
NOTES ON THE KNAPP-ZUCKERMAN THEORY

ROBERT P. LANGLANDS

The point of these notes is to redefine some of their concepts in terms of the L-group. I
observe, however, that it is best and indeed essential for further applications that their results
be formulated for reductive groups rather than just for simply-connected semi-simple groups.
I use the notation of CIRRAG (On the classification of irreducible representations of real
algebraic groups) modified sometimes according to Borel’s suggestions.

Since we are dealing with tempered representations we start from φ : WC/R → LG with
image which is essentially compact. We suppose φ defines an element of Φ(G). Choose a
parabolic LP in LG which is minimal with respect to the property that φ(WC/R) ⊆ LP . The
group LP defines P and M . Let ρ (with character Θ) be one of the representations of M
associated to φ. Thus ρ ∈ Πφ, if φ is regarded as taking WC/R to LM . It is

Ind(G,P, ρ)

that Knapp-Zuckerman study.
They define W on p. 3, formula [2] of their paper Classification of irreducible tempered

representations of semisimple Lie groups. We want another definition. For this we observe

that ΩC(T,G) is isomorphic to Ω(LT
0
, LG

0
). Here T is a CSG (Cartan subgroup) of M . We

want to regard W as a subgroup [2] of the latter group. We may assume, along the lines
of CIRRAG that φ(C×) ⊆ LT , that φ(WC/R) normalizes LT , and that LT ⊆ LM , a chosen
Levi factor of LP .

Lemma 1. W is the quotient Norm(LT )∩Centφ(WC/R)/
LT

0∩Centφ(WC/R), the normalizer

and centralizer being taken in LG
0
.

Let {1, σ} be G(C/R) so that WC/R is generated by C× and σ with σ2 = −1. As on pages
48 and 49 of CIRRAG with M replacing G the homomorphism φ is defined by µ, ν with
ν = φ(σ)µ and by λ0. If ω in ΩR(T,G) normalizes M then

ω ∈ W ⇐⇒ ωρ ∼ ρ ⇐⇒ ωµ = ω1µ, ωλ0 ≡ ω1λ0 mod
(
LX∗ +

(
1− φ(σ)

)
(LX∗ ⊗C)

)
with ω1 ∈ ΩR(T,M) and LX∗ = Hom

(
GL(1), LT

)
. Replace ω by ω−1

1 ω. Since ω normalizes
M ,

φ(σ)ω = ωφ(σ)

on LX∗ and

ωµ = µ ⇐⇒ ωµ = µ, ων = ν ⇐⇒ wφ(z) = φ(z)w for z ∈ C×

if w ∈ LG
0
represents ω. We write

LM = LM
0 ⋊WC/R[3]

and let
φ(σ) = a⋊ σ
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with
λ∨(a) = e2πi⟨λ0,λ∨⟩.

By the first paragraph on p. 37 of Problems in the theory of automorphic forms we may
choose w so that wσ = σw. But this is the wrong choice. We should choose ω(a) = σ(b)b−1a.
Replace w by bw then

wφ(σ)w−1 = σ(b)b−1abσ(b)−1 ⋊ σ = a⋊ σ = φ(σ).

In other words this new choice of w satisfies

wφ(v)w−1 = φ(v) ∀v ∈ WC/R.

Since ω ∈ ΩR(T,M) and ωµ = µ imply that ω = 1 we have found

W ↪→ Norm(LT
0
) ∩ Centφ(WC/R)/

LT 0 ∩ Centφ(WC/R).

To obtain the full lemma we have only to show that if w lies in Norm(LT
0
)∩Centφ(WC/R)

then the corresponding element of the Weyl group stabilizes M and lies in ΩR(T,G). It
stabilizes LM because [4] α∨ is a root of LM if and only if φ(σ)α∨ = −α∨. Hence it stabilizes
M . By Lemma 5.2 of Shelstad’s thesis

ω = ω1ω2

with ω1 ∈ ΩC(T,M), ω2 ∈ ΩR(T,G). Then

wφ = φ =⇒ ω−1
1 µ = ω2µ, ω−1

1 ν = ω2ν, ω−1
1 λ0 ≡ ω2λ0.

Another lemma of Shelstad implies that ω1 ∈ ΩR(T,M). Hence

ω ∈ ΩR(T,G).

The advantage of introducing the L-group appears immediately when Knapp’s R-group is

discussed. Let S be the centralizer of φ(WC/R) in
LG

0
and S0 the connected component.

Lemma 2. If G is semi-simple and simply-connected then the R-group is S/S0.

Let Lt be the Lie algebra of LT and set
Lt = Lt+ + Lt−.

where Lt+ and Lt− are the +1 and −1 eigenspaces for φ(σ). I claim that Lt+ which certainly
lies in s, the Lie algebra of S0, is in fact a Cartan subalgebra of S0. Indeed [5]

s ⊆ Lt+ +
∑

⟨µ,α∨⟩=⟨ν,α∨⟩=0

CXα∨ .

If ⟨µ, α∨⟩ = ⟨ν, α∨⟩ = 0 then α∨ cannot be a root of LT in LM . Hence

φ(σ)α∨ ̸= −α∨

and α∨ is not 0 on Lt+. The assertion follows.
We may identify Hom(Lt,C) with t⊗C as a G(C/R)-module if t is the Lie algebra of T .

If α∨ is a root of LT
0
in LG

0
with φ(σ)α∨ ̸= −α∨ set

aα∨ = (Lt− +Cα∨)⊥.

Then Gα∨ the centralizer of aα∨ in G is defined over R and M is the Levi factor of a maximal
PSG of Gα∨ . Let µ(ρ, α∨) be the value of the Plancherel measure for

Ind
(
Gα∨(R),M(R), ρ

)
.
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Let
Xα∨ =

{
β∨ ∣∣ φ(σ)β∨ ̸= −β∨, Gβ∨ = Gα∨

}
.

The centralizer of Lt+ is
Lt+ +

∑
φ(σ)α∨=−α∨

CXα∨[6]

and this is the Lie algebra of LM . Moreover

S/S0 ≃ NormS(
Lt+)/NormS0(Lt+).

If w ∈ NormS(
Lt+) then w normalizes LM

0
and centralizes φ(C×). Consequently it normalizes

Lt and we have
NormS(

Lt+)/
LT+ ≃ W.

The lemma and indeed more will be established once the following facts are proved. They
will be proved for any G.

(i) dim sα∨ = dim

((∑
β∨∈Xα∨ CXβ∨

)
∩ s

)
⩽ 1.

(ii) It is equal to 1 if and only if µ(ρ, α∨) = 0.
(iii) If it is one then sα∨ defines a root space of Lt+ in t. The corresponding reflection in

Lt+ is the same as that defined by the real root of T in Gα∨ .

There are a number of possibilities to consider.

(a) Xα∨ consists of a single element. Then φ(σ)α∨ = α∨ and α, the corresponding root of
T , is real. Since σµ = ν, ⟨µ, α∨⟩ = ⟨ν, α∨⟩ and dim sα∨ = 1 if and only if ⟨µ, α∨⟩ = 0
and

φ(σ)Xα∨ = Xα∨ .[7]

Certainly T (R) is not fundamental. According to the formula on p. 141 of Harish-
Chandra’s preprint Harmonic analysis III, µ(ρ, α∗) is 0 if and only if

να = 0 and
(−1)ρα

2

(
σa∗(γ) + σa∗(γ

−1)
)
̸= 1.

Now
να = ⟨µ, α∨⟩.

Also sa∗ is now of dimension one and

σa∗(γ) = σa∗(γ
−1) = χ

(
α∨(−1)

)
.

Here χ is associated to φ : WC/R → LM as on p. 50 of CIRRAG and if the definition
of a coroot is taken into account

γ = α∨(−1).

Thus (cf. p. 51 of CIRRAG)

χ
(
α∨(−1)

)
= e2πi⟨λ0,α∨⟩.

Apologies are necessary for this phase of the discussion but the transition from
Harish-Chandra’s notation to that used in CIRRAG is clumsy.
On the other hand

φ(σ) = a⋊ σ[8]

and
φ(σ)Xα∨ = e2πi⟨λ0,α∨⟩φ′(σ)(Xα∨)
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if φ′(σ) = a′ ⋊ σ, a′ ∈ LMder, a
−1a′ ∈ LT

0
. The assertion (ii) will be verified if we

show that
φ′(σ)(Xα∨) = −(−1)ραXα∨ .

Now, by p. 122 of Harmonic Analysis III

ρα = ⟨ρα∨ , α∨⟩
if ρα∨ is one-half the sum of the positive roots of Gα∨ . But in the present circumstances
the derived algebra of gα∨ is a direct sum because α∨ is perpendicular to all roots of
Gα∨ except ±α∨. Thus

⟨ρα, α∨⟩ = 1

2
⟨α, α∨⟩ = 1.

Moreover α∨ must be a simple root and so by the definition of LM

φ′(σ)(Xα∨) = σ(Xα∨) = 1.

The assertion (ii) follows. Since the reflections corresponding to α and α∨ are the
same, the assertion (iii) does also.

(b) Suppose φ(σ)α∨ = α∨ and β∨ different from α∨ lies in Xα∨ . [9]
(i) Suppose

⟨µ, β∨⟩ = ⟨ν, β∨⟩ = 0.

Then 〈
µ, φ(σ)β∨〉 = 〈

ν, φ(σ)β∨〉 = 0.

Since φ(σ)β∨ lies in the span of {α∨, β∨} and is different from β∨, both µ and ν
vanish on this two-dimensional space. As a consequence there are no roots γ∨ on
it orthogonal to α∨. For then φ(σ)γ∨ would be −γ∨ and as a consequence

⟨µ, γ∨⟩ ≠ 0.

This leaves only

β∨

α∨

ϕ(σ)β∨

of type A2.
I claim next that if γ∨ lies in Xα∨ and is different from α∨, β∨, and φ(σ)β∨

then either ⟨µ, γ∨⟩ ≠ 0 or ⟨ν, γ∨⟩ ≠ 0. If not, consider all roots in the span of
{α∨, β∨, γ∨}. They form a root system of rank 3 on which φ(σ) acts. If δ∨ lies in
this system then ⟨µ, δ∨⟩ = ⟨ν, δ∨⟩ = 0 so φ(σ)δ∨ ̸= −δ∨. As a consequence [10]

δ∨ + φ(σ)δ∨ = aα∨ a ̸= 0

and {
δ∨

∣∣ ⟨α, δ∨⟩ ⩾ 0
}

defines a system of positive roots stable under φ(σ). Let α∨
1 , α

∨
2 , α

∨
3 be the simple

roots. They are permuted amongst themselves by φ(σ). Thus by a suitable
numbering

a∨1 = α∨, a∨3 = φ(σ)a∨2 .
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Then
aα∨ = α∨

2 + a∨3 .

This is a contradiction.
Also we may take

Xα∨ =
[
Xβ∨ , φ(σ)Xβ∨

]
and

φ(σ)Xα∨ = −Xα∨ .

Thus
sα∨ = C

(
Xβ∨ + φ(σ)Xβ∨

)
has dimension 1. Since [11]

⟨µ, β′⟩ = (λ+ iν)(Hβ),

the right side conforming to Harish-Chandra’s notation, the measure µ(ρ, α∨) is
certainly zero. The reflection defined by sα∨ is clearly correct on Lt+.

(ii) Suppose that for every β∨ different from α∨ in Xα∨

⟨µ, β∨⟩ ≠ 0 or ⟨ν, β∨⟩ ≠ 0.

Then dim sα∨ = 1 if and only if

⟨µ, α∨⟩ = 0, φ(σ)Xα∨ = Xα∨ .

Again the first condition is equivalent to να = 0. We have to show that when
this is so then the second is equivalent to

(−1)ρα

2

(
σa∗(γ) + σa∗(γ

−1)
)
̸= 1.

Let
φ(σ)Xα∨ = λXα∨ .

We show that (
(−1)ρα

2

)(
σa∗(γ) + σa∗(γ

−1)
)
= −λ.

This is enough, for λ = ±1. As before [12]

σa∗(γ) = σa∗(γ
−1) = e2πi⟨λ0,α∨⟩

and
φ(σ)Xα∨ = e2πi⟨λ0,α∨⟩φ′(σ)(Xα∨).

if φ′(σ) is defined as before. What we must do is show that

φ′(σ)(Xα∨) = −(−1)⟨ρα∨ ,α∨⟩Xα∨ .

This is a statement about a reductive group Gα∨ and a Levi factor M of a
maximal parabolic, M and G both having compact CSGs. It is not bound to the
present situation and may be proved by induction on the rank of Gα∨ . Let β∨

be the largest root of one of the simple factors of LMder and introduce a2, a1 as
on p. 46 of CIRRAG. We may take a′ = a2a1. If ρ

′ is the analogue of ρα∨ for the
roots perpendicular to β∨ then by induction

a1 ⋊ σ(Xα∨) = −(−1)⟨ρ
′,α∨⟩Xα∨ .
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What we have to do is show that

a2(Xα∨) = (−1)ℓXα∨ , ℓ =

(
1

2

) ∑
⟨γ,β∨⟩≠0

γ>0

⟨γ, α∨⟩.[13]

Suppose γ > 0, ⟨γ, β∨⟩ ≠ 0, ⟨γ, α∨⟩ ̸= 0 and γ∨ is not in the plane spanned by
α∨, β∨. Then:

1) γ∨ = a2γ
∨ =⇒ γ = a2γ =⇒ ⟨γ, β∨⟩ = 0—impossible

2) γ∨ = φ(σ)γ∨ =⇒ γ∨ = ±α∨—impossible
3) γ∨ = a2φ(σ)γ

∨ =⇒ γ∨ in plane of α∨, β∨ because (α∨, β∨) = 0. Thus γ,
a2γ, φ(σ)γ, a2φ(σ)γ are distinct and positive. Since

⟨γ, α∨⟩ = ⟨a2γ, α∨⟩ =
〈
φ(σ)γ, α∨〉 = 〈

a2φ(σ)γ, α
∨〉

the sum of the four of them even after division by 2 is even and may be
dropped from the exponent. So may those ⟨γ, α∨⟩ which are 0. We confine
ourselves to γ with γ∨ in the plane of α∨, β∨.

The possibilities are:
A) No roots except ±α∨, ±β∨ in the plane. Then the exponent is 0 and

a2(Xα∨) = Xα∨ .

B)

β∨

α∨

β

α

(
1

2

)∑
⟨γ, α∨⟩ = 1

2
⟨α, α∨⟩ = 1, a2(Xα∨) = −Xα∨[14]

C)

β∨

α∨

β

α

(
1

2

)∑
⟨γ, α∨⟩ = ⟨α, α∨⟩ = 2, a2(Xα∨) = Xα∨

D)



NOTES ON THE KNAPP-ZUCKERMAN THEORY 7

β∨

α∨

β

α

(
1

2

)∑
⟨γ, α∨⟩ = 2⟨α, α∨⟩ = 4, a2(Xα∨) = Xα∨

E) The roles of α, α∨ and β, β∨ are reversed(
1

2

)∑
⟨γ, α∨⟩ = ⟨α, α∨⟩ = 2, a2(Xα∨) = Xα∨ .

All that is claimed in A) through E) is easy to check. Finally it is clear that the
reflection defined by sα∨ is that defined by α or α∨.

(i) Suppose that φ(σ)β∨ ̸= β∨ for all β∨ in Xα∨ . Then β∨ + φ(σ)β∨ is not a
root, nor is [15]

β∨ + φ(σ)β∨

2
.

(ii) Suppose that ⟨µ, α∨⟩ = ⟨ν, α∨⟩ = 0. Then α∨ − φ(σ)α∨ is not a root and〈
α∨, φ(σ)α∨〉 = 0. Since α∨ and φ(σ)α∨ have the same length, the root
diagram of the plane spanned by α∨, φ(σ)α∨ is

I claim that if β∨ lies in Xα∨ but not in this plane then either ⟨µ, β∨⟩ = 0
or ⟨ν, β∨⟩ = 0. Otherwise in the three-dimensional plane spanned by α∨,
φ(σ)α∨, β∨, φ(σ)β∨ we have a root system and{

γ∨
∣∣∣ 〈γ, α∨ + φ(σ)α∨〉 ⩾ 0

}
is a set of positive roots, for〈

γ, α∨ + φ(σ)α∨〉
is never 0, because if it were then φ(σ)γ∨ = −γ∨. Since ⟨µ, γ∨⟩ = ⟨ν, γ∨⟩ =
0 this is impossible. Then φ(σ) permutes the three simple roots amongst
themselves, and leaves one fixed. This is a contradiction. Thus [16]

sα = C
(
Xα∨ + φ(σ)Xα∨

)
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has dimension one. Since T is fundamental in Gα∨ , the formula on p. 97 of
Harmonic analysis III shows that µ(ρ, α∨) = 0. The three assertions follow
again.

(iii) Suppose that for any β∨ in Xα∨ either ⟨µ, β∨⟩ ̸= 0 or ⟨ν, β∨⟩ ̸= 0. Then
sα∨ = 0. By the same formula in Harmonic analysis III,

µ(ρ, α∨) ̸= 0.

Lemma 2 is now completely proved. I should observe, for it will remove a confusion that
could otherwise arise, that

−⟨µ, α∨⟩ = ⟨ν, α∨⟩
for any α∨.

It is also possible to give Zuckerman’s proof that the R-group is a sum of Z2’s in the above
context. Let Norm+

S (
Lt+) be the set of elements of NormS(

Lt+) that take positive roots of s0
to positive roots. Then

R = S/S0 ≃ Norm+
S (

Lt+)/
Lt+.

Let
s1 =

Lt+
∑

⟨µ,α∨⟩=⟨ν,α∨⟩=0

CXα∨[17]

The elements of Norm+
S (

Lt+) take s1 to itself. Let Q be the operator

1

|R|
∑
R

r

on t⊗C. Since the centralizer of φ(C×) is connected, S lies in the connected group S1 with
Lie algebra s1. Thus by Chevalley’s theorem R is contained in the group generated by the
reflections associated to the roots α∨ of s1 for which Qα∨ = 0.
If α∨ is a root of s1 then φ(σ)α∨ ̸= −α∨. Suppose φ(σ)α∨ ̸= α∨. Then

Xα∨ + φ(σ)Xα∨ ̸= 0

and lies in s. Thus α∨ restricted to Lt+ defines a root of s. Since the elements of r stabilize
Lt+ and each r takes positive roots of Lt+ in s to positive roots,

Qα∨ ̸= 0.

Thus if α∨ is a root of s1 then

Qα∨ = 0 =⇒ φ(σ)α∨ = α∨.

Moreover α∨ cannot be a root of s and therefore

φ(σ)Xα∨ = −Xα∨ .[18]

Finally if Qα∨ = 0, Qβ∨ = 0 then α∨ ± β∨ is not a root because φ(σ)Xα∨+β∨ =
φ(σ)[Xα∨ , Xβ∨ ] = [−Xα∨ ,−Xβ∨ ] = Xα∨+β∨ and α∨ + β∨ would have to be a root of s.
This is inconsistent with

Q(α∨ + β∨) = 0.

The set of positive α∨ for which ⟨µ, α∨⟩ = ⟨ν, α∨⟩ = 0 and Qα∨ = 0 is the strongly
orthogonal system needed for Zuckerman’s argument.
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