NOTES ON THE KNAPP-ZUCKERMAN THEORY

ROBERT P. LANGLANDS

The point of these notes is to redefine some of their concepts in terms of the *L*-group. I observe, however, that it is best and indeed essential for further applications that their results be formulated for reductive groups rather than just for simply-connected semi-simple groups. I use the notation of *CIRRAG* (On the classification of irreducible representations of real algebraic groups) modified sometimes according to Borel's suggestions.

Since we are dealing with tempered representations we start from $\varphi: W_{\mathbf{C}/\mathbf{R}} \to {}^L G$ with image which is essentially compact. We suppose φ defines an element of $\Phi(G)$. Choose a parabolic ${}^L P$ in ${}^L G$ which is minimal with respect to the property that $\varphi(W_{\mathbf{C}/\mathbf{R}}) \subseteq {}^L P$. The group ${}^L P$ defines P and M. Let ρ (with character Θ) be one of the representations of M associated to φ . Thus $\rho \in \Pi_{\varphi}$, if φ is regarded as taking $W_{\mathbf{C}/\mathbf{R}}$ to ${}^L M$. It is

$$\operatorname{Ind}(G, P, \rho)$$

that Knapp-Zuckerman study.

They define W on p. 3, formula [2] of their paper Classification of irreducible tempered representations of semisimple Lie groups. We want another definition. For this we observe that $\Omega_{\mathbf{C}}(T,G)$ is isomorphic to $\Omega({}^LT^0,{}^LG^0)$. Here T is a CSG (Cartan subgroup) of M. We want to regard W as a subgroup [2] of the latter group. We may assume, along the lines of CIRRAG that $\varphi(\mathbf{C}^{\times}) \subseteq {}^LT$, that $\varphi(W_{\mathbf{C}/\mathbf{R}})$ normalizes LT , and that ${}^LT \subseteq {}^LM$, a chosen Levi factor of LP .

Lemma 1. W is the quotient $Norm(^LT) \cap Cent \varphi(W_{\mathbf{C}/\mathbf{R}})/^LT^0 \cap Cent \varphi(W_{\mathbf{C}/\mathbf{R}})$, the normalizer and centralizer being taken in $^LG^0$.

Let $\{1, \sigma\}$ be $\mathfrak{G}(\mathbf{C}/\mathbf{R})$ so that $W_{\mathbf{C}/\mathbf{R}}$ is generated by \mathbf{C}^{\times} and σ with $\sigma^2 = -1$. As on pages 48 and 49 of CIRRAG with M replacing G the homomorphism φ is defined by μ , ν with $\nu = \varphi(\sigma)\mu$ and by λ_0 . If ω in $\Omega_{\mathbf{R}}(T, G)$ normalizes M then

$$\omega \in W \iff \omega \rho \sim \rho \iff \omega \mu = \omega_1 \mu, \ \omega \lambda_0 \equiv \omega_1 \lambda_0 \mod \left({}^L\!X_* + \left(1 - \varphi(\sigma) \right) ({}^L\!X_* \otimes \mathbf{C}) \right)$$

with $\omega_1 \in \Omega_{\mathbf{R}}(T, M)$ and ${}^L\!X_* = \mathrm{Hom}\big(GL(1), {}^LT\big)$. Replace ω by $\omega_1^{-1}\omega$. Since ω normalizes M,

$$\varphi(\sigma)\omega = \omega\varphi(\sigma)$$

on ${}^{L}\!X_{*}$ and

$$\omega \mu = \mu \iff \omega \mu = \mu, \omega \nu = \nu \iff w \varphi(z) = \varphi(z) w \text{ for } z \in \mathbf{C}^{\times}$$

if $w \in {}^LG^0$ represents ω . We write

$${}^{L}M = {}^{L}M^{0} \rtimes W_{\mathbf{C}/\mathbf{R}}[\mathbf{3}]$$

and let

$$\varphi(\sigma) = a \rtimes \sigma$$

Date: 1977.

with

$$\lambda^{\vee}(a) = e^{2\pi i \langle \lambda_0, \lambda^{\vee} \rangle}.$$

By the first paragraph on p. 37 of Problems in the theory of automorphic forms we may choose w so that $w\sigma = \sigma w$. But this is the wrong choice. We should choose $\omega(a) = \sigma(b)b^{-1}a$. Replace w by bw then

$$w\varphi(\sigma)w^{-1} = \sigma(b)b^{-1}ab\sigma(b)^{-1} \rtimes \sigma = a \rtimes \sigma = \varphi(\sigma).$$

In other words this new choice of w satisfies

$$w\varphi(v)w^{-1} = \varphi(v) \quad \forall v \in W_{\mathbf{C}/\mathbf{R}}.$$

Since $\omega \in \Omega_{\mathbf{R}}(T, M)$ and $\omega \mu = \mu$ imply that $\omega = 1$ we have found

$$W \hookrightarrow \operatorname{Norm}(^{L}T^{0}) \cap \operatorname{Cent} \varphi(W_{\mathbf{C}/\mathbf{R}})/^{L}T^{0} \cap \operatorname{Cent} \varphi(W_{\mathbf{C}/\mathbf{R}}).$$

To obtain the full lemma we have only to show that if w lies in $\operatorname{Norm}(^LT^0) \cap \operatorname{Cent} \varphi(W_{\mathbf{C}/\mathbf{R}})$ then the corresponding element of the Weyl group stabilizes M and lies in $\Omega_{\mathbf{R}}(T,G)$. It stabilizes LM because [4] α^{\vee} is a root of LM if and only if $\varphi(\sigma)\alpha^{\vee} = -\alpha^{\vee}$. Hence it stabilizes M. By Lemma 5.2 of Shelstad's thesis

$$\omega = \omega_1 \omega_2$$

with $\omega_1 \in \Omega_{\mathbf{C}}(T, M), \, \omega_2 \in \Omega_{\mathbf{R}}(T, G)$. Then

$$w\varphi = \varphi \implies \omega_1^{-1}\mu = \omega_2\mu, \ \omega_1^{-1}\nu = \omega_2\nu, \ \omega_1^{-1}\lambda_0 \equiv \omega_2\lambda_0.$$

Another lemma of Shelstad implies that $\omega_1 \in \Omega_{\mathbf{R}}(T, M)$. Hence

$$\omega \in \Omega_{\mathbf{R}}(T,G).$$

The advantage of introducing the L-group appears immediately when Knapp's R-group is discussed. Let S be the centralizer of $\varphi(W_{\mathbf{C}/\mathbf{R}})$ in ${}^LG^0$ and S^0 the connected component.

Lemma 2. If G is semi-simple and simply-connected then the R-group is S/S^0 .

Let ${}^L\mathfrak{t}$ be the Lie algebra of LT and set

$$^{L}\mathfrak{t}=^{L}\mathfrak{t}_{+}+^{L}\mathfrak{t}_{-}.$$

where ${}^{L}\mathbf{t}_{+}$ and ${}^{L}\mathbf{t}_{-}$ are the +1 and -1 eigenspaces for $\varphi(\sigma)$. I claim that ${}^{L}\mathbf{t}_{+}$ which certainly lies in \mathfrak{s} , the Lie algebra of S^{0} , is in fact a Cartan subalgebra of S^{0} . Indeed [5]

$$\mathfrak{s} \subseteq {}^{L}\mathfrak{t}_{+} + \sum_{\langle \mu, \alpha^{\vee} \rangle = \langle \nu, \alpha^{\vee} \rangle = 0} \mathbf{C} X_{\alpha^{\vee}}.$$

If $\langle \mu, \alpha^{\vee} \rangle = \langle \nu, \alpha^{\vee} \rangle = 0$ then α^{\vee} cannot be a root of LT in LM . Hence

$$\varphi(\sigma)\alpha^{\vee} \neq -\alpha^{\vee}$$

and α^{\vee} is not 0 on ${}^{L}\mathfrak{t}_{+}$. The assertion follows.

We may identify $\operatorname{Hom}(^L\mathfrak{t}, \mathbf{C})$ with $\mathfrak{t} \otimes \mathbf{C}$ as a $\mathfrak{G}(\mathbf{C}/\mathbf{R})$ -module if \mathfrak{t} is the Lie algebra of T. If α^{\vee} is a root of $^LT^0$ in $^LG^0$ with $\varphi(\sigma)\alpha^{\vee} \neq -\alpha^{\vee}$ set

$$\mathfrak{a}_{\alpha^{\vee}} = ({}^{L}\mathfrak{t}_{-} + \mathbf{C}\alpha^{\vee})^{\perp}.$$

Then $G_{\alpha^{\vee}}$ the centralizer of $\mathfrak{a}_{\alpha^{\vee}}$ in G is defined over \mathbf{R} and M is the Levi factor of a maximal PSG of $G_{\alpha^{\vee}}$. Let $\mu(\rho, \alpha^{\vee})$ be the value of the Plancherel measure for

$$\operatorname{Ind}(G_{\alpha^{\vee}}(\mathbf{R}), M(\mathbf{R}), \rho).$$

Let

$$\mathfrak{X}_{\alpha^{\vee}} = \{ \beta^{\vee} \mid \varphi(\sigma)\beta^{\vee} \neq -\beta^{\vee}, G_{\beta^{\vee}} = G_{\alpha^{\vee}} \}.$$

The centralizer of $L_{\mathfrak{t}_+}$ is

$$^{L}\mathfrak{t}_{+}+\sum_{arphi(\sigma)lpha^{ee}=-lpha^{ee}}\mathbf{C}X_{lpha^{ee}}[\mathbf{6}]$$

and this is the Lie algebra of ${}^{L}\!M$. Moreover

$$S/S^0 \simeq \operatorname{Norm}_S({}^L\mathfrak{t}_+) / \operatorname{Norm}_{S^0}({}^L\mathfrak{t}_+).$$

If $w \in \text{Norm}_S(^L \mathfrak{t}_+)$ then w normalizes $^L M^0$ and centralizes $\varphi(\mathbf{C}^{\times})$. Consequently it normalizes $^L \mathfrak{t}$ and we have

$$\operatorname{Norm}_S({}^L\mathfrak{t}_+)/{}^LT_+ \simeq W.$$

The lemma and indeed more will be established once the following facts are proved. They will be proved for any G.

- (i) $\dim \mathfrak{s}_{\alpha^{\vee}} = \dim \left(\left(\sum_{\beta^{\vee} \in \mathfrak{X}_{\alpha^{\vee}}} \mathbf{C} X_{\beta^{\vee}} \right) \cap \mathfrak{s} \right) \leqslant 1.$
- (ii) It is equal to 1 if and only if $\mu(\rho, \alpha^{\vee}) = 0$.
- (iii) If it is one then $\mathfrak{s}_{\alpha^{\vee}}$ defines a root space of ${}^L\mathfrak{t}_+$ in \mathfrak{t} . The corresponding reflection in ${}^L\mathfrak{t}_+$ is the same as that defined by the real root of T in $G_{\alpha^{\vee}}$.

There are a number of possibilities to consider.

(a) $\mathfrak{X}_{\alpha^{\vee}}$ consists of a single element. Then $\varphi(\sigma)\alpha^{\vee} = \alpha^{\vee}$ and α , the corresponding root of T, is real. Since $\sigma\mu = \nu$, $\langle \mu, \alpha^{\vee} \rangle = \langle \nu, \alpha^{\vee} \rangle$ and $\dim \mathfrak{s}_{\alpha^{\vee}} = 1$ if and only if $\langle \mu, \alpha^{\vee} \rangle = 0$ and

$$\varphi(\sigma)X_{\alpha^{\vee}}=X_{\alpha^{\vee}}.[7]$$

Certainly $T(\mathbf{R})$ is not fundamental. According to the formula on p. 141 of Harish-Chandra's preprint *Harmonic analysis III*, $\mu(\rho, \alpha^*)$ is 0 if and only if

$$\nu_{\alpha} = 0$$
 and $\frac{(-1)^{\rho_{\alpha}}}{2} \left(\sigma_{a^*}(\gamma) + \sigma_{a^*}(\gamma^{-1}) \right) \neq 1.$

Now

$$\nu_{\alpha} = \langle \mu, \alpha^{\vee} \rangle.$$

Also \mathfrak{s}_{a^*} is now of dimension one and

$$\sigma_{a^*}(\gamma) = \sigma_{a^*}(\gamma^{-1}) = \chi(\alpha^{\vee}(-1)).$$

Here χ is associated to $\varphi:W_{\mathbf{C}/\mathbf{R}}\to {}^L\!M$ as on p. 50 of CIRRAG and if the definition of a coroot is taken into account

$$\gamma = \alpha^{\vee}(-1).$$

Thus (cf. p. 51 of CIRRAG)

$$\chi(\alpha^{\vee}(-1)) = e^{2\pi i \langle \lambda_0, \alpha^{\vee} \rangle}.$$

Apologies are necessary for this phase of the discussion but the transition from Harish-Chandra's notation to that used in CIRRAG is clumsy.

On the other hand

$$\varphi(\sigma) = a \rtimes \sigma[8]$$

and

$$\varphi(\sigma)X_{\alpha^{\vee}} = e^{2\pi i \langle \lambda_0, \alpha^{\vee} \rangle} \varphi'(\sigma)(X_{\alpha^{\vee}})$$

if $\varphi'(\sigma) = a' \rtimes \sigma$, $a' \in {}^L M_{\operatorname{der}}$, $a^{-1}a' \in {}^L T^0$. The assertion (ii) will be verified if we show that

$$\varphi'(\sigma)(X_{\alpha^{\vee}}) = -(-1)^{\rho_{\alpha}} X_{\alpha^{\vee}}.$$

Now, by p. 122 of Harmonic Analysis III

$$\rho_{\alpha} = \langle \rho_{\alpha^{\vee}}, \alpha^{\vee} \rangle$$

if $\rho_{\alpha^{\vee}}$ is one-half the sum of the positive roots of $G_{\alpha^{\vee}}$. But in the present circumstances the derived algebra of $\mathfrak{g}_{\alpha^{\vee}}$ is a direct sum because α^{\vee} is perpendicular to all roots of $G_{\alpha^{\vee}}$ except $\pm \alpha^{\vee}$. Thus

$$\langle \rho_{\alpha}, \alpha^{\vee} \rangle = \frac{1}{2} \langle \alpha, \alpha^{\vee} \rangle = 1.$$

Moreover α^{\vee} must be a simple root and so by the definition of ${}^{L}\!M$

$$\varphi'(\sigma)(X_{\alpha^{\vee}}) = \sigma(X_{\alpha^{\vee}}) = 1.$$

The assertion (ii) follows. Since the reflections corresponding to α and α^{\vee} are the same, the assertion (iii) does also.

- (b) Suppose $\varphi(\sigma)\alpha^{\vee} = \alpha^{\vee}$ and β^{\vee} different from α^{\vee} lies in $\mathfrak{X}_{\alpha^{\vee}}$. [9]
 - (i) Suppose

$$\langle \mu, \beta^{\vee} \rangle = \langle \nu, \beta^{\vee} \rangle = 0.$$

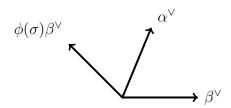
Then

$$\langle \mu, \varphi(\sigma)\beta^{\vee} \rangle = \langle \nu, \varphi(\sigma)\beta^{\vee} \rangle = 0.$$

Since $\varphi(\sigma)\beta^{\vee}$ lies in the span of $\{\alpha^{\vee},\beta^{\vee}\}$ and is different from β^{\vee} , both μ and ν vanish on this two-dimensional space. As a consequence there are no roots γ^{\vee} on it orthogonal to α^{\vee} . For then $\varphi(\sigma)\gamma^{\vee}$ would be $-\gamma^{\vee}$ and as a consequence

$$\langle \mu, \gamma^{\vee} \rangle \neq 0.$$

This leaves only



of type A_2 .

I claim next that if γ^{\vee} lies in $X_{\alpha^{\vee}}$ and is different from α^{\vee} , β^{\vee} , and $\varphi(\sigma)\beta^{\vee}$ then either $\langle \mu, \gamma^{\vee} \rangle \neq 0$ or $\langle \nu, \gamma^{\vee} \rangle \neq 0$. If not, consider all roots in the span of $\{\alpha^{\vee}, \beta^{\vee}, \gamma^{\vee}\}$. They form a root system of rank 3 on which $\varphi(\sigma)$ acts. If δ^{\vee} lies in this system then $\langle \mu, \delta^{\vee} \rangle = \langle \nu, \delta^{\vee} \rangle = 0$ so $\varphi(\sigma)\delta^{\vee} \neq -\delta^{\vee}$. As a consequence [10]

$$\delta^{\vee} + \varphi(\sigma)\delta^{\vee} = a\alpha^{\vee} \quad a \neq 0$$

and

$$\left\{\,\delta^\vee \bigm| \langle \alpha, \delta^\vee \rangle \geqslant 0\,\right\}$$

defines a system of positive roots stable under $\varphi(\sigma)$. Let α_1^{\vee} , α_2^{\vee} , α_3^{\vee} be the simple roots. They are permuted amongst themselves by $\varphi(\sigma)$. Thus by a suitable numbering

$$a_1^{\vee} = \alpha^{\vee}, \quad a_3^{\vee} = \varphi(\sigma)a_2^{\vee}.$$

Then

$$a\alpha^{\vee} = \alpha_2^{\vee} + a_3^{\vee}.$$

This is a contradiction.

Also we may take

$$X_{\alpha^{\vee}} = \left[X_{\beta^{\vee}}, \varphi(\sigma) X_{\beta^{\vee}} \right]$$

and

$$\varphi(\sigma)X_{\alpha^{\vee}} = -X_{\alpha^{\vee}}.$$

Thus

$$\mathfrak{s}_{\alpha^{\vee}} = \mathbf{C}(X_{\beta^{\vee}} + \varphi(\sigma)X_{\beta^{\vee}})$$

has dimension 1. Since [11]

$$\langle \mu, \beta' \rangle = (\lambda + i\nu)(H_{\beta}),$$

the right side conforming to Harish-Chandra's notation, the measure $\mu(\rho, \alpha^{\vee})$ is certainly zero. The reflection defined by $\mathfrak{s}_{\alpha^{\vee}}$ is clearly correct on ${}^{L}\mathfrak{t}_{+}$.

(ii) Suppose that for every β^{\vee} different from α^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$

$$\langle \mu, \beta^{\vee} \rangle \neq 0 \text{ or } \langle \nu, \beta^{\vee} \rangle \neq 0.$$

Then $\dim \mathfrak{s}_{\alpha^{\vee}} = 1$ if and only if

$$\langle \mu, \alpha^{\vee} \rangle = 0, \qquad \varphi(\sigma) X_{\alpha^{\vee}} = X_{\alpha^{\vee}}.$$

Again the first condition is equivalent to $\nu_{\alpha} = 0$. We have to show that when this is so then the second is equivalent to

$$\frac{(-1)^{\rho_{\alpha}}}{2} \left(\sigma_{a^*}(\gamma) + \sigma_{a^*}(\gamma^{-1}) \right) \neq 1.$$

Let

$$\varphi(\sigma)X_{\alpha^{\vee}} = \lambda X_{\alpha^{\vee}}.$$

We show that

$$\left(\frac{(-1)^{\rho_{\alpha}}}{2}\right)\left(\sigma_{a^*}(\gamma) + \sigma_{a^*}(\gamma^{-1})\right) = -\lambda.$$

This is enough, for $\lambda = \pm 1$. As before [12]

$$\sigma_{a^*}(\gamma) = \sigma_{a^*}(\gamma^{-1}) = e^{2\pi i \langle \lambda_0, \alpha^\vee \rangle}$$

and

$$\varphi(\sigma)X_{\alpha^{\vee}} = e^{2\pi i \langle \lambda_0, \alpha^{\vee} \rangle} \varphi'(\sigma)(X_{\alpha^{\vee}}).$$

if $\varphi'(\sigma)$ is defined as before. What we must do is show that

$$\varphi'(\sigma)(X_{\alpha^{\vee}}) = -(-1)^{\langle \rho_{\alpha^{\vee}}, \alpha^{\vee} \rangle} X_{\alpha^{\vee}}.$$

This is a statement about a reductive group $G_{\alpha^{\vee}}$ and a Levi factor M of a maximal parabolic, M and G both having compact CSGs. It is not bound to the present situation and may be proved by induction on the rank of $G_{\alpha^{\vee}}$. Let β^{\vee} be the largest root of one of the simple factors of ${}^{L}M_{\rm der}$ and introduce a_2 , a_1 as on p. 46 of CIRRAG. We may take $a'=a_2a_1$. If ρ' is the analogue of $\rho_{\alpha^{\vee}}$ for the roots perpendicular to β^{\vee} then by induction

$$a_1 \rtimes \sigma(X_{\alpha^{\vee}}) = -(-1)^{\langle \rho', \alpha^{\vee} \rangle} X_{\alpha^{\vee}}.$$

What we have to do is show that

$$a_2(X_{\alpha^{\vee}}) = (-1)^{\ell} X_{\alpha^{\vee}}, \quad \ell = \left(\frac{1}{2}\right) \sum_{\substack{\langle \gamma, \beta^{\vee} \rangle \neq 0 \\ \gamma > 0}} \langle \gamma, \alpha^{\vee} \rangle. [\mathbf{13}]$$

Suppose $\gamma > 0$, $\langle \gamma, \beta^{\vee} \rangle \neq 0$, $\langle \gamma, \alpha^{\vee} \rangle \neq 0$ and γ^{\vee} is not in the plane spanned by α^{\vee} , β^{\vee} . Then:

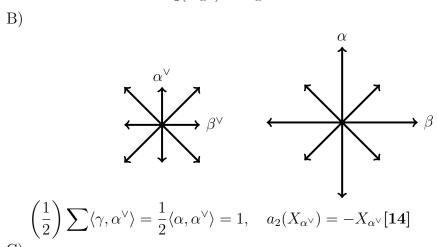
- 1) $\gamma^{\vee} = a_2 \gamma^{\vee} \implies \gamma = a_2 \gamma \implies \langle \gamma, \beta^{\vee} \rangle = 0$ —impossible 2) $\gamma^{\vee} = \varphi(\sigma) \gamma^{\vee} \implies \gamma^{\vee} = \pm \alpha^{\vee}$ —impossible
- 3) $\gamma^{\vee} = a_2 \varphi(\sigma) \gamma^{\vee} \implies \gamma^{\vee}$ in plane of α^{\vee} , β^{\vee} because $(\alpha^{\vee}, \beta^{\vee}) = 0$. Thus γ , $a_2\gamma$, $\varphi(\sigma)\gamma$, $a_2\varphi(\sigma)\gamma$ are distinct and positive. Since

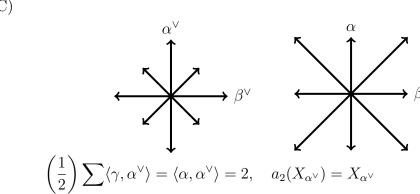
$$\langle \gamma, \alpha^{\vee} \rangle = \langle a_2 \gamma, \alpha^{\vee} \rangle = \langle \varphi(\sigma) \gamma, \alpha^{\vee} \rangle = \langle a_2 \varphi(\sigma) \gamma, \alpha^{\vee} \rangle$$

the sum of the four of them even after division by 2 is even and may be dropped from the exponent. So may those $\langle \gamma, \alpha^{\vee} \rangle$ which are 0. We confine ourselves to γ with γ^{\vee} in the plane of α^{\vee} , β^{\vee} .

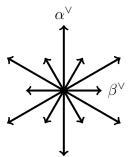
The possibilities are:

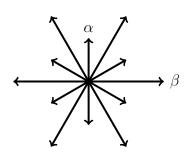
A) No roots except $\pm \alpha^{\vee}$, $\pm \beta^{\vee}$ in the plane. Then the exponent is 0 and $a_2(X_{\alpha^{\vee}}) = X_{\alpha^{\vee}}.$





D)





$$\left(\frac{1}{2}\right)\sum\langle\gamma,\alpha^{\vee}\rangle=2\langle\alpha,\alpha^{\vee}\rangle=4,\quad a_2(X_{\alpha^{\vee}})=X_{\alpha^{\vee}}$$

E) The roles of α , α^{\vee} and β , β^{\vee} are reversed

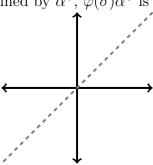
$$\left(\frac{1}{2}\right)\sum\langle\gamma,\alpha^{\vee}\rangle = \langle\alpha,\alpha^{\vee}\rangle = 2, \quad a_2(X_{\alpha^{\vee}}) = X_{\alpha^{\vee}}.$$

All that is claimed in A) through E) is easy to check. Finally it is clear that the reflection defined by $\mathfrak{s}_{\alpha^{\vee}}$ is that defined by α or α^{\vee} .

(i) Suppose that $\varphi(\sigma)\beta^{\vee} \neq \beta^{\vee}$ for all β^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$. Then $\beta^{\vee} + \varphi(\sigma)\beta^{\vee}$ is not a root, nor is [15]

$$\frac{\beta^{\vee} + \varphi(\sigma)\beta^{\vee}}{2}.$$

(ii) Suppose that $\langle \mu, \alpha^{\vee} \rangle = \langle \nu, \alpha^{\vee} \rangle = 0$. Then $\alpha^{\vee} - \varphi(\sigma)\alpha^{\vee}$ is not a root and $\langle \alpha^{\vee}, \varphi(\sigma)\alpha^{\vee} \rangle = 0$. Since α^{\vee} and $\varphi(\sigma)\alpha^{\vee}$ have the same length, the root diagram of the plane spanned by α^{\vee} , $\varphi(\sigma)\alpha^{\vee}$ is



I claim that if β^{\vee} lies in $\mathfrak{X}_{\alpha^{\vee}}$ but not in this plane then either $\langle \mu, \beta^{\vee} \rangle = 0$ or $\langle \nu, \beta^{\vee} \rangle = 0$. Otherwise in the three-dimensional plane spanned by α^{\vee} , $\varphi(\sigma)\alpha^{\vee}$, β^{\vee} , $\varphi(\sigma)\beta^{\vee}$ we have a root system and

$$\left\{ \left. \gamma^{\vee} \, \right| \, \left\langle \gamma, \alpha^{\vee} + \varphi(\sigma) \alpha^{\vee} \right\rangle \geqslant 0 \, \right\}$$

is a set of positive roots, for

$$\langle \gamma, \alpha^{\vee} + \varphi(\sigma)\alpha^{\vee} \rangle$$

is never 0, because if it were then $\varphi(\sigma)\gamma^{\vee} = -\gamma^{\vee}$. Since $\langle \mu, \gamma^{\vee} \rangle = \langle \nu, \gamma^{\vee} \rangle = 0$ this is impossible. Then $\varphi(\sigma)$ permutes the three simple roots amongst themselves, and leaves one fixed. This is a contradiction. Thus [16]

$$\mathfrak{s}_{\alpha} = \mathbf{C} \big(X_{\alpha^{\vee}} + \varphi(\sigma) X_{\alpha^{\vee}} \big)$$

has dimension one. Since T is fundamental in $G_{\alpha^{\vee}}$, the formula on p. 97 of Harmonic analysis III shows that $\mu(\rho, \alpha^{\vee}) = 0$. The three assertions follow again.

(iii) Suppose that for any β^{\vee} in $\mathfrak{X}_{\alpha^{\vee}}$ either $\langle \mu, \beta^{\vee} \rangle \neq 0$ or $\langle \nu, \beta^{\vee} \rangle \neq 0$. Then $\mathfrak{s}_{\alpha^{\vee}} = 0$. By the same formula in *Harmonic analysis III*,

$$\mu(\rho, \alpha^{\vee}) \neq 0.$$

Lemma 2 is now completely proved. I should observe, for it will remove a confusion that could otherwise arise, that

$$-\overline{\langle \mu, \alpha^{\vee} \rangle} = \langle \nu, \alpha^{\vee} \rangle$$

for any α^{\vee} .

It is also possible to give Zuckerman's proof that the R-group is a sum of Z_2 's in the above context. Let $\operatorname{Norm}_S^+({}^L\mathfrak{t}_+)$ be the set of elements of $\operatorname{Norm}_S({}^L\mathfrak{t}_+)$ that take positive roots of \mathfrak{s}_0 to positive roots. Then

$$R = S/S^0 \simeq \text{Norm}_S^+({}^L\mathfrak{t}_+)/{}^L\mathfrak{t}_+.$$

Let

$$\mathfrak{s}_1 = {}^L \mathfrak{t} + \sum_{\langle \mu, lpha^ee
angle = \langle
u, lpha^ee
angle = 0} \mathbf{C} X_{lpha^ee} [\mathbf{17}]$$

The elements of $\operatorname{Norm}_{S}^{+}(^{L}\mathfrak{t}_{+})$ take \mathfrak{s}_{1} to itself. Let Q be the operator

$$\frac{1}{|R|} \sum_{R} r$$

on $\mathfrak{t} \otimes \mathbf{C}$. Since the centralizer of $\varphi(\mathbf{C}^{\times})$ is connected, S lies in the connected group S_1 with Lie algebra \mathfrak{s}_1 . Thus by Chevalley's theorem R is contained in the group generated by the reflections associated to the roots α^{\vee} of \mathfrak{s}_1 for which $Q\alpha^{\vee} = 0$.

If α^{\vee} is a root of \mathfrak{s}_1 then $\varphi(\sigma)\alpha^{\vee} \neq -\alpha^{\vee}$. Suppose $\varphi(\sigma)\alpha^{\vee} \neq \alpha^{\vee}$. Then

$$X_{\alpha^{\vee}} + \varphi(\sigma)X_{\alpha^{\vee}} \neq 0$$

and lies in \mathfrak{s} . Thus α^{\vee} restricted to ${}^{L}\mathfrak{t}_{+}$ defines a root of \mathfrak{s} . Since the elements of r stabilize ${}^{L}\mathfrak{t}_{+}$ and each r takes positive roots of ${}^{L}\mathfrak{t}_{+}$ in \mathfrak{s} to positive roots,

$$Q\alpha^{\vee} \neq 0.$$

Thus if α^{\vee} is a root of \mathfrak{s}_1 then

$$Q\alpha^{\vee} = 0 \implies \varphi(\sigma)\alpha^{\vee} = \alpha^{\vee}.$$

Moreover α^{\vee} cannot be a root of \mathfrak{s} and therefore

$$\varphi(\sigma)X_{\alpha^{\vee}} = -X_{\alpha^{\vee}}.[\mathbf{18}]$$

Finally if $Q\alpha^{\vee} = 0$, $Q\beta^{\vee} = 0$ then $\alpha^{\vee} \pm \beta^{\vee}$ is not a root because $\varphi(\sigma)X_{\alpha^{\vee}+\beta^{\vee}} = \varphi(\sigma)[X_{\alpha^{\vee}}, X_{\beta^{\vee}}] = [-X_{\alpha^{\vee}}, -X_{\beta^{\vee}}] = X_{\alpha^{\vee}+\beta^{\vee}}$ and $\alpha^{\vee} + \beta^{\vee}$ would have to be a root of \mathfrak{s} . This is inconsistent with

$$Q(\alpha^{\vee} + \beta^{\vee}) = 0.$$

The set of positive α^{\vee} for which $\langle \mu, \alpha^{\vee} \rangle = \langle \nu, \alpha^{\vee} \rangle = 0$ and $Q\alpha^{\vee} = 0$ is the strongly orthogonal system needed for Zuckerman's argument.

Compiled on July 30, 2024.