O× | πr1+m1+f,r2+m2α+πr1+n1+f,r2+n2∈O∗ }
M0(α)

· (M0H0)
−1(πr1+m1+f,r2+m2α + πr1+m1+f,r2+n2) dα.

If K = k ⊕ k and r1 = 0 and r2 = 0 the left hand side is equal to the sum of∫
{α∈O× | πm1,m2α+πn1,n2∈O}

M0(α) dα

and |π|
|π|−1

times∫
{α∈O× | πm1+1,m2α+πn1+1,n2∈o×⊕o}

M0(α) dα +

∫
{α∈O× | πm1,m2+1α+πn1,n2+1∈o⊕o}

M0(α) dα

and
(

|π|
|π|−1

)2
times ∫

{α∈O× | πm1+1,m2+1α+πn1+1,n2+1∈O× }
M0(α) dα.

If K is an unramified extension and r1 = r2 = 0 it is the sum of∫
{α∈O∗ | πm1,m2α+πn1,n2∈O }

M0(α) dα

and
|π|2

|π|2 − 1

∫
{α∈O× | πm1+1,m2+1α+πn1+1,n2+1∈O× }

M0(α) dα.

If K is a ramified extension and r1 = 0 it is the sum of∫
{α∈O× | πm1+f,m2α+πn1+f,n2∈O}

M0(α) dα

and
|π|

|π| − 1

∫
{α∈O× | πm1+1+f,m2α+πn2+1+f,n2∈O× }

M0(α) dα.

Lemma 1.5. Let M0 be a character of O× of order (m1,m2) and let µ and ν be characters
of o× of orders n1 and n2 respectively. Suppose that M0 = χ0µν on o× and that the order of
M−1

0 ν1+s is (ℓ1, ℓ2) with n1 ⩾ ℓ1 + ℓ2 + f . If ℓ1 ⩾ ℓ2, n1 ⩾ n2, and n1 + n2 = m1 +m2 + f
then

∆(M0, π
−m1−f,−m2)∆(χ0, π

−f )∣∣∆(M0, π−n1−f,−m2)∆(χ0, π−f )
∣∣ = M0(Π

(f+m1−n2)+s(m2−n2))

χ(πn1)

∆(µ, π−n1)∆(ν, π−n2)∣∣∆(µ, π−n1)∆(ν, π−n2)
∣∣ .
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Since both sides of this identity have the same absolute value all we need do is show that

∆(M0, π
−m1−f,−m2)∆(µ, π−n1) ∆(ν, π−n2)

is equal to the product of

∆(χ0, π−f )M0(Π
(f+m1−n1)+s(m2−n2))χ−1(πn1)

and a positive constant. As a start observe that it is equal to∫
O×

dα

∫
o×
dβ

∫
o×
dγ ξ0

(
S(π−m1−f,−m2α)− π−n2β − π−n1γ

)
M0(α)ν

−1(β)µ−1(γ)

which equals

(A)

∫
O×

dα

∫
o×
dβ

{∫
o×
ξ0

[
γ

πn1

(
πn1S(π−m1−f,−m2α)− πn1−n2β − 1

)]
χ0(γ) dγ

}
·M(α)ν−1(β).

If f > 0 the integral with respect to γ is zero unless

πn1S(π−m1−f,−m2α)− πn1−n2β − 1 ∈ pn1−f − pn1−f+1.

However if this last condition is satisfied it is equal to

∆(χ0, π
−f )χ0

(
S(Π(n1−m1−f)+(n1−m2)sα)− πn1−n2β − 1

πn1−f

)
.

Changing variables we see that the integral is equal to the product of

∆(χ0, π
−f )M−1

0 (Π(n1−m,−f)+(n2−m2)s)

and∫
{ (α,β) | S(Πs(n1−n2)α)−πn1−n2β−1∈pn1−f−pn1−f+1 }

M0(α)

· ν−1(β)χ0

(
S(Πs(n1−n2)α)− πn1−n2β − 1

πn1−f

)
dα dβ.

If n1 > f and n1 > n− 2 then the restriction of M to o× has order n1. Thus m1 ⩾ 2n1 and
m1 +m2 + f > 2n1 > n1 + n2 contrary to assumption. Consequently we need only consider
the case that n1 = f or n1 = n2. If n1 > f or n1 > n2 then S(Πσ(n1−n2)α)− πn1−n2β − 1 can
belong to pn1−f − pn1−f+1 only if S(Πσ(n1−n2)α)− 1 belongs to o×.

Suppose that n1 = n2 = f and S(α)− 1 ∈ p. Replacing β by 1
β
in∫

{β | Sα−β−1∈o× }
M0(α)ν

−1(β)χ0

(
S(α)− β − 1

)
dβ

we obtain

M0(α)χ0(−1)

∫
o×
ν(β)χ0(β)χ0

(
1− β

(
S(α)− 1

))
dβ.

Since n1 = n2 = f , ℓ1 = 0 and M0 = ν1+σ. Since M = χ0µν on o×, νχ0 = µ and the order of
νχ0 is f . If β ∈ o× and ν ∈ o×f−1 then

1− βγ(Sα− 1) ≡ 1− β(Sα− 1) (mod pf ).
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Thus the above expression is equal to

M0(α)χ0(−1)

∫
o×/o×f−1

ν(β)χ0(β)χ0

(
1 + β(Sα− 1)

){∫
o×f−1

ν(γ)χ0(γ) dγ

}
dβ = 0.

In all cases we can take the integral over{
(α, β)

∣∣∣ S(Πσ(n1−n2)α)− 1 /∈ p, S(Πσ(n1−n2)α)− πn1−n2β − 1 ∈ pn1−f − pn1−f+1
}
.

Replacing β by
[
S(Πσ(n1−n2)α)− 1

]
β we obtain{∫

{α | S(Πσ(n1−n2)α)−1/∈p}
M0(α)ν

−1χ0

(
S(Πσ(n1−n2)α)− 1

)
dα

}

·

{∫
{β | πn1−n2β−1∈pn1−f−pn1−f+1 }

ν−1(β)χ0

(
1− πn1−n2β

πn1−f

)
dβ

}
,

an expression we label (B).
Suppose n1 > f and consider the first integral. Replacing α by α(1 + v) with v ∈ Πn1O

does not change the value of the integral. The integrand becomes

M0(α)ν
−1(Sα− 1)χ0(Sα− 1)M0(1 + v)ν−1

(
1 +

S(αv)

Sα− 1

)
χ0

(
1 +

S(αv)

Sα− 1

)
.

Since n1 ⩾ ℓ1, M0(1 + v) = v(1 + Sv +Nv) = ν(1 + Sv). Moreover
[
n1+f

2

]
⩾
[
2f
2

]
= f so

that χ0

(
1 + S(αν)

Sα−1

)
= 1. Also

[
n1+f

2

]
⩾
[
n1+1
2

]
⩾ n1

2
so that

v−1

(
1 +

S(αv)

Sα− 1

)
= ν

(
1− S(αv)

Sα− 1

)
and

v(1 + Sv)ν−1

(
1 +

S(αv)

Sα− 1

)
= ν

(
1 + S(δv)

)
if δ = 1− α

Sα−1
. Integrating over Πn1O we obtain 0 unless |δ| = |π|s and

[
s+n1+f

2

]
⩾ n1, that

is, s + n1 + f ⩾ 2n1 or s ⩾ n1 − f when we obtain |π|n1 . Since |δ| = |α − 1| we can in all
cases write the first integral of (B) as∫

{
α∈O×

n1−f,0

∣∣∣ S(Πσ(n1−n2)α)−1/∈p
}M0(α)ν

−1χ0

(
S(Πσ(n1−n2)α)− 1

)
dα.

Since n1 − f ⩾ ℓ1 and χ0(Nα) = 1 this may be written as∫
{
α∈O×

n1−f,0

∣∣∣ S(Πσ(n1−n2)α)−1/∈p
} ν−1χ0

πn1−n2 −N

(
Πσ(n1−n2)α− 1

α

) dα.

Set Πn1−fγ = Πσ(n1−n2)α−1
α

so that α = 1
Πσ(n1−n2)−Πn1−fγ

. The integral is the product of a

positive constant and

(C)
∑

{ γ∈O/ΠfO | πn1−n2−πn1−fNγ/∈p}
ν−1χ0(π

n1−n2 − πn−1−fNγ).
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If n1 > n2 every γ appearing in this sum is a unit and the sum is equal to∑
{β∈O∗/O∗

n1 | πn1−n2−β∈pn1−f−pn1−f+1 }
ν−1χ0(β)

[
1 + χ0

(
πn1−n2 − β

πn1−f

)]
.

Since this sum is taken over all of o× it is equal to∑
{β∈o×/o×n1 | πn1−n2−β∈pn1−f−pn1−f+1 }

ν−1χ0(β)χ0

(
πn1−n2 − β

πn1−f

)
.

If n1 = n2 then (C) is the sum of∑
{
γ∈O×/O×

f,0

∣∣∣ 1−πn1−fNγ/∈p
} ν−1χ0(1− πn1−fNγ)

and
f∑

r=1

∑
γ∈O×/O×

f−r,0

ν−1χ0(1− πn1+r−fNγ).

Since the map γ → Nγ defines an isomorphism of O×/O×
f−r,0 and o×/o×f−r the latter sum is

equal to ∑
p/pf

ν−1χ0(1− w).

Since ∑
o×/o×f

ν−1χ0(β) = 0

we can subtract it from (C) without changing (C). The result is

(D)
∑

{β∈o×/o×n1 | πn1−n2−β∈pn1−f−pn1−f+1 }
ν−1χ0(β)

(
πn1−n2 − β

πn1−f

)
.

Thus (C) and (D) are equal in all cases.
Replace β by 1

β
in the second integral of (B) to see that it is equal to the product of a

positive constant and

χ0(−1)


∑

{β∈o×/o×n1 | πn1−n2−β∈pn1−f−pn1−f+1 }
νχ−1

0 (β)χ0

(
πn1−n2 − β

πn1−f

).
This is the product of χ0(−1) and the complex conjugates of (D). Since ∆(χ0, π−f ) =
χ0(−1)∆(χ0, π

−f ) the lemma is proved for f > 0.
If f = 0 then in the integral (A) we may replace χ0(γ) by 1. If n1 = 0 then n2 = 0 and

m1 = m2 = 0 so that µ, ν and M0 are all trivial. The lemma is also; so we suppose n1 > 0.
If n1 > n2 then K = k ⊕ k. Let M0(α⊕ β) = µ1(α)ν1(β). Then m1 is the order of µ1 and
m2 is the order of ν1. Since µ1ν1 = µν either m1 ⩾ n1 or m2 ⩾ n1. If m1 ⩾ n1 then ℓ1 = m1

so that ℓ2 = 0. Then ν1 = ν and µ1 = µ. If m2 ⩾ n1 then ℓ2 = m2 so that ℓ1 = 0 which is
contrary to the assumption that ℓ1 ⩾ ℓ2. Thus the lemma is trivial if n1 > n2; so we suppose
that n1 = n2. Then m1 = m2 = n1.
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The integral (A) is equal to∫
O×

dα

∫
o×
dβ

{∫
o×
ξ0

[
γ

πn1
(Sα− β − 1)

]
dγ

}
M0(α)ν

−1(β).

The inner integral is different from zero if and only if Sα − β − 1 ∈ pn−1. If n1 > 1 this
implies that Sα− 1 /∈ p. Set

M0(α)ν
−1(β)

∫
o×
ξ0

[
γ

πn1
(Sα− β − 1)

]
dγ = ψ(α, β).

If Sα− 1 ∈ p and n1 = 1 then ψ(α, β) = |π|
|π|−1

M0(α)ν
−1(β). Since n1 = n2∫

o×
ψ(α, β) dβ = 0

if Sα− 1 ∈ p. Thus if

φ(x) =

∫
o×
ξ0

(
γx

πn1

)
dγ

the integral (A) is equal to∫
{α | Sα−1/∈p}

∫
o×
M0(α)ν

−1(Sα− 1)ν−1(β)φ
(
(1− β)(Sα− 1)

)
dβ dα.

If Sα− 1 /∈ p then φ
(
(1− β)(Sα− 1)

)
= φ(1− β). Moreover∫

o×
M0(α)ν

−1(Sα− 1)ν−1(β)φ(1− β) dβ

is equal to the product of M0(α)ν
−1(Sα− 1) and∫

o×n1

ν−1(β) dβ +
|π|

|π| − 1

∫
o×n1−1o

×
n1

ν−1(β) dβ.

The first integral is equal to the measure of o×n1
. The second is equal to

− |π|
|π| − 1

∫
o×n1

ν−1(β) dβ =
|π|

1− |π|
measure o×n1

.

Thus the integral (A) is the product of a positive constant and∫
{α | Sα−1/∈p}

M0(α)ν
−1(Sα− 1) dα

=

∫
{α | Sα−1/∈p}

M0(α)ν
−1(Nα)ν−1

(
1−N

(
α− 1

α

))
dα.

If K = k ⊕ k and ℓ2 = 0 the lemma is trivial. Suppose K = k ⊕ k and ℓ2 > 0. Let
α = α1 ⊕ α2. If y is in pℓ2 then replacing α by α1 ⊕ α2(1 + y) in the integrand does not
change the value of the integral. The integrand becomes

M0(α)ν
−1(Nα)ν−1

(
1−N

(
α− 1

α

)
− α1 − 1

α1

y

α2(1 + y)

)
.



LETTER TO HERVÉ JACQUET—1967 9

The integral of this over pℓ2 is the measure of pℓ2 or zero according as α1 − 1 ∈ pn1−ℓ2 or not.
The same observation applies to the first variable. Thus the integral is equal to∫

O×
n1−ℓ2,n2−ℓ1

M0(α)ν
−1(α)ν−1

(
1−N

(
α− 1

α

))
dα.

Since n1 − ℓ2 ⩾ ℓ1, n2 − ℓ1 ⩾ ℓ2 and n1 − ℓ2 + n2 − ℓ1 ⩾ n2 the integrand is identically one.
Thus the lemma is proved if K = k ⊕ k.

If K is an unramified extension let k1 = k2 be the smallest integer greater than or equal to
n1

2
. Let y ∈ πk1,k2O. Replacing α by α(1 + y) in the integrand does not change the value of

the integral. Since k1 ⩾ ℓ1 and 2k1 ⩾ n1 the integrand becomes

M0(α)ν
−1(Nα)ν−1

(
1−N

(
α− 1

α

))
ν−1

(
1 + γS

(
αs − 1

1 + y

))
if γ = − 1

Nα
(
1−N(α−1

α )
) . The integral of this expression over πk1,k2O is the measure of πk1,k2O

or zero according as α ∈ O×
n1−k1,n2−k2

or not. Thus our integral is equal to∫
{
α∈O×

n1−k1,n2−k2

∣∣∣ Sα−1/∈p
}M0(α)ν

−1(Nα)ν−1

(
1−N

(
α− 1

α

))
dα.

Since n1 − k1 ⩾ ℓ1 this is equal to∫
{
α∈O×

n1−k1,n2−k2

∣∣∣ Sα−1∈p
} ν−1

(
1−N

(
α− 1

α

))
dα.

If n1 is even, k1 =
n2

2
and the integrand is identically one. Thus the lemma is proved in

this case. If n1 is odd set α−1
α

= πn1−k2β so that α = 1
1−πn1−k1

β. Since 2(n1 − k1) = n1 − 1
when n1 is odd this integral is the product of a positive constant and∑

{β∈O/ΠO | πn1−1Nβ ̸=1}
ν−1(1− πn1−1Nβ).

If x ̸≡ (mod p) the equation Nβ = x (mod p) has |π|+1
|π| solutions modulo ΠO, otherwise it

has just one. Thus if n1 > 1 the sum equals

|π|+ 1

|π|
∑
x∈o/p

ν−1(1− πn1−1x)− 1

|π|
ν−1(1) = − 1

|π|

and if n1 = 1 it equals

|π|+ 1

|π|
∑
o×/o×1

ν−1(x)− 1

|π|
ν−1(1) = − 1

|π|
.

The lemma is completely proved.
If K = k ⊕ k we set ϵ = 1; if K is an unramified extension of k we set ϵ = −1, and if K is

a ramified extension of k we set ϵ = 0. If M is generalized a character of K×, if M0 is its
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restriction to O×, and ν is a character of o× set

T (M, ν, n)

=
(
1− |π|

)(
1− ϵ|π|

) ∆(χ0, π
−f )∣∣∆(χ0, π−f )
∣∣ |π|n+f

2

∑
n1+n2=n

M
(
(πn1,n2)s

)
∆(M−1

0 ν1+s, πn1,n2)

where the sum is taken over all n1, n2 for which πn1,n2 is defined.

Lemma 1.6. Let ω and M be homomorphisms of k× and K× respectively into C×. Suppose
that the restriction of M to k× is ωχ. Let ν and η be characters of o× and let ω0 be the
restriction of ω to o×. Suppose that the order n of νηω−1

0 is positive. Then, for all integers k
and ℓ,

ω(πn)T (M, η; k − n)T (M, ν, ℓ− n)

=
∆(νηω−1

0 , π−n)∣∣∆(νηω−1
0 , π−n)

∣∣2 ∑
ρ

∆(ηρ−1, πk)∆(νρ−1, πℓ)T (M,ρ, k + ℓ)

where the sum is over all characters of o∗.

The formula of the lemma will be referred to as formula (E). Notice that all but a finite
number of terms in the sum on the right are zero. The sum on the right is the product of(
1− |π|

)(
1− ϵ|π|

)
|π| k+ℓ+f

2
∆(χ0,π−f )

|∆(χ0,π−f )| and∑
n1+n2=k+ℓ

M
(
(πn1,n2)s

)∑
ρ

∫
O×

dα

∫
o×
dβ

∫
o∗
dα ξ0

(
S(πn1,n2α) + πℓβ + πkγ

)
·M−1

0 (α)ρ

(
Nα

βγ

)
ν(β)η(γ).

Given ν, η, M , k, and ℓ there is a number m such that this integral is zero if the order of
ρ is greater than m. Thus we may restrict the sum to a sum over the characters of o×/o×m.
Replace α by βα, γ by βγ, and take one of the summations under the integral sign to obtain,
if µ is the restriction of M0 to o×,∑

n1+n2=k+ℓ

M
(
(πn1,n2)s

) ∫
O×

dα

∫
o×
dβ

∫
o×
dγ ξ0

[(
S(πn1,n2α) + πℓ + πkγ

)]

·M−1(α)η(Nα)νηµ−1(β)

∑
ρ

ρη−1

(
Nα

γ

).
The summation over ρ is different from zero if and only if γ ≡ Nα (mod p)m. If K =
k ⊕ k set λ(α) = N(πn1−ℓ,n2α + π0,ℓ); if K is an unramified extension of k set λ(α) =

πkN
(
α + π

ℓ−k
2

, ℓ−k
2

)
; if K is a ramified extension set λ(α) = πkN(α +Π−k+sℓ). The above

expression is equal to∑
n1+n2=k+ℓ

M
(
(πn1,n2)s

) ∫
O×

dα

∫
o×
dβ ξ0

(
βλ(α)

)
M−1

0 (α)η(Nα)νηµ−1(β).
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If the order r of νηµ−1 is not zero this is equal to

(F) ∆(νηµ−1, π−r)

·
∑

n1+n2=k+ℓ

M
(
(πn1,n2)s

) ∫
{α∈O× | πrλ(α)∈o× }

M−1
0 (α)η(Nα)µν−1η−1

(
πrλ(α)

)
dα.

If the order of νηµ−1 is zero it is equal to∑
n1+n2=k+ℓ

M
(
(πn1,n2)s

){∫
{α∈O× | λ(α)∈o}

M−1
0 (α)η(Nα) dα

+
|π|

|π| − 1

∫
{α∈O× | πλ(α)∈o× }

M−1
0 (α)η(Nα) dα

}
,

an expression that will be labelled (G).
If K is an unramified extension of k, r = n > 0 and the expression (F) is zero unless k − ℓ

and k − n are even. There is only one term in (F) and the corresponding integral is∫
{
α∈O×

∣∣∣∣ πr+ k−r
2 ,r+ k−r

2 α+πr+ ℓ−r
2 , ℓ−r

2 ∈O×
}M−1

0 (α)η(Nα)µν−1

· η−1

(
N
(
πr+ k−r

2
,r+ k−r

2 α + πr+ ℓ−r
2

,r+ ℓ−r
2

))
dα.

Set M s
0 (α) =M0(α

s). Since M−1
0 η1+s ·M−s

0 ν1+s = (µ−1νη)1+s this integral is equal to

∆
(
M−1

0 η1+s, π
k−n
2

, k−n
2

)
∆
(
M−1

0 ν1+s, π
ℓ−n
2

, ℓ−n
2

)
∆
(
(µ−1νη)1+s, π−r,−r

) .

Putting everything together and appealing to Lemmas 1.1 and 1.5, we see that the right side
of (E) is equal to

χ(πn)M

((
π

k+ℓ
2

, k+ℓ
2

)s)(
1− |π|2

)2|π| k+ℓ
2

−n

·∆
(
M−1

0 η1+s, π
k−n
2

, k−n
2

)
∆
(
M−1

0 ν1+s, π
ℓ−n
2

, ℓ−n
2

)
.

Since ∆(M−σ, πm,m) = ∆(M−1, πm,m) it is equal to the left side.
If K is a ramified extension of k and r > 0 there is only one term in the sum (F) and the

integral appearing in that term is∫
{α∈O× | Πr+kα+Πr+sℓ∈O× }

M−1
0 (α)η(Nα)µν−1η−1

(
N(Πr+kα +Πr+sℓ)

)
dα.

Replace α by Π−ℓ+sℓα to obtain

M(Πℓ−sℓ)

∫
{α∈O× | Πr+kα+Πr+ℓ∈O× }

M−1
0 (α)η(Nα)µν−1η−1

(
N(Πr+kα +Πr+ℓ)

)
dα.

If r > f then r = n, the order of (µν−1η−1)1+s is 2n− f , 0, r + k = 2n− f + (k − n+ f),
r + ℓ = 2n − f + (k − n+ f). If r < f then n = f , the order of (µν−1η−1)1+s is (r, 0),
and r + k = r + (k − n+ f), r + ℓ = r + (ℓ− n+ f). If r = f then n ⩽ f , the order



12 LETTER TO HERVÉ JACQUET—1967

of (µν−1η−1)1+s is (n, 0), r + k = n + (k − n+ f), r + ℓ = n + (k − ℓ+ f). According to
Lemma 1.4 the above expression is equal to

M(Πℓ−sℓ)
∆(M−1

0 η1+s, πk−n,0)∆(M−s
0 ν1+s, πℓ−n,0)

∆
(
(µ−1νη)1+s, π−r1,−r2

)
if (r1, r2) is the order of (µ−1νη)1+s. Observe that

∆(M−1
0 ν1+s, πℓ−n,0) =M(Π(n−ℓ)(1−s))∆(M−1

0 ν1+s, π(ℓ−n,0)).

Appealing to Lemmas 1.1 and 1.5, we see that, if r > 0, the right side of (E) is equal to

M(Πn(1+s))M(Π(k+ℓ−2n)s)
(
1− |π|

)2|π|a{∆(χ0, π
−f )∣∣∆(χ0π−f )
∣∣
}2

∆(M−1
0 η1+s, πk−n,0)∆(M−1

0 ν1+s, πℓ−n,0)

with a = k+ℓ+f
2

− n
2
+ r

2
− r1

2
= k−n+f

2
+ ℓ−n+f

2
. This is obviously equal to the left side.

If r = 0 the expression (G) is equal to the product of M(Π(k+ℓ)s) and∫
{α∈O× | Πkα+Πsℓ∈O}

M−1
0 (α)η(Nα) dα

+
|π|

|π| − 1

∫
{α∈O× | Πk+1α+Π1+sℓ∈O× }

M−1
0 (α)η(Nα) dα.

After a change of variables this becomes

M(Πℓ−sℓ)

{∫
{α∈O× | Πkα+Πℓα∈O}

M−1
0 (α)η(Nα) dα

+

∫
{α∈O× | Πk+1α+Πℓ+1∈O× }

M−1
0 (α)η(Nα) dα

|π|
|π| − 1

}
.

Since (µ−1νη)1+s will also be trivial this is equal to

M(Πℓ−2s)∆(M−1
0 η1+s, πk−n,0)∆(M−s

0 η1+s, πℓ−n,0)

because n = f in this case. Thus the right side of (E) is equal to

M(Πn(1+s))M(Π(k+ℓ−2n)s)
(
1− |π|

)2|π| k+ℓ
2

{
∆(χ0, π

−f )∣∣∆(χ0, π−f )
∣∣
}2

·∆(M−1
0 η1+s, πk−n,0)∆(M−1

0 ν1+s, πℓ−n,0).

Since χ(Πn(1+s)) = 1 and Πn(1+s) = πn, it is equal to the left side.
It remains to consider the case that K = k ⊕ k. Then r− n is not zero and (F) is equal to

the product of ∆(νηµ−1, πn) and∑
(n1+n2=k+ℓ)

∑
(m1+m2=r)

M(πn1,n2)

∫
{α∈O× | πn1+m1−ℓ,n2+m2α+πm1,m2+ℓ∈O× }

M−1
0 (α)η(Nα)

· µν−1η−1
(
N(πn1+m1−ℓ,n2+m2α + πm1,m2+ℓ)

)
dα.



LETTER TO HERVÉ JACQUET—1967 13

This is equal to∑
(n1+n2=k+ℓ)

∑
(m1+m2=r)

M(πn2,n1)∆(M−1
0 η1+s, πn1+m1−n−ℓ,n2+m2−n)

∆(M−1
0 ν1+s, πm2+ℓ−n,m1−n)

divided by ∆
(
(µ−1νη)1+s, π−n,−n

)
. Replace m1 by m1 + n, m2 by m2 − ℓ + n, interchange

the order of summation and replace n1 by n1 −m1 + ℓ, n2 by n2 −m2 + ℓ to see that the
sum is equal to∑

(m1+m2=ℓ−n)

∑
(n2+n1=k−n)

M(πn1,n2)M(πm1,m2)M(πn,n)

∆(M−1
0 η1+s, πn1,n2)∆(M−1

0 η1+s, πm2,m1).

Appealing to Lemmas 1.1 and 1.5, we see that the right side of (E) is equal to

ω(πn)
(
1− |π|

)4|π| k+ℓ
2

+n

·
∑

(n1+n2=k−n)

∑
(m1+m2=ℓ−n)

M(πn2,n1)M(πm2,m1)∆(M−1
0 η1+s, πn1,n2)∆(M−1

0 ν1+s, πm1,m2).

This is of course just the left side.

Lemma 1.7. Let ω and M be homomorphisms of k× and K× respectively into C×. Suppose
that the restriction of M to k× is ωχ. Let ν and η be characters of o× and let ω0 be the
restriction of ω to o×. If νηω−1

0 is trivial then for all integers k and ℓ

−2∑
−∞

−ω(π−m)T (M, η, k +m)T (M, ν, ℓ+m)

+
1

|π| − 1
ω(π)T (M, η, k − 1)T (M, ν, ℓ− 1) + ω0(−1)δℓ,kω(π

ℓ)

=
∑
ρ

∆(η, ρ−1, πk)∆(νρ−1, πℓ)T (M,ρ, k + ℓ).

δℓ,k is of course Kronecker’s delta. For brevity denote the left side by Lk,ℓ and the right
side by Rk,ℓ. Suppose at first that k ≪ 0 and ℓ≪ 0. Then Lk,ℓ = ω0(−1)ω(πℓ)δℓ,k. The only
terms which contribute anything to the right hand side are those for which order(ρ) = −k
and order(ρ) = −ℓ. Thus the right side is zero if k ̸= ℓ. Suppose order(ρ) = −ℓ and k = ℓ.
The order, (r1, r2), of M

−1
0 ρ1+s is (−ℓ,−ℓ) if K = k⊕ k or K is an unramified extension of k.

It is (−2ℓ− f, 0) if K is a ramified extension of k. Moreover if n1 + n2 = k + ℓ

∆(M−1
0 ρ1+s, πn1,n2) = 0

if −n1 ̸= r1 + f . The orders of η−1ρ and ν−1ρ are both −ℓ. The orders of

(M−1
0 ρ1+s)−1(η−1ρ)1+s =M0η

−1−s

and
(M−1

0 ρ1+s)−1(ν−1ρ)1+s =M0ν
−1−s
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are independent of ℓ. Moreover the restriction of M−1
0 ρ1+s to o× is equal to χ0(η

−1ρ)(ν−1ρ).
According to Lemma 1.5

∆(M−1
0 ρ1+s, π−r1−f1−r2)

=
M(Πℓ−sℓ)

χ(πℓ)
∆(η−1ρ, πℓ)∆(ν−1ρ, πℓ)

∆(χ0, π−f )∣∣∆(χ0, π−f )
∣∣ 1− |π|
1− ϵ|π|

|π|
r1+r2+2ℓ

2 .

Since ∆(η−1ρ, πℓ) = ηρ−1(−1)∆(ηρ−1, πℓ) the term corresponding to a ρ with order ρ = −ℓ is
M(Πℓ−sℓ)M

(
(π−r1−f,−r2)s

)
χ(πℓ)

νη(−1)
1

|π|ℓ
(
1− |π|

)2 .
This is clearly equal to

M(πℓ)

χ(πℓ)
ω0(−1)

1

|π|ℓ
(
1− |π|

)2 =
ω(πℓ)ω0(−1)

|π|ℓ
(
1− |π|

)2 .
Since the number of such characters is |π|ℓ

(
1− |π|

)2
the lemma is valid if k ≪ 0 and ℓ≪ 0.

Thus to prove the lemma it is enough to show that

Lk+1,ℓ+1 − ω(π)Lk,ℓ = Rk+1,ℓ+1 = ω(π)Rk,ℓ

for all k and ℓ. The left-hand side is equal to

ω(π)

|π| − 1
T (M, η, k)T (M, ν, ℓ)− |π|

|π| − 1
ω2(π)T (M, η, k − 1)T (M, ν, k − 1).

Suppose K is an unramified extension. If k − ℓ is odd both of these terms are zero and
so is the right side. We suppose then that k − ℓ is even. If k is even only the first of these
two terms can be different from zero. If k is odd only the second can be. Remembering that
χ(π) = −1 so that ω(π) = −M(π1,1) we apply formula (G) to see that the right side is the

product of
(
1− |π|2

)
|π| k+ℓ

2 M
(
π

k+ℓ
2

, k+ℓ
2

+1
)
and

|π|
∫{

α∈O×

∣∣∣∣∣ πk+1N

(
α+π

ℓ−k
2 , ℓ−k

2

)
∈o

}M−1
0 (α)η(Nα) dα

+
|π|2

|π| − 1

∫
{
α∈O×

∣∣∣∣ π k+2
2 , k+2

2 α+π
ℓ+2
2 , ℓ+2

2 ∈O×
}M−1

0 (α)η(Nα) dα

+

∫{
α∈O×

∣∣∣∣∣ πkN

(
α+π

ℓ−k
2 , ℓ−k

2

)
∈o

}M−1
0 (α)η(Nα) dα

+
|π|

|π| − 1

∫
{
α∈O×

∣∣∣∣ π k+1
2 , k+1

2 α+π
ℓ+1
2 , ℓ+1

2 ∈O×
}M−1

0 (α)η(Nα) dα.



LETTER TO HERVÉ JACQUET—1967 15

If k is even πk+1N
(
α + π

ℓ−k
2

, ℓ−k
2

)
∈ o if and only if πkN

(
α + π

ℓ−k
2

, ℓ−k
2

)
∈ o so that, if k is

even, this expression equals

(
|π|+ 1

)
∫
{
α∈O×

∣∣∣∣ π k
2 , k2 α+π

ℓ
2 , ℓ2∈O×

}M−1
0 (α)η(Nα) dα

+
|π|2

|π|2 − 1

∫
{
α∈O×

∣∣∣∣ π k+2
2 , k+2

2 α+π
ℓ+2
2 , ℓ+2

2 ∈O×
}M−1

0 (α)η(Nα) dα


which equals (

|π|+ 1
)
∆
(
M−1

0 η1+s, π
k
2
, k
2

)
∆
(
M−1

0 ν1+s, π
ℓ
2
, ℓ
2

)
.

The identity, for even k, follows immediately. If k is odd the expression above simplifies to

(
|π|+ 1

)
∫
{
α∈O×

∣∣∣∣ π k−1
2 , k−1

2 α+π
ℓ−1
2 , ℓ−1

2 ∈O
}M−1

0 (α)η(Nα) dα

+
|π|2

|π|2 − 1

∫
{
α∈O×

∣∣∣∣ π k+1
2 , k+1

2 α+π
ℓ+1
2 , ℓ+1

2 ∈O×
}M−1

0 (α)η(Nα) dα


which equals (

|π|+ 1
)
∆
(
M−1

0 η1+s, π
k−1
2

, k−1
2

)
∆
(
M−1

0 ν1+s, π
ℓ−2
2

, ℓ−2
2

)
.

The identity, for odd k, follows immediately.
Suppose f > 0. If µ is the restriction of M0 to o× then νηµ−1 = χ0. According to (F), Rk,ℓ

is equal to the product of(
1− |π|

)
|π|

k+ℓ+f
2

∆(χ0, π
−f )∣∣∆(χ0, π−f )
∣∣∆(χ0, π

−f )M(Πs(k+ℓ)) = χ0(−1)|π|
k+ℓ
2

+fM(Πs(k+ℓ))

and

M(Πℓ−sℓ)

∫
{α∈O× | Πf+kα+Πf+ℓ∈O× }

M−1
0 (α)η(Nα) dα.

On the other hand
ω(π)

|π| − 1
T (M, η, k)T (M, ν, ℓ)− |π|

|π| − 1
ω2(π)T (M, η, k − 1)T (M, ν, ℓ− 1)
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is equal to the product of
(
1− |π|

)2|π| k+ℓ
2

+fχ0(−1)M(Πℓ+1+s(k+1)) and

1

|π| − 1

{∫
{α∈O× | Πf+kα+πf+ℓ∈O}

M−1
0 (α)η(Nα) dα

+
|π|

|π| − 1

∫
{α∈O× | Πf+k+1α+πf+ℓ+1∈O× }

M−1
0 (α)η(Nα) dα

}

− 1

|π| − 1

{∫
{α∈O× | Πf+k−1α+Πf+ℓ−1∈O}

M−1
0 (α)η(Nα) dα

+
|π|

|π| − 1

∫
{α∈O× | Πf+kα+Πf+ℓ∈O× }

M−1
0 (α)η(Nα)dα

}
.

Some simple rearrangements show that this is equal to

−1(
|π| − 1

)2 ∫{α∈O× | Πf+kα+Πf+ℓ∈O× }
M−1

0 (α)η(Nα) dα

+
|π|(

|π| − 1
)2 ∫{α∈O× | Πf+k+1α+Πf+ℓ+1∈O× }

M−1
0 (α)η(Nα) dα.

The identity follows immediately.
Finally we have to treat the case that K = k ⊕ k. It is enough to verify that

∞∑
p=0

|π|pω(πp)
{
Lk+1−p,ℓ+1−p − ω(π)Lk−p,ℓ−p

}
=

∞∑
p=0

|π|pω(πp)
{
Rk+1−p,ℓ+1−p − ω(π)Rk−p,ℓ−p

}
.

The left side is equal to
ω(π)

|π| − 1
T (M, η, k)T (M, ν, ℓ).

For brevity set

ψ(n1, n2;m1,m2) =

∫
{α∈O× | πn1,n2α+πm1,m2∈O× }

M−1
0 (α)η(Nα) dα.

Apply formula (G) to see that Rk,ℓ is the product of
(
1− |π|

)2|π| k+ℓ
2 and∑

n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

∑
q⩽0

ψ(n1 +m1 + q − ℓ, n2 +m2;m1 + q,m2 + ℓ)

+
|π|

|π| − 1

∑
n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

ψ(n1 +m1 + 1− ℓ, n2 +m2;m1 + 1,m2 + ℓ).
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Thus,
∑∞

p=0|π|pω(πp)Rk−p,ℓ−p is the product of
(
1− |π|

)2|π| k+ℓ
2 and∑

n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

∑
p⩽0

∑
q⩽0

ψ(n1 +m1 + q − ℓ, n2 +m2 + p;m1 + q,m2 + ℓ+ p)

+
|π|

|π| − 1

∑
n1+n2=k+ℓ

M(πn2,n1)

·
∑

m1+m2=0

∑
p⩽0

ψ(n1 +m1 + 1− ℓ, n2 +m2 + p;m1 + 1,m2 + ℓ+ p).

Now
ω(π)

|π| − 1
T (M, η, k)T (M, ν, ℓ)

is equal to the product of
(
|π| − 1

)3
ω(π)|π| k+ℓ

2 and∑
(m1+m2=ℓ)

∑
(n1+n2=k)

M(πn2,n1)M(πm2,m1)∆(M−1
0 η1+s, πn1,n2)∆(M−1

0 ν1+s, πm1,m2).

Replace n1 by n1 −m2 = n1 +m1 − ℓ, n2 by n2 −m1 = n1 +m2 − ℓ, and then m2 by m2 + ℓ
to obtain∑

n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

∆(M−1
0 η1+s, πn1+m1−ℓ,n2+m2)∆(M−1

0 ν1+s, πm1,m2+ℓ).

According to Lemma 1.4 this is the sum of∑
(n1+n2=k+ℓ)

∑
(m1+m2=0)

M(πn2,n1)
∑
p⩽0

∑
q⩽0

ψ(n1 +m1 + q − ℓ, n2 +m2 + p;m1 + q,m2 + ℓ+ p)

and

|π|
|π| − 1

∑
(n1+n2=k+ℓ)

∑
(m1+m2=0)

M(πn1,n2)

·
∑
p⩽0

ψ(n1 +m1 + 1− ℓ, n2 +m2 + p,m1 + 1,m2 + ℓ+ p)

and

|π|
|π| − 1

∑
(n1+n2=k+ℓ)

∑
(m1+m2=0)

M(πn2,n1)

·
∑
q⩽0

ψ(n1 +m1 + q − ℓ, n2 +m2 + 1,m1 + q,m2 + ℓ+ 1)

and(
|π|

|π| − 1

)2 ∑
(n1+n2=k+ℓ)

∑
(m1+m2=0)

M(πn2,n1)

· ψ(n1 +m1 + 1− ℓ, n2 +m2 + 1;m1 + 1,m2 + ℓ+ 1).
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On the other hand
∞∑
p=0

|π|pω(πp)Rk+1−p,ℓ+1−p − ω(π)
∞∑
p=0

|π|pω(πp)Rk−p,ℓ−p

is equal to
(
1− |π|

)2|π| k+ℓ
2 ω(π) times the sum of

|π|2

|π| − 1

∑
n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

ψ(n1 +m1 + 1− ℓ, n2 +m2 + 1,m1 + 1,m2 + ℓ+ 1)

and

|π|2

|π| − 1

∑
n1+n2=k+ℓ

M(πn2,n1)
∑

m1+n2=0

∑
p⩽0

ψ(n1 +m1 + 1− ℓ, n2 +m2 + p;m1 + 1,m2 + ℓ+ p)

and

|π|
∑

n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

∑
q⩽0

ψ(n2 +m1 + q − ℓ, n2 +m2 + 1,m1 + q,m2 + ℓ+ 1)

and

|π|
∑

n1+n2=k+ℓ

M(πn2,n1)

·
∑

m1+m2=0

∑
p⩽0

∑
q⩽0

ψ(n1 +m1 + q − ℓ, n2 +m2 + p;m1 + q,m2 + ℓ+ p),

the contributions of the first infinite series, and

− |π|
|π| − 1

∑
n1+n2=k+ℓ

M(πn2,n1)

·
∑

m1+m2=0

∑
p⩽0

ψ(n1 +m1 + 1− ℓ, n2 +m2 + p;m1 + 1,m2 + ℓ+ p)

and

−
∑

n1+n2=k+ℓ

M(πn2,n1)
∑

m1+m2=0

∑
p⩽0

∑
q⩽0

ψ(n1 +m1 + q − ℓ, n2 +m2 + p;m1 + q,m2 + ℓ+ p),

the contributions of the second. The identity can now be verified by inspection.

2. Representations of the general linear group in two variables over a
non-archimedean field

This paragraph is, in its essentials, a recapitulation of work of Gelfand, Graev, and
Kirillov. We adhere to the notation of the previous paragraph. Let Gk = GL(2, k) and let
GO = GL(2, O). A is the group of diagonal matrices and N is the group of matrices of the
term ( 1 x

0 1 ).
A representation σ of Gk on a vector space V , over C, will be called quasi-simple if

(i) The stabilizer of every vector in V is an open subgroup of Gk.
(ii) If α ∈ k× then σ

(
( α 0
0 α )

)
is a scalar multiple of the identity.

Lemma 2.1. Suppose σ is a quasi-simple irreducible representation of Gk on the vector space
V . V contains a non-zero vector invariant under Nk if and only if V is finite-dimensional.
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First of all suppose that V contains a non-zero vector v whose stabilizer contains Nk. Let
H =

{
g ∈ Gk

∣∣ σ(g)v = λv with λ ∈ C
}
. Since V is spanned by the set

{
σ(g)v

∣∣ g ∈ Gk

}
it is sufficient to show that H is of finite index in Gk. Since H contains the diagonal matrices
together with an open subgroup of Gk the image of H under the determinant function is of
finite index in k×. Thus it is sufficient to show that H0 =

{
g ∈ Gk

∣∣ σ(g)v = v
}
contains all

matrices of determinant 1.
Let W be the space of column vectors of length 2 with entries from k. Let us show first

that if w ∈ W and w ̸= 0 there is an h in H and an x in k× such that

w = h

(
x
0

)
.

If the second coordinate of w is zero this is clear. Since the stabilizer of v is open in Gk there
is g in H0 such that

g

(
1
0

)
=

(
α
β

)
with β ̸= 0. Then (

1 x
0 1

)(
α
β

)
=

(
α + βx
β

)
.

If the second coordinate of w is not 0 we can choose x so that w is a scalar multiple of the
vector on the right.

In particular H0 contains a matrix of the form
(
0 b
c d

)
. Since(

0 b
c d

)(
1 −d/c
0 1

)
=

(
0 b
c 0

)
and (

0 b
c 0

)(
1 x
0 1

)(
0 1/c
1/b 0

)
=

(
0 b
c 0

)(
x/b 1/c
1/b 0

)
=

(
1 0

cx/b 1

)
,

H0 contains all matrices of the form
(
1 0
y 1

)
. Since(

1 z
0 1

)(
1 0
x 1

)
=

(
1 + xz z
x 1

)
=

(
1 0

x/(1 + xz) 1

)(
1 + xz 0

0 1/(1 + xz)

)(
1 z/(1 + xz)
0 1

)
,

if 1 + xz ̸= 0, H0 contains all diagonal matrices of determinant 1. Since(
1 0
x 1

)(
α 0
0 β

)(
1 y
0 1

)
=

(
α 0
αx β

)(
1 y
0 1

)
=

(
α αy
αx β + αxy

)
H0 contains all matrices

(
a b
c d

)
, a ̸= 0, which have determinant 1. Since(
1 x
0 1

)(
0 b
c d

)
=

(
cx b+ dx
c d

)
,

H0 contains all matrices of determinant 1.
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Conversely if V is finite-dimensional the kernel of σ is an open subgroup of Gk and there
is an ϵ > 0 such that ( 1 x

0 1 ) belongs to this kernel if |x| < ϵ. Since(
α 0
0 1

)(
1 x
0 1

)(
1
α

0
0 1

)
=

(
1 αx
0 1

)
and for any x there is an α in k× such that |αx| < ϵ, the kernel of σ contains Nk.

Corollary. If σ is a finite-dimensional quasi-simple irreducible representation of Gk then
σ is one-dimensional and there is a continuous homomorphism ρ of k× into C× such that
σ(g) = ρ(det g)

Since the kernel of σ contains Nk together with an open subgroup of Gk the above discussion
shows that it contains every matrix of determinant 1. Also the inverse image of the group
of non-zero matrices is of finite index in Gk. Thus if g ∈ Gk there is a λ in C× and a
positive integer n such that σ(g)n − λ = 0. Thus σ(g) is semi-simple. The corollary follows
immediately.

Again we fix a character ξ0 of the additive group of k such that the largest ideal on which
ξ0 is trivial is 0.

Lemma 2.2. Suppose σ is an infinite-dimensional quasi-simple irreducible representation of
Gk on V . Let W be the set of all vectors v in V such that for some ideal a of k∫

a

ξ0(x)σ

((
1 x
0 1

))
v dx = 0.

Then W is a subspace of V . Let U = V/W . If v ∈ V let φv be the function k× with values in
U defined by

φv(α) = ψ

π((α 0
0 1

))
v


where φ is the natural mapping from V to U . The map v → φv is an injection of V into the
space of functions on k× with values in U .

Since the stabilizer of v in Nk is an open subgroup of Nk the function σ
(
( 1 x
0 1 )
)
v takes

only a finite number of values on a. Thus the integral involves no limiting processes and is
well-defined. If a ⊂ b then∫

b

ξ0(x)σ

((
1 x
0 z

))
v dx =

∑
y

ξ0(y)σ

((
1 y
0 1

))∫
a

ξ0(x)σ

((
1 x
0 1

))
v dx


where the sum is taken over a system of representatives of b/a. It follows immediately that if
the integral vanishes for a given ideal then it vanishes for all larger ideals. A simple argument
now shows that W is a subspace of V .
If φv vanishes identically then for every α in K× there is an ideal a(α) such that∫

a(α)

ξ0(αx)σ

((
1 x
0 1

))
v dx = 0.
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If β ∈ o× and σ
((

β 0
0 1

))
v = v then∫

a

ξ0(αβx)σ

((
1 x
0 1

))
v dx = σ

((
β−1 0
0 1

))∫
a

ξ0(αx)σ

((
1 x
0 1

))
v dx.

Since the set of all β in k× such that σ
((

β 0
0 1

))
v = v is an open subgroup of k×, there is for

each integer n an ideal an such that if an ⊆ a and α ∈ o×∫
a

ξ0(απnx)σ

((
1 x
0 1

))
v dx = 0.

There certainly is an integer n0 such that the function σ
(
( 1 x
0 1 )
)
v is constant on cosets of

p−n0 . Let us show that if φv vanishes identically and this function is constant on left cosets
of p−n then it is constant on left cosets of p−n−1. This will show that σ

(
( 1 x
0 1 )
)
v = v for all x.

It will then follow from Lemma 2.1 that v = 0.
Take any ℓ such that ℓ ⩾ n+ 1 and p−ℓ ⊇ an. If x ∈ p−ℓ then

σ

((
1 x
0 1

))
v = |π|ℓ

ℓ∑
m=n

∑
α∈o×/oℓ−m

ξ0(απ
mx)

∫
p−ℓ

ξ0(απny)σ

((
1 y
0 1

))
v dy.

By assumption the terms of this sum corresponding to m = n are zero. Since ξ0(απ
mx) is

constant on left cosets of p−n−1 if m > n the assertion follows.

Lemma 2.3.

(i) If w = σ
(
( α 0
0 1 )

)
v then φw(β) = φv(βα)

(ii) If w = σ
(
( 1 x
0 1 )
)
v then φw(β) = ξ0(βα)φv(β)

(iii) If v is in V there is an integer k and a non-negative integer n such that φv(α) = 0 if
|α| > |π|k and φv(βα) = φv(α) if β ∈ o×n .

The first assertion is a matter of definition. To prove the second we have to show that

σ

((
α 0
0 1

))
σ

((
1 x
0 1

))
v − ξ0(αx)σ

((
α 0
0 1

))
v = z

is in W . Let u = σ
(
( α 0
0 1 )
)
v. Then∫

a

ξ0(y)σ

((
1 y
0 1

))
z dy

is equal to ∫
a

ξ0(y)σ

((
1 y + αx
0 1

))
u dy − ξ0(αx)

∫
a

ξ0(y)σ

((
1 y
0 1

))
u dy.

If αx ∈ a we can change variables in the first integral to see that it equals the second term.

Finally it is clear that if σ
(
( 1 x
0 1 )
)
v = v for |x| ⩽ |π|−k and σ

((
β 0
0 1

))
v = v for β ∈ o×n then

φv(α) = 0 if |α| > |π|k and φv(βα) = φv(α) if β ∈ o×n .

Let ν be a character of o× and let Vν =
{
v ∈ V

∣∣∣ σ(( α 0
0 1 )
)
v = ν(α)v for all α ∈ o×

}
. It

is clear that V is the direct sum of the spaces Vν . Let V̂ be the set of all v in V such that, for
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some k ⩾ 0, φv(α) = 0 if |α| > |π|−k or |α| < |π|k. Let V̂ν = Vν ∩ V̂ . It is also clear that V̂ is

the direct sum of the spaces V̂ν . Finally let V 0 be the set of all v in V such that φv(α) ̸= 0 if
|α| ≠ 1 and let V 0

ν = Vν ∩ V 0. V 0 is the direct sum of the spaces V 0
ν .

Lemma 2.4.

(i) For each ν the restriction of ψ to V 0
ν defines an isomorphism of V 0

ν and U

(ii) V̂ν is the direct sum of the spaces σ
((

πk 0
0 1

))
V 0
ν , k ∈ Z.

(iii) If v is in Vν there is a unique vk in V 0
ν such that if u = v − σ

((
π−k 0
0 1

))
vk then

φu(α) = 0 if |α| = |π|k.
(iv) V is spanned by V̂ and the vectors of the form

σ

((
0 1

−1 0

))
v

with v in V̂ .

We start with (iii) of which (ii) is an obvious consequence. The uniqueness of vk is clear.
If k is negative and |k| is sufficiently large we can take vk = 0. Thus the proof can proceed
by induction on k. Set

w = v −
∑
ℓ<k

σ

(π−ℓ 0
0 1

)vℓ.
φw(α) = 0 if |α| > |πk| and φw(α) = φv(α) if |α| ⩽ |π|k. Set

vk = |π|−k−1σ

(πk 0
0 1

)∫
p−k−1

w − σ

((
1 x
0 1

))
w

 dx.

Then,

φvk(π
−kα) = |π|−k−1

∫
p−k−1

{
1− ξ0(αx)

}
dxφw(α).

The right side is zero if |α| ⩽ |π|k+1 or |α| > |πk|. It is φw(α) if |α| = |πk|. Part (iii) of the
lemma follows.
It is clear that the restriction of ψ to V 0

ν is an injection. It follows from (iii) that the
restriction of ψ to V 0 is a surjection. Thus U =

∑
µ ψ(V

0
µ ). To prove part (i) it is sufficient

to show that if u ∈ U and u = ψ(v) for a v in some V 0
µ then there is a w in V 0

ν such that
u = ψ(w). Given v set

z =

∫
o×
ν(β)σ

((
β 0
0 1

))
σ

((
1 x
0 1

))
v dβ

where x is yet to be determined. Then z is in Vν and since

φz(α) = φv(α)

∫
o×
µν(β)ξ0(αβx) dβ

it is in V 0
ν . In particular

ψ(z) = φz(1) =

{∫
o×
µν(β)ξ0(βx) dβ

}
u.
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Choose x so that this integral is not zero and set

w =

{∫
o×
µν(β)ξ0(βx) dβ

}−1

z.

It follows from (i) that V̂ ̸= {0}. Choose w different from zero in V̂ . Since σ is irreducible
V is spanned by the vectors σ(g)w, g ∈ Gk. Either g =

(
a b
0 d

)
or g = ( 1 x

0 1 )
(

0 1
−1 0

)(
a b
0 d

)
. In

the first case σ(g)w is in V̂ . In the second case σ(g)w is of the form σ
(
( 1 x
0 1 )
)
σ
((

0 1
−1 0

))
u

with u in V̂ . It is easily seen that if v belongs to V and x belongs to k then σ
(
( 1 x
0 1 )
)
v − v

belongs to V̂ . The last assertion of the lemma follows.

If v is in V let v =
∑

ν vν with vν in Vν . Choose vk,ν so that if u = vν − σ
((

π−k 0
0 1

))
vk,ν

then φu(α) = 0 if |α| = |πk|. Set uk,ν = ψ(vk,ν) and write, purely formally,

v ∼
∑
ν

∑
ℓ

uℓ,νz
ℓ.

Let σ
(
( α 0
0 α )

)
= ω(α)I for α ∈ k× and let ω0 be the restriction of ω to o×. Let ṽ(α) =

ω0(α)ν
−1(α) if α ∈ o×. If v is in V 0

ν , then σ
((

0 1
−1 0

))
v is in Vν̂ . Let

σ

((
0 1

−1 0

))
v ∼

∑
k

ukz
k.

If ψ(v) = u the map u→ uk is a linear transformation from U to U . Denote it by Tk,ν . If v

is in V̂ and
v ∼

∑
ν

∑
ℓ

uℓ,νz
ℓ

then

σ

((
0 1

−1 0

))∑
ν

∑
ℓ

 ∑
m−k=ℓ

ω(π−k)Tm,ν̂uk,ν̃

zℓ.
It follows from the third part of Lemma 2.4 that if v ∈ V there is a unique vk in V 0 such

that if u = v − σ
((

π−k 0
0 1

))
vk then φu(α) = 0 if |α| = |π|k. If w = σ

(
( 1 x
0 1 )
)
v then vk is

replaced by wk = σ
((

1 πkx
0 1

))
vk. If vk =

∑
ν vk,ν with vk,ν in V 0

ν and wk =
∑

ν wk,ν with wk,ν

in V 0
ν then

wk,µ =
∑
ν

∫
o×
νµ(β)σ

(1 βπkx
0 1

)vk,ν dβ.
Consequently

ψ(wk,µ) =
∑
ν

∆(νµ−1, πkx)ψ(vk,ν).
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Thus if

v ∼
∑
ν

∑
ℓ

uℓ,νz
ℓ,

w ∼
∑
ν

∑
ℓ

∑
µ

∆(µν−1, πℓx)uℓ,µ

.
It is also easily seen that

σ

((
πn 0
0 1

))
v ∼

∑
ν

∑
ℓ

uℓ+n,νz
ℓ.

The identity(
0 1

−1 0

)(
1 x
0 1

)(
0 1

−1 0

)
=

(
−1/x 0
0 −x

)(
1 −x
0 1

)(
0 1

−1 0

)(
1 −1/x
0 1

)
for x ̸= 0 is easily verified. If v is in V̂ and

v ∼
∑
ν

∑
ℓ

uℓ,vz
ℓ

then

π

((
0 1

−1 0

))
v ∼

∑
ν

∑
k

∑
ℓ

ω(π−ℓ)Tk+ℓ,ν̃uℓ,ν̃

zk,
σ

((
1 x
0 1

))
σ

((
0 1

−1 0

))
v ∼

∑
µ

∑
k

∑
ℓ

∑
ν

ω(π−ℓ)∆(νµ−1, πkx)Tk+ℓ,ν̃uℓ,ν̃

zℓ.
If δν = 1 if ν is trivial and δν = 0 otherwise, then σ

(
( 1 x
0 1 )
)((

0 1
−1 0

))
v − σ

((
0 1

−1 0

))
v which

belongs to V̂ corresponds to∑
µ

∑
k

∑
ℓ

∑
ν

[
∆(νµ−1, πkx)− δνµ−1

]
ω(π−ℓ)Tk+ℓ,ν̃uℓ,ν̃

zℓ.
Finally σ

((
0 1

−1 0

))(
( 1 x
0 1 )
)((

0 1
−1 0

))
v corresponds to

∑
µ

∑
k

∑
ℓ,m,ν

[
∆(νµ̃−1, πmx)− δνµ̃−1

]
ω(π−ℓ−m)Tk+m,µ̃Tm+ℓ,ν̃uℓ,ν̃

zk
+
∑
µ

∑
k

ω(−1)uk,µz
k.

On the other hand σ

((
1 −1/x
0 1

))
v corresponds to

∑
µ

∑
ℓ

{∑
ν

∆(νµ−1,−πℓ/x)uℓ,ν

}
zℓ
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and σ

((
0 1

−1 0

)(
1 −1/x
0 1

))
v corresponds to

∑
µ

∑
k

∑
ℓ

∑
k

ω(π−ℓ)∆(νµ̃−1,−πℓ/x)Tk+ℓ,µ̃uℓ,ν

zk.
Letting σ

((
1 −x
0 1

))
operate we obtain a vector corresponding to

∑
µ

∑
k

∑
ℓ,ν,η

ω(π−ℓ)∆(ηµ−1,−πkx)∆(νη̃−1,−πℓ/x)Tk+ℓ,η̃uℓ,ν

zk.
Finally if 1

x
= πrβ with β ∈ o× we apply σ

((
−1/x 0

0 −x

))
to obtain

∑
µ

∑
k

∑
ℓ,ν,η

µ(β2)ω(−x)ω(π−ℓ)∆(ηµ−1,−πk+2rx)∆(νη̃−1,−πℓx)Tk+2r+ℓ,η̃uℓ,ν

zk.
Thus we obtain the identities∑
m

{
∆(ν̃µ̃−1, πmx)ω(π−ℓ−m)Tk+m,µ̃Tm+ℓ,ν − δν̃µ̃−1ω(π−ℓ−m)Tk+m,µ̃Tm+ℓ,ν

}
+ ω(−1)δνµ−1δℓ,k

=
∑
η

µ(β2)ω(−x)ω(π−ℓ)∆(ηµ−1,−πk+2rx)∆(νη̃−1,−πℓ/x)Tk+2r+ℓ,η̃.

For all we know at present both these sums are infinite. However all but a finite number of
the operators on each side send a given vector in U to zero. Thus as an operational equation
the identity has a sense.

We can rewrite the identities as∑
m

{[
∆(ν−1µ−1ω0, π

mβ−1)− δνµω−1
0

]
ω(π−ℓ−m)Tk+m,µTm+ℓ,ν

}
+ ω0(−1)δνµω−1

0
∆ℓ,k

=
∑
η

µ̃(β2)ω−1
0 (−β)ω(π−ℓ)∆(µη−1,−πkβ−1)∆(νη−1,−πℓβ)Tk+ℓ,η.

Recalling that ∆(ν, βy) = ν−1(β)∆(ν, y) we simplify the identities to∑
m

{[
∆(ν−1µ−1ω0, π

m)− δνµω−1
0

]
ω(π−m)Tk+m,µTm+ℓ,ν

}
+ ω0(−1)δνµω−1

0
ω(πℓ)

= µνω−1
0 (−1)

∑
η

∆(µη−1, πk)∆(vη−1, πℓ)Tk+ℓ,η.
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Making use of Lemma 1.1 we can simplify these identities further. If the order n of νµω−1
0

is positive the identity becomes

(A) ∆(ν−1µ−1ω0, π
−n)ω(πn)Tk−n,µTℓ−n,ν

= µνω−1
0 (−1)

∑
η

∆(µη−1, πk)∆(νη−1, πℓ)Tk+ℓ,η.

If νµω−1
0 = 1 the identity becomes

(B)
−2∑

m=−∞

−ω(π−n)Tk+m,µTm+ℓ,ν +
1

|π| − 1
ω(π)Tk−1,µTℓ−1,ν + ω0(−1)δℓ,kω(π

ℓ)

=
∑
η

∆(µη−1, πk)∆(νη−1, πℓ)Tk+ℓ,η.

Lemma 2.5.

(i) For all k, ℓ, µ, and ν, Tk,µTℓ,ν = Tℓ,νTk,µ.
(ii) There is no non-trivial subspace of u left invariant by all the operators Tk,µ.

If νµω−1
0 is not trivial the identity

Tk,µTℓ,ν = Tℓ,νTk,µ

follows immediately from (A). If νµω−1
0 is trivial let u be in U . For a given k and ℓ and for

m≪ 0 both Tk+m,µu and Tℓ+m,νu are zero. For such m

Tk+m,µTℓ+m,νu = Tℓ+m,νTk+m,µu.

Using the identity (B) and induction on m one shows readily that this relation is valid for all
m.

Suppose that U ′ is a nontrivial subspace of U left invariant by all the operators Tk,µ. Let
V ′ be the set of all v in V such that φv(α) ∈ U ′ for all α. If v ∈ V 0

ν then v ∈ V ′ if and only if

ψ(v) ∈ U ′. Thus V ′ is neither {0} nor V and V ′ ∩ V 0
ν ̸= {0}. It is clear that V ′ and V ′ ∩ V̂

are left fixed by the operators σ
((

a b
0 d

))
. Since V is irreducible it is spanned by V ′ ∩ V̂

together with the set σ
(
( 1 x
0 1 )
)
σ
((

0 1
−1 0

))
v, v ∈ V ′ ∩ V̂ . Thus to obtain a contradiction we

need only show that if v is in V ′ ∩ V̂ then σ
((

0 1
−1 0

))
v is in V ′. This is however an obvious

consequence of the assumption.
It follows from this lemma that each Tk,µ is either zero or an invertible linear transformation.

Thus for each µ there is an integer k(µ) such that Tk,µ = 0 if k < k(µ). Moreover one of
these operators can have a non-trivial eigenvector if and only if it is a scalar.

Now I would like to make some remarks which are not relevant to the main purpose of the
letter. First of all let me observe that if k, ℓ, µ, ν are arbitrary there is a scalar a and scalars
am,ρ all but a finite number of which are zero such that

Tk,µTℓ,ν = a+
∑
ρ

∑
m

am,ρTm,ρ.

If µνω−1
0 is not trivial this follows immediately from identity (A). If µνω−1

0 is trivial consider
the set of integers p for which Tk+p,µTℓ+p,ν is a linear combination of the identity and the
operators Tm,⩽. If p≪ 0, Tk+p,µTℓ+p,ν = 0 and p belongs to this set. Using identity (B) and
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a simple induction argument one shows that the set contains all integers. It follows from this
observation and the previous lemma that if u ≠ 0 belongs to U then U is spanned by u and
the set {Tm,ρu}.
Choose a fixed ν and let the order n of µ be positive and so large that the orders of

ν−1µ−1ω0 and νµ−1 are also n and Tr0,ν ̸= 0 for some r0 ⩾ −n. Take ℓ = r0 + n ⩾ 0 in
identity (A) and cancel Tr0,ν to obtain

∆(ν−1µ−1ω0, π
−n)ω(πn)Tk−n,µ = µνω−1

0 (−1)∆(µν−1, πk).

As a consequence for all but a finite number of characters of o× the operator Tk,µ is a scalar
for all k. If, for all ρ, Tm,ρ = 0 if m ⩾ −1 then there are only a finite number of operators
in the set {Tm,ρ} which are not scalars. Consequently U is finite-dimensional and each of
the operators Tm,ρ has a non-trivial eigenvector and is thus a scalar. It follows that U has
dimension 1.

It is very unlikely that our assumptions (i) and (ii) together with irreducibility imply that
U is one-dimensional. Consequently we make the further assumption which can certainly be
useful in the case of interest to us at present.

(iii) No representation of Go occurs more than a finite number of times in the restriction
of σ to Go.

If ρ is a representation of Go let Vρ be the set of all vectors in V which transform according
to ρ. Any operator on V which commutes with all the operators σ(g) must leave each of
the finite-dimensional spaces Vρ invariant. Thus it must have a non-trivial eigenvector and,
because of the irreducibility, must be a scalar. It follows immediately from the first part of

Lemma 2.4 that the map v → φv maps V̂ onto the set of all locally constant functions on k×

with values in U which vanish outside of some compact set. Suppose T is an operator on U
which commutes with all the operators Tm,ρ. If φ is a function on k× with values in U define

Tφ by (Tφ)(α) = T
(
φ(α)

)
. If v ∈ V̂ and

v ∼
∑
µ

∑
k

uk,µz
k

then Tφv = φw where

w ∼
∑
µ

∑
k

Tuk,µz
k.

Then

σ

((
0 1

−1 0

))
v ∼

∑
µ

∑
k

 ∑
m−ℓ=k

ω(π−ℓ)Tm,µ̃uℓ,µ̃

zk,
σ

((
0 1

−1 0

))
w ∼

∑
µ

∑
k

T

 ∑
m−ℓ=k

ω(π−ℓ)Tm,µ̃uℓ,µ̃

zk.
It follows immediately that T takes the image of V to itself. Thus it determines a linear
transformation of V which is easily shown to commute with all the operators. As a consequence
of assumption (iii) this linear transformation is a scalar. Thus T is a scalar. In particular all
the operators Tm,ρ are scalars and U is one-dimensional.

In the next two lemmas it is assumed that U is one-dimensional. Thus the operators Tm,ρ

are taken to be complex numbers.
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Lemma 2.7. Suppose that there is a character µ1 of o× and a k1 ⩾ −1 such that Tk1,µ1 ̸= 0.
Let K = k ⊕ k. There is a continuous homomorphism M of K× into C× such that for all ℓ
and ν

Tℓ,ν = T (M, ν; ℓ).

Let me observe immediately that it was shown in the previous paragraph that if the
restriction of M to k× is ω the identities (A) and (B) are satisfied if Tℓ,ν is replaced by
T (M, ν; ℓ). Set µ2 = µ−1

1 ω0. It will perhaps require less mental effort if the cases µ1 = µ2

and µ1 ̸= µ2 are treated separately.
Suppose first that µ1 = µ2. In identity (A) take ν = µ1, µ ̸= µ1, and take ℓ = k1 + n ⩾ 0

to obtain
∆(µ1µ

−1, π−n)ω(πn)Tk−n,µTk1,µ1 = µµ−1
1 (−1)∆(µµ−1

1 , πk)Tk+ℓ,µ1 .

The right side is zero unless k = −n but if k = −n we can cancel Tk1,µ1 from both sides to
obtain

T−2n,µ =
µµ−1

1 (−1)

ω(πn)

∆(µµ−1
1 , π−n)

∆(µ1µ−1, π−n)
=
(
1− |π|

)2|π|−nω(π−n)
{
∆(µ−1

1 µ, π−n)
}2
.

Thus if ω1 and ω2 are two complex numbers such that ω1ω2 = ω(π) and M is defined by
M(πpα⊕ πqβ) = ωp

1ω
q
2µ1(αβ) for α ∈ o×, β ∈ o× then Tk,µ = T (M,k, µ) for µ ̸= µ1.

Take µ = ν = µ1 and k = ℓ in identity (B). If k < −1 the right side is a sum over those η
such that the conductor of µ1η

−1 is p−ℓ. For such η

∆(µ1η
−1, πk)∆(µ1η

−1, πk)T2k,η

= ω(πk)µµ−1
1 (−1)∆(ηµ−1

1 , πk)∆(µ1η
−1, πk) =

ω(πk)|π|k(
1− |π|

)2 .
Since the number of such characters is |π|−k

(
1− |π|

)2
the right side of (B) is equal to ω(πk).

Since ω0(−1) = µ2
1(−1) = 1 we have, for k < −1,

−2∑
m=−∞

−ω(π−m)Tk+m,µ1Tk+m,µ1 +
ω(π)

|π| − 1
Tk−1,µ1Tk−1,µ1 = 0.

It follows by induction that Tm,µ1 = 0 if m < −2.
Now take µ = ν = µ1, ℓ = −1, and k ⩾ 0 in (B) to obtain

ω(π)

|π| − 1
Tk−1,µ1T−2,µ2 =

|π|
|π| − 1

Tk−1,µ1 .

Since Tk−1,µ1 ̸= 0 for some k ⩾ 0 we conclude that ω(π)T−2,µ1 = |π|.
Choose ω1 and ω2 to be the two solutions of the equation(

|π| − 1
){ x

ω(π)
|π|1/2 + |π|1/2

x

}
= T−1,µ1 .

It is easy to see that

∞∑
m=−∞

T (M,µ1,m)xm =

(
1− ω−1

1 x−1|π|1/2
)(

1− ω−1
2 x−1|π|1/2

)
(
1− ω1x|π|1/2

)(
1− ω2x|π|1/2

)
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if |x| > 0 and |x| is sufficiently small. Thus Tm,µ1 = T (M,µ1,m) if m < 0. Taking µ = ν = µ1,
k = 0, and ℓ ⩾ 0 in (B) we obtain

−2∑
m=−∞

−ω(π−m)Tm,µ1Tℓ+m,µ1 +
ω(π)

|π| − 1
T−1,µ1Tℓ−1,µ1 + ω0(−1)δℓ,kω(π

ℓ) = Tℓ,µ1 .

Since the same formula is valid if Tp,µ1 is replaced by T (M,µ1, p) we can show inductively
that Tm,µ1 = T (M,µ1,m) for all m.
Now suppose µ1 ̸= µ2. Let n be the order of µ1µ

−1
2 . Take µ = ν = µ1, ℓ = k1 + 1, and

k = −1 in identity (A) to obtain

∆(µ2µ
−1
1 , π−n)ω(πn)T−1−n,µ1Tℓ−n,µ1 = µ1µ

−1
2 (−1)

|π|
|π| − 1

Tk1,µ1 .

Thus T−1−n,µ1 ̸= 0. Now take ℓ = k1 + n, k < −1 to obtain

∆(µ2µ
−1
1 , π−n)ω(πn)Tk−n,µ1Tk,µ1 = 0.

Thus Tk−n,µ1 = 0 if k < −1.
Now let us look at the identity (B) with µ = µ1, ν = µ2. If k > −n and ℓ > −n the right

side is zero because the order of either µ1η
−1 or µ2η

−1 is at least n. Thus in this case

(C)
−2∑

m=−∞

−ω(π−m)Tk+m,µ1Tℓ+m,µ2 +
ω(π)

|π| − 1
Tk−1,µ1Tℓ−1,µ2 + ω0(−1)δℓ,kω(π

ℓ) = 0.

In particular take ℓ = n+ 1 to see that if k > −n+ 1 and Tk−1,µ2 = 0 so does Tk−2,µ2 .
If k < −n and ℓ ̸= k the right side of (B) is zero for µ = µ1, ν = µ2 because k ⩽ −2 and if

the order of µ1η
−1 is −k so is the order of µ2η

−1. Thus in this case
−2∑

m=−∞

−ω(π−m)Tk+m,µ1Tℓ+m,µ2 +
ω(π)

|π| − 1
Tk−1,µ1Tℓ−1,µ2 = 0.

The same result is valid if ℓ < −n and k ̸= ℓ. Take k = −n to see that Tm,µ2 = 0 if
m < −n− 1.
Thus if Tm,µ2 = 0 for all m ⩾ −1 then the only m for which Tm,µ2 ̸= 0 is m = −n − 1.

Taking ℓ = −n − 1 in (C) we would find that Tm,µ1 = 0 for m ⩾ −n which is contrary to
assumption. At this point µ1 and µ2 play identical roles.
Taking k = −n+ 1 in (C) we see that if ℓ ⩾ −n

Tℓ+1,µ2T−n,µ1 =
(
|π| − 1

)
ω(π)Tℓ,µ2T−1−n,µ1 .

Thus T−n,µ1 ̸= 0 and Tℓ,µ2 ̸= 0 if ℓ ⩾ −n. Set, if ℓ ⩾ −n,
ω1|π|1/2 = T ℓ+1,µ2

Tℓ,µ2

=
(
|π| − 1

)
ω(π)T−1−n,µ1

T−n,µ1

.

Similarly T−n,µ2 ̸= 0 and Tℓ,µ1 ̸= 0 if ℓ ⩾ −n. If ℓ ⩾ −n, set
ω2|π|1/2 = T ℓ+1,µ1

Tℓ,µ1

=
(
|π| − 1

)
ω(π)T−1−n,µ2

T−n,µ2

.

Now take ν = µ = µ1, ℓ ⩾ 0, k = −1 in (A) to obtain

∆(µ−1
1 µ2, π

−n)ω(πn)T−1−n,µ1Tℓ−n,µ1 = µ1µ
−1
2 (−1)

|π|
|π| − 1

Tℓ−1,µ1 .
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Thus

T−1−n,µ1 =
|π| − 1

|π|n−1
2

ωn−1
2

ω(πn)
∆(µ1µ

−1
2 , π−n).

In the same way

T1−n,µ2 =
|π| − 1

|π|n−1
2

ωn−1
1

ω(πn)
∆(µ2µ

−1
1 , π−n).

Thus if γ = ω1ω2

ω(π)
,

T−1−n,µ1 = γn
(
|π| − 1

)
|π|n−1

2

1

ω2ωn
1

∆(µ−1
2 µ1, π

−n),

Tℓ,µ1 = γn−1
(
1− |π|

)2|π| ℓ2ωℓ+n
1 ω−n

1 ∆(µ−1
2 µ1, π

−n), ℓ ⩾ −n,

T−1−n,µ2 = γn
(
|π| − 1

)
|π|n−1

2

1

ωn
2ω1

∆(µ−1
1 µ2, π

−n),

Tℓ,µ2 = γn−1
(
1− |π|

)2|π| ℓ2ω−n
2 ωℓ+n

1 ∆(µ−1
1 µ2, π

−n), ℓ ⩾ −n.
If we take µ different from µ1 and µ2, ν = µ1 and ℓ ⩾ 0 in identity (A) we obtain

∆(µ2µ
−1
1 , π−n2)ω(πn2)Tk−n2,µTℓ−n2,µ1 = µµ−1

2 (−1)∆(µµ−1
1 , πk)Tk+ℓ,µ1

if n1 is the order of µ1µ
−1 and n2 is the order of µ2µ

−1. Thus Tm,µ = 0 if m ̸= −n1 − n2 but

T−n1−n2,µ =
(
1− |π|

)2|π|−n1−n2
2 γn2ω−n1

2 ω−n2
1 ∆(µ−1

1 µ, π−n1)∆(µ−1
2 µ, π−n2).

If we can show that γ = 1 we will have proved that if M(πpα⊕ πqβ) = ωp
1ω

p
2µ1(α)µ2(β)

then T (M,µ,m) = Tm,µ for all µ and all m.
Take µ = µ1, ν = µ2 and k = ℓ = −n in (B). If the order of both ηµ−1

1 and ηµ−1
2 is n, the

value of the corresponding term on the right side is

µ1µ2(−1)
|π|n(

1− |π|
)2 1

ω(πn)
.

If n > 1 there are 1−|π|
|π|n

(
1− 2|π|

)
such characters η. The terms corresponding to the other

characters are all zero so the right-hand side is µ1µ2(−1)
ω(πn)

1−2|π|
1−|π| . If n = 1 there are 1−3|π|

|π| such

characters. However the terms corresponding to η = µ1 and η = µ2 give a total contribution
of

µ1µ2(−1)

ω(π)

|π|2(
1− |π|

)2 +
µ1µ2(−1)

ω(π)

|π|2(
1− |π|

)2 .
Thus the right side is again µ1µ2(−1)

ω(πn)
1−2|π|
1−|π| . The left side is

γn−1

ω(πn)
µ1µ2(−1)

|π|
|π| − 1

+
µ1µ2(−1)

ω(πn)
.

Consequently γn−1 = 1. Now take k = ℓ = −n+ 1 in (C) to obtain

−µ1µ2(−1)

ω(πn−1)
|π|+ µ1µ2(−1)

ω(πn−1)
γn−2

(
|π| − 1

)
+
µ1µ2(−1)

ω(πn−1)
= 0.

Thus γn−2 = 1 and γ = 1.
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It will be convenient to record here the closed expressions for
∞∑

n=−∞

T (M,µ, n)zn = T (M,µ, z).

The series of course converges for |z| > 0 and sufficiently small.

Lemma 2.8.

(i) Let K = k ⊕ k and let M(πpα⊕ πqβ) = ωp
1ω

p
2µ1(α)µ2(β) if α ∈ o× and β ∈ o×.

(a) If µ1 = µ2 then

T (M,µ1, z) =

(
1− ω−1

1 z−1|π|1/2
)

(
1− ω1z|π|1/2

)
(
1− ω−1

2 z−1|π|1/2
)

(
1− ω2z|π|1/2

)
and if µ ̸= µ1 and the order of µ−1µ1 is n

T (M,µ, z) =
(
1− |π|

)2|π|−nω−n
1 ω−n

2 ∆(µ−1
1 µ, π−n)∆(µ−1

1 , µ, π−n)z−2n.

(b) If µ1 ̸= µ2 then

T (M,µ1, z) =
(
1− |π|

)
|π|−n/2ω−n

1 ∆(µ−1
2 µ1, π

−n)

(
1− ω−1

2 z−1|π|1/2
)

(
1− ω2z|π|1/2

) z−n;

T (M,µ2, z) =
(
1− |π|

)
|π|−n/2ω−n

2 ∆(µ−1
1 µ2, π

−n)

(
1− ω−1

1 z−1|π|1/2
)

(
1− ω1z|π|1/2

) z−n

if n is the order of µ−1
1 µ2. If µ is different from µ1 and µ2 and the order of µ−1µ1

is n1 and the order of µ−1µ2 is n2 then

T (M,µ, z) =
(
1− |π|

)2|π|−n1−n2
2 ω−n1

2 ω−n2
1 ∆(µ−1

1 µ, π−n1)∆(µ−1
2 µ, π−n2)z−n1−n2 .

(ii) Let K be an unramified extension of k.
(a) Suppose there is a generalized character M1 of k× such that M(α) =M1(α

1+s).
Let M1(π

pβ) = ωp
1µ1(β) for β ∈ o×. Then

T (M,µ1; z) =
1− ω−2

1 z−2|π|
1− ω2

1z
2|π|

=
1− ω−1

1 z−1|π|1/2

1− ω1z|π|1/2
1 + ω−1

1 z−1|π|1/2

1 + ω1z|π|1/2
.

If µ ̸= µ1 and the order of µµ−1
1 is n so that the order of µ1+sM−1

0 is also n then

T (M,µ; z) =
(
1− |π|2

)
|π|−nω−2n

1 ∆(M−1
0 µ1+s,Π−n)z−2n

=
(
1− |π|

)2|π|−nω−n
1 (−ω1)

−n
{
∆(µ−1

1 µ, π−n)
}2
z−2n.

(b) If there is no such character then for all µ

T (M,µ, z) =
(
1− |π|2

)
|π|−nM(Π−n)∆(M−1

0 µ1+s,Π−n)z−2n

if n is the order of M−1
0 µ1+s.

(iii) Let K be a ramified extension of k.
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(a) Suppose there is a character M1 of k× such that M(α) = M1(α
1+s). Let

M1(π
pβ) = ωp

1µ1(β) if β ∈ o×. Then

T (M,µ1; z) =
(
1− |π|

)
|π|−f/2ω−f

1 ∆(χ0, π
−f )

(
1− ω−1

1 z−1|π|1/2
)

(
1− ω1z|π|1/2

) z−f

T (M,χ0µ1, z) =
(
1− |π|

)
|π|−f/2ω−f

1 ∆(χ0, π
−f )

(
1− ω−1

1 z−1|π|1/2
)

(
1− ω1z|π|1/2

) z−f

and if µ is different from µ1 and χ0µ1 then

T (M,µ, z) =
(
1− |π|

)2
∆(χ0, π

−f )|π|−
n−f
2 ω−n−f

1 ∆(M−1
0 µ1+s,Π−n−f )z−n−f

=
(
1− |π|

)2|π|−n1−n2
2 ω−n1−n2

1 ∆(µ−1
1 µ, π−n1)∆(µ−1

2 µ, π−n2)z−n1−n2

if µ2 = χ0µ1, n is the order of M−1
0 µ1+s, n1 is the order of µ−1

1 µ, and n2 is the
order of µ−1

2 µ.
(b) If there is no such character M1 then, for all µ,

T (M,µ, z) =
(
1− |π|

)2|π|−n−f
2 ∆(χ0, π

−f )M(Π−s(n+f))∆(M−1
0 µ1+s,Π−n−f )z−n−f

if n is the order of M−1
0 µ1+s.

The formulas of this lemma follow from the definitions together with Lemmas 1.1 and 1.5.
I would like to observe in cases (ii, a) and (iii, a) that if M ′ is the character of (k ⊕ k)∗

defined by M ′(α⊕ β) =M(α)M1(β)χ(β), then, for all µ

T (M,µ, z) = T (M ′, µ, z).

It follows from Lemmas 2.7 and 2.8 that if the collection {Tm,µ} satisfies identities (A) and
(B) the series ∑

m

Tm,µz
m

converges for |z| > 0 and sufficiently small and its sum Tµ(z) is a rational function. If we
return to the discussion of the representation σ we can choose some isomorphism of U with C
and regard the functions φv as scalars. Let L

′ be the set of all locally constant complex-valued
functions, i.e. invariant under some open subgroup, on k×. If ν is a character of o× let L′

ν

be the set of all functions φ in L′ such that φ(βα) = ν(β)φ(α) if β ∈ o×. It is clear that
L′ is the direct sum of the spaces L′

ν . If φ ∈ L′ we write φ =
∑

ν φν with φν ∈ L′
ν and set

uk,ν = φν(π
k). Let L be the set of all functions φ in L′ such that, for each ν, uk,ν = 0 for

k ≪ 0 and
φν(z) =

∑
k

uk,νz
k

converges for |z| > 0 and sufficiently small and represents a rational function. If Ĥ is the

set of all functions in L′ with compact support then Ĥ ⊆ L. Ĥ is clearly the image of V̂ .
By the way, it will not conflict with our previous notation if when φ =

∑
φν lies in L′ and

uk,ν = φν(π
k) we set

φ ∼
∑
ν

∑
k

uk,νz
k.
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Now suppose {Tm,µ} is the collection corresponding to the representation σ. If v ∈ V̂ and

φ = φν

∑
ν

∑
k

uk,νz
k

then

w = σ

((
0 1

−1 0

))
v ∼

∑
ν

∑
ℓ

 ∑
m+k=ℓ

ω(πk)Tm,ν̂u−k,ν̂

zℓ.
Thus ψ = φw is also in L and

ψν(z) = Tν̂(z)φν̂

(
ω−1(π)z−1

)
.

If Tm,µ = 0 whenever m ⩾ −1 then V = V̂ so that

φν(z) = ω0(−1)Tν̂(z)ψν̂

(
ω−1(π)z−1

)
.

Thus, in this case,

(D) ω0(−1)Tν(z)Tν̂
(
ω−1(π)z−1

)
= 1.

On the other hand if one notices that MM s = ω1+s so that M−1ω1+sµ−1−s = (M−1µ1+s)−s

one can verify by inspection that

ω0(−1)T (M, ν, z)T
(
M, ν̂, ω−1(π)z−1

)
= 1.

Thus the identity (D) is valid whenever σ is an irreducible representation satisfying (i), (ii),
and (iii).
Now let us suppose that ω is a continuous homomorphism of k× into C× and that the

family {Tm,µ} satisfies the relations (A), (B), and (D). If φ belongs to L′ and
(
a b
0 d

)
belongs to

Gk let τ
((

a b
0 d

))
φ be the function whose value at α is ω(d)ξ0

(
αb
d

)
φ
(
αa
d

)
. τ is a representation

of the group of upper triangular matrices in Gk on L′. Ĥ is an invariant subspace of L′ for

τ . It is clear that the operators τ
((

a 0
0 b

))
leave L invariant. If φ ∈ L then, for all x ∈ k,

the function ψ defined by ψ(α) = ξ0(αx)φ(α)− φ(α) lies in Ĥ. Thus the operators τ
(
( 1 x
0 1 )
)

leave any subspace of L containing Ĥ invariant. Define τ
((

0 1
−1 0

))
by the condition that if

φ ∈ L and ψ = τ
((

0 1
−1 0

))
φ then

ψν(z) = Tν̂(z)φν̂

(
ω−1(π)z−1

)
.

It is easy to verify that

τ

((
a 0
0 d

))
τ

((
0 1

−1 0

))
= τ

((
0 1

−1 0

))
τ

((
d 0
0 a

))
.

Thus the operators τ
((

a b
0 d

))
and τ

((
0 1

−1 0

))
leave the space spanned by Ĥ and the functions

τ
((

0 1
−1 0

))
φ, φ ∈ Ĥ invariant. Call this space H. Every matrix in Gk which is not

supertriangular can be written in exactly one way as

g =

(
β 0
0 β

)(
1 x
0 1

)(
0 1

−1 0

)(
α 0
0 1

)(
1 y
0 1

)
.
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Set τ(g) = τ

((
β 0
0 β

))
τ
(
( 1 x
0 1 )
)
τ
((

0 1
−1 0

))
τ
(
( α 0
0 1 )
)
τ
((

1 y
0 1

))
. Thus τ(g) is defined for all g in

Gk.
Let us verify that τ(g1g2) = τ(g1)τ(g2). This is clear if g1 ∼ g2 is a supertriangular matrix.

Thus it is enough to verify this when

g1 =

(
0 1

−1 0

)(
1 y
0 1

)
g2 =

(
1 x
0 1

)(
0 1

−1 0

)
.

The case x+ y = 0 is taken care of by identity (D) so suppose x+ y = u ̸= 0. Then

g1g2 =

(
− 1

u
0

0 −u

)(
1 −u
0 1

)(
0 1

−1 0

)(
1 −1/u
0 1

)
,

τ(g1)τ(g2) = τ

((
0 1

−1 0

))
τ

((
1 u
0 1

))
τ

((
0 1

−1 0

))
,

τ(g1g2) = τ

(− 1
u

0
0 −u

)τ((1 −u
0 1

))
τ

((
0 1

−1 0

))
τ

((
1 −1/u
0 1

))
.

However if one examines the derivation of the identities (A) and (B) one sees that they are

equivalent to the assertion that these two operators have the same effect on an element of Ĥ.

To verify that the two operators are equal we need to show that if φ ∈ Ĥ then

τ(g1g2)τ

((
0 1

−1 0

))
φ = τ(g1)τ(g2)τ

((
0 1

−1 0

))
φ.

The left side is equal to

τ

(
g1g2

(
0 1

−1 0

))
φ = τ(g1)τ

(
g2

(
0 1

−1 0

))
φ = τ(g1)τ(g2)τ

((
0 1

−1 0

))
φ.

The representation τ on H certainly satisfies condition (ii). If
(
a b
c d

)
∈ G0 and c ∈ p(

a b
c d

)
=

(
1 0
− c

a
1

)(
a b

c d− bc
a

)
.

It is clear that for any φ in H the sets{
g
∣∣ τ(g)φ = φ

}
, g

∣∣∣∣∣∣ τ(g)τ
((

0 1
−1 0

))
φ = τ

((
0 1

−1 0

))
φ

.
both contain an open subgroup of the group of upper triangular matrices. Thus the first set
contains an open subgroup of the group of lower triangular matrices. It follows from the
simple identity above that it contains an open subgroup of Gk.
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To prove that the third condition is satisfied we need only show that if U is an open
subgroup of the group of upper triangular matrices then the set X0 of all φ in H such that

U is contained in the isotropy group of both φ and τ
((

0 1
−1 0

))
φ is finite-dimensional. If φ

belongs to H then φν has poles only at 0 and ∞. In general the poles of φν at any point
besides 0 and ∞ are of no higher order than those of Tν̂(z). It is clear that, if φ ∈ X, φν = 0
for all but a finite number of ν. Thus to prove the assertion all we need to do is obtain, for
each ν, a bound on the order of the pole of φν at 0 and ∞ which is valid for all φ in X. A
glance at the form of the operator τ

(
( 1 x
0 1 )
)
convinces one that there is a number N such that

if U is in the isotropy group of φ then φ(α) = 0 if |α| > |π|N . Thus the order of the pole of
φν(z) at 0 is at most −N . If φ is in X the order of the pole of

Tν(z)φν

(
ω−1(π)z−1

)
at 0 is also at most −N . The assertion follows.
Arguments similar to those used to prove Lemma 2.4 show that any invariant subspace

of H different from {0} contains a non-zero vector in Ĥ and that Ĥ is irreducible under
the action of the upper triangular matrices. It follows immediately that τ is an irreducible
representation of Gk on H.

Thus to completely classify all irreducible representations of Gk satisfying (i), (ii), and (iii)
all we need to do is study the families {Tm,µ} of complex numbers which satisfy (A), (B),
and (D) and have the property that, for all µ, Tm,µ = 0 if m ⩾ −1. In this case, which is the

case we shall discuss in the rest of this chapter, H = Ĥ.
Before going on let me observe that if ζ is another homomorphism of k× into C× and

ω is replaced by ωζ2 and Tm,µ is replaced by ζ(πm)Tm,ζ−1
0 µ the relations (A), (B), and (D)

continue to be satisfied. Thus, for our purposes, there is no harm in assuming that ω is a
character.

Define an inner product on Ĥ by

(φ, ψ) =

∫
k×
φ(α)ψ(α) dα.

It is clear that, if g is an upper triangular matrix,
(
τ(g)φ, τ(g)ψ

)
= (φ, ψ). It is also clear

that if ⟨φ, ψ⟩ is another inner product with this property it is of the form

⟨φ, ψ⟩ =
∑
ν

aν(φν , ψν).

Thus if T is the operator on Ĥ defined by

T
(∑

φν

)
=
∑

aνφν(
τ(g)Tψ, τ(g)ψ

)
=
(
Tτ(g)φ, τ(g)ψ

)
,

so that τ(g)T = Tτ(g) for all upper triangular matrices g. Thus each eigenspace of T is
invariant under τ(g); so T is a scalar.

Let φℓ,ν be the function in Ĥν = Ĥ ∩L′
ν satisfying φℓ,ν(π

ℓ) = 1 and φℓ,ν(α) = 0 if |α| ≠ |π|ℓ.
The collection {φℓ,ν} is an orthonormal basis of Ĥ. If φ is in Ĥ and

φ ∼
∑
ν

∑
ℓ

uℓ,νz
ℓ
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then
φ =

∑
ν

∑
ℓ

uℓ,νφℓ,ν .

If

g =

(
β 0
0 β

)(
1 x
0 1

)(
0 1

−1 0

)(
πn 0
0 1

)(
α 0
0 1

)(
1 y
0 1

)
with α ∈ o× let us find the effect of τ(g) on φ. We iterate the effect of the various factors
entering into the expression of τ(g) as a product.

τ

((
1 y
0 1

))
φ =

∑
ℓ,ν

∑
µ

∆(µν−1, πℓy)uℓ,µ

φℓ,ν .

Applying τ
(
( α 0
0 1 )
)
to this one obtains

∑
ℓ,ν

ν(α)∑
µ

∆(µν−1, πℓy)uℓ,µ

φℓ,ν .

τ
((

πn 0
0 1

))
sends this to

∑
ℓ,ν

ν(α)∑
µ

∆(µν−1, πℓ+ny)uℓ+n,µ

φℓ,ν .

Now apply τ
(
( 1 x
0 1 )
)
to obtain

∑
ℓ,ν

 ∑
m−k=ℓ

Tm,ν̂ω(π
−k)ν̂(α)

∑
µ

∆(µν̂−1, πk+ny)uk+n,µ

φℓ,ν .

Finally τ

((
β 0
0 β

))
τ
(
( 1 x
0 1 )
)
transforms this to

∑
ℓ,ν

ω(β) ∑
m−k=ℓ

∑
ρ,µ

ρ̃(α)ω(π−k)Tm,ρ̃∆(ρν−1, πℓx)∆(µρ̃−1, πk+ny)uk+n,µ

φℓ,ν .

Thus if g has the above form the matrix element
(
τ(g)φk,µφℓ,ν

)
is equal to

ω(β)ω(πn−k)
∑
ρ

ρ̃(α)Tk+ℓ−n,ρ̃∆(ρν−1, πℓx)∆(µρ̃−1, πky).

If g =
(

β 0
0 β

)(
πn 0
0 1

)
( α 0
0 1 )
(
1 y
0 1

)
then

(
τ(g)φk,µ, φℓ,ν

)
is equal to 0 if k ̸= ℓ+ n but if k = ℓ+ n

it equals
ω(β)ν(α)∆(µν−1, πky).

A subset X of Gk will be called pseudo-compact if there is a compact subset Y of Gk such
that X ⊆

⋃
α∈k×(

α 0
0 α )Y .

Lemma 2.9. If Tm,µ = 0 for m ⩾ 1 the functions
(
τ(g)φk,µ, φℓ,ν

)
have their support in a

pseudo-compact set.
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It is clear that the intersection of the support of
(
τ(g)φk,µ, φℓ,ν

)
with the group of upper

triangular matrices is a pseudo-compact set. If

g =

(
β 0
0 β

)(
1 x
0 1

)(
0 1

−1 0

)(
πn 0
0 1

)(
α 0
0 1

)(
1 y
0 1

)
then

g =

(
β 0
0 β

)(
−πnxα 1− πnαxy
−πnα −πnαy

)
.

Thus, if N > 0 and n varies over {n | n ⩾ −N } while x and y vary over{
z ∈ k

∣∣∣ |π|n/2|z| < N
}

and β varies over k× the matrix g varies over a pseudo-compact set.
For a g of this form set

fρ(g) = ω(β)ω(πn−k)ρ̃(α)Tk+ℓ−n,ρ̃∆(ρν−1, πℓx)∆(µρ̃−1, πky).

The support of fρ is certainly contained in a pseudo-compact set. As we saw some time ago,
if the order of ρ is sufficiently large,

Tk−m,ρ = ω(π−m)
∆(ρν−1

0 , πk)∆(ω−1
0 ν0ρ, π

−m)∣∣∆(ω−1
0 ν0ρ, π−m)

∣∣2
where ν0 is a fixed character and m is the order of ρ. Thus, if the order of ρ is sufficiently
large, fρ(g) = 0 unless n = k + ℓ+ 2m, |πm+ℓx| = 1, and |πk+ℓy| = 1. The lemma follows.

If ℓ and ν are fixed and Ck =
{(

( α 0
0 α )

) ∣∣∣ α ∈ k×
}

⟨φ, ψ⟩ =
∫
Gk/Ck

(
τ(g)φ, φℓ,ν

)(
τ(g)ψ, φℓ,ν

)
dg

is a non-degenerate inner product on Ĥ. Clearly
〈
τ(g)φ, τ(g)ψ

〉
= ⟨φ, ψ⟩ for all g in Gk and

in particular for the upper triangular matrices. Thus there is a positive constant Cℓ,ν such
that ⟨φ, ψ⟩ ≡ Cℓ,ν(φ, ψ). Consequently the representation τ is unitary.

Lemma 2.10. If the family {Tm,µ} of complex numbers satisfies the relations (A), (B),
and (D) there is a two-dimensional semi-simple algebra K over k and a homomorphism M
of K× into C× such that

Tm,µ = T (M,µ,m)

for all m and µ.

Because of Lemma 2.7 we need only prove this when the associated representation τ acts

on Ĥ, is unitary and the matrix element
(
τ(g)φk,µ, φℓ,ν

)
has compact support. To do this we

need the Plancherel formula of Gelfand and Graev which will require a paragraph by itself.
For now let us assume Lemma 2.10 and go on to its applications to the theory of automorphic
forms.
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3. The local functional equation for non-archimedean fields

For the sake of brevity we shall call an irreducible representation σ of Gk which satisfies
(i), (ii), and (iii) of the previous chapter a simple representation.

If η is a continuous homomorphism of Ak, the group of diagonal matrices in Gk, into C×,
let L(η) be the space of all locally constant functions on Gk satisfying φ(ag) ≡ η(a)φ(g)
for all a in A. Since L(η) is invariant under right translations we obtain a representation
g → ρ(g) of Gk on L(η).

Lemma 3.1. No infinite-dimensional simple representation of Gk is contained more than
once in the restriction of ρ to L(η).

We may take the simple representation to be the representation τ on H considered in the
previous paragraph. Suppose V is a subspace of L(η) and T is an isomorphism of H with V
such that

T
(
τ(g)φ

)
= ρ(g)Tφ

for all φ. Set λ(φ) = Tφ(1). Then Tφ(g) =
(
ρ(g)Tφ

)
(1) = λ

(
τ(g)φ

)
. Thus T is completely

determined by λ. If a ∈ Ak then

λ
(
τ(a)φ

)
= η(a)λ(φ).

Let us verify that up to a scalar factor there is at most one linear function on H with this

property. Let η
((

a 0
0 b

))
= η1(a)η2(b) and, assumed, let τ

(
( α 0
0 α )

)
= ω(α)I. There is no such

function unless η1η2 = ω. If φ ∈ Hν = H ∩ L′
ν and α ∈ o× then η1(α)λ(φ) = ν(α)λ(φ).

Thus λ vanishes on Hν unless ν = ν0, the restriction of η1 to o×. If φ ∈ Hν0 and ψ =

τ
((

π−1 0
0 1

))
φ− η1(π)

−1φ or, what is the same, if

(A) ψ(z) =
(
z − η−1

1 (π)
)
φ(z)

then λ(ψ) = 0.

If Hν0 = Ĥν0 then
{
ψ(z)

∣∣ ψ ∈ Hν0

}
consists of all rational functions with poles nowhere

but at 0 and ∞. Then ψ(z) can be put in the above form if and only if η−1
1 (π) is a zero

of ψ(z). The assertion follows in this case. If Hν0 ̸= Ĥν0 either

Tν̃0(z) = cz−k (z − γ1)

(z − δ1)

(z − γ2)

(z − δ2)
or

Tν̃0(z) = cz−k z − γ1
z − δ1

.

Here c is a complex constant, k is an integer, and γ1, γ2, δ1, δ2 are complex constants. In
the first case we may suppose that γi ̸= δj for i, j = 1 or 2 and in the second case we may
suppose that γ1 ̸= δ1. In the first case

{
ψ(z)

∣∣ ψ ∈ Hν0

}
consists of all rational functions

with poles of arbitrary order at 0 and ∞, poles of order at most 1 at δ1 and δ2 and no other
poles. In the second case it consists of all rational functions with poles of arbitrary order at 0
and ∞, a pole of order at most 1 at δ1, and no other poles. In any case ψ(z) is of the form
(A) if and only if the order of its pole at η−1

1 (π) is 1 less than the maximum allowable. This
completes the proof of the lemma.
If ξ(x) is a non-trivial character of k let L(ξ) be the set of all locally constant functions

on Gk satisfying φ
(
( 1 x
0 1 )g

)
≡ ξ(x)φ(g) for all x ∈ k. Let ρ(ξ) be the restriction of the right

regular representation to L(ξ).
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Lemma 3.2. Every infinite-dimensional simple representation of Gk occurs exactly once
in ρ(ξ).

Choose γ in k× so that ξ(x) = ξ0(γx). Let the simple representation τ act on H, as before.
Suppose there is a homomorphism T of H into L(ξ) such that T

(
τ(g)φ

)
= ρ(g)(Tφ). Set

λ(φ) = Tφ(1). Then λ
(
τ
(
( 1 x
0 1 )
)
φ
)
= ξ0(γx)λ(φ). Since Tφ(g) = λ

(
τ(g)φ

)
, T is determined

by λ. Conversely if λ is such a linear function and Tφ is defined by Tφ(g) = λ
(
τ(g)φ

)
then

T commutes with the action of Gk.
Such a linear function must annihilate all functions in H of the form

ψ(α) =
{
ξ0(γx)− ξ0(αx)

}
φ(α)

with φ in H. Since any function in H which vanishes at γ is a linear combination of such
functions the assertion follows.
Suppose τ is a simple representation of Gk. Let K be a two-dimensional semi-simple

algebra over k and let M be a homomorphism of K× into C×. Suppose τ is associated to
the family

{
T (M,µ, n)

}
. Let the restriction of M to k× be χω. Suppose ζ is a continuous

homomorphism of Ak into C× such that ζ
(
( α 0
0 α )

)
ω(α) ≡ 1. Let ζ

((
α 0
0 β

))
= ζ1(α)ζ2(β).

Let ζ0 be the restriction of ζ1 to o× and let ζ1(απ
n) = ζ0(α)|π|s for α ∈ o×. ζ is uniquely

determined by ζ0 and s and we shall occasionally write ζ = ζ(s, ζ0). Let L(ξ, τ) be the unique
subspace of L(ξ) which transforms according to the representation τ .
If η is any continuous homomorphism of Ak into C× let η̃ be the homomorphism defined

by η̃
((

a 0
0 b

))
= η
((

b 0
0 a

))
.

Lemma 3.3. If τ is given there is a number N such that if φ belongs to L(ξ, τ) and ζ = ζ(s, ζ0)
the integral

Φ(g, ζ, φ) =

∫
k×
φ

((
α 0
0 1

))
ζ

((
α 0
0 1

))
dα

is defined for Re(s) > N .

(i) Suppose K = k⊕ k and M(πpα⊕ πqβ) = ωp
1ω

q
2µ1(αβ) if α, β ∈ o×. Suppose also that

neither ω1

ω2
nor ω2

ω1
is equal to |π|. If µ1 = ζ−1

0 set

Φ′(g, ζ, φ) =
(
1− ω1|π|s+1/2

)(
1− ω2|π|s+1/2

)
Φ(g, ζ, φ).

Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover if p−d is the largest ideal on which ξ is trivial

ζ1(π
d)Φ′

((
0 1

−1 0

)
g, η, φ

)
= ζ̃1(π

d)Φ′(g, ζ̃, φ).

If µ1 ̸= ζ−1
0 set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g, Φ′(g, ζ, φ) is a polynomial

in |π|−s and |π|s and, for a suitable choice of g and φ it is a constant. Moreover, if
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ξ(x) = ξ0(γx),

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
=
(
1− |π|

)2|π|−n−2nsω−n
1 ω−n

2 ζ̃1(γ)
{
∆(µ1ζ0, π

−n)
}2
Φ′(g, ζ̃, φ)

if n is the order of µ1ζ0.
(ii) Suppose K = k⊕ k and M(πpα⊕ πqβ) = ωp

1ω
q
2µ1(αβ) if α, β ∈ o×. Suppose also that

ω1

ω2
= |π|. If µ1 = ζ−1

0 set

Φ′(g, ζ, φ) =
(
1− ω1|π|s+1/2

)
Φ(g, ζ, φ).

Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover,

ζ1(π
d)Φ′

((
0 1

−1 0

)
g, ζ, φ

)
= −|π|− 1

2
−s

ω2

ζ̃1(π
d)Φ′(g, ζ̃, φ).

If µ1 ̸= ζ−1
0 set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g, Φ′(g, ζ, φ) is a polynomial

in |π|s and |π|−s and for a suitable choice of g and φ it is a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 1

)
g, ζ, φ

)
=
(
1− |π|

)2|π|−n−2nsω−n
1 ω−n

2 ζ̃1(γ)
{
∆(µ1ζ0, π

−n)
}2
Φ′(g, ζ̃, φ).

(iii) Suppose K = k⊕ k and M(πpα⊕ πqβ) = ωp
1ω

q
2µ1(αβ) if α, β ∈ o×. Suppose also that

ω2

ω1
= |π|. If µ1 = ζ−1

0 set

Φ′(g, ζ, φ) =
(
1− ω2|π|s+1/2

)
Φ(g, ζ, φ).

Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover,

ζ1(π
d)Φ′

((
0 1

−1 0

)
g, ζ, φ

)
= −|π|−1/2−s

ω1

ζ̃1(π
d)Φ′(g, ζ̃, φ).

If µ1 ̸= η−1
0 set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g, Φ′(g, ζ, φ) is a polynomial

in |π|s and |π|−s and for a suitable choice of g and φ it is a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
=
(
1− |π|

)2|π|−n−2nsω−n
1 ω−n

2 ζ̃1(γ)
{
∆(µ1ζ0, π

−n)
}2
Φ′(g, ζ̃, ρ).

(iv) Suppose K = k⊕k and M(πpα⊕ πqβ) = ωp
1ω

q
2µ1(α)µ2(β) if α, β ∈ o× where µ1 ̸= µ1.

If µ1 = ζ−1
0 set

Φ′(g, ζ, φ) =
(
1− ω1|π|s+1/2

)
Φ(g, ζ, φ).
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Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
=
(
1− |π|

)
|π|−

n
2
−nsω−n

2 ∆(ζ0µ2, π
−n)ζ̃1(γ)Φ

′(g, ζ̃, φ)

if n is the order of µ−1
1 µ2. If µ2 = ζ−1

0 set

Φ′(g, ζ, φ) =
(
1− ω2|π|s+1/2

)
Φ(g, ζ, φ).

Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
=
(
1− |π|

)
|π|−

n
2
−nsζ̃1(γ)ω

−n
1 ∆(ζ0µ1, π

−n)Φ′(g, ζ̃, φ).

If ζ−1
0 is different from both µ1 and µ2 set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g,

Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and φ it is
a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
is equal to(
1− |π|

)2|π|(−n1−n2)( 1
2
+s)ζ̃1(γ)ω

−n2
1 ω−n1

2 ∆(µ2ζ0, π
−n1)∆(µ1ζ0, π

−n2)Φ′(g, ζ̃, φ)

if n1 is the order of µ2ζ0 and n2 is the order of µ1ζ0.
(v) Suppose K is an unramified extension of k and there is a homomorphism M1 of k×

into C× such that M(α) =M1(Nα). Let M1(π
pβ) = ωp

1µ1(β) for p in o×. If µ1 = ζ−1
0

set
Φ′(g, ζ, φ) =

(
1− ω2

1|π|2s+1
)
Φ(g, ζ, φ).

Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover,

ζ1(π
d)Φ′

((
0 1

−1 0

)
g, ζ, φ

)
= ζ̃1(π

d)Φ′(g, ζ̃, φ).

If µ1 ̸= ζ−1
0 set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g, Φ′(g, ζ, φ) is a polynomial

in |π|s and |π|−s and for a suitable choice of g and φ it is a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
= ζ̃1(γ)

(
1− |π|2

)
|π|−n−2nsω−2n

1 ∆
(
(µ1ζ0)

1s ,Π−n
)
Φ′(g, ζ̃, φ)

if n is the order of µ1ζ0.
(vi) Suppose K is an unramified extension of k and there is no homomorphism M1 of

k× into C× such that M(α) ≡M1(Nα). Set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for all g,
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Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and φ it is
a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
= ζ̃1(γ)

(
1− |π|2

)
|π|−n−2nsM(Π−n)∆

(
M−1

0 (ω0ζ0)
1+s,Π−n

)
Φ′(g, ζ̃, φ).

(vii) Suppose K is a ramified extension of k and there is a generalized character M1 of k×

such that M(α) ≡M1(Nα). Let M1(π
pβ) = ωp

1µ1(β) if β ∈ o×. If µ1 = ζ−1
0 set

Φ′(g, ζ, φ) =
(
1− ω1|π|s+1/2

)
Φ(g, ζ, φ).

Then, for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice
of g and φ it is a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
=
(
1− |π|

)
|π|−

f
2
−fsω−f

1 ζ̃1(γ)∆(χ0, π
−f )Φ′(g, ζ̃, φ).

If µ1χ0 = ζ−1
0 set

Φ′(g, ζ, φ) =
(
1− ω1|π|s+1/2

)
Φ(g, ζ, φ).

Then, for for each g, Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable
choice of g and φ it is a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
=
(
1− |π|

)
|π|−

f
2
−fsω−f

1 ζ̃1(γ)∆(χ0, π
−f )Φ′(g, ζ̃, φ).

If ζ−1
0 is equal to neither µ1 nor µ1χ0 set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g,

Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s and for a suitable choice of g and φ it is
a constant. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
is equal to(

1− |π|
)2|π|−n−f

2
−(n+f)sω−n−f

1 ζ̃2(γ)∆
(
M−1

0 (ω0ζ0)
1+s,Π−n−f

)
∆(χ0, π

−f )Φ′(g, ζ̃, φ).

(viii) Suppose K is a ramified extension of k and there is no homomorphism M1 of k×

into C× such that M(α) ≡ M1(Nα). Set Φ′(g, ζ, φ) = Φ(g, ζ, φ). Then, for each g,
Φ′(g, ζ, φ) is a polynomial in |π|s and |π|−s. Moreover,

ζ1(γ)Φ
′

((
0 1

−1 0

)
g, ζ, φ

)
is equal to(

1− |π|
)2|π|−n−f

2
−(n−f)sζ̃1(γ)M(Π−s(n+f))

·∆(χ0, π
−f )∆

(
M−1

0 (ω0ζ0)
1+s,Π−n−f

)
Φ′(g, ζ, φ).
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Of course, ζ̃
((

a 0
0 b

))
= ζ̃1(a)ζ̃2(b). Thus ζ̃1 = ζ2. Since ζ1ζ2 = ω−1, ζ̃1 = ω−1ζ−1

1 . In

particular, ζ̃0 = ω−1
0 ζ−1

0 so that ζ̃0 = ζ0 if ζ−2
0 = ω0. If ξ(x) = ξ0(γx) then the map φ → ψ

with ψ(g) = φ
((

γ 0
0 1

)
g
)
is an isomorphism of L(ξ0, τ) with L(ξ, τ).∫

k×
ψ

((
α 0
0 1

)
g

)
ζ

((
α 0
0 1

))
dα = ζ−1

1 (γ)

∫
k×
φ

((
α 0
0 1

)
g

)
ζ

((
α 0
0 1

))
dα.

This, together with the previous observation that ζ̃0 = ζ0 if ζ−1
0 = ω0, makes it clear that it

is enough to prove the lemma for ξ = ξ0.
Since L(ξ0, τ) is invariant under right translations it is enough to prove the assertions of

the lemma for g = 1. The map ψ → Tψ where

Tψ(g) =
(
τ(g)ψ

)
(1)

is an isomorphism of H and L(ξ0, τ). If φ = Tψ then∫
k×
φ

((
α 0
0 1

))
ζ

((
α 0
0 1

))
dα =

∫
k×
ψ(α)ζ1(α) dα.

Since H ⊆ L the integral on the right converges if Re(s) is sufficiently large and

Φ(1, ζ, φ) = ψζ−1
0

(
|π|s
)
.

The proof of Lemma 3.1, together with Lemma 2.8, shows that there are at most two points,
which are independent of ν and ψ, besides 0 and ∞ where ψν(z) can have a pole. This
shows that for Re(s) sufficiently large the integral on the right converges for all ψ. Let

ψ′ = τ
((

0 1
−1 0

))
ψ. Then

Φ

((
0 1

−1 0

)
g, ζ, φ

)
= ψ′

ζ−1
0

(
|π|s
)

= Tω0ζ0

(
|π|s
)
ψω0ζ0

(
ω−1(π)|π|−s

)
and

Φ(1, ζ̃, φ) = ψω0ζ0

(
ω−1(π)|π|−s

)
.

The lemma follows from these two relations, the formulae of Lemma 2.8, and the observations
about

{
ψ(z)

∣∣ ψ ∈ Hν

}
made while proving Lemma 3.1. It is a matter of inspection which

must be left to the reader.

Lemma 3.4. There is a vector in H whose isotropy group contains Go only if ω0 is the
trivial character. If ω0 is trivial the only cases of the previous lemma for which H contains
such a vector are (i) and (v). In cases (i) and (v) H contains such a vector if and only if
µ1 is trivial.

It is clear that such a function (or vector) can exist only if ω0 is trivial and that if ν0 is the
trivial character of o×, it must lie in Hν0. Suppose there is a function φ in Hν0 invariant
under Go. Then φ(z) has no pole at zero and

φ(z) = Tν0(z)φ
(
ω−1(π)z−1

)
.

In all cases, Tν0(Z) has a pole of order at least two at 0. Thus φ
(
ω−1(π)z−1

)
has a zero of

order at least two at 0 and φ(z) has a zero of order at least two at ∞. Consequently it has
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at least two poles in the finite plane. The discussion during the proof of Lemma 3.1 shows
that this is possible only in the cases mentioned. Besides these two poles there can be no
others. Thus the only zeros are at infinity and φ(z) is a constant multiple of

1(
1− ω1z|π|1/2

) 1(
1− ω2z|π|1/2

)
in the first case and of

1

1− ω2
1z

2|π|
in the fifth.
Conversely if ω0 is trivial, φ lies in Hν0 and φ(z) has this form, the isotropy group of φ

contains
(

0 1
−1 0

)
and the upper triangular matrices in Go. However Go is generated by

(
0 1

−1 0

)
ad the upper triangular matrices in it.

Lemma 3.5. No one-dimensional simple representation of Gk is continual in ρ(ξ).

According to the corollary to Lemma 2.1 any function on Gk which transformed according
to a one-dimensional simple representation of Gk would be invariant on the right, and therefore
on the left, under the group of matrices in Gk of determinant 1. In particular it would satisfy
φ
(
( 1 x
0 1 )g

)
≡ φ(g) for all x in k. Such a function could not possibly lie in L(ξ).

Let L0 be the space of all functions on Nk\Gk which are Go finite on the right.

Lemma 3.6.

(i) Let K = k ⊕ k, let M(α1 ⊕ α2) = χ1(α1)χ2(α2) be a continuous homomorphism of
K× into C×, and let τ be the representation associated with the family

{
T (M,µ,m)

}
.

(a) Suppose χ1χ
−1
2 is not one of the characters α → 1, α → |α|, α → |α|−1. Then

there are two subspaces H1 and H2 of L0 which transform according to the
representation τ and have the property that

φ

((
α 0
0 β

)
g

)
≡
∣∣∣∣αβ
∣∣∣∣1/2χ1(α)χ2(β)φ(g)

if φ ∈ H1 and

φ

((
α 0
0 β

)
g

)
≡
∣∣∣∣αβ
∣∣∣∣1/2χ1(β)χ2(α)φ(g)

if φ ∈ H2. Moreover, any subspace H of L0 which transforms according to τ is
contained in H1 +H2.

(b) Suppose χ1 = χ2. Then there are two subspaces H1 and H2 of L0 which transform
according to the representation τ and an isomorphism T of H2 into H1 which
commutes with the action of Gk and is such that

φ

((
α 0
0 β

)
g

)
≡
∣∣∣∣αβ
∣∣∣∣1/2χ1(α)χ2(β)φ(g)

if φ ∈ H1 and

φ

((
α 0
0 β

)
g

)
≡
∣∣∣∣αβ
∣∣∣∣1/2χ1(α)χ2(β)

{
φ(g) + Tφ(g) log

∣∣∣∣αβ
∣∣∣∣
}
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if φ ∈ H2. Moreover, any subspace of L0 which transforms according to τ is
contained in H1 +H2.

(c) Suppose χ1χ
−1
2 (α) ≡ |α|. Then there is a subspace H1 of L0 which transforms

according to the representation τ and has the property that

φ

((
α 0
0 β

)
g

)
≡
∣∣∣∣αβ
∣∣∣∣1/2χ1(α)χ2(β)φ(g)

if φ ∈ H. Moreover H1 is the only subspace of L0 which transforms according to
τ .

(ii) Let K be a separable extension of k and let M be a continuous homomorphism of K×

into C×. Let τ be the representation associated to the family
{
T (M,m, µ)

}
. If there

is no continuous homomorphism M1 of k× into C× such that M(α) ≡M1(Nα) then
there is no subspace of L0 which transforms according to τ .

As in the proofs of Lemmas 3.1 and 3.2, there is a one:one correspondence between G-
invariant homomorphisms T of H, the space on which τ acts as in paragraph 2, into L0 and

linear functions λ on H satisfying λ
(
τ
(
( 1 x
0 1 )
)
φ
)
= λ(φ) for all φ in H and all x ∈ k. Given

such a linear function (Tφ)(g) = λ
(
τ(g)φ

)
. A linear function λ is of the required type if and

only if it annihilates all functions of the form

ψ(α) =
(
ξ(αx)− 1

)
φ(α) φ ∈ H, x ∈ k.

The space spanned by such functions is just Ĥ. Now Ĥν = Hν for all but one or two

characters ν. Moreover if Hν ≠ Ĥν then λ(φν), φν ∈ Hν can depend only on the coefficients
of the principal parts of φν(z) at the finite poles different from 0.

Part (ii) of the lemma follows immediately. For part (i) let χi(π
pa) = ωp

i µi(α) if α ∈ o×. If
we are in case (i, a) set

λ1(φ) = λ1

(∑
φν

)
= Re(s)φµ1(z)

∣∣
1

ω1|π|1/2
,

λ2(φ) = λ2

(∑
φν

)
= Re(s)φµ2(z)

∣∣
ω2|π|1/2

.

Then λ is a linear combination of λ1 and λ2. If we are in case (i, b) let
a1(

z − 1
ω2|π|1/2

)2 +
a2(

z − 1
ω1|π|1/2

)
be the principal part of φµ1(z) at 1

ω1|π|1/2
and set λ1(φ) = λ1

(∑
φν

)
= a1 and λ2(φ) =

λ2
(∑

φν

)
= a2. Then λ is a linear combination of λ1 and λ2. If we are in case (i, c) let

λ1(φ) = λ1

(∑
φν

)
= Re(s)φµ1(z)

∣∣
1

ω1|π|1/2
.

In all cases Hi is the image of H under the map Ti associated to λi. In case (i, b) take
T0 = − 1

log|π|T1T
−1
2 . The other assertions of the lemma follow from the form of the mapping

associated to a given linear function, the fact that τ
(
( α 0
0 α )

)
φ = χ1(α)χ2(α)φ, and the fact

that if ψ = τ
((

πpα 0
0 1

))
φ with α ∈ o× then ψν(z) = ν(α)z−pφν(z).
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4. The local functional equations reconsidered

In mathematics also “our beginnings never know our ends.” In order to give the main
theorem a more striking form than was previously possible I want to reformulate the local
functional equations. First of all let me recall the functional equations of the Hecke L-series.
Suppose K is a local field. We shall associate to each generalized character χ of K× a

function ξ(s, χ) of the complex variable s. We shall introduce a local factor ϵ(s, χ). ϵ(s, χ)
will depend upon the choice of a character ξ of K. (Notice that the symbol ξ, like the symbol
s, is used to denote two different objects.)

If K is a global field, χ a generalized character of K×\I, and ξ a character of K\A let χp

and ξp be the restrictions of χ and ξ to K×
p and Kp, respectively. Define ξ(s, χp) and ϵ(s, χp)

to be the local factors corresponding to ξp. The (modified) zeta function associated to χ will
be ∏

p

ξ(s, χp) = ξ(s, χ).

It will satisfy the functional equation

ξ(s, χ) = ϵ(s, χ)ξ(1− s, χ−1),

ϵ(s, χ) =
∏
p

ϵ(s, χp),

both products are taken over all primes, both finite and infinite.
Let us describe the functions ξ(s, χ) and ϵ(s, χ) for local fields.

(i) K = R. Let χ(α) = (sgnα)M |α|r, with m = 0 or 1, and let ξ(x) = e2πiux. Then

ξ(s, χ) = π− 1
2
(s+r+m)Γ

(
s+ r +m

2

)
,

ϵ(s, χ) =
(i sgnn)m

|u|1/2−s−r
.

(ii) K = C. Let |α| be the square of the ordinary absolute value. Let χ(α) = |α|r
(

αmαn

|α|
m+n

2

)
with mn = 0 and m+ n ⩾ 0. Let ξ(z) = e4πiRewz. Then

ξ(s, χ) = 2(2π)−(s+r+m+n
2 )Γ

(
s+ r +

m+ n

2

)
ϵ(s, χ) = im+nχ(w)|w|s−

1
2 .

(iii) K is non-archimedean. Let P−d be the largest ideal on which ξ is trivial. If Π is a
generator of P and the conductor of χ is 0

ξ(s, χ) =
1

1− χ(Π)|Π|s

ϵ(s, χ) = χ(Πd)|Πd|s−
1
2 .

If the conductor of χ is Pn with n > 0

ξ(s, χ) = 1,

ϵ(s, χ) = χ(Πd+n)|Πd|s−
1
2
1− |Π|
|Π|n/2

∫
O×

ξ

(
α

Πd+n

)
χ−1(α) dα.
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Before restating the local functional equations let me introduce some conventions. Let k
be a local field. Let us introduce some language which, though rather bizarre, will be useful.
If k = R a simple representation of Gk is an irreducible quasi-simple representation of {σ,A}
(the notation is that of paragraph 2 of my letter to Weil). If k = C a simple representation
of Gk is an irreducible quasi-simple representation of A (the notation is that of paragraph 4
of my letter). If k is non-archimedean the simple representations of Gk have been introduced
in the previous paragraph. If τ is an infinite-dimensional simple representation of Gk and ξ
is a character of k the space L(ξ, τ) has been defined.

If χ is a homomorphism of k× into C× and s a complex number and φ belongs to L(ξ, τ)
set

Φ(g, s, φ, χ) =

∫
k×
φ

((
α 0
0 1

)
g

)
χ(α)|α|s dα.

The integral converges for Re(s) sufficiently large. We shall introduce factors1 ξ(s, τ, χ) and
ϵ(s, τ, χ) and set

Φ′(g, s, φ, χ) =
Φ(g, s, φ, χ)

ξ(s, τ, χ)
.

Then the local functional equation will be

Φ′

((
0 1

−1 0

)
g,−s, φ, (ηχ)−1

)
= ϵ(s, τ, χ)Φ′(g, s, φ, χ)

if2 τ
(
( α 0
0 α )

)
≡ η(α)I. I shall write down the factors ξ(s, τ, χ) and ϵ(s, τ, χ) but I will leave

to the reader the task of verifying that the local functional equation takes the above form.
He will probably require paper and pencil. Since the analytical properties of the functions
Φ′(g, s, τ, χ) follow immediately from previous results I shall not formulate them explicitly
either.

(i) k = R
(a) Let M be a continuous homomorphism of R× ×R× into C×. Let

M
(
(t1, t2)

)
= |t1|s1 |t2|s2

(
t1
|t1|

)m1
(
t2
|t2|

)m2

with m1 and m2 equal to 0 or 1. Suppose (s1 − s2)− (m1 −m2) is not an odd
integer. Set χ1(t) = M

(
(t, 1)

)
, χ2(t) = M

(
(1, t)

)
. Let τ = τM be the simple

representation πM introduced in paragraph 2 of my letter to Weil. Set

ξ(s, τ, χ) = ξ

(
1

2
+ s, χ1χ

)
ξ

(
1

2
, s, χ2χ

)
,

ϵ(s, τ, χ) = ϵ

(
1

2
+ s, χ1χ

)
ϵ

(
1

2
+ s, χ2χ

)
.

(Notice when verifying this that there is an error in part (i) on page 3.34 of the
letter to Weil.3 The second factor in the denominator on the right should be
Γ
(
z + |m2 − ℓ|+ 1

2
− s

2

)
.)

1They, too, will depend on the choice of a character of k.
2I leave it to the reader to give a meaning to τ

((
α 0
0 α

))
in the case of the real or complex field.

3in Lemma 3.6 (1998)
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(b) Let M be a continuous homomorphism of C× into C×. Suppose

M(α) = (Nα)r
αmα−n

|α|m+n
2

with mn = 0, m+ n ⩾ 0. Let ω be the homomorphism

(t1, t2) → |t1t2|r
∣∣∣∣t1t2
∣∣∣∣m+n

2

sgn t1

of R××R× into C× and let τ = τM be the unique infinite-dimensional irreducible
representation deducible from πω. If ξ is a character of R then ξ′(z) = ξ(z + z) is
a character of C. If χ is a homomorphism of R× into C× then χ′(α) = χ(Nα) =
χ(αα) is a homomorphism of C into C×. Set

ξ(s, τ, χ) = ξ

(
s+

1

2
,Mχ′

)
,

ϵ(s, τ, χ) = (i sgnu)ϵ

(
s+

1

2
,Mχ′

)
.

Of course the expressions on the left are for the character ξ and those on the
right are for the character ξ′.

(c) Suppose M is a continuous homomorphism of R× × R× into C× of the form
(t1, t2) → |t1t2|r sgn t1 or (t1, t2) → |t1t2|r sgn t2. In the first case let χ1(t) =
|t|r sgn t, χ2(t) = |t|r; in the second case set χ1(t) = |t|r, χ2(t) = |t|r sgn t. The
representation πM introduced in paragraph 2 of my letter to Weil is irreducible.
Let τ = τM be πM . Set

ξ(s, τ, χ) = ξ

(
1

2
+ s, χ1χ

)
ξ

(
1

2
+ s, χ2χ

)
,

ϵ(s, τ, χ) = ϵ

(
1

2
+ s, χ1χ

)
ϵ

(
1

2
+ s, χ2χ

)
.

(ii) k = C. Let M be continuous homomorphism of C× ×C× into C×. Let M
(
(t1, t2)

)
=

|t1|s1|t2|s2
(

t1
|t1|1/2

)m1
(

t2
|t2|1/2

)m2

and suppose that neither s1−s2
2

−
(
1 + |m1−m2|

2

)
nor

s2−s1
2

−
(
1 + |m1−m2|

2

)
is a non-negative integer. The representation πM introduced in

paragraph 4 of my letter to Weil is irreducible. Let τ = τM be πM . Set

ξ(s, τ, χ) = ξ

(
s+

1

2
, χ1χ

)
ξ

(
s+

1

2
, χ2χ

)
,

ϵ(s, τχ) = ϵ

(
s+

1

2
, χ1, χ

)
ϵ

(
s+

1

2
, χ2χ

)
,

if χ1(t) =M
(
(t, 1)

)
and χ2(t) =M

(
(1, t)

)
.

(iii) k is a non-archimedean field.
(a) Let M be a continuous homomorphism of k× × k× into C×. Let M

(
(α, β)

)
=

χ1(α)χ2(β). Suppose that neither χ1χ
−1
2 nor χ1χ

−1
1 is the character α → |α|. Let
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τ = τM be the simple representation associated to the family
{
T (M,µ,m)

}
. Set

ξ(s, τ, χ) = ξ

(
s+

1

2
, χ1χ

)
ξ
(
s 1

2
, χ2χ

)
,

ϵ(s, τ, χ) = ϵ

(
s+

1

2
, χ1χ

)
ϵ

(
s+

1

2
, χ2χ

)
.

(b) Suppose K is an unramified extension of k andM is a continuous homomorphism
of K× into C×. Let τ = τM be the representation associated to the family{
T (M,µ,m)

}
. If ξ is a character of k then ξ′(x) = ξ(Sx) is a character of K. If

χ is a continuous homomorphism of k× into C× let χ′ be the homomorphism
α → χ(Nα) of K× into C×. Set4

ξ(s, τ, χ) = ξ

(
s+

1

2
,Mχ′

)
ϵ(s, τ, χ) = ρ(K/k)ϵ

(
s+

1

2
,Mχ′

)
.

The factors on the left are taken with respect to ξ and those on the right with
respect to ξ′.

(c) Suppose K is a ramified extension of k and M is a continuous homomorphism
of K× into C×. Let τ = τM be the representation associated to the family{
T (M,µ,m)

}
. If ξ is a character of k then ξ′(x) = ξ(Sx) is a character of K. If

χ is a continuous homomorphism of k× into C× let χ′ be the homomorphism
α → χ(Nα) of K× into C×. Set

ξ(s, τ, χ) = ξ

(
s+

1

2
,Mχ′

)
,

ϵ(s, τ, χ) = ρ(K/k)ϵ

(
s+

1

2
,Mχ′

)
,

ρ(K/k) =
(
1− |π|

)
|π|−f/2χ0(π

f+d)

∫
O×

ξ

(
α

πf+d

)
χ−1
0 (α) dα,

if p−d is the largest ideal on which ξ is trivial. Notice that this expression is
independent of the choice of π but not of ξ. χ0 is of course the unique non-trivial
character of k×/NK×.

(d) Suppose M
(
(t1, t2)

)
= χ1(t1)χ2(t2) is a continuous homomorphism of k× × k×

into C× and suppose χ1χ
−1
2 (α) ≡ |α|. Let τ be the representation associated to

the family
{
T (M,µ,m)

}
,

ξ(s, τ, χ) = ξ

(
s+

1

2
, χ1χ

)
,

ϵ(s, τ, χ) = −χχ1(π
2d+1)|π|(2d+1)(s−1/2),

4If p−d is the largest ideal of k on which ξ is trivial and if χ0 is the unique non-trivial character of k×/NK×

then ρ(K/k) = χ0(π
d). It is independent of the choice of π.
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if the conductor of χχ1 is o and

ϵ(s, τ, χ) =
(
1− |π|

)2|π|−d−2nχχ1(π
2d+2n)|π|(2d+2n)s

{∫
o×
ξ

(
α

πd+n

)
χ−1χ−1

1 (α) dα

}2

if the order of χχ1 is n.
(e) Suppose M

(
(t1, t2)

)
= χ1(t1)χ2(t2) is a continuous homomorphism of k× × k×

into C× and suppose χ−1
1 χ2(α) ≡ |α|. Let τ be the representation associated to

the family
{
T (M,µ,m)

}
. Set

ξ(s, τ, χ) = ξ

(
s+

1

2
, χ2χ

)
,

ϵ(s, τ, χ) = −χχ2(π
2d+1)|π|(2d+1)(s−1/2),

if the conductor of χχ1 is o and

ϵ(s, τ, χ) =
(
1− |π|

)2|π|−d−2nχχ2(π
2d+2n)|π|(2d+2n)s

{∫
o×
ξ

(
α

πd+n

)
χ−1χ−1

2 (α) dα

}2

if the order of χχ2 is n.

The representations of (d) and (e) are anomalous. I do not know if they have any role to
play in the theory of automorphic forms. Before coming to the main theorem there is an
observation we should make. Suppose k is a local field, K a two-dimensional semi-simple
algebra over k, and ξ a character of k. If k is non-archimedean and K is a field we have
introduced the symbol ρ(K/k) = ρ(K/k, ξ). If k = R and K = C and ξ(x) = e2πiux set
ρ(K/k, ξ) = i sgnu. If K is not a field set ρ(K/k, ξ) = 1. Now let k be a global field, K a
two-dimensional semi-simple algebra over k, and ξ a character of A/k. If p is a prime of k
let Kp = K ⊗k kp and let ξp be the restriction of ξ to kp. I claim that∏

p

ρ(Kp/kp, ξp) = 1.

This is clear if K is not a field. If K is a field the (modified) zeta function of K is∏
P

ξ(s, 1P) = ξK(s, 1).

On the other hand if χ is the unique non-trivial character of Ik/k
×NIK it is∏

p

ξ(s, 1p)ξ(s, χp).

Taking as our character of AK/K the character x→ ξ(Sx) we find that

ξK(s, 1)

ξK(1− s, 1)
=
∏
P

ϵ(s, 1P) =
∏
p

ϵ(s, 1p)ϵ(s, χp).

Checking things case by case we find that, for all p,∏
P|p

ϵ(s, 1P)

ρ(Kp/kp, ξp) = ϵ(s, 1p)ϵ(s, χp).
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The result follows. It is of course well known. I remark it because it shows immediately that
the main theorem is applicable to the Hecke L-series over a quadratic extension of the ground
field.

Appendix

There are a few facts which it will be useful to have at our disposal when proving the
main theorem. For lack of a better place I record them here. Suppose τ

(
( α 0
0 α )

)
= η(α)I. Let

ζ = ζ(χ, s) be defined by

ζ

((
α 0
0 β

))
= η(β)χ(βα−1)|βα−1|s.

Then the map
φ→ Φ′(·, s, φ, χ)

is a homomorphism of L(ξ, τ) into the unique subspace of L(ζ) transforming according to
the representation τ (cf. Lemma 3.1 and Lemmas 3.1 and 5.1 of the previous letter). Since
we know that, for a suitable choice of g and φ, Φ′(g, s, φ, χ) is a non-zero exponential in s,
this homomorphism can never be zero.
On the other hand we know (cf. Lemma 3.5 and the appendix to paragraph 7 of the

previous letter) that for some τ and some continuous homomorphisms ω of

Ak =

{(
α 0
0 β

) ∣∣∣∣∣ α ∈ k×, β ∈ k×

}
into C× there is a “Gk-invariant” map of L(ξ, τ) into the space of function on Gk satisfying

φ
(
( 1 x
0 1 )
(
α 0
0 β

)
g
)
= ω

((
α 0
0 β

))
φ(g). The image of L(ξ, τ) will, in particular lie in L(ω′) if

ω′
((

α 0
0 β

))
=
∣∣∣αβ ∣∣∣1/2ω(( α 0

0 β

))
. Thus if ω′ = ζ(s, χ) it must be a constant multiple of the map

φ→ Φ′(·, s, φ, χ).
Suppose L(ζ, τ) is an invariant subspace of L(ω′) which transforms according to the

representation τ . Suppose N1 and N2 are two spaces of functions on Gk invariant under
the right regular representation (of {σ,A}, A, or Gk according as k is real, complex, or
non-archimedean). Suppose N1 and N2 are irreducible and transform according to τ . Suppose
also that there are isomorphisms T1 and T2 of N1 and N2, respectively, with L(ζ, τ) such that
if φ ∈ Ni

φ

((
α 0
0 β

)
g

)
= ζ

((
α 0
0 β

)){
φ(g) + c1 log

∣∣∣∣αβ
∣∣∣∣T1φ(g)

}
where ci, i = 1, 2 is a non-zero constant. Set T = T−1

2 T1. Then, if φ ∈ H1, c2φ − c1Tφ ∈
L(ζ, τ). Thus N1 + L(ζ, τ) = N2 + L(ζ, τ). If ζ

((
α 0
0 β

))
= η(β)χ(βα−1)|βα−1|2 then the set

of functions
d

ds
Φ′(·, s, φ, χ), φ ∈ L(ζ, τ),

would be a possible choice for N1. On the other hand if τ = τM where M is a homomorphism

of k× × k× into C× of the form M
(
(α, β)

)
= χ(αβ) and ω′

((
α 0
0 β

))
=
∣∣∣αβ ∣∣∣1/2χ(αβ) then both



52 LETTER TO HERVÉ JACQUET—1967

L(ω′, τ) and N2 can be taken5 to lie in the space of functions on Gk satisfying φ
(
( 1 x
0 1 )g

)
≡

φ(g).

5. The Main Theorem

Now let k be a global field and let A be the adèle ring of k. The corrected form of
Lemma 7.1 of the previous letter is

Lemma 5.1. There is a constant c0 such that if g belongs to GA there is a γ in Gk such
that

∏
pmax

(
|c|p, |dp|

)
⩽ c2|det g|1/2 if γg =

(
a b
c d

)
.

There seems little point in including a proof of this.
Let us take the space L as in the previous letter except for making the modification in

condition (iii) required by the change in Lemma 7.1.
Suppose that V is a complex vector space and for each real prime p we have a representation

of {σp,Ap} in V , for each complex prime a representation of Ap on V . If any two operators
associated to distinct primes commute we shall, for the purposes of this paragraph, say that
we have a “representation” of GA on V .

Suppose in particular that for each prime p we are given a simple representation τp of
Gkp (in the sense of the previous paragraph) on a vector space Vp. Suppose moreover that
for almost all non-archimedean primes Vp contains a non-zero vector invariant under Gop .
Since this vector is determined up to a scalar factor we have in all but finitely many of the
Vp a distinguished one-dimensional subspace and we can form the tensor product

⊗
p Vp.

The natural “representation” of GA on V will be denoted
⊗

p τp. A “representation” of GA

equivalent to such a representation will be called a simple representation of GA.
Certainly we have a “representation” of GA on L. An invariant subspace of L which

transforms according to a simple representation of GA will be called a characteristic space of
automorphic forms. Suppose L is a characteristic space of automorphic forms and let ξ be a
character of k\A. If φ ∈ L set

φ0(g) =
1

measure(k\A)

∫
k\A

φ

((
1 x
0 1

)
g

)
dx,

φ1(g) =
1

measure(k\A)

∫
k\A

φ

((
1 x
0 1

)
g

)
ξ(x) dx.

As before

φ(g) = φ0(g) +
∑
α∈k×

φ1

((
α 0
0 1

)
g

)
.

Suppose the “representation” of GA on L is equivalent to
⊗

p τp. If one of the τp is
finite-dimensional it follows rather easily from Lemma 3.5 of this letter and the corollaries to
Lemma 3.2 and 5.4 of the previous letter that, for all φ in L, φ1(g) ≡ 0. Then φ(hg) ≡ φ(g)
if h ∈ Gk or h =

(
( 1 x
0 1 )
)
with x ∈ A. The argument used in the proof of Lemma 2.1 shows

rather easily that, if G0 is the group of matrices of determinant 1 in G, φ is a function
on GA\G0

A. Consequently L is one-dimensional. We exclude this case from the following
discussion.

5Notice that in part (ii) of Lemma A in the appendix to paragraph 7 of the previous letter one should
have s = 0 and m = 0.
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With this case excluded the function φ1 can never vanish identically. For a suitable choice
of φ it is of the form

φ1(g) = φ1

∏
p

gp

 =
∏
p

φp(gp)

with φp in L(ξp, τp). Moreover we can suppose that for almost all non-archimedean primes
φp(1) = 1.

Lemma 5.2. Suppose φ0 is different from zero for some φ in L. Then there is a continuous
homomorphism M of k×\I × k×\I such that τp = τMp for any prime for which τMp is defined.
If τMp is not defined and p is archimedean then τp is the unique infinite-dimensional simple
representation deducible from πMp. If τMp is not defined and p is non-archimedean τp is the

simple representation associated to the family
{
T (Mp, µ,m)

}
. Let M

(
(α, α)

)
= η(α).

(i) Suppose M
(
(α, β)

)
= η(β)χ(βα−1)|βα−1|s0. If M

(
(α, 1)

)
̸≡ M

(
(1, α)

)
there are

constants c1 and c2 such that when φ1 is of the above form

φ0(g) = c1
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
+ c2

∏
p

Φ′
(
gp,−

1

2
− s0, φp, (η

−1χ−1)p

)
.

If M
(
(α, 1)

)
≡ M

(
(1, α)

)
there are constants c1 and c2 such that when φ1 is of the

above form

φ0(g) = c1
∏
p

Φ′
(
gp, s0 +

1

2
, φp, χp

)
+ c2

d

ds

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
.

(ii) Suppose M
(
(β, α)

)
= η(β)χ(βα−1)|βα−1|s0+1/2. If M

(
(α, 1)

)
̸≡ M

(
(1, α)

)
there are

constants6 c1 and c2 such that when φ1 is of the above form

φ0(g) = c2
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
+ c1

∏
p

Φ′
(
gp,−

1

2
− s0, φp, (η

−1χ−1)p

)
.

If M
(
(α, 1)

)
≡ M

(
(1, α)

)
there are constants c1 and c2 such that when φ1 is of the

above form

φ0(g) = c2
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
+ c1

d

ds

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
.

The proof of this lemma will be based on the appendix to paragraph 4 and Lemma E of
the appendix to paragraph 7 of the previous letter. However the proof of that lemma was
written up rather hastily so I do not have complete confidence in it. I will examine it more
carefully later. If it turns out to be unsatisfactory I shall let you know. In order to get on to
the main point I will take Lemma 5.2 for granted.
In proving the main theorem I shall not enter into questions of convergence. Anything

which is not discussed in the previous letter is taken care of by Lemma 5.2 Thus if χ is a
continuous homomorphism of k×\I into C× and φ1 is of the above form∫

I

φ1

((
α 0
0 1

)
g

)
χ(α)|α|s dα

6The constants of parts (i) and (ii) are the same.



54 LETTER TO HERVÉ JACQUET—1967

converges absolutely for Re(s) sufficiently large. It is equal to∏
p

ξ(s, τp, χp)


∏

p

Φ′(gp, s, φp, χp)

.
On the other hand it is equal to∫

k×\I

φ
((

α 0
0 1

)
g

)
− φ0

((
α 0
0 1

)
g

)χ(α)|α|s dα.
This is equal to the sum of7∫

{α | |α|⩾1}

φ
((

α 0
0 1

)
g

)
− φ0

((
α 0
0 1

)
g

)χ(α)|α|s dα
and ∫

{α | |α|⩽1}

φ
((

α 0
0 1

)
g

)
− φ0

((
α 0
0 1

)
g

)χ(α)|α|s dα.
The first of these integrals is an entire function of s.

On the other hand if φ
(
( α 0
0 α )g

)
≡ η(α)φ(g) for α ∈ I∫

{α | |α|⩾1}

φ
((

α 0
0 1

)(
0 1

−1 0

)
g

)
− φ0

((
α 0
0 1

)(
0 1

−1 0

)
g

)(ηχ)−1(α)|α|s dα

=

∫
{α | |α|⩽1}

φ
((

0 1
−1 0

)(
α−1 0
0 1

)(
0 1

−1 0

)
g

)

− φ0

((
α−1 0
0 1

)(
0 1

−1 0

)
g

)ηχ(α)|α|s dα
=

∫
{α | |α|⩽1}

φ
((

α 0
0 1

)
g

)
− φ0

((
α 0
0 1

)
g

)χ(α)|α|s dα
+

∫
{α|α|⩽1}

φ0

((
α 0
0 1

)
g

)
− η(α)φ0

((
α−1 0
0 1

)
g

)χ(α)|α|s dα.
Let us suppose that φ0 is not zero for all φ and consider the last integral. Let M be the

homomorphism of Lemma 5.2 and let M
(
(α, β)

)
= χ1(α)χ2(β). If neither χ1χ nor χ2χ is

trivial on the idèles of norm one this integral is zero. Suppose that χ1χ is trivial on the idèles

7At first we shall discuss the case of a number field. Afterwards the necessary modifications for a function
field will be indicated. The argument of the previous letter was not correct for a function field.
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of norm one but χ2χ is not. Let χ1χ(α) = |α|−s0 . Then the integral is equal to

c1
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)∫ 1

0

ts−s0+
1
2
dt

t

− c2
∏
p

Φ′

((
0 1

−1 0

)
gp,−s0 −

1

2
, φp, (η

−1χ−1)p

)∫ 1

0

ts−s0− 1
2
dt

t

=
c1

1
2
+ s− s0

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

+
c2

1
2
− s+ s0

∏
p

Φ′

((
0 1

−1 0

)
gp,−s0 −

1

2
φp, (η

−1χ−1)p

)
.

On the other hand if χ2χ is trivial on the idèles of norm one and χ1χ is not, let χ2χ(α) = |α|−s0 .
Then the integral is equal to

c2
1
2
+ s− s0

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

+
c1

1
2
− s+ s0

∏
p

Φ′

((
0 1
1 0

)
gp,−s0 −

1

2
, φp, (η

−1χ−1)p

)
.

Since ∏
p

Φ′

((
−1 0
0 −1

)
gp, s0 −

1

2
, φp, χp

)
=
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
it is clear, in this case at least, that these expressions do not change if g is replaced by(

0 1
−1 0

)
g, χ by η−1χ−1 and s by −s.

Now suppose that χ1 ̸= χ2 but both χ1χ and χ2χ are trivial on the idèles of norm 1. Let
χ1χ(α) = |α|−s1 , χ2χ(α) = |α|−s2 . Then the integral is equal to

c1
1
2
+ s− s1

∏
p

Φ′
(
gp, s1 −

1

2
, φp, χp

)
+

c2
1
2
+ s− s2

∏
p

Φ′
(
gp, s2 −

1

2
, φp, χp

)

+
c1

1
2
− s+ s2

∏
p

Φ′

((
0 1

−1 0

)
gp,−s2 −

1

2
, φp, (η

−1χ−1)p

)

+
c2

1
2
− s+ s1

∏
p

Φ′

((
0 1

−1 0

)
gp,−s1 −

1

2
, φp, (η

−1χ−1)p

)
.

When χ is replaced by η−1χ−1, s1 is replaced by −s2 and s2 is replaced by −s1. Thus this
expression is not changed if s is replaced by −s, χ by η−1χ−1, and g by

(
0 1

−1 0

)
g.
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Finally suppose that χ1 = χ2 and χ1χ(α) = |α|−s0 . Then the integral is equal to

c2
d

ds

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)∫ 1

0

t
1
2
+s−s0

dt

t

+
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)∫ 1

0

(c1 − c2 log t)t
1
2
+s−s0

dt

t

− c2
d

ds

∏
p

Φ′

((
0 1

−1 0

)
gp,−s0 −

1

2
, φp, (ηχ)

−1
p

)∫ 1

0

ts−s0− 1
2
dt

t

−
∏
p

Φ′

((
0 1

−1 0

)
gp,−s0 −

1

2
φp, (ηχ)

−1
p

)∫ 1

0

(c1 + c2 log t)t
s−s0− 1

2
dt

t
.

This is of course equal to

c2
1
2
+ s− s0

d

ds

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

+
c2

1
2
− s+ s0

d

ds

∏
p

Φ′

((
0 1

−1 0

)
gp,−s0 −

1

2
, φp, (ηχ)

−1
p

)

+

 c1
1
2
+ s− s0

+
c2(

1
2
+ s− s0

)2
∏

p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

+

 c1
1
2
− s+ s0

+
c2(

1
2
− s+ s0

)2
∏

p

Φ′

((
0 1

−1 0

)
gp,−s0 −

1

2
, φp, (ηχ)

−1
p

)
.

It is clear that this does not change if s is replaced by −s, χ by η−1χ−1, and g by
(

0 1
−1 0

)
g.

Putting everything together we see that∏
p

ξ(s, τp, χp)


∏

p

Φ′(gp,−s, φp, χp)


is meromorphic in the whole complex plane and equals∏

p

ξ
(
−s, τp, (ηχ)−1

p

)
∏

p

Φ′

((
0 1

−1 0

)
gp,−s, φp, (ηχ)

−1
p

).
The second factor is equal to∏

p

ϵ(s, τp, χp)


∏

p

Φ′(gp, s, φp, χp)

.
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Thus if

ξ(s, L, χ) =
∏
p

ξ(s, τp, χp),

ϵ(s, L, χ) =
∏
p

ϵ(s, τp, χp),

ξ(s, L, χ) is meromorphic in the entire complex plane and satisfies the functional equation

ξ
(
−s, L, (ηχ)−1

)
ϵ(s, L, χ) = ξ(s, L, χ).

To investigate its poles we use the fact that for a suitable choice of φ and g∏
p

Φ′(gp, s, φp, χp)

is an exponential in s. Thus if neither χ1χ nor χ2χ is trivial on the idèles of norm 1 it has no
poles. If φ0 = 0 for all φ in L then it has no poles for any choice of χ. To find the principal
parts at the poles in the other cases we observe that

1
1
2
+ s− s0

∏
p

Φ′(gp, s, φp, χp)−
∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
and

1(
1
2
+ s− s0

)2
∏

p

Φ′(gp, s, φp, χp)−
∏
p

(
gp, s0 −

1

2
, φp, χp

)

−
(
1

2
+ s− s0

)
d

ds

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)
are entire functions of s.

Thus if χ1χ is trivial on the idèles of norm 1 there are simple poles at s0− 1
2
and s0+

1
2
with

residues −c1 and c2ϵ
(
s0 +

1
2
, L, χ

)
respectively. If χ2χ is trivial on the idèles of norm 1 but

χ1χ is not there are simple poles at s0 − 1
2
and s0 +

1
2
with residues −c2 and c1ϵ

(
s0 +

1
2
, L, χ

)
respectively. If χ1 ̸= χ2 but both χ1χ and χ2χ are trivial on the idèles of norm 1 there are
simple poles at s1 − 1

2
, s2 − 1

2
, s1 +

1
2
, and s2 +

1
2
with residues −c1, −c2, c2ϵ

(
s1 +

1
2
, L, χ

)
,

c1ϵ
(
s2 +

1
2
, L, χ

)
respectively. If χ1 = χ2 there are poles of order two at s0 − 1

2
and s0 +

1
2
.

The principal part at s0 − 1
2
is

− c2
(s− s0 + 1/2)2

− c1
s− s0 + 1/2

.

The principal part at s0 +
1
2
is determined by the functional equation.
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For a function field we write our integral as the sum of∫
{α | |α|>1}

φ
((

α 0
0 1

)
g

)
− φ0

((
α 0
0 1

)
g

)χ(α)|α|s dα
+

∫
{α | |α|>1}

φ
((

α 0
0 1

)(
0 1

−1 0

)
g

)
− φ0

((
α 0
0 1

)(
0 1

−1 0

)
g

)(ηχ)−1(α)|α|−s dα

and ∫
|α|⩽1

φ

((
α 0
0 1

)
g

)
χ(α)|α|s dα

and

−
∫
{α | |α|=1}

φ0

((
α 0
0 1

)
g

)
χ(α)|α|sdα +

∫
{α | |α|<1}

φ0

((
α−1 0
0 1

)
g

)
η(α)χ(α)|α|sdα.

The first two of these expressions are clearly entire functions of s which do not change when
g is replaced by

(
0 1

−1 0

)
g, s by −s, and χ by η−1χ−1.

Again let us consider the last expression when φ0 is not zero for all φ and at least one of
χ1χ or χ2χ is trivial on the idèles of norm 1. If χ1χ is but χ2χ is not, let χ1χ(α) = |α|−s0 .
The expression equals

− c1

1− q−
1
2
−s+s0

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

− c2

1− q−
1
2
+s−s0

∏
p

Φ′

((
0 1
−1 0

)
gp,−s0 −

1

2
, φp, (η

−1χ−1)p

)
.

If χ2χ is trivial but χ1χ is not, and χ2χ(α) = |α|−s0 it equals

c2

1− q−
1
2
−s+s0

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

− c1

1− q−
1
2
+s−s0

∏
p

Φ′

((
0 1
−1 0

)
gp,−s0 −

1

2
, φp, (η

−1χ−1)p

)
.

If χ1 ̸= χ2 but both χ1χ and χ2χ are trivial on the idèles of norm 1 let χ1χ(α) = |α|−s1 and
χ2χ(α) = |α|−s2 . The expression equals

− c1

1− q−
1
2
−s+s1

∏
p

Φ′
(
gp, s1 −

1

2
, φp, χp

)
− c2

1− q−
1
2
−s+s2

∏
p

Φ′
(
gp, s2 −

1

2
, φp, χp

)

− c1

1− q−
1
2
+s−s2

∏
p

Φ′

((
0 1

−1 0

)
gp,−s2 −

1

2
, φp(η

−1χ−1)p

)

− c2

1− q−
1
2
+s−s1

∏
p

Φ′

((
0 1

−1 0

)
gp,−s1 −

1

2
, φp, (η

−1χ−1)p

)
.
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Finally suppose that χ1 = χ2 and χ1χ(α) = |α|−s0 . The expression yields

− c2

1− q−
1
2
−s+s0

d

ds

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

− c2

1− q−
1
2
+s−s0

d

ds

∏
p

Φ′

((
0 1

−1 0

)
gp,−s0

1

2
, φp, (ηχ)

−1
p

)

−


c1

1− q−
1
2
−s+s0

+ c2

d
ds

(
1− q−

1
2
−s+s0

)
(
1− q−

1
2
−s+s0

)2

∏
p

Φ′
(
gp, s0 −

1

2
, φp, χp

)

−

 c1

1− q−
1
2
+s−s0

− c2

d
ds

(
1− q−

1
2
+s−s0

)
(1− q−1/2+s−s0)2

.
The functional equation follows as before. The principal parts at the poles can also be

determined. Since I am principally interested in the case of a number field I shall not bother
to discuss them explicitly. Moreover for the converse theorem I shall limit myself to the case
of a number field. The statement and the proof for a function field will differ only in minor
points.

For the converse theorem we suppose that, for each prime p, we are given an infinite-dimen-
sional simple representation τp of Gkp on Vp. We suppose that for almost all non-archimedean
primes there is a non-zero vector in Vp whose isotropy group contains Gop . For such a prime

there will be a continuous homomorphism Mp

(
(α, β)

)
= χ′

p(α)χ
′
p(β) of k

×
p × k×p into C× such

that τp = τMp . We suppose that there is a constant N > 0 such that for all such p∣∣∣χ′
p(π)

∣∣∣ ⩽ |π|−N
∣∣∣χ′′

p(π)
∣∣∣ = |π|−N

if π is a generator of the maximal ideal of op. Let τp
(
( α 0
0 α )

)
= ηp(α)I if α ∈ k×p . We suppose

that

η(α) = η

∏
p

αp

 =
∏
p

ηp(αp)

which is a continuous homomorphism of I into C× is trivial on k×.
If χ is a continuous homomorphism of k×\I into C× the product∏

p

ξ(s, τp, χp) = ξ0(s, χ)

converges for Re(s) sufficiently large. We suppose that for each χ it is meromorphic in the
whole plane, that it has only a finite number of poles, that it is bounded in the regions
obtained by removing circles about its poles from any vertical strip of finite width, and that
the functional equations

ξ0
(
−s, (ηχ)−1

)
ξ0(s, χ) = ξ0(s, χ),

with
ϵ0(s, χ) =

∏
p

ϵ(s, τp, χp),
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are satisfied.
We suppose that there are two continuous homomorphisms χ1 and χ2 of k×\I into C×

with χ1χ2 = η and two complex numbers c1 and c2 such that ξ0(s, χ) has no poles unless
either χ1χ or χ2χ is trivial on the idèles of norm 1.

(i) If χ1χ is trivial on the idèles of norm 1 but χ2χ is not and if χ1χ(α) = |α|−s0 there are
simple poles at s0 − 1

2
and s0 +

1
2
with residues −c1 and c2ϵ0

(
s0 +

1
2
, χ
)
respectively.

(ii) If χ2χ is trivial on the idèles of norm 1 but χ1χ is not and χ2χ(α) = |α|−s0 there are
simple poles at s0 − 1

2
and s0 +

1
2
with residues −c2 and c1ϵ0

(
s0 +

1
2
, χ
)
respectively.

(iii) If χ1χ(α) = |α|−s1 and χ2χ(α) = |α|−s2 with s1 ̸= s2 there are simple poles at
s1 − 1

2
, s2 − 1

2
, s1 +

1
2
, s2 +

1
2
with residues −c1, −c2, c2ϵ0

(
s1 +

1
2
, χ
)
, c1ϵ0

(
s2 +

1
2
, χ
)

respectively.
(iv) If χ1χ(α) = χ2χ(α) = |α|−s0 there are poles of order two at s0 − 1

2
and s0 +

1
2
. The

principal part at s0 − 1
2
is

− c2(
s− s0 +

1
2

)2 − c1
s− s0 + 1/2

.

The principal part at s0 +
1
2
is determined by the functional equation.

We allow the possibility that c1 or c2 or both are zero. In particular if

ψ1(g) = ψ1

∏
p

gp

 =
∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
1,p

)
is not, for any choice of the collection {φp} with φp in L(ξp, τp) such that Gop lies in the
isotropy group of φp for almost all non-archimedean primes and φp(1) = 1 for almost all
non-archimedean primes, a function satisfying ψ1

(
( 1 x
0 1 )
)
= ψ1(g) for all x in A we demand

that c1 = 0. Also if χ1 ̸= χ2 we demand that c2 = 0 if for the same choices of the collection
{φp} the functions

ψ2(g) =
∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
2,p

)
do not all satisfy ψ2

(
( 1 x
0 1 )g

)
≡ ψ2(x) for all x ∈ A. If χ1 = χ2 we demand that c2 = 0 if

ψ2(g) =
d

ds

∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
1,p

)
does not satisfy this condition. Notice that given χ1 and χ2 and the collection {τp} we can,
according to the appendix to the previous paragraph, decide whether or not ψ1 and ψ2 satisfy
these conditions. Notice also that our theorem will be most interesting when both c1 and c2
are zero.

In any case the converse theorem states that when all these conditions are satisfied there is
a characteristic space of automorphic forms which transforms according to the “representation”⊗

p τp. To prove it we show that if the collection {ψp} is chosen as above and

φ1(g) =
∏
p

φp(gp)
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while

φ0(g) = c1
∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
1,p

)
+ c1

∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
2,p

)
if χ1 ̸= χ2 and

φ0(g) = c1
∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
1,p

)
+ c2

d

ds

∏
p

Φ′
(
gp,−

1

2
, φp, χ

−1
1,p

)
if χ1 = χ2 then

φ(g) = φ0(g) +
∑
α∈k×

φ1

((
α 0
0 1

)
g

)
is a function on Gk\GA.

By its very construction it is invariant under left translations by upper triangular matrices

in Gk so the only problem is to show that φ
((

0 1
−1 0

)
g
)
≡ φ(g). Let us show that for each g the

functions φ
((

0 1
−1 0

)
( α 0
0 1 )g

)
and φ

(
( α 0
0 1 )g

)
on I are equal. Let φ1(α) be the function obtained

from the second of these functions by subtracting φ0

(
( α 0
0 1 )g

)
if |α| ⩾ 1 and φ0

((
0 1

−1 0

)
( α 0
0 1 )g

)
if |α| ⩽ 1. Let ψ2(α) be the function obtained from the other function by the same process.
It is enough to show that ψ1(α) ≡ ψ2(α). Now if χ is any character of k×\I∫

k×\I
ψ1(α)χ(α)|α|s dα = µ1(s, χ)

is defined for Re(s) sufficiently large and, as we shall see,∫
k×\I

ψ2(α)χ(α)|α|s dα = µ2(s, χ)

is defined for Re(s) sufficiently small. It is enough to show that, for each χ, µ1(s, χ) and
µ2(s, χ) are entire functions of s which equal each other. We must also show that they are
bounded in vertical strips.

The first integral is equal to the sum of

ξ0(s, χ)
∏
p

Φ′(gp, s, φp, χp)

and∫
|α|⩽1

φ0

((
α 0
0 1

)
g

)
χ(α)|α|sdα−

∫
|α|⩽1

φ0

((
α−1 0
0 1

)(
0 1

−1 0

)
g

)
η(α)χ(α)|α|s dα.

The second integral is the sum of∫
k×\I

φ1

((
α−1 0
0 1

)(
0 1

−1 0

)
g

)
ηχ(α)|α|s dα,

which equals

ξ0(−s, η−1χ−1)
∏
p

Φ′

((
0 1

−1 0

)
gp,−s, φp, (ηχ)

−1
p

)
,
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and of ∫
|α|⩾1

φ0

((
α−1 0
0 1

)(
0 1

−1 0

)
g

)
ηχ(α)|α|s − φ0

((
α 0
0 1

)
g

)
χ(α)|α|s dα,

which equals the sum of

−
∫
|α|⩽1

φ0

((
α−1 0
0 1

)
g

)
χ−1(α)|α|−s dα

and ∫
|α|⩽1

φ0

((
α 0
0 1

)(
0 1

−1 0

)
g

)
η−1χ−1(α)|α|−s dα.

The functional equation assumed for ξ0(s, χ) together with the local functional equations
show that the first term in the expression for µ2(s, χ) is the same as the first term in the
expression for µ2(s, χ). The second term in the expression for µ1(s, χ) is an integral we have
already investigated. We know that its poles cancel the assumed poles of the first term and
that it is given by an analytical expression which does not change when g is replaced by((

0 1
−1 0

))
g, s is replaced by −s, and χ is replaced by η−1χ−1. But the second term in the

expression for µ2(s, χ) is given by the same analytical expression except that s is replaced by

−s, g by
((

0 1
−1 0

))
g, and χ by η−1χ−1. One shows as in the previous letter that µ1(s, χ) and

µ2(s, χ) are bounded in vertical strips. The converse theorem is thus proved.
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