NOTES ON THE KNAPP-ZUCKERMAN THEORY

ROBERT P. LANGLANDS

The point of these notes is to redefine some of their concepts in terms of the L-group. I observe, however, that it is best and indeed essential for further applications that their results be formulated for reductive groups rather than just for simply-connected semi-simple groups. I use the notation of CIRRAG (On the classification of irreducible representations of real algebraic groups) modified sometimes according to Borel's suggestions.

Since we are dealing with tempered representations we start from $\varphi: W_{\mathbf{C} / \mathbf{R}} \rightarrow{ }^{L} G$ with image which is essentially compact. We suppose φ defines an element of $\Phi(G)$. Choose a parabolic ${ }^{L} P$ in ${ }^{L} G$ which is minimal with respect to the property that $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right) \subseteq{ }^{L} P$. The group ${ }^{L} P$ defines P and M. Let ρ (with character Θ) be one of the representations of M associated to φ. Thus $\rho \in \Pi_{\varphi}$, if φ is regarded as taking $W_{\mathbf{C} / \mathbf{R}}$ to ${ }^{L} M$. It is

$$
\operatorname{Ind}(G, P, \rho)
$$

that Knapp-Zuckerman study.
They define W on p. 3, formula [2] of their paper Classification of irreducible tempered representations of semisimple Lie groups. We want another definition. For this we observe that $\Omega_{\mathbf{C}}(T, G)$ is isomorphic to $\Omega\left({ }^{L} T^{0},{ }^{L} G^{0}\right)$. Here T is a CSG (Cartan subgroup) of M. We want to regard W as a subgroup [2] of the latter group. We may assume, along the lines of CIRRAG that $\varphi\left(\mathbf{C}^{\times}\right) \subseteq{ }^{L} T$, that $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$ normalizes ${ }^{L} T$, and that ${ }^{L} T \subseteq{ }^{L} M$, a chosen Levi factor of ${ }^{L} P$.

Lemma 1. W is the quotient $\operatorname{Norm}\left({ }^{L} T\right) \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right) /{ }^{L} T^{0} \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$, the normalizer and centralizer being taken in ${ }^{L} G^{0}$.

Let $\{1, \sigma\}$ be $\mathfrak{G}(\mathbf{C} / \mathbf{R})$ so that $W_{\mathbf{C} / \mathbf{R}}$ is generated by \mathbf{C}^{\times}and σ with $\sigma^{2}=-1$. As on pages 48 and 49 of CIRRAG with M replacing G the homomorphism φ is defined by μ, ν with $\nu=\varphi(\sigma) \mu$ and by λ_{0}. If ω in $\Omega_{\mathbf{R}}(T, G)$ normalizes M then

$$
\omega \in W \Longleftrightarrow \omega \rho \sim \rho \Longleftrightarrow \omega \mu=\omega_{1} \mu, \omega \lambda_{0} \equiv \omega_{1} \lambda_{0} \quad \bmod \left({ }^{L} X_{*}+(1-\varphi(\sigma))\left({ }^{L} X_{*} \otimes \mathbf{C}\right)\right)
$$

with $\omega_{1} \in \Omega_{\mathbf{R}}(T, M)$ and ${ }^{L} X_{*}=\operatorname{Hom}\left(G L(1),{ }^{L} T\right)$. Replace ω by $\omega_{1}^{-1} \omega$. Since ω normalizes M,

$$
\varphi(\sigma) \omega=\omega \varphi(\sigma)
$$

on ${ }^{L} X_{*}$ and

$$
\omega \mu=\mu \Longleftrightarrow \omega \mu=\mu, \omega \nu=\nu \Longleftrightarrow w \varphi(z)=\varphi(z) w \text { for } z \in \mathbf{C}^{\times}
$$

if $w \in{ }^{L} G^{0}$ represents ω. We write

$$
{ }^{L_{M}}={ }^{{ }^{L}} M^{0} \rtimes W_{\mathbf{C} / \mathbf{R}}[\mathbf{3}]
$$

and let

$$
\varphi(\sigma)=a \rtimes \sigma
$$

Date: 1977.
with

$$
\lambda^{\vee}(a)=e^{2 \pi i\left\langle\lambda_{0}, \lambda^{\vee}\right\rangle} .
$$

By the first paragraph on p. 37 of Problems in the theory of automorphic forms we may choose w so that $w \sigma=\sigma w$. But this is the wrong choice. We should choose $\omega(a)=\sigma(b) b^{-1} a$. Replace w by bw then

$$
w \varphi(\sigma) w^{-1}=\sigma(b) b^{-1} a b \sigma(b)^{-1} \rtimes \sigma=a \rtimes \sigma=\varphi(\sigma) .
$$

In other words this new choice of w satisfies

$$
w \varphi(v) w^{-1}=\varphi(v) \quad \forall v \in W_{\mathbf{C} / \mathbf{R}}
$$

Since $\omega \in \Omega_{\mathbf{R}}(T, M)$ and $\omega \mu=\mu$ imply that $\omega=1$ we have found

$$
W \hookrightarrow \operatorname{Norm}\left({ }^{L} T^{0}\right) \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right) /{ }^{L} T^{0} \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)
$$

To obtain the full lemma we have only to show that if w lies in $\operatorname{Norm}\left({ }^{L} T^{0}\right) \cap \operatorname{Cent} \varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$ then the corresponding element of the Weyl group stabilizes M and lies in $\Omega_{\mathbf{R}}(T, G)$. It stabilizes ${ }^{L} M$ because [4] α^{\vee} is a root of ${ }^{L} M$ if and only if $\varphi(\sigma) \alpha^{\vee}=-\alpha^{\vee}$. Hence it stabilizes M. By Lemma 5.2 of Shelstad's thesis

$$
\omega=\omega_{1} \omega_{2}
$$

with $\omega_{1} \in \Omega_{\mathbf{C}}(T, M), \omega_{2} \in \Omega_{\mathbf{R}}(T, G)$. Then

$$
w \varphi=\varphi \Longrightarrow \omega_{1}^{-1} \mu=\omega_{2} \mu, \omega_{1}^{-1} \nu=\omega_{2} \nu, \omega_{1}^{-1} \lambda_{0} \equiv \omega_{2} \lambda_{0} .
$$

Another lemma of Shelstad implies that $\omega_{1} \in \Omega_{\mathbf{R}}(T, M)$. Hence

$$
\omega \in \Omega_{\mathbf{R}}(T, G)
$$

The advantage of introducing the L-group appears immediately when Knapp's R-group is discussed. Let S be the centralizer of $\varphi\left(W_{\mathbf{C} / \mathbf{R}}\right)$ in ${ }^{L} G^{0}$ and S^{0} the connected component.
Lemma 2. If G is semi-simple and simply-connected then the R-group is S / S^{0}.
Let ${ }^{L} \mathfrak{t}$ be the Lie algebra of ${ }^{L} T$ and set

$$
{ }^{L_{\mathfrak{t}}}={ }^{L_{\mathfrak{t}}}{ }^{+}+{ }^{L_{\mathfrak{t}}} .
$$

where ${ }^{{ }^{t_{+}}}{ }_{+}$and ${ }^{L_{\mathfrak{t}}}$ are the +1 and -1 eigenspaces for $\varphi(\sigma)$. I claim that ${ }^{L_{+}} \mathfrak{t}_{+}$which certainly lies in \mathfrak{s}, the Lie algebra of S^{0}, is in fact a Cartan subalgebra of S^{0}. Indeed [5]

$$
\mathfrak{s} \subseteq{ }^{L^{\prime}} \mathfrak{t}_{+}+\sum_{\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0} \mathbf{C} X_{\alpha^{\vee}}
$$

If $\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0$ then α^{\vee} cannot be a root of ${ }^{L} T$ in ${ }^{L} M$. Hence

$$
\varphi(\sigma) \alpha^{\vee} \neq-\alpha^{\vee}
$$

and α^{\vee} is not 0 on ${ }^{L} \mathfrak{t}_{+}$. The assertion follows.
We may identify $\operatorname{Hom}\left({ }^{L} \mathfrak{t}, \mathbf{C}\right)$ with $\mathfrak{t} \otimes \mathbf{C}$ as a $\mathfrak{G}(\mathbf{C} / \mathbf{R})$-module if \mathfrak{t} is the Lie algebra of T. If α^{\vee} is a root of ${ }^{L} T^{0}$ in ${ }^{L} G^{0}$ with $\varphi(\sigma) \alpha^{\vee} \neq-\alpha^{\vee}$ set

$$
\mathfrak{a}_{\alpha^{\vee}}=\left({ }^{L^{t_{-}}}+\mathbf{C} \alpha^{\vee}\right)^{\perp} .
$$

Then $G_{\alpha^{\vee}}$ the centralizer of $\mathfrak{a}_{\alpha^{\vee}}$ in G is defined over \mathbf{R} and M is the Levi factor of a maximal $P S G$ of $G_{\alpha^{\vee}}$. Let $\mu\left(\rho, \alpha^{\vee}\right)$ be the value of the Plancherel measure for

$$
\operatorname{Ind}\left(G_{\alpha^{\vee}}(\mathbf{R}), M(\mathbf{R}), \rho\right)
$$

Let

$$
\mathfrak{X}_{\alpha^{\vee}}=\left\{\beta^{\vee} \mid \varphi(\sigma) \beta^{\vee} \neq-\beta^{\vee}, G_{\beta^{\vee}}=G_{\alpha^{\vee}}\right\} .
$$

The centralizer of ${ }^{L} \mathfrak{t}_{+}$is

$$
{ }^{L^{t_{+}}}+\sum_{\varphi(\sigma) \alpha^{\vee}=-\alpha^{\vee}} \mathbf{C} X_{\alpha^{\vee}}[\mathbf{6}]
$$

and this is the Lie algebra of ${ }^{L} M$. Moreover

$$
S / S^{0} \simeq \operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right) / \operatorname{Norm}_{S^{0}}\left({ }^{L} \mathfrak{t}_{+}\right)
$$

If $w \in \operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right)$then w normalizes ${ }^{L} M^{0}$ and centralizes $\varphi\left(\mathbf{C}^{\times}\right)$. Consequently it normalizes ${ }^{L_{t}}$ and we have

$$
\operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right) /{ }^{L} T_{+} \simeq W
$$

The lemma and indeed more will be established once the following facts are proved. They will be proved for any G.
(i) $\operatorname{dim} \mathfrak{s}_{\alpha \vee}=\operatorname{dim}\left(\left(\sum_{\beta^{\vee} \in \mathfrak{X}_{\alpha \vee}} \mathbf{C} X_{\beta^{\vee}}\right) \cap \mathfrak{s}\right) \leqslant 1$.
(ii) It is equal to 1 if and only if $\mu\left(\rho, \alpha^{\vee}\right)=0$.
(iii) If it is one then $\mathfrak{s}_{\alpha^{\vee}}$ defines a root space of ${ }^{L} \mathfrak{t}_{+}$in \mathfrak{t}. The corresponding reflection in ${ }^{L} \mathfrak{t}_{+}$is the same as that defined by the real root of T in $G_{\alpha^{\vee}}$.
There are a number of possibilities to consider.
(a) $\mathfrak{X}_{\alpha^{\vee}}$ consists of a single element. Then $\varphi(\sigma) \alpha^{\vee}=\alpha^{\vee}$ and α, the corresponding root of T, is real. Since $\sigma \mu=\nu,\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle$ and $\operatorname{dim} \mathfrak{s}_{\alpha^{\vee}}=1$ if and only if $\left\langle\mu, \alpha^{\vee}\right\rangle=0$ and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=X_{\alpha^{\vee}} \cdot[7]
$$

Certainly $T(\mathbf{R})$ is not fundamental. According to the formula on p. 141 of HarishChandra's preprint Harmonic analysis III, $\mu\left(\rho, \alpha^{*}\right)$ is 0 if and only if

$$
\nu_{\alpha}=0 \quad \text { and } \quad \frac{(-1)^{\rho_{\alpha}}}{2}\left(\sigma_{a^{*}}(\gamma)+\sigma_{a^{*}}\left(\gamma^{-1}\right)\right) \neq 1
$$

Now

$$
\nu_{\alpha}=\left\langle\mu, \alpha^{\vee}\right\rangle .
$$

Also $\mathfrak{s}_{a^{*}}$ is now of dimension one and

$$
\sigma_{a^{*}}(\gamma)=\sigma_{a^{*}}\left(\gamma^{-1}\right)=\chi\left(\alpha^{\vee}(-1)\right)
$$

Here χ is associated to $\varphi: W_{\mathbf{C} / \mathbf{R}} \rightarrow{ }^{L} M$ as on p. 50 of CIRRAG and if the definition of a coroot is taken into account

$$
\gamma=\alpha^{\vee}(-1)
$$

Thus (cf. p. 51 of CIRRAG)

$$
\chi\left(\alpha^{\vee}(-1)\right)=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle} .
$$

Apologies are necessary for this phase of the discussion but the transition from Harish-Chandra's notation to that used in CIRRAG is clumsy.

On the other hand

$$
\varphi(\sigma)=a \rtimes \sigma[8]
$$

and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle} \varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)
$$

if $\varphi^{\prime}(\sigma)=a^{\prime} \rtimes \sigma, a^{\prime} \in{ }^{L} M_{\mathrm{der}}, a^{-1} a^{\prime} \in{ }^{L} T^{0}$. The assertion (ii) will be verified if we show that

$$
\varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)=-(-1)^{\rho_{\alpha}} X_{\alpha^{\vee}} .
$$

Now, by p. 122 of Harmonic Analysis III

$$
\rho_{\alpha}=\left\langle\rho_{\alpha^{\vee}}, \alpha^{\vee}\right\rangle
$$

if $\rho_{\alpha^{\vee}}$ is one-half the sum of the positive roots of $G_{\alpha^{\vee}}$. But in the present circumstances the derived algebra of $\mathfrak{g}_{\alpha \vee}$ is a direct sum because α^{\vee} is perpendicular to all roots of $G_{\alpha^{\vee}}$ except $\pm \alpha^{\vee}$. Thus

$$
\left\langle\rho_{\alpha}, \alpha^{\vee}\right\rangle=\frac{1}{2}\left\langle\alpha, \alpha^{\vee}\right\rangle=1
$$

Moreover α^{\vee} must be a simple root and so by the definition of ${ }^{L} M$

$$
\varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)=\sigma\left(X_{\alpha^{\vee}}\right)=1
$$

The assertion (ii) follows. Since the reflections corresponding to α and α^{\vee} are the same, the assertion (iii) does also.
(b) Suppose $\varphi(\sigma) \alpha^{\vee}=\alpha^{\vee}$ and β^{\vee} different from α^{\vee} lies in $\mathfrak{X}_{\alpha^{\vee}}$. [9]
(i) Suppose

$$
\left\langle\mu, \beta^{\vee}\right\rangle=\left\langle\nu, \beta^{\vee}\right\rangle=0
$$

Then

$$
\left\langle\mu, \varphi(\sigma) \beta^{\vee}\right\rangle=\left\langle\nu, \varphi(\sigma) \beta^{\vee}\right\rangle=0
$$

Since $\varphi(\sigma) \beta^{\vee}$ lies in the span of $\left\{\alpha^{\vee}, \beta^{\vee}\right\}$ and is different from β^{\vee}, both μ and ν vanish on this two-dimensional space. As a consequence there are no roots γ^{\vee} on it orthogonal to α^{\vee}. For then $\varphi(\sigma) \gamma^{\vee}$ would be $-\gamma^{\vee}$ and as a consequence

$$
\left\langle\mu, \gamma^{\vee}\right\rangle \neq 0
$$

This leaves only

of type A_{2}.
I claim next that if γ^{\vee} lies in $X_{\alpha^{\vee}}$ and is different from $\alpha^{\vee}, \beta^{\vee}$, and $\varphi(\sigma) \beta^{\vee}$ then either $\left\langle\mu, \gamma^{\vee}\right\rangle \neq 0$ or $\left\langle\nu, \gamma^{\vee}\right\rangle \neq 0$. If not, consider all roots in the span of $\left\{\alpha^{\vee}, \beta^{\vee}, \gamma^{\vee}\right\}$. They form a root system of rank 3 on which $\varphi(\sigma)$ acts. If δ^{\vee} lies in this system then $\left\langle\mu, \delta^{\vee}\right\rangle=\left\langle\nu, \delta^{\vee}\right\rangle=0$ so $\varphi(\sigma) \delta^{\vee} \neq-\delta^{\vee}$. As a consequence [10]

$$
\delta^{\vee}+\varphi(\sigma) \delta^{\vee}=a \alpha^{\vee} \quad a \neq 0
$$

and

$$
\left\{\delta^{\vee} \mid\left\langle\alpha, \delta^{\vee}\right\rangle \geqslant 0\right\}
$$

defines a system of positive roots stable under $\varphi(\sigma)$. Let $\alpha_{1}^{\vee}, \alpha_{2}^{\vee}, \alpha_{3}^{\vee}$ be the simple roots. They are permuted amongst themselves by $\varphi(\sigma)$. Thus by a suitable numbering

$$
a_{1}^{\vee}=\alpha^{\vee}, \quad a_{3}^{\vee}=\varphi(\sigma) a_{2}^{\vee} .
$$

Then

$$
a \alpha^{\vee}=\alpha_{2}^{\vee}+a_{3}^{\vee}
$$

This is a contradiction.
Also we may take

$$
X_{\alpha^{\vee}}=\left[X_{\beta^{\vee}}, \varphi(\sigma) X_{\beta^{\vee}}\right]
$$

and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=-X_{\alpha^{\vee}}
$$

Thus

$$
\mathfrak{s}_{\alpha^{\vee}}=\mathbf{C}\left(X_{\beta^{\vee}}+\varphi(\sigma) X_{\beta^{\vee}}\right)
$$

has dimension 1. Since [11]

$$
\left\langle\mu, \beta^{\prime}\right\rangle=(\lambda+i \nu)\left(H_{\beta}\right)
$$

the right side conforming to Harish-Chandra's notation, the measure $\mu\left(\rho, \alpha^{\vee}\right)$ is certainly zero. The reflection defined by $\mathfrak{s}_{\alpha \vee}$ is clearly correct on ${ }^{L} \mathfrak{t}_{+}$.
(ii) Suppose that for every β^{\vee} different from α^{\vee} in $\mathfrak{X}_{\alpha}{ }^{\vee}$

$$
\left\langle\mu, \beta^{\vee}\right\rangle \neq 0 \text { or }\left\langle\nu, \beta^{\vee}\right\rangle \neq 0
$$

Then $\operatorname{dim} \mathfrak{s}_{\alpha \vee}=1$ if and only if

$$
\left\langle\mu, \alpha^{\vee}\right\rangle=0, \quad \varphi(\sigma) X_{\alpha^{\vee}}=X_{\alpha^{\vee}}
$$

Again the first condition is equivalent to $\nu_{\alpha}=0$. We have to show that when this is so then the second is equivalent to

$$
\frac{(-1)^{\rho_{\alpha}}}{2}\left(\sigma_{a^{*}}(\gamma)+\sigma_{a^{*}}\left(\gamma^{-1}\right)\right) \neq 1
$$

Let

$$
\varphi(\sigma) X_{\alpha^{\vee}}=\lambda X_{\alpha^{\vee}}
$$

We show that

$$
\left(\frac{(-1)^{\rho_{\alpha}}}{2}\right)\left(\sigma_{a^{*}}(\gamma)+\sigma_{a^{*}}\left(\gamma^{-1}\right)\right)=-\lambda
$$

This is enough, for $\lambda= \pm 1$. As before [12]

$$
\sigma_{a^{*}}(\gamma)=\sigma_{a^{*}}\left(\gamma^{-1}\right)=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle}
$$

and

$$
\varphi(\sigma) X_{\alpha^{\vee}}=e^{2 \pi i\left\langle\lambda_{0}, \alpha^{\vee}\right\rangle} \varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)
$$

if $\varphi^{\prime}(\sigma)$ is defined as before. What we must do is show that

$$
\varphi^{\prime}(\sigma)\left(X_{\alpha^{\vee}}\right)=-(-1)^{\left\langle\rho_{\alpha} \vee, \alpha^{\vee}\right\rangle} X_{\alpha^{\vee}} .
$$

This is a statement about a reductive group $G_{\alpha^{\vee}}$ and a Levi factor M of a maximal parabolic, M and G both having compact CSGs. It is not bound to the present situation and may be proved by induction on the rank of $G_{\alpha^{\vee}}$. Let β^{\vee} be the largest root of one of the simple factors of ${ }^{L} M_{\text {der }}$ and introduce a_{2}, a_{1} as on p. 46 of CIRRAG. We may take $a^{\prime}=a_{2} a_{1}$. If ρ^{\prime} is the analogue of $\rho_{\alpha^{\vee}}$ for the roots perpendicular to β^{\vee} then by induction

$$
a_{1} \rtimes \sigma\left(X_{\alpha^{\vee}}\right)=-(-1)^{\left\langle\rho^{\prime}, \alpha^{\vee}\right\rangle} X_{\alpha^{\vee}}
$$

What we have to do is show that

$$
a_{2}\left(X_{\alpha^{\vee}}\right)=(-1)^{\ell} X_{\alpha^{\vee}}, \quad \ell=\left(\frac{1}{2}\right) \sum_{\substack{\left\langle\gamma, \beta^{\vee}\right\rangle \neq 0 \\ \gamma>0}}\left\langle\gamma, \alpha^{\vee}\right\rangle \cdot[13]
$$

Suppose $\gamma>0,\left\langle\gamma, \beta^{\vee}\right\rangle \neq 0,\left\langle\gamma, \alpha^{\vee}\right\rangle \neq 0$ and γ^{\vee} is not in the plane spanned by $\alpha^{\vee}, \beta^{\vee}$. Then:

1) $\gamma^{\vee}=a_{2} \gamma^{\vee} \Longrightarrow \gamma=a_{2} \gamma \Longrightarrow\left\langle\gamma, \beta^{\vee}\right\rangle=0$-impossible
2) $\gamma^{\vee}=\varphi(\sigma) \gamma^{\vee} \Longrightarrow \gamma^{\vee}= \pm \alpha^{\vee}$-impossible
3) $\gamma^{\vee}=a_{2} \varphi(\sigma) \gamma^{\vee} \Longrightarrow \gamma^{\vee}$ in plane of $\alpha^{\vee}, \beta^{\vee}$ because $\left(\alpha^{\vee}, \beta^{\vee}\right)=0$. Thus γ, $a_{2} \gamma, \varphi(\sigma) \gamma, a_{2} \varphi(\sigma) \gamma$ are distinct and positive. Since

$$
\left\langle\gamma, \alpha^{\vee}\right\rangle=\left\langle a_{2} \gamma, \alpha^{\vee}\right\rangle=\left\langle\varphi(\sigma) \gamma, \alpha^{\vee}\right\rangle=\left\langle a_{2} \varphi(\sigma) \gamma, \alpha^{\vee}\right\rangle
$$

the sum of the four of them even after division by 2 is even and may be dropped from the exponent. So may those $\left\langle\gamma, \alpha^{\vee}\right\rangle$ which are 0 . We confine ourselves to γ with γ^{\vee} in the plane of $\alpha^{\vee}, \beta^{\vee}$.
The possibilities are:
A) No roots except $\pm \alpha^{\vee}, \pm \beta^{\vee}$ in the plane. Then the exponent is 0 and

$$
a_{2}\left(X_{\alpha^{\vee}}\right)=X_{\alpha^{\vee}} .
$$

B)

$$
\left(\frac{1}{2}\right) \sum\left\langle\gamma, \alpha^{\vee}\right\rangle=\frac{1}{2}\left\langle\alpha, \alpha^{\vee}\right\rangle=1, \quad a_{2}\left(X_{\alpha^{\vee}}\right)=-X_{\alpha^{\vee}}[\mathbf{1 4}]
$$

C)

$$
\left(\frac{1}{2}\right) \sum\left\langle\gamma, \alpha^{\vee}\right\rangle=\left\langle\alpha, \alpha^{\vee}\right\rangle=2, \quad a_{2}\left(X_{\alpha^{\vee}}\right)=X_{\alpha^{\vee}}
$$

D)

$$
\left(\frac{1}{2}\right) \sum\left\langle\gamma, \alpha^{\vee}\right\rangle=2\left\langle\alpha, \alpha^{\vee}\right\rangle=4, \quad a_{2}\left(X_{\alpha \vee}\right)=X_{\alpha^{\vee}}
$$

E) The roles of α, α^{\vee} and β, β^{\vee} are reversed

$$
\left(\frac{1}{2}\right) \sum\left\langle\gamma, \alpha^{\vee}\right\rangle=\left\langle\alpha, \alpha^{\vee}\right\rangle=2, \quad a_{2}\left(X_{\alpha^{\vee}}\right)=X_{\alpha^{\vee}} .
$$

All that is claimed in A) through E) is easy to check. Finally it is clear that the reflection defined by \mathfrak{s}_{α} is that defined by α or α^{\vee}.
(i) Suppose that $\varphi(\sigma) \beta^{\vee} \neq \beta^{\vee}$ for all β^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$. Then $\beta^{\vee}+\varphi(\sigma) \beta^{\vee}$ is not a root, nor is [15]

$$
\frac{\beta^{\vee}+\varphi(\sigma) \beta^{\vee}}{2}
$$

(ii) Suppose that $\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0$. Then $\alpha^{\vee}-\varphi(\sigma) \alpha^{\vee}$ is not a root and $\left\langle\alpha^{\vee}, \varphi(\sigma) \alpha^{\vee}\right\rangle=0$. Since α^{\vee} and $\varphi(\sigma) \alpha^{\vee}$ have the same length, the root diagram of the plane spanned by $\alpha^{\vee}, \varphi(\sigma) \alpha^{\vee}$ is

I claim that if β^{\vee} lies in $\mathfrak{X}_{\alpha^{\vee}}$ but not in this plane then either $\left\langle\mu, \beta^{\vee}\right\rangle=0$ or $\left\langle\nu, \beta^{\vee}\right\rangle=0$. Otherwise in the three-dimensional plane spanned by α^{\vee}, $\varphi(\sigma) \alpha^{\vee}, \beta^{\vee}, \varphi(\sigma) \beta^{\vee}$ we have a root system and

$$
\left\{\gamma^{\vee} \mid\left\langle\gamma, \alpha^{\vee}+\varphi(\sigma) \alpha^{\vee}\right\rangle \geqslant 0\right\}
$$

is a set of positive roots, for

$$
\left\langle\gamma, \alpha^{\vee}+\varphi(\sigma) \alpha^{\vee}\right\rangle
$$

is never 0 , because if it were then $\varphi(\sigma) \gamma^{\vee}=-\gamma^{\vee}$. Since $\left\langle\mu, \gamma^{\vee}\right\rangle=\left\langle\nu, \gamma^{\vee}\right\rangle=$ 0 this is impossible. Then $\varphi(\sigma)$ permutes the three simple roots amongst themselves, and leaves one fixed. This is a contradiction. Thus [16]

$$
\mathfrak{s}_{\alpha}=\mathbf{C}\left(X_{\alpha^{\vee}}+\varphi(\sigma) X_{\alpha^{\vee}}\right)
$$

has dimension one. Since T is fundamental in $G_{\alpha^{\vee}}$, the formula on p. 97 of Harmonic analysis III shows that $\mu\left(\rho, \alpha^{\vee}\right)=0$. The three assertions follow again.
(iii) Suppose that for any β^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$ either $\left\langle\mu, \beta^{\vee}\right\rangle \neq 0$ or $\left\langle\nu, \beta^{\vee}\right\rangle \neq 0$. Then $\mathfrak{s}_{\alpha \vee}=0$. By the same formula in Harmonic analysis III,

$$
\mu\left(\rho, \alpha^{\vee}\right) \neq 0
$$

Lemma 2 is now completely proved. I should observe, for it will remove a confusion that could otherwise arise, that

$$
-\overline{\left\langle\mu, \alpha^{\vee}\right\rangle}=\left\langle\nu, \alpha^{\vee}\right\rangle
$$

for any α^{\vee}.
It is also possible to give Zuckerman's proof that the R-group is a sum of Z_{2} 's in the above context. Let $\operatorname{Norm}_{S}^{+}\left({ }^{L} \mathfrak{t}_{+}\right)$be the set of elements of $\operatorname{Norm}_{S}\left({ }^{L} \mathfrak{t}_{+}\right)$that take positive roots of \mathfrak{s}_{0} to positive roots. Then

$$
R=S / S^{0} \simeq \operatorname{Norm}_{S}^{+}\left({ }^{L_{\mathfrak{t}_{+}}}\right) /{ }^{L} \mathfrak{t}_{+}
$$

Let

$$
\mathfrak{s}_{1}={ }^{L^{t}}+\sum_{\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0} \mathbf{C} X_{\alpha^{\vee}}[\mathbf{1 7}]
$$

The elements of $\operatorname{Norm}_{S}^{+}\left({ }^{L} \mathfrak{t}_{+}\right)$take \mathfrak{s}_{1} to itself. Let Q be the operator

$$
\frac{1}{|R|} \sum_{R} r
$$

on $\mathfrak{t} \otimes \mathbf{C}$. Since the centralizer of $\varphi\left(\mathbf{C}^{\times}\right)$is connected, S lies in the connected group S_{1} with Lie algebra \mathfrak{s}_{1}. Thus by Chevalley's theorem R is contained in the group generated by the reflections associated to the roots α^{\vee} of \mathfrak{s}_{1} for which $Q \alpha^{\vee}=0$.

If α^{\vee} is a root of \mathfrak{s}_{1} then $\varphi(\sigma) \alpha^{\vee} \neq-\alpha^{\vee}$. Suppose $\varphi(\sigma) \alpha^{\vee} \neq \alpha^{\vee}$. Then

$$
X_{\alpha^{\vee}}+\varphi(\sigma) X_{\alpha^{\vee}} \neq 0
$$

and lies in \mathfrak{s}. Thus α^{\vee} restricted to ${ }^{L} \mathfrak{t}_{+}$defines a root of \mathfrak{s}. Since the elements of r stabilize ${ }^{L} \mathfrak{t}_{+}$and each r takes positive roots of ${ }^{L} \mathfrak{t}_{+}$in \mathfrak{s} to positive roots,

$$
Q \alpha^{\vee} \neq 0 .
$$

Thus if α^{\vee} is a root of \mathfrak{s}_{1} then

$$
Q \alpha^{\vee}=0 \Longrightarrow \varphi(\sigma) \alpha^{\vee}=\alpha^{\vee}
$$

Moreover α^{\vee} cannot be a root of \mathfrak{s} and therefore

$$
\varphi(\sigma) X_{\alpha^{\vee}}=-X_{\alpha^{\vee}} \cdot[18]
$$

Finally if $Q \alpha^{\vee}=0, Q \beta^{\vee}=0$ then $\alpha^{\vee} \pm \beta^{\vee}$ is not a root because $\varphi(\sigma) X_{\alpha^{\vee}+\beta^{\vee}}=$ $\varphi(\sigma)\left[X_{\alpha^{\vee}}, X_{\beta^{\vee}}\right]=\left[-X_{\alpha^{\vee}},-X_{\beta^{\vee}}\right]=X_{\alpha^{\vee}+\beta^{\vee}}$ and $\alpha^{\vee}+\beta^{\vee}$ would have to be a root of \mathfrak{s}. This is inconsistent with

$$
Q\left(\alpha^{\vee}+\beta^{\vee}\right)=0 .
$$

The set of positive α^{\vee} for which $\left\langle\mu, \alpha^{\vee}\right\rangle=\left\langle\nu, \alpha^{\vee}\right\rangle=0$ and $Q \alpha^{\vee}=0$ is the strongly orthogonal system needed for Zuckerman's argument.

Compiled on July 3, 2024.

