Funksjonene ble brukt: Trondheim '88, Amalfi '89.

\(L(x) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \), \(a_n = O(n^{-\alpha}) \) for alle \(\alpha > 0 \).

\(\phi(x) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \), \(\lim n a_n = 0 \) mens \(n \to \infty \).

\(b_n = O(n^{-\alpha}) \) for \(\alpha < \frac{1}{2} \). ("Euler produktet")

\(L(x) \) het funksjonen av endelig orden.

\(\phi(x) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \).

\(\phi(x) = \phi(1-x) \Rightarrow \phi(x) \) med for \(x < \frac{1}{2} \).

Conjectures:

-Linjære kombinasjoner \(\phi \sum_{i=1}^{n} c_i L_i(x) \) er en funksjon av den samme typen.

\(L_i(x) \) er dekkende funksjonen med endelig orden.

\(c_i \) er to kongruente kombinasjoner, med alle \(c_i \) er tall.

\(F(x) = \sum_{i=1}^{n} c_i \cdot \frac{L_i(x)}{x} \) eller

\(F(x) = \sum_{i=1}^{n} c_i \cdot (1 + \alpha_i x^{-s}) \cdot L_i(x) \).

\(F(x) = \frac{1}{\Gamma(s)} \sum_{j=1}^{\infty} \Gamma(\lambda_j + \mu_j) \cdot F(s) \), med \(\lambda_j \) tall.
Mølkepunkter for $F(x)$ eller $F^*(A)$ kan inddeles i binære (hæftet ved poler og Punktalar) og ikke-binære; de sidste ligger i en vertikal stribe $-A < 0 < A$ og erdelev i intervallet $0 < t < T$ af disse $N(C, T, F)$

$$\frac{A}{T} (\log T + B) + O(\log T).$$

Man formoder at antallet mølkepunkter på binjerne

$$\sigma = \frac{1}{2}$$

er asymptotisk det samme, og at resten

alle ligger der

$$N_0(T, F) = \frac{A}{T} \log T$$

Dette kan vise, hvis man anvender en par pleksige
men ikke vistest hypotezer om frekvensen af
mølkepunkter til de individuelle L^2.

I 97. Hejbel gør vi hvidvandende

hende uden viftet hypotezer, klart at vi kan

bære vise, at det ikke er en linje sko. Dvs. vi kan

vise, at vigtigst retsigt for en linje $L(x)$

vækst er det vigtige viktigefor Hejbellet

$A = \frac{1}{2}$, 1942, Dog og Dineshebks $L_0, x, k,$

$A = 1$; hvorfor arbejdet blev på hæftet L

slutten på 80 årne; bygning på arbejd for

Anthony Good, Kenly Hønæl, og andre. Det

omfatter L-punkterne for kvar宣传活动 table k-kroppen

indirekter derve forbindet med modulært formen

som er egne funktioner for øglebe operatoren og

dener fremde modul indiskret, som er effektiv indskæ

Maass former som også er eigenfunktioner av
Hedel operatoren.

Først $\Lambda = \frac{1}{2}$, Discrete funktioner

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \; \chi \text{ prim. Charakter}$$

2. Fall $\chi(-1) = 1$; og $\chi(-1) = -1$.

$$a = 1 - \frac{\chi(-1)}{2 \sqrt[4]{\chi(4)}}$$

$$\phi(a) = \phi(1 - \Lambda)$$

For enhver af de $$\Lambda$$-funktioner, der holder tilbage, skal vi

χ-funktionen på det analoge måde, la χ_j,

for de discrete karakterer og fomn

$$F(0) = \sum_{j=1}^{m} C_j \chi_j \frac{\Delta_j}{\phi_j} L(\Delta, \chi_j), \quad \Lambda > \frac{1}{4}$$

dette $\pi - \frac{1}{2} \pi \Lambda \int F(s)$ null for $\Lambda = \frac{1}{2}$.

Bemærk, at vi har

$$N_0(T, F) > \frac{c}{\alpha} T \log T \text{ for } T > T_0(F)$$

hvor c er en absolut konstant.

Om $\omega(t) \to \infty$ når $t \to 0$ så har $F(\frac{1}{2} + \ift)$

et nullpunkt i intervallet $(t, t + \frac{\omega(t)}{2\pi})$ for

nemlig alle (alment tæller) t.
\[X(t, x) = \xi x \cdot \frac{it}{\sqrt{2}} e^{-\frac{1}{4} \gamma t} \varphi(t) \varphi(\Delta, x), \]
Så om

\[|M_x(t, H)| + |\mathcal{I}(t, H)| < H \]

er der et nullpunkt i \((t, t+H) \).

Det er imidlertid a vise

\[\sum_{t} |I_x(t, H)|^2 dt = O \left(T \frac{H}{\log T} \right) \]

\((1) \)

\[\sum_{t} |M_x(t, H)|^2 dt = O \left(T \frac{H}{\log T} \right) \]

\((2) \)

og som vi hænger seere

\[\sum_{t} |I_x(t, x) \eta^2(t, x)|^2 dt = O(T). \]

Sev. at \(|I_x(t, H)| \leq \frac{H}{3} \) og \(\|M_x(t, H)\| \leq \frac{H}{3} \)

i det for et nulset av \((T, 2T)\) er a vise

\[O \left(\frac{T}{H \log T} \right) \]

ved at velge \(H \) som \(\frac{T}{\log T} \) med \(\lambda \) en

\(\sigma \) for en konstant \(\sigma \) for \(\nu \) (4) for \(N \leq T \), \(Lx \)

og ved a ha \(\sigma = (\omega(t))^{1/2} \) for \(\nu \) i (5) for \(t \).
For at modifisere ideen til fordeling og for den lineære kombination af

\[\log \| X(t, x) \| \text{ eller } \log | X(t, x) | \]

Udgangspunktet er at man kan vise

for \(T > 16 t^3 \), se for halvhold \(T \leq x \leq T^2 \)

læn 13.

\[\begin{align*}
\sum_{t} \left| \log | X(t, x) | - R \sum_{p \leq x} \chi(p) \frac{1}{p^{1/2-1/4}} \right|^2 \cdot k
\end{align*} \]

\[= O(T) e^{4k e^{A+k}} \]

Constanten er implicit i \(O \) er jagten

absolutte. I dette kan vi ses as

\[\frac{\log | X(t, x) |}{\sqrt{\frac{1}{2} \log \log t}} \text{ har normal Gauss-}

distribution, men precis da \(\chi_{a,b} \) var

den karakteristerisk funktion af intervallet \((a/b) \)

de har vi

\[\begin{align*}
\sum_{a, b} \left(\frac{\sum_{\lambda \leq x} \frac{\log | X(t, x) |}{\sqrt{\frac{1}{2} \log \log t}}}{\sqrt{\frac{1}{2} \log \log t}} \right)^2 \cdot \frac{1}{T} + C \cdot \left(\frac{a \log \log T}{\sqrt{\frac{1}{2} \log \log T}} \right)^2
\end{align*} \]

For de distinkte karakterer \(\chi \) af \(X \).
holder det samme for differencen

\[\log \left| X(t, x) \right| - \log \left| X(t, x') \right| \]

hører nu til, og vi dividerer med \(\sqrt{2 \pi t} \).

For at få den normale gennemsnitsafvækning.

Så om \(0 < \delta < \frac{1}{2} \); subset av \((T, 2T) \)

t hen

\[| \log \left| X(t, x) \right| - \log \left| X(t, x') \right| | \leq C \delta \sqrt{t} \]

han et andet som en

\[O \left(T \left(\frac{T}{\log T} \right)^{-\frac{1}{2} + \delta} \right) \].

Derfor træf vi at det mesten altid

en en av \(X(t, x_j) \) som dominerer

de andre fuldstændig. Denne dominans

er oppe værende over afvækning som

ev længe i forhold til \(\frac{1}{\log T} \).

Definer

\[\Delta \chi(t, H) = \frac{1}{H} \int_{t}^{t+H} \log \left| X(u, x) \right| du \]

Vi kan vise at

\[\int_{T}^{2T} \int_{H}^{2H} (\Delta \chi(t, H) - \log \left| X(t, x) \right|) dH dt \]

\[= O \left(T H \cdot e^{K} \cdot (e^{K} (\log \log T) + K^{2K}) \right) \]
Om vi kaller $W(t, x)$ målet av det set
av k for hvilket
\[|\Delta x(t, H) - \Delta x(t, H)| > (\log \log T)^{\frac{5}{2}} \]
se vi med a_i velge k så for at
\[k \delta > 2N + 1\]
at
\[W(t, x) \leq \frac{H}{(\log \log T)^N}\]
undertegt for et subset av $(T, 2T)$ av
mål \(O\left(\frac{T}{(\log \log T)^N}\right)\).

Det gjelder også å for $x \neq x'$
han vi
\[|\Delta x(t, H) - \Delta x(t, H)| > (\log \log T)^{\delta} \]

omset fra et subset av small
\(O\left(T \left(\log \log T\right)^{-\frac{5}{2}} + \delta\right)\)
for $x_1, \ldots, x_j, \ldots x_n$ vi dann kan
definer
\[S_j, k\]
og alltre move
\[|\Delta x_j(t, H) - \Delta x_k(t, H)| \leq (\log \log T)^{\delta}\]
\[\text{med om } (S_j, k) = O\left(T \left(\log \log T\right)^{-\frac{5}{2}} + \delta\right)\]
If we exclude all of these subsets from \((T, 2T)\) the rest consists of sets \(S_j\) such that in \(S_j\) for \(k \neq j\)
\[\Delta x_j(t, H) > \Delta x_k(t, H) + (8\epsilon T)^2\]

We now exclude from each \(S_j\) all \(t\) for which for any \(k\)
\[W(t, x_k) > \frac{H}{(\log \log T)^3}\]

Call new sets \(S_j'\).

From \(2T\)
\[\int_T^{2T} \int_{S_j} \left| x(t, x) \eta(t, x) \right|^2 dt = O(T)\]

We are left with
\[\int_T^{2T} \int_{S_j} \left| x(u, x_j) \eta^2(u, x_j) \right|^2 du < H \eta^2 T\]

except for a subset of measure \(O \left(\frac{T}{\log T} \right)\) in \((T, 2T)\); we exclude also these \(t\) from the \(S_j'\) and get \(S_j''\).

Now look at
\[\int_{x_j} (t, H), M x_j (t, H) \text{ and } J x_j (t, H) \]

which are for the in the integrals
\[\int_{x_j}, M x_j, J x_j \text{ but with the bad subset removed, They differ from} \]
\[\int_{x_j}, M x_j \text{ and } J x_j \text{ at most by} \]
using Schwartz inequality

\[O \left(\sqrt{\int (2 \pi t)^3} \cdot \sqrt{H x_j (t)} \right) = O \left(\frac{H}{x_j (t)} \right) \]

We see now that we get a change of \(x (u, x_j) \) in \((t, t+1) \) for the in the

\[\int_{x_j} (t, H) > \int_{x_j} (t, H) \]

which is equivalent to

\[H \geq \left| \int_{x_j} (t, H) \right| + M x_j (t, H) + O \left(\frac{H}{x_j (t)} \right) \]

We therefore

\[\sum_{j \in S} \int_{x_j} (t, H) > T - O \left(\frac{T (e^{8} + 1)^{-\frac{1}{2}} + 8} \right) \]
Can show \((S_j^2) > \frac{1}{m} - O(T(\gamma T)^{1/16}) \)

We see we get sign changes in \(S_j^2 \) if

\[T > \frac{\lambda m}{\mu_j T} \] with \(\lambda \) large enough

const. and the sign change happens when \(\phi_j(t, x_j) \) dominates completely.

As there is a sign change of

\[\bar{T} \sim \frac{T}{2} \frac{1}{\gamma} \] and thus a zero

on \(\frac{1}{2} + it \). This gives and then

\[\frac{c}{m^2} T \forall \] needs in \(S_j^6 \) assuming one

\(S_j \) we get more than \(\frac{c}{m} T \) for \(T > T_0 (\phi) \). Actually do not

need that \(\text{on} (S_j^2) \sim \frac{1}{m} \) actually.

Equidistribution is the least favorable case.

Case \(\lambda = 1 \):

The analog \(\phi_j(t, x) \) is \(\frac{1}{n} \cdot \n \).

\[(\phi_j(t, x))^2 = \sum \frac{\alpha_m}{\alpha_1^2} \text{from } \phi_j(t, x) = \n \]

\[\sum \frac{\alpha_m}{\alpha_1^2} \left(1 - \frac{\beta_j \alpha_1}{\beta_1 \alpha_2} \right) \]

\[m \leq \frac{1}{2} \]
can form analogs of \(I_i(t, H) \) and \(H_i(t, H); J_i(t, H) \).

The former leads to:

\[
\int_0^T |I_i(t, H)|^2 dt = O \left(\frac{T^2 H}{\log \frac{e^T}{H}} \right) = O \left(\frac{T H}{e^T} \right)
\]

but the corresponding integrals for \(H \) were never considered in the past. (My fault!)

However, by looking at

\[
H(t, H) = \sum_{k=1}^{t+H} \left(\frac{t}{t+H} \right)^2 I(k, H)
\]

and noticing that the Dirichlet series for \(\zeta(s) \eta^2(s) \) is identical with that of

\[
\left(1 - \frac{1}{2} \frac{\zeta'(s)}{\zeta(s)} \right)^2 \text{ for } \Re(s) \leq \frac{1}{2}
\]

subtracting this part from \(\zeta(\frac{1}{2} + it) \eta^2(\frac{1}{2} + it) \) and changing the part of integration going out to \(\sigma = 2 \), taking absolute values on \(\sigma = 2 \), remaining.