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1. Introduction 

The theorem referred to in the title of this paper is the 

(*) Theorem. I f  d > 4, then a surface S C 11? 3 of degree d havin9 general moduli has 
Picard group Pie(S)~-Z.  (9(1); i.e., every curve C C S is a complete intersection. 

Here, "of general moduli" means that there is a countable union V of 
subvarieties of the space pN of surfaces of degree d in p3, such that the statement 
Pie(S) = Z holds for S ~ p N _  V. 

Noether, it would seem, stated this theorem but never completely proved it. 
Instead, he gave a plausibility argument, based on the following construction 1 : let 
,~.g be the Hilbert scheme of curves of degree n and genus 9 in p3, l(gr3(d)l -~ IP N the 
space of surfaces of degree d in p3, and ZC~t~.,~• the incidence 
correspondence 

S. ,o ,a  = ( (C,  S)  : C z S }  . 

Of course, all these schemes are projective. Moreover, the locus Za c, 0 C Sa, o of pairs 
(C, S) such that C is a complete intersection with S is open in S.,0, a so that S'..o, a 
-~ S.,0,a- sco,a is again projective, and, in particular, the projection map zc z; Z~,g,a 
~l{(gp3(d)}] is proper. Thus we see first of all that the locus of surfaces SC• 3 of 
degree d that contain curves other than complete intersections is the union 
(j nz(Z.,o,a) , '  �9 in particular, it is a countable union of closed subvarieties of pu. 

�9 Research partially supported by NSF Grant MCS-83-04661 
�9 * Research partially supported by NSF Grant MCS-81-03400 and the Sloan Foundation 
1 We're interpreting rather broadly here 
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The question now is whether all the subvarieties 7~2(z~Jn, g, a) C F N are proper, and 
here Noether uses a dimension count. If d = 1, g = 0, for instance, - that is, we are 
looking at surfaces containing lines - then since there is a 4-dimensional family of 
lines in l a3, and it is d + 1 conditions for a surface of degree d to contain a line 
(dim~,~=4, and the fiber dimension of nl is N - d - 1 ,  so d i m E ' = N - d +  3) it is 
clear that a general surface of degree d > 4 contains no lines. In the case of plane 
conics, d i m ~  = 8 and the fiber dimension of n~ is N - 2 d -  1 ; with twisted cubics 
the numbers are 12 and N - 3 d -  1. In every case that one checks (and Noether 
checked a lot!), the conclusion is the same: the general surface of degree d>__4 
contains no such curves. 

Of course, there are a number of serious obstacles to making a proof along 
these lines: notably, we do not know dimJC~j.g in general; we do not know the 
general fiber dimension of re1 (this is, in some cases, the subject of the maximal rank 
conjecture; cf. [6]); and additionally we do not know in what codimension the fiber 
dimension of nl may jump. Thus the theorem remained plausible but unproved 
until Lefschetz. 

Lefschetz in [8] gave a proof of the theorem, along radically different lines and 
making essential use of Hodge theory. The second cohomology H2(S, 7Z) of a 
surface S C F 3, Lefschetz argues, injects into H2(S, ~), and the Picard group of S is 
just the intersection Hi '  1(S) of H2(S, Z) with the subspace H ~' 1(S)C H2(S, IE), 
which is a proper subspace of H2(S,Z) if degS>4.  But the monodromy in the 
family of all surfaces of degree d acts irreducibly on the orthogonal complement of 
the class of (9(1)in H2(S, Z); since the invariant sublattice H2(S, Z)nH ~" I(S, ~) 
nc  l ((9 (1)) • cannot be all of c1((9 (1)) • it must be zero in general. A somewhat sharper 
local version was recently given in [2] where it is shown that if 7 ~ Hi '  1(S) is any 
Hodge class other than a multiple of c~(0(1)), a general first-order deformation of S 
carries ), out of H ~' 1. 

What brought this whole matter to our attention was a related question having 
to do with curves on a threefold X C p4. Simply put, what we observed was this: 
applying Noether's set-up in this situation, one is led to question whether a 
threefold X CP 4 of degree d> 6, having general moduli, contains any curves C other 
than complete intersections of X with a surface S C p4. 

If this strikes one as too extreme, one can give a succession of weaker 
statements, none of which is (to our  knowledge) known to be true or false. 
Specifically, we ask: 

If X C P  4 is a general threefold of degree d>6 ,  and C CX any curve, is it 
necessarily true that 

1) the degree of C is a multiple of d. 
2) C is algebraically equivalent to a multiple mD of a plane section D = X.  p2 

o f X  (m ~ ~'), 
3) C is rationally equivalent to mD, 

or 
4) C is a complete intersection of  X with a surface S C IP 4. 
These statements are in order of increasing strength; a fifth, which would be 

implied by 2), 3), or 4), is 
5) C-mD maps to zero in the intermediate Jacobian J(X) (m ~ Q). 
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It should be noted here that we do not have an a priori notion of what the locus 
of threefolds X violating 1)-5) looks like, since a deformation of a proper 
intersection C = X n S  may no longer be proper. Thus, for example, it is possible 
that a general threefold X violates one of the statements I)-5), but that some 
special X satisfy it. 

In any event, in trying to establish any of the above it became clear that 
Noether's viewpoint, while suggestive, was not going to provide the basis for a 
proof. At the same time, it appeared that Hodge theory could not be applied 
directly, at least not in the manner of Lefschetz' proof: Hodge theory deals a priori 
with cohomology classes, and while the cohomology class of a curve on a surface in 
•3 determines whether or not it is a complete intersection, the cohomology class of 
a curve on a threefold X tells us very little: by the Lefschetz hyperplane theorem, all 
curves on X are homologous to a multiple of a plane section. 

This left two possibilities. One was to ask whether one could give an algebraic 
proof of the Noether-Lefschetz theorem for surfaces, in the hope that such a proof 
might be applicable to higher codimension cycles as well. We were successful in the 
first part of this; it is the primary purpose of this paper to present an elementary 
algebraic proof of theorem (*). 

(Note: Actually there is some "hidden Hodge theory" in the proof in that the 
essential step involves properties of the Jacobian of a general plane curve of degree 
d-1 . )  

As will be discussed following the proof, however, our lack of basic techniques 
for dealing with higher-codimensional cycles cloes not allow us to carry this 
argument over for threefolds. 

A second possibility in trying to answer the questions above was to try to apply 
Hodge theory, indirectly: For example, one could realize a general threefold 
X C p4 as a general member of a pencil of hyperplane sections of a general fourfold 
Y in ~,5 and then hope to apply the theory of normal functions to this fourfold - i n  
this way the study of curves on X has implications on the Hodge structure of 
H4(Y,(E) for suitable branched coverings ~ Y. Using this idea we are able to 
arrive at a conjecture [cf. (3.4) below] and support it with a couple of plausibility 
arguments. 

Via the mechanism of normal functions, there is a close connection between 
curves on a general threefold in F 4 and surfaces lying on a fourfold YC F 5. In the 
last section we complement our previous paper [5-1 by establishing a stable 
variational form of the Hodge conjecture for such Y's - here "stable" has the 
SOmewhat perverse interpretation that the degree of Y should be large relative to 
the degree of the (effective) algebraic 2-cycle we are trying to construct. 

2. Algebraic Proof of the Noether-Lefschetz Theorem 

a) Construction of a Family of Surfaces 

1'he line of argument will be this: first, we will construct a particular family 
n:X-~A of surfaces parametrized by a disc A with parameter t, whose fibers 
Xt = n-1(0 for t4:0 will all be smooth surfaces of degree d in F 3, and whose fiber 
X0 over t = 0 will be a reducible surface in s IP . After modifying the family somewhat 
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to obtain a smooth family ~'---,A, we will then investigate i) the group of line 
bundles/divisor classes on the central fiber Xo of X; and ii) the behaviour of a 
family W, of curves on Xr as t~0 .  Given our knowledge of Pic(Xo), we will 
conclude that the W~ are all complete intersections. Finally, we have to consider the 
case of a "multi-valued" family of curves on Xt; i.e., investigate the effect of a base 
change on the family ;f--,A. 

To construct our family, let T be an arbitrary smooth surface of degree d - 1  in 
F 3, given by the homogeneous equation F(X)=0.  Let P C F  3 then be a plane, 
chosen generically with respect to T, with equation L(X)=0.  Then choose a 
surface U ( p 3  of degree d, generically with respect to T and P; let G(X)= 0 be the 
equation of U. Our initial family of surfaces is then the pencil containing U and 
T+P;  that is, the threefold X C p 3 x  A given by the equation 

L(X) F ( X ) -  t. G(X) = O. 

For notation, let n : X ~ A  be the projection; let C ~- T n P  be the double curve 
of the fiber Xo = T w P  (P having been chosen generically with respect to T, they 
will meet transversely), and let Pt, ..., Pd~d- t) e F3 be the points of intersection of 
the curve T n P  with the surface U [we will also, by abuse of notation, denote by Pi 
the point (p~, 0)~ CCXo CXCIp3 x A]. The picture of Xo is: 

O 

There is one essential modification of the family X-~A we must make in order 
to use it for our purposes. As indicated above, we want to calculate Pic(Xo), and 
use this to say something about line bundles on the general fiber Xt. The problem is 
that X is not smooth, so that the limit on X o of a family of line bundles Lt on X, for 
t 4:0 need not be a line bundle. Specifically, X will be singular at the points p,; since 
U was chosen generically with respect to P and T, X will have ordinary double 
points at the Pi. Thus X will look near p, like a cone over a quadratic surface; in 
local coordinates x, y, z on F 5, X will be given by 

xy-- tz = 0 

with (x)=P, (y)= T, and z=(U) in ~3. 
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The picture is Pj 

T 
P 

To resolve the singularity of X at Pi, we first blow it up. This now introduces a 
surface Qi in the fiber over t = 0, isomorphic to a quadric surface; at the same time, 
T and P are each blown up at p~, their exceptional divisors meeting Q~ in lines of 
opposite rulings of Q~. The picture of the fiber over t = 0 is 

~ 

Now, as is well known, the quadric Q~ arising from the blow-up of an ordinary 
double point of a 3-fold can be blown down along either ruling without making the 
threefold singular. We do this in our present circumstance, blowing down each Q~ 
along the ruling containing its intersection with the proper transform of T. The 
resulting (smooth) threefold we will call X, and the map to A we will call z~. The 
central fiber Xo of~ now consists of two components, one isomorphic to T (which 
we will also call T) and one isomorphic to the plane P blown up at each of the 
d(d- l) points Pi (which we will call P) meeting in a curve C isomorphic to C, sitting 
in ~ as C in T and in P as the proper transforms of C in P: 

T 
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b) The Proof 

Having constructed X, we may now proceed with our argument. Suppose that, for 
general t, the surface Xt C p3 contains a curve that is not a complete intersection. 
Of course, it does not follow that we can find such a curve W~ CX~ rationally defined 
over the base A - we may have to make a base change - but for clarity we will 
assume first that we can, dealing with the general case later. We thus have a line 
bundle L on ~* = ~ ' -  Xo which restricts to (Px,(Wt) on each fiber X,, and since X is 
smooth, Lextends to a line bundle on all of)~. We want to study the restriction of L 
to 2(o; the key calculation is the 

Lemma. Pic(3~o) = Z ~ Z .  

Proof. Since the components T and/~ of Xo intersect transversely along C, a line 
bundle on Xo consists of a line bundle on both ~ and P, whose restrictions to C are 
isomorphic. We accordingly look at the restriction maps 

rl : Pic(T)-+Pic(C) 
and 

ra : Pic(P)~Pic(C).  

We make the following observations: 
i) Pie(T) I-and hence also its image in Pic(C)] is finitely generated. 

ii) rl is injective, since the curve C is a generically chosen hyperplane section of 
the non-ruled surface T. 

iii) Pie(P) is freely generated by the line bundles 6~(1) I-bywhich we mean the 
pullback of 60(1) from the plane P C F 3] and the line bundles C(Ei) associated to the 
exceptional divisors of the blow up m a p / ~ P .  Of course, r2((~(1))= Cc(1), and 
r2((9(Ei)) = (Pc(Pi). 

iv) Our final assertion is twofold: that kerr2 consists solely of the line bundle 
~ e ( - d )  ( - E t  - . . .  - Ea(d- 1)) and its powers, and that the image oft2 intersects the 
image of rl solely in the line bundles (~c(n). Since Pic()~o)= Pie(P) x pic(c)Pic(T), 
the Lemma will follow from assertion ii) and this final assertion. The assertion itself 
follows immediately from assertions i) and iii), the construction of X0, and the 

Sublemma. Let C C p2 be any plane curve of degree m >= 3, ~ (Pic(C) any countably 
generated subgroup containing (~(1), and D ( F  2 a general curve of degree n meeting 
C in points p~ . . . . .  P,nn. Then no nontrivial linear combination of the points Pi lies in 
the subgroup S of Pie(C), except (~(p, +. . .  + Pmn) = O(n). 

Proof. This is a straightforward application of the monodromy principle (the 
"uniform position lemma") of [-7]; in the present circumstances this states that as D 
varies, the monodromy/Galois group ~g acts on the points Pl as the full symmetric 
group. The point is, if for general D we have a relation 

alp, + ... +amnPmn=q 

for some q e 2~, then the same relation must hold when the pl are permuted by the 
monodromy group J//. Since ./t  contains all simple transpositions, we conclude 
that 

(aj - ai) ( p j -  Pi) = 0 
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in Pic~ and since a general point of C does not differ from any other point of C 
by a torsion class in Pic(C), we conclude that aj=ai; i.e., at . . . . .  a,,,=a and 

= (9(ha). Q.E.D. for sublemma +lemma 

Observe that the proof of the lemma allows us to identify a pair of generators 
for Pic0?0): one, which we may call (9(1), is just the line bundle G(I) on both 
components 16 and T; the other, which we call M, arising from the kernel of r2, is 
trivial on T and isomorphic to (9(d) ( -  E 1 - . . .  - -  E d (  d _  1))'~ C~(1)| on P. 
Note that M is represented by an effective divisor, namely the proper transform Yo 
in P of the intersection Yo of P with U in F 3. Finally, we point out that the bundle 
N, defined to be the restriction 

N =  (9~(ff)| 

to Xo of the bundle (9~(P), is isomorphic to 0(C) on T and to (9(-  C) on 16, so that 

N = (92o(1)| M -  1 

Thus, we can interpret the L e m m a  assay ing  that, modulo the ambiguity 
introduced by the reducibility of-'Yo = P u  T, every line bundle on )~o is (9(n) for 
some n. Nor is this ambiguity just a technical matter: limits Yo on X 0 of complete 
intersection curves Yt on X, need not be complete intersections on Xo. For 
example, if Y, = P n  X, for t 4: 0, the "limiting position" of the (constant) curve Y~ is 
the curve Yo = Uc~P above, which is the divisor of a section of M. To put it another 
way, the equation L(X) defines a section of the bundle (92(1), whose divisor Y' 
contains the component 16 of Xo. Removing the component P from Y', we get a 
divisor Y= Y ' - P  whose associated line bundle 

(92(Y) = C~(1)| (92( -- P) 

restricts to (92o(1)| ~ = M on Xo. Similarly, the equation F(X) gives a section of 
( ~ ( d - l )  whose divisor Z'  contains T; letting Z = Z ' - T ,  we get a divisor on 
meeting X~ in the curve X/~ T for t 4 0 and meeting A'0 in a divisor with associated 
line bundle (92(d- 1) ( -  'T')| 1)| 

To conclude our argument, recall that we have a family of curves Wt C X, for 
t + 0, corresponding to a line bundle L on ) ( -_~o = X*, and a section a e F(X*, L). 
We can extend L to a line bundle on all of A', and (possibly after multiplying a by a 
power of t) extend a to a holomorphic section of L over X. The divisor W of a may 
then contain a componen t -  say P -  of Xo; if so, we can replace L by L |  (92(- m16) 
for some m and thereby insure that ol)~0 vanishes only on a curve Wo C)fo. The 
image I41o of I~o in p3 will be, of course, the limiting position of the curves Wt. 

The point is that we can, by the lemma above, identify the line bundle 
Lo=L| on -~o associated to C0. A priori we have 

L o -~ ~9~o(a ) | N b 

for some a and b. Suppose b > O. Then consider the divisor V = W + b Y on .,Y where 
Y is as introduced above. We have 

(9,2(W + b Y) | (920 ~- (92o( a + b) 

so that the curve V0 is a complete intersection o fX 0 with a surface in F3; and hence 
so is V t = W~ + b. Yt for t 4= 0. But Yt is already the complete intersection of X t with a 



38 P. Griftiths and J. Harris 

plane; and by Noether's A F +  BG theorem it follows that W, must likewise be a 
complete intersection with X,. 

Similarly, if b < 0, let V = W -  bZ on ,~'. Here, 

C)x(V)| (9~ o ~- (9~o(a - b ( d -  1)) 

so again Vo, and hence Vt for general t, is a complete intersection. Finally, since 
Z~ = Xtn T is a complete intersection with Xt, it follows that W~ is too. 

We have seen that if we have a family of curves Wt C Xt, the Wt must all be 
complete intersections. To complete the proof of the theorem, we have to deal with 
the possibility that each X t may have divisor classes other than (9(n), but none 
rationally defined over A. In this case we have to make a base change, pulling back 
the family ) (~A via the map A--,A given by t ~ t  ~, before we an assume that we 
have a family of non-complete intersection curves W~CX~. This base change 
introduces singularities in )~ exactly along the double locus C of the central fiber 
~'o; after resolving these singularities the central fiber of our new family looks like 

l - 1  intermediate components I~ 

The proof of this assertion will be deferred to the following section. 
The rest of the argument is exactly analogous to the above. To begin with, since 

modulo (91,(C,), every divisor class on the ruled surface I, has the same restriction 
to C,_ 1 and C,, we see as before that P ic(Xo)=Z l+ 1, the generators being O(1), 
No = O~(P)| and N~ = (9~(I~)| for a = 1 .... ,1-1 .  

Again, these "extra" divisor classes I~ do arise naturally: for example, if M ( X )  is 
a general linear functional, the section a ~ = L ( X ) - t = M ( X )  of (9~(1) has divisor 

(a=) = Y~ + ~/~ + ~I1 +..-  + ~It-~ + ( ~ -  1) I~_ ~+ 1 +.-. + Ii_ 1, 

where Y~ meets Xo in a curve; thus I1= represents a family of divisors (Y=)t e l6~ 
tending to a divisor (Y~)oelffxo(1)|174174 Similarly, if H(X)  is a 
general polynomial of degree d - 1 ,  the section ~ = F ( X ) - t ~ H ( X )  of ~(1} has 
divisor 

(~) = Z , + I a  +212+ ... + ~I~ + ~I~+1 + ... + 7I t -  t 

where Z~ meets Xo properly. Again, the proof is deferred to Sect. 2c. 
The result, in any event, is the same: if {W,} is any family of curves on X,,  then 

by adding a suitable combination of the divisors Y~ and Z~ to W we arrive at a 
divisor V on J? meeting -'~o properly and with (.O~?(V)| ~2o ~ ~o(n)  for some n .... 
i.e., with Vo = VC~Xo a complete intersection. It follows then that the nearby V, C X, 
must likewise be complete intersections; and since V, differs from Wt only by the 
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addition of complete intersections with Xt, it follows by Noelher's A F + B G  
theorem that W, must likewise be a complete intersection. 

c) "Appendix": Applyin9 Base Change to 

The purpose of this appendix is to verify a couple of the statements made in the 
course of the argument above, namely that when we apply a base change t~--~t ~ to 
the 3-fold ~ ' ~ A  constructed above (that is, take the fibre product Xxo A  where 
~o:A ~ A  sends t to t ~ and then minimally resolve the resulting singularities), 

i) the resulting family over A has central fiber as pictured above; and 
ii) the divisors of the pullbacks of the functions L ( X ) - : M ( X )  and 

F ( X ) - : H ( X )  are as stated above. 
To do both, we observe that it is sufficient to look at a neighborhood of a 

general point p of the double curve C of)~o C )~, in a normal slice of C in X. Thus we 
will look simply at a surface, given by x y - t ,  and apply a base change (we may 
assume it has even order 2/) to arrive at a surface S with equation x y -  t 2t, and its 
minimal resolution S. 

To see accurately the picture of the resolution of the surface xy=  t 2~, 

, y  

• 

it is helpful to make a change of variables 

X = 2 - ' ~ - W  

y = z - - w  

so that the equation of the surface becomes 

W 2 = _ t 2! + 2 2 . 

This we can think of as the double cover S ~ 2  of the (z, t)-plane, branched along 
the curve B given by - t 2t + z 2 = 0: 
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B 

/ 

z 

I 
+ / 

\ 

Of course, when we take the double cover of a smooth surface, singularities appear 
exactly over the singularities of the branch curve; so what we have to do here is to 
resolve B in the (z, t)-plane, and then take the double cover. 

We resolve B by blowing up. Each time we do, the exponent of t' in the new 
coordinate system t' = t, z' = z/ t  is reduced by 2, so that after I blow-ups we have the 
picture 

Ortglnal 

IE 
f~ber F 

1 

E2 

Note that since all the exceptional divisors E i have even multiplicity in the total 
transform of B, they do not appear in the branch locus of the double cover 
S=  S x,~2~ 2 after we normalize. Thus the branch curve/3 of our new cover ~ 2  
is smooth, and so S is. Moreover, we can describe exactly what happens in the 
central fiber t = 0 :  

i) Ez is doubly covered by a single, irreducible F 1 (call it I,), branched over the 
two points of E~n/~; 

ii) all the other exceptional divisors E~ and the original fiber F, since they do 
not meet the branch locus, are each covered by 2 disjoint copies of themselves. 
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Thus the picture of S is: ~ F' 

I1 

Here F" and F", the two components covering the proper transform of the 
original fiber t = 0 in &z, correspond to the two original curves y = 0, x = 0 in X, 
and the curves I~, Izt_ ~ covering E~ form a simple chain oflength 21-  1 connecting 
them. 

This justifies the picture of the resolution of our threefold X" after the base 
change. 

We now want to consider various curves in g, and their divisor classes; 
specifically, we want to look at the curves C,, defined to be the closure in S of the 
curve given, away from t = 0, by x -  t ' =  0. 

• 
ira- 
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To see what these look like, we pass as before to the picture ofSas a double cover of 
the blown-up (z, 0-plane. In the (z, t)-plane, the image D, of the curve C, is given by 

2z = t ~ + t 21- ~ 

(note that the other component of the inverse image of this curve is just C21_a) 

t 

which is separated from B after ~ blow-ups. Thus in ~k 2 w e  have the picture 

f 

J 

and in the double cover, the inverse image of D, decomposes into C~ and C21-5, 
which meet the components I~ and I2 t_  ~ respectively: 
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\ 
F' 

) 

~x Is ----..._.. 

[given by y=t=O) 

I 
- ~  .._- C2t_ a 

F" (g,ven b y x = t : O )  

Now, we can use this picture to de te rmine  the divisors on S o l  the pul lbacks  of  the 
functions x - t" and  y -  t" on S. Bear ing in mind  tha t  the pu l lback  to S of any  line 
bundle on S mus t  be trivial on I ,  - in o ther  words,  the pu l lback  to S of  a Car t ier  
divisor on S will have  intersect ion n u m b e r  0 with 1, - we see tha t  when we write 

(x - t ~) = C,  + ao F'  + a l I  z + . . .  + azl_ l l z t _  1 + a 2 l F "  

the coefficients ai mus t  satisfy 

a i -  1 + ai + 1 + (C , -  Ii) = 2ai. 

Using this, the fact tha t  (C~. I~)= 5,. i, and  the observed  fact tha t  

multv,  (x - t ~) = 0 

multp,, (x - t ") = 

[near F ' ,  x and  t are local coord ina tes  with F ' = ( t ) ;  near  F",  y and  t are local 
coordinates with F '  = (t) and  (x) = 21. F ' ] ,  we can solve to find tha t  

(x - t ~) = C~ + 11 + 212 + 313 + . . .  + ~I~ + 0~I~ + z + " .  + 0~12t  - z + o~F". 

arid similarly 

( Y -  t~) = C2t -~+~F '+o t I1  + . . .  + ~I21-~+ ( 0r 1)I2t-a+ 1 + . . .  + I 2 1 -  1" 

Observe, as a check, tha t  the to ta l  t r ans fo rm of the divisor  
/9~ :: (2z - t ~ -  t 2z -9  ( A2 in ~ 2  is l inearly equivalent  to 

/ ~  + E ,  + 2 E 2 +  3E 3 + . . .  + ctE~ + crEw+ z + . - .  +~ 
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so that in the double cover X we have 

(2z - t ~ -  t 2 / -a )  = ( C~ .-1- C21 _a -1- l l -[- 212 + . . .  

... + 0~]~+ 0~I~+ 1 + - . .  + ~I21-~ + (c~-  1)[2i_a+ 1 + ' "  

�9 "" + 1 2 t - 1  ; 

on the other hand, we have 

(x - t ~) + ( y -  t ~) = (xy - x t  ~ - yt  ~ + t 2~) 

= (t 21 - x t  ~ - yU + t 2~) 

= ( t ~ ) + ( x  + y - t ~ - t  2l-~) 

= ~. (t) + (2z - t " -  t 21-') 

which agrees with our computation of ( x -  t'). 
Returning to our threefold X, we recall that at a general point of the double 

curve C of 3f o, the map ff : ~ A  has local equation x y  = t, where x is a local 
equation for/~ and y a local equation for T. Thus, if we make a base change of order 
21 and resolve the resulting singularities as indicated, the pullback of the function 

L ( X )  - e M ( X )  

[where M ( X )  is a general linear function] by the above computation will have 
divisor 

( L - t ~ M )  = Y, + ~ P  +~ + ... + ~I21-, 

+ ( ~ -  1)I21-,+ 1 + . . .  + I2l- 1 

where the divisor Y, meets X0 in a curve (Y,)o; and similarly for F - t ' H .  

d) Applying this Argument  to Threefolds 

It would seem natural, in considering the questions raised in the first section about 
curves on a general threefold, to try and mimic the proof of the Noether-Lefschetz 
theorem just given, using the second Chow cohomology group A2 instead of Pic or 
A t. The problem here is that many of the basic properties of line bundles/divisor 
classes- the ones that make it so convenient to deal with the Picard g roup-  are not 
known to hold for higher Chow cohomology groups. We mention here five of these 
properties. 

1) At the outset of our argument, we used the fact that  if we have a family X-~A 
of varieties with X smooth, and a line bundle L~ on X z for t:~0 varying 
holomorphical ly-  that is, a class ~ in A I ( X -  X o ) -  then Lt would have as a limit an 
honest line bundle Lo on Xo - that  is, ~ could be extended to a class in AI(X), and 
then of course restricted to give a class % e A 1 (Xo). Is this true for the higher Chow 
cohomology groups, in particular A2? 

2) In computing Pic(Xo) in our argument, we started with the observation that 
if a variety X is the union of two irreducible components Y and Z, then to give a 
line bundle on X one just had to give a line bundle on each of Y and Z, together 
with an isomorphism of their restriction to the (scheme-theoretic) intersection 
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Yc~Z. Thus, if Y n Z  is connected and reduced, we have a fiber square 

A 1 y / , , ,  
A 1 (YnZ) A I (ynz )  

" , , /  
A ~ (z) 

Is any such "Mayer-Vietoris" statement true for A k in genera]? 
3) Given this fact about Pic, our computation of Pic(X0) then rested on two 

facts relating the Picard group A I(X) of a variety to a general hyperplane sections 
YCX: we had 

i) the restriction map AI(X)~AI(y)  is injective; and 
ii) the push-forward map A~ (defined if X is smooth) is also 

injective (the sublemma above). 
Are the analogues of these statements true, specifically for the map A2(X) 

~A2(y) if X is a general threefold in ~4, and the map At(Y)~Az(X)  if X is a 
general surface in F3? 

4) Finally, to conclude the Noether-Lefschetz theorem from the computation 
of Pic(Xo), we use a variant of the upper-semi-continuity of the Picard number - 
that is, in a simple case, the statement that if {Xt} is a family of smooth surfaces and 
A~(X0)=Z, then At(Xt)=TZ for general small t. Is such a statement true, for 
example, for A2(Xt) in a family {X,} of smooth threefolds? 

3. Hodge-Theoretic Considerations for Codimension-two Algebraic Cycles 
on Hypersurfaces in IP" for n = 4, 5 

a) Remarks on Normal Functions Depending Algebraically on X C F 4 

For a smooth threefold X we denote by 

J(X) = F2H3(X, IE)*/Ha(X, Z) 

the middle intermediate Jacobian, by z2(X) the algebraic 1-cycles on X that are 
homologous to zero, and by 

u .  

the Abel-Jacobi mapping. 
Suppose now that X C F 4 is a smooth hypersurface of degree d. For any 

algebraic curve C C X we shall define 

u(C) e J(X)/(subgroup of d-torsion points). 

Let F =  X r ~ 3 n p , 3  be a general complete intersection and recall that 

 2(x, z) z .  
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lf degC=md for some integer ra, then 

(3.1) c -  mr  e z~(X) 

and we set 
u(C) = u ( C -  mr). 

In general we will have (3.1) for some m=p/d~Q and we set 

(3.2) 

Since as a group 

u(C) = ~ u (qC-  pF). 

J(X) ~ Rk/Z k , 

the right hand side of (3 .2 ) i s  a well-defined element of I R k / ( l z ]  k 

~- J(X)/(d-torsion). 
It is general yoga that: 
I f  X C p4 is a hypersurface with general moduli of degree d > 3 and C C X is an 

"interesting" curve (e.9., C is not a complete intersection Sc~X of X with any surface 
S C p4), then 

(3.3) u(C) # 0 

Examples of this yoga abound - cf. [3]. 
Motivated by the questions 2)-4) of the introduction, we shall consider the 

following variant of 5): 

(3.4) For an X C F 4 of general moduli and of degree d >_ 6, does there exist a non- 
torsion point 

u(X) + J(X) 

depending algebraically on X? 

More precisely, by a normal function depending algebraically on X we shall 
mean that we are given a variety S together with a dominant equidimensional 
mapping 

S"'+ ~n~ 4, ~O(d)), 

denoted by 

and a holomorphic cross-section 

t--} X t 

u(t) ~ J(X,) 

of the family of the intermediate Jacobians; we assume that u(t) satisfies the two 
additional technical conditions (quasi-horizontality and moderate growth at 
infinity) required in the definition of a normal function [4]. 

It is our feeling that the answer to (3.4) is no. To motivate this feeling we shall 
give a few remarks. 
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i) The corresponding question for a general smooth curve X CP z has an 
affirmative answer. For  example, let C C P  2 be any curve; write 

C . X = p + D  

where p e X depends algebraically on X 

and set 

u(X) = u(dp - H) 

where H e Divd(X) is a hyperplane section. 
ii) This construction fails for X C P  4 with an irreducible surface Sc lP  4 

replacing C C p2, since a general hypersurface section X .  S will be an irreducible 
curve. 

iii) A special case of (3.4) is when u(X)~ J(X)  depends rationally on X; i.e., 
when SCPH~ is a Zariski open set. We shall show that: 

There is no non-zero normal function dependin9 rationally on X if degX => 3. 

Proof. Let }X~I be a general pencil with base locus B = Xo- Xoo a smooth surface of 
degree d 2 in p4. By the Noether theorem, the Picard number Q(B) = 1 if d > 3 and 
X 0, X~ are chosen generically. Let 

i s=  blow up of •4 along B.  

Then we have a diagram 

p1 , ~ - l ( t ) = X ,  

and by the above remark 

H~ 'z (i s) ~ H~' 2 (p) G H~'* (B), 

~Z@Z. 

On the other hand, if we have a normal function 

p = p 4 ,  

u(t) ~ y(x,), 

then its fundamental class is a primitive Hodge class 

X e ker {H 2' 2(p)... H 2, 2(X)}/imag e {H~' ' ( X ) &  H~" 2(is)} 
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where X is a general Xt and y is the Gysin mapping (cf. [9]). Moreover, 2~:0 if 
u :I: 0. Since, by construction 

H i' '(X)-~H~' '(B) 

is an isomorphism, it follows that 2 = O, and consequently also u = O. Q.E.D. 

b) A Complement to [5] 

We consider the situation 
CoCSoC~ 3 

where Co is a smooth curve of genus 9 and degree d, So is a smooth surface of degree 
m > too(O, d), and we set 

{ ? = fundamental class of Co 

r = C l(OSo(1)). 
Then 

{ y ~ H i" '(So) is a Hodge class 

(3.5)  co = d 

y 2 = 2 9 - 2 -  ( m - 4 )  d. 

Now suppose that S C F 3 is any smooth surface of degree m and ~ e H2(S, 2g) is 
any smooth surface of degree m and y ~ H2(S, Z) satisfies (3.5). Then in [5] it was 
shown that 7 is the fundamental class of a curve C as above. Thus, not only is 7 an 
algebraic cycle [which we know anyway by the Lefschetz (1, 1) theorem], it is 
actually effective. This is in contrast to the usual way of making a class effective, 
which is to fix m and replace 7 by ~ + n~o for large n.) 

An obvious question is whether the analogous result remains true for the 
situation 

$2 C X 4 C ~ 5  

(the superscripts denote dimensions) where degX = m > m0 (numerical invariants 
of S)? Of course, we don't know the answer; however, we can prove the 
corresponding variational result. 

Theorem. Let o e H4(X, Z) be the fundamental class of S, and suppose that {X,}, 
~2 = O, is an infinitesimal variation of X under which a remains of type (2, 2). Then 
there exists a variation {S~CX~} of S C X. 

Remark. Although we have not checked the details, it seems likely that the 
analogous result is true for any situation 

ZnCX2n C y2n+ 1 

where X is sufficiently ample relative to Z and Y. 

Proof. From the normal bundle sequences 

O ~ N x / e |  Nx/e-~ N x/e| 

O~ Ns/x ~ Nstv--* N x/v| , 
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where P = F 5 and ~s  is the ideal sheaf of S, we obtain a commutative cohomology 
diagram 

Ha(f2ax| , ~ Hl(Ns/x)  

(3.6) !~ 

HO(Nx/v) Y , H~ | 

H~ 

Here, a is the dual of the restriction mapping 

n'(o 3) 

and fl is the dual of the mapping 

, Hl( t2]|  

~* ~ HICN , ~g]2~ (S/X)'.~ S!  

induced from the cohomology sequence of 

(3.7) 2 , 1 3 ~ * 2 O~ A Ns/x| ~ f2x |  s ~ Ns/x| 

We note the interpretations (cf. Bloch I1]) 

infinitesimal deformations of 

7 - t (ke r6)=  Xc IP  5 under which 

S moves 

infinitesimal deformations of 

ker(ct o fl o t5 o y) = ~ X C F  5 such that tr remains 

t of Hodge type (2, 2). 

To prove our result we must show that these are the same subspaces of H~ 
and this follows from the two assertions: 

(3.8) 

(3.9) 

Proof of (3.8). 

we infer that 

fl is an isomorphism 

is injective. 

From the second normal bundle sequence and 

Nxlv|  Os = (gs(m) 

det Ns/v = d~s(6) | Ks 

A2 N. /x  = K s  1 |  m _  6). 
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For  m ~> 0 we then have 

h'(ZZN*ix@O~) = 0  i=  1, 2, 

and (3.8) follows from the exact cohomology sequence of (3.7). 

Proof of (3.9). We will show that 

Ht(t~3x) , Hl(O3x| 

is surjective. The dual of the normal bundle sequence of X in p s  plus the dual of the 
Euler sequence give a commutative diagram 

0 

1 

| ox ( -  1) 

1 
(gx 

1 
0 

A piece of the cohomology diagram is [using h3((gx( - 1)) = h2((gx) =. 0] 

0--*H3(O 1) -~H*(d~x( - m)), 

whose dual lhen gives [using K x = (~(m-6)] 

(3.10) H~ - 6)) ~, HX(f23x)~0. 

This mapping Q is the well-known representation of the cohomology of X by 
residues - cf. I-2-1. Next we have 

Ht(O3x| = H I ( O x | 1 7 4  * 

= nt(f2tx| Ks( 6 - m ) )  . (3.11) 

From 

0 ~  Ks(6 - 2m) ~ f2~(6 - m)|  - m) Q K s ~ O  

and hl(O~(6-m)@Ks)=O for m~>0, we obtain 

0 ~ n l(f2xt (6 - m) @ Ks) ~ n 2 (Ks(6 - 2m)) 

whose dual is, using (3.11), 

(3.12) H~ Q-Q-~ HI(Q3| 
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Clearly (3.10) and  (3.12) fit into a commuta t ive  diagram, where r is the obvious  
restriction, 

n ~  Q , n l ( o ] )  , 0  

H ~  6)) Q , H t (g23 |  , 0  

and since r is surjective for  m ~> 0 we obta in  (3.9). Q.E.D. 
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