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1 Introduction

Let X be a smooth algebraic curve of genus g and L→ X a line bundle of degree n. On the

surface Y = X ×X, following a construction of Carel Faber and Rahul Pandharipande we

define a (rational equivalence class of) 0-cycle

zL ∈ CH2(Y )

as follows: Let D be a divisor on X with [D] = L. Then we set

zL = D ×D − nD∆

where D∆ is the divisor D on the diagonal in X ×X. It is easy to see that{
deg zL = 0
AlbY (zL) = 0

where AlbY (zL) is the image of zL in the Albanese variety of Y . We are interested in the

question: Is

zL ≡ 0 ,(1.1)

where ≡ denotes rational equivalence of 0-cycles? This depends only on the line bundle [D],

and it is easy to see that (1.1) is true if

D = np, p ∈ X .

Additionally, according to the conjectures of Bloch and Beilinson zL should be torsion in

CH2(Y ) if (X,L) is defined over a number field. We shall show that:
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Theorem 1: If X is a smooth curve of genus g >= 2 and L → X is a general line bundle,

then

zL 6= 0 in CH2(X) .

In fact, the proof will show that zL is non-torsion in CH2(X).

Theorem 2: For L = KX the canonical bundle, if g >= 4 and X is the generic then

zKX 6= 0 in CH2(Y ) .

In Theorem 2 we note that (1.1) holds if X is hyperelliptic, and therefore if g = 2.

Carel Faber and Rahul Pandharipande have proved that (1.1) also is valid if g = 3, and

therefore our result is sharp. This paper settles a problem raised by them in their study of

the tautological subring of the cohomology and Chow rings of the moduli space of curves as

to whether the cycle zKX on the product of a curve with itself is always rationally equivalent

to 0. Interestingly, the invariant we use to show that zKX is not rationally equivalent to

0 (or even torsion in the Chow group) on a general curve of genus ≥ 4 makes use of an

infinitesimal computation on moduli space.

Theorem 1 is relatively elementary and, as pointed out to us by the referee, may be

proved by an extension of Mumford’s original argument using, e.g., the one given in the

introduction to [9]. We have chosen to present the proof given below as it illustrates in a

transparent way the idea behind the more complicated computations in Theorem 2. As a

general observation, in higher dimensions it is generally difficult to decide if a given 0-cycle is

or is not rationally equivalent to zero. Most of the “non-rationally equivalent to zero” results

seem to apply to generic situations (e.g. [9], [5]). To us a main interest in the problem is

that in Theorem 2, even though X is general the divisor KX is particular, so that zKX is

somewhere between general and special.

Our method of proof is Hodge-theoretic. For curves the classical Abel-Jacobi mapping

AJX : Div0(X)→ J(X)(1.2)

gives necessary and sufficient Hodge-theoretic conditions that a divisor of degree zero be

rationally equivalent to zero. For 0-cycles on a surface, no satisfactory analogue of (1.2)

has yet been found1. Moreover, the theorems stated above can only hold generically, which

1In [M. Green and P. Griffiths, “Hodge-theoretic invariants for algebraic cycles”, to appear in IMRN]
the authors will propose an analogue for 0-cycles on a surface which will (modulo torsion) capture rational
equivalence if (and this is a big “if”) one assumes the conjectures of Bloch and Beilinson.
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suggests the use of variational methods. Associated to a family D = {Ds ∈ Div0(Xs)}s∈S of

divisors on a family of smooth curves there is defined a normal function νD where

νD(s) = AJXs(Ds) ∈ J(Xs) .

Although νD(s) is defined transcendentally its associated infinitesimal invariant δνD may be

defined algebraically. Moreover,

δνD 6= 0⇒ νD(s) 6= 0 for general s,

and thus AJXs(Ds) 6= 0 in J(Xs) = CH1(Xs) for general s. In fact, since δνnD = nδνD has

values in a vector bundle we have that AJXS(Ds) is non-torsion for general s.

Suppose now that we have a family Z of 0-cycles zs on a family of algebraic surfaces Ys

and that {
deg zs = 0
AlbYs(zs) = 0 .

Then although we are not yet able to define the analogue νZ of νD, we can define the analogue

δνZ of δνD with the property that

δνZ 6= 0⇒ zs 6= 0 in CH2(Ys) for general Ys.

In fact, as above we have that zs is non-torsion in CH2(Ys) for general s. Our construction of

δνZ is a direct extension of earlier work of [3], [5], [9] and [10]. Their work, and the later work

by [1], is applied to families of cycles on hypersurfaces in projective space; there the explicit

calculation of δνZ is reduced to polynomial algebra. Our main contribution is to introduce

some new calculational methods when a polynomial description of the infinitesimal variation

of Hodge structure is not available. Although, as noted above, the computation that

δνL 6= 0

in Theorem 1 turns out to be relatively straightforward, the proof that

δνKX 6= 0

in Theorem 2 turns out to be somwehat subtle. The basic idea is to use the Schiffer variation

associated to a point p ∈ X, which intuitively may be thought of as a variation that changes

the complex structure on X by a “δ-function” at p. This allows us to localize the computation

at two distinct points p, q ∈ X, and the condition g >= 4 enters via the requirement that the

tangent lines to the canonical curve at p and q not intersect.

3



To carry this computation out we have written everything out explicitly in local coordi-

nates — essentially, we need an expression for the relative diagonal in a family {Xx×Xs}s∈S
of products of curves. Just preceeding the calculation at the end of section 4(a) we have

given a heurestic argument that leaves little doubt that the desired result is true up to a scale

factor which needs to be non-zero. As suggested by the referee it would be far more satisfac-

tory to replace the calculation by a more conceptual argument using functorial properties of

the diagonal, but we have not been able to find such an argument.

The most satisfactory approach could well be to give the computation in the completely

intrinsic form described in the problem stated at the end of section 4(c).

The organization of this paper is as follows: In Section 2 we will calculate the infinitesimal

invariant for families of line bundles of degree zero over a family of algebraic curves. Although

not strictly necessary for the logical development of our story, this case served us as an

important “toy model” for the more subtle situations given by the theorems stated above.

In Section 3 we will give the proof of Theorem 1; this argument is based on establishing a

geometric formula for δνL. In Section 4 we will first set up the framework for the proof of

Theorem 2 and give an heuristic argument for the main calculation. There we also formulate

an interesting general problem that for 0-cycles on surfaces would probably give the most

satisfactory expression of the relationship between δνZ and K-theory. Then in the remainder

of Section 4 we will give the complete proof of the theorem. Finally, in the Appendix we will

give the definition of the infinitesimal invariants used in this paper. In fact, those utilized

in our work here are only part of a general sequence of invariants that one may expect to be

of further use in similar geometric problems.

2 Computation of the infinitesimal invariant in the curve

case

In this section we will study the infinitesimal invariant of a normal function associated to a

family Ls → Xs of line bundles of degree zero over a family of algebraic curves. The main

objective will be to express this invariant in terms of the Kodaira-Spencer class associated

to the variation of Ls → Xs and the variation of Hodge structure associated to the Xs’s.

(a) More formally, we consider the situation

L −→ Xyπ
S

(2.1)
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where X
π−→ S is a smooth family of smooth algebraic curves of genus g >= 1 and L → X

is a line bundle of degree zero on each fibre. We shall work with complex varieties in the

algebraic setting (Zariski topology, etc.). Our considerations will be local in the base space

S, which we may assume to be an affine variety. We shall sometimes write X
π−→ S as

{Xs}s∈S where Xs = π−1(s), and shall write the fibre of (2.1) over s ∈ S as

Ls → Xs .

Finally, we shall denote simply by L→ X the fibre at a generic point s0 of S and set{
T = Ts0S

V = H0(Ω1
X) .

Associated to (2.1) is a normal function νL with infinitesimal invariant δνL (cf. the Ap-

pendix); δνL is a section over S of the sheaf

Ω1
S ⊗R1

πOX/∇R0
πΩ1

X/S

where

∇ : R0
πΩ1

X/S → Ω1
S ⊗R1

πOX(2.2)

is the map induced by the Gauss-Manin connection. Here, and throughout, for any smooth

variety Z we write Ω1
Z for Ω1

Z/C. The map (2.2) is algebraic; i.e., it is an OS-linear map be-

tween vector bundles, and shrinking S we may assume that it has constant rank. Evaluation

of δνL at a generic point gives, using the notations introduced above,

δνL ∈ T ∗ ⊗ V ∗/∇V .(2.3)

Using duality we may write this as

(2.3)∗ δνL ∈ {ker{T ⊗ V → V ∗}}∗ .

Our objective is to give an expression for δνL in terms of the Kodaira-Spencer mapping

T → H1(ΣL)

where ΣL is the sheaf of linear, 1st-order differential operators on sections of L→ X. Before

doing this we mention the following tautological
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Example: We let S = J(X) be the Jacobian variety of X and

L −→ X × J(X)
↓

J(X)

the universal (Poincaré) line bundle. Then

{
T = H1(OX) = V ∗

∇ = 0

and

δνL ∈ V ⊗ V ∗

may be easily seen to be the identity (this will be proved by computation in Section 3 below).

Assuming this computation we may draw the following conclusion: Let S = Pic0(Xg/Mg)

be the set of pairs (X,L) where L→ X is a line bundle of degree zero over a smooth curve

of genus g. Over S there is a natural normal function νL and we have the

Corollary: δνL 6= 0.

The reason is that if we fix X then νL restricts to the normal function given in the example

above. The geometric conclusion that for L → X a general line bundle of degree zero we

have L 6= 0 in Pic0(X) is obvious; the point is that the method of proof will extend to the

situations described in the introduction.

(2.4) Remark: If instead of J(X) = Pic0(X) we let S = Picn(X) and

Ln → X × Picn(X)

be the universal line bundle of degree n, then there is no canonically associated normal

function. Choosing p ∈ X and setting

Ls = Ln,s − n[p]

we do get a family Ls → X of degree zero line bundles with associated normal function

whose infinitesimal invariant is independent of p, and is in fact also given by the identity

as in the above example. We may think of Ln,s as the “principal part” of Ls; the np is

subtracted off to get degLs = 0.
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The reason this is relevant to the main topic of this paper is the following: For L → X

of degree n and D a divisor with [D] = L the 0-cycle

z̃L = D ×D

on Y = X ×X is of degree n2. We may subtract off n2p × p to make z̃L have degree zero,

but then it does not map to zero in Alb(Y ). The easiest way to obtain a 0-cycle zL with

“principal part” z̃L and with {
deg zL = 0

AlbY (zL) = 0

is to set

zL = z̃L − nD∆ .

Now let L→ X vary in Picn(X) to obtain a family zL(s) of 0-cycles on Y with associated

infinitesimal invariant whose value at a general point is (cf. the Appendix)

δνzL ∈ Λ2T ∗ ⊗ Λ2V ∗ .

One may suspect that, as in the curve case, δνzL depends only on the principal part of zL

and since T ∼= H1(OX) = V ∗ it is certainly suggested that again

δνzL = “identity” ∈ Λ2V ⊗ Λ2V ∗ .

This in fact turns out to be the case and implies Theorem 1 by analogy to the corollary

above. This argument will be carried out in detail in Section 3 below.

(b) We will now turn to an explicit computation. For a line bundle L → X a 1st-order

linear differential operator on sections of L is given by a C-linear map

O(L)
D−→ O(L)

satisfying locally

D(fλ) = v(f)λ+ fDλ

where f ∈ OX , λ ∈ O(L) and v ∈ ΘX = DerC(OX) is a vector field. If v = 0 so that D is

OX-linear, then

Dλ = gλ
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where g ∈ OX . The 1st-order linear differential operators form a sheaf ΣL, and from the

preceding remark we see that there is a natural exact sequence

0→ OX → ΣL → ΘX → 0 .(2.5)

Given the situation (2.1) there are Kodaira-Spencer maps

TsS → H1(ΣLs)(2.6)

that measure the infinitesimal variation of the family {Ls → Xs}s∈S (this does not require

that degLs = 0). The cohomology sequence of (2.5) has the natural interpretation

H1(OX) → H1(ΣL) → H1(ΘX)

‖ ‖ ‖
tangent space to
moduli of (X,L)

with X fixed




tangent space to
moduli of

pairs (X,L)




tangent space
of moduli

of X’s

 .
The obstruction to splitting (2.5) is given by the Atiyah-Chern class

c1(L) ∈ H1(Ω1
X) .

Thus, if degL = 0 the sequence (2.5) splits

ΣL
∼= OX ⊕ΘX ,(2.7)

and any two splittings differ by an element of

H0(Hom(ΘX ,OX)) = H0(Ω1
X) .

We write the splitting (2.7) as

σ = (σ′, σ′′)

where σ ∈ ΣL, σ′ ∈ OX and σ′′ ∈ ΘX . Going to a general point of S, the map (2.6) and

splitting (2.7) give

TsS −→ H1(ΣLs)
↘ ↓

H1(OX)

i.e., an element

τ ∈ T ∗ ⊗H1(OX) .

From the above remark, changing the splitting (2.7) changes τ by

τ → τ + ρ(ω)
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where ω ∈ H0(Ω1
X) and ρ is the composite

T → H1(ΘX)→ Hom
(
H0(Ω1

X), H1(OX)
)

of the usual Kodaira-Spencer map together with the cup product. Since

ρ(ω) = ∇ω

we have a well-defined element

[τ ] ∈ T ∗ ⊗H1(OX)/∇H0(Ω1
X)

‖
T ∗ ⊗ V ∗/∇V .

Theorem: [τ ] = δνL.

In one sense this result is obvious: What else could [τ ] be? However, to prove it we shall

give a calculation that — although not difficult — will establish the notations and set the

stage for the more subtle calculations needed for the proofs of Theorems 1 and 2.

Proof: In the following we may work analytically using local holomorphic coordinates or

algebraically using local uniformizing paramaters; we shall do the former.

We consider the situation

X

↓π
S

(2.8)

locally over a neighborhood U of s0 ∈ S in which there are local coordinates s = (s1, . . . , sN)

with s0 = 0. By data for the situation (2.8) we shall mean

{Uα, zα, fαβ(zβ, s)}

where Uα is a covering of X with π(Uα) = U , (zα, s1, . . . , sN) are local coordinates in Uα with

zα = fαβ(zβ, s)

in Uα ∩ Uβ and

fαβ(fβγ(zγ, s), s) = fαγ(zγ, s)

in Uα ∩Uβ ∩Uγ. So as not to have distracting indices floating around, we shall take the case

N = 1 where s is a local coordinate on S; the extension to general N will be obvious. Setting
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θαβ = ∂sfαβ the usual Kodaira-Spencer class associated to (2.8) is given by the composite

map

∂/∂s −→
{
θαβ

∂

∂zα

}
∈ Z1({Uα},ΘX/S) −→ H1(ΘX/S) .

With the notation j−1
αβ = ∂zβfαβ, the transition functions for ΘX are

Jαβ =:

(
j−1
αβ −j−1

αβ θαβ

0 1

)
.

This means that in Uα ∩ Uβ

(∂/∂zα, ∂/∂s) = (∂/∂zβ, ∂/∂s) Jαβ .

Next, by data for the situation (2.1) we shall mean

{Uα, zα, fαβ(zβ, s), ξαβ(zβ, s)}

where {Uα, zα, fαβ(zβ, s)} is data for X→ S and ξαβ(zβ, s) are transition functions for L → X.

In terms of the data for (2.1) the transition functions for ΣL → X are
1 ∂zβ log ξαβ ∂s log ξαβ

0 j−1
αβ −j−1

αβ θαβ

0 0 1

 .(2.9)

The Kodaira-Spencer mapping

T → H1(ΣL)

is represented in terms of the data associated to (2.1) by

∂/∂s→ {(∂s log ξαβ,−θαβ∂/∂zα)} ,(2.10)

where the term in braces is a Čech cocycle in Z1({Uα},ΣL). Here we are using the local

splittings

ΣL |Uα∼= (OX |Uα)⊕ (ΘX |Uα)

given by the data.

In terms of the data {Uα, zα, fαβ(zβ, s), ξαβ(zβ, s)} the Chern class c1(L) is represented

by the Čech cocycle

{d log ξαβ(zβ, s)} ∈ Z1({Uα},Ω1
X) .(2.11)
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From (2.10) we see that the “horizontal” or ds component of (2.11) is the “OX-component”

of the Kodaira-Spencer class associated to the family Ls → Xs. Although this statement

does not have intrinsic meaning, it is the “principal part” of the reason behind the result we

are proving.

Since degLs = 0 we may find {ϕα} ∈ Ω1
X/S(Uα) such that in Uα ∩ Uβ

d log ξαβ ≡ ϕα − ϕβ mod ds .

Over Uα we write sections of Ω1
X as column vectors ψ

ϕ


where ϕ is the dzα-component and ψ is the ds component, thus splitting the exact sequence

0→ π∗Ω1
S ⊗OX → Ω1

X → Ω1
X/S → 0

over Uα in terms of the given data. It follows from (2.9) that

δ


 0

ϕα

 =

 0

ϕα

−
 1 θαβ∂/∂zα

0 1

 0

ϕβ



=

 (−θαβ∂/∂zαcϕβ)ds

ϕα − ϕβ


where the brackets on the LHS refer to the value over Uα ∩ Uβ of the coboundary of the 0-

cochain whose value over Uα is
(

0
ϕα

)
. This will be our general notation for Čech computations.

For the representative (2.11) of c1(L) we therefore have ∂s log ξαβ

∂zβ log ξαβ

− δ

 0

ϕα

 =

 ∂s log ξαβ + (θαβ∂/∂zαcϕβ)

0

 .

It follows that

{(∂s log ξαβ + (θαβ∂/∂zα)cϕβ) ds} ∈ Ω1
S ⊗ Z1({Uα},OX)(2.12)

is a Čech representative of c1(L) in F 1H2(X,C) = F 1H2(Ω•X), where F 1 is the first step in

the Leray filtration. From the definition in the Appendix, this expression for c1(L) gives a

representative of δνL.
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On the other hand, evaluating at s0 we recognize (2.12) as the image in H1(OX) of the

Kodaira-Spencer class (2.10) under the decomposiion

H1(ΣL) ∼= H1(OX)⊕H1(ΘX)(2.13)

induced by the splitting ΣL
∼= OX ⊕ ΘX given by writing the extension class c1(L) of (2.5)

as the coboundary of {ϕα}.
Since ϕα is unique up to adding an element of H0(Ω1

X), we see that the cocycle (2.12)

gives a well-defined element

[τ ] ∈ T ∗ ⊗ V ∗/∇V .

By what was just said, this is the same as δνL, which proves our theorem.

Remark: This argument proves a little more. Denote by σ ∈ T ∗ ⊗H1(ΣL) the Kodaira-

Spencer class. Then in terms of the data

{Uα, zα, fαβ(zβ, s), ξαβ(zβ, s), ϕα(zα, s)}(2.14)

we have canonical representatives of τ ∈ T ∗ ⊗ H1(OX) and of the restriction along X of

c1(L) ∈ F 1H2(Ω•X), where we have written τ as the 1st component of σ using the decompo-

sition (2.13) given by the data (2.14).

(c) We shall now give a geometric application of the preceding result. First some prelimi-

naries that will be used in the proofs of Theorems 1 and 2.

For a point p ∈ X we consider the exact sheaf sequence

0→ ΘX → ΘX(p)→ ΘX(p) |p→ 0 .(2.15)

Here, ΘX(p) |p is a skyscraper sheaf supported at p; upon choosing a local coordinate z

centered at p we have

ΘX(p) |p∼= C

with 1/z ∂/∂z representing a generator.

Definition: A Schiffer variation is class θp ∈ H1(ΘX) given as the coboundary of 1/z ∂/∂z

in the cohomology sequence of (2.15).

We note that θp is well-defined up to scaling. We write

θp = δ
{(

1

z
∂/∂z

)}
(2.16)
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and interpret this equation as follows: Relative to an open covering U0, U1, . . . , Um of X

where p ∈ U0, p 6∈ U1, . . . , Um, and z is a local coordinate in U0 centered at p, there is an

obvious 0-cochain given by 1/z ∂/∂z in U0 and zero elsewhere. Then (2.16) is the cohomology

class associated to the cocycle in Z1({Uα},ΘX) given by the coboundary of this cochain.

The map

H0(Ω1
X)

θp−→ H1(OX)

induced by the Gauss-Manin connection ∇ is easy to understand. In fact, we have

ker θp = H0
(
Ω1
X(−p)

)
.(2.17)

To verify this, if ω ∈ H0(Ω1
X(−p)) then using the obvious notation

θp(ω) = δ
{(

1

z
∂/∂zcω

)}

and (1
z
∂/∂zcω) is holomorphic. To see the converse, we use duality. If ϕ ∈ H0(Ω1

X) then

〈θp(ω), ϕ〉 = Resp

((
1

z
∂/∂zcω

)
ϕ
)
.2

If this vanishes when ϕ(p) 6= 0, which we may arrange, it follows that ω(p) = 0.

Geometrically, the image of the bicanonical map

ϕ2K : X → PH1(ΘX)

gives a curve in the projectivized tangent space to moduli, and the points on this curve

are the Schiffer variations. Intuitively, they represent tangents to deformations of complex

structure that leave X − {p} unchanged and change the structure of X by a δ-function

at p. In terms of VHS, for X non-hyperelliptic the Schiffer variations give the rank one

transformations H0(Ω1
X)

θ→ H1(OX) where θ ∈ H1(ΘX).

Next, we shall extend the discussion of Schiffer variations to pairs (X,L). For this we

define

ΣL(2p, p) ⊂ ΣL(2p)

2The general principal is this: If ξ ∈ H1(OX) is written relative to the covering {Uα} as ξ = δη where
η = {ηα} may have poles, then for ϕ ∈ H0(Ω1

X)

〈ξ, ϕ〉 = Σ Res(ηαϕ).

The sum is over all the poles, and we note that for a pole at p ∈ Uα ∩Uβ we have Resp(ηαϕ) = Resp(ηβϕ).
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to be those σ ∈ ΣL(2p) that map to ΘX(p). Intuitively, ΣL(2p, p) consists of those sections

of ΣL that have a 2nd-order pole at p in the OX-component and a 1st-order pole in the

ΘX-component. More precisely, the diagram

ΘX(p)
↓

0→ OX(2p)→ ΣL(2p)→ ΘX(2p)→ 0

pulls back to give a diagram

0 → OX(2p) → ΣL(2p, p) → ΘX(p) → 0

‖ ↓ ↓
0 → OX(2p) → ΣL(2p) → ΘX(2p) → 0.

In the diagram
H0(ΣL(2p, p) |p)→ H0(ΣL(2p) |p)→ H1(ΣL)

π↓
H0(ΘX(p) |p)

we let σ ∈ H1(ΣL) be the image of a ζ ∈ H0(ΣL(2p, p) |p) which maps to a non-zero element

of H0(ΘX(p) |p) under π. Intuitively, using the above notation, if

σ = δ

{(
1

z2
,
λ

z

∂

∂z

)}

then

σ = (σ′, σ′′)

where σ′′ ∈ H1(ΘX) is a Schiffer variation and

σ′ ∈ Image
{
H0(OX(2p) |p)→ H1(OX)

}
is non-zero. If ω ∈ H0(Ω1

X(−p)), then

σ ⊗ ω ∈ ker{T ⊗ V → V ∗}

by the above discussion. By the theorem we have

δνL(σ ⊗ ω) = 〈σ′, ω〉

= Resp

(
1

z2
ω
)

=: ω′(p) .

Since, if g ≥ 2 we may choose ω with ω′(p) 6= 0 this gives the
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Corollary: For any situation (2.1) where g ≥ 2 and for some s ∈ S we have that the image

of

TsS → H1(ΣLs)

contains a Schiffer variation coming from ΣL(2p, p) |p as above, it follows that

δνL 6= 0 .

For us this result is interesting in that the method of proof provides a “toy model” for the

argument to be given in Theorem 2 below.

Remark: In terms of the Čech representative (2.12) expressed in terms of the data for

(2.1) together with what might be called the auxilary data {ϕα} where

∂zβ log ξαβ = δ{ϕα} ,

if we write (
∂s log ξαβ +

(
θαβ

∂

∂zα

)
cϕβ, θαβ

∂

∂zα

)
= δ

{(
1

z2
,
1

z

∂

∂z

)}
then

{∂s log ξαβ} ≡ δ
{

1

z2

}
modulo

1

z
-terms

defines a 1st-order s-variation of the transition functions ξαβ(zβ). We note that the

〈σ′, ω〉

depends only on the data for (2.1), and not on the auxiliary data. This is because {ϕα} is

unique up to adding ψ ∈ H0(Ω1
X), and then by (2.12) 〈σ′, ω〉 changes by adding〈

δ

{(
1

z

∂

∂z

)
cψ
}
, ω

〉
= Resp

(
1

z
ω
)

= ω(p)

= 0 .

The reason this is relevant is the following: For the canonical bundle KX there is a

canonical C-linear lift

ΘX
j−→ ΣKX

given by the Lie derivative

j(v)ϕ = Lvϕ
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where v ∈ ΘX and ϕ ∈ O(KX) = Ω1
X . This gives a canonical lifting

H1(ΘX)
j−→ H1(ΣKX ) .

Suppose now that θp = δ
{(

1
z
∂
∂z

)}
is a Schiffer variation. From the formula

L 1
z
∂
∂z

(f(z)dz) = d

(
f(z)

z

)

=
(
− 1

z2

)
f(z)dz +

f ′(z)

z
dz

we see that

j(θp) = δ

{(
− 1

z2
,
1

z

∂

∂z

)}
.

Thus, the principal part of the OX-component of j(θp) is δ
(
− 1
z2

)
. Although this state-

ment does not have intrinsic meaning, it provides an heuristic that is central to our main

calculation.

3 Proof of Theorem 1

In this section we will give the proof of Theorem 1. Again, we will proceed in two steps,

giving first a calculation in the curve case and then extending that calculation to the surface

case. These computations, which were motivated by [9], may be of interest in their own

right.

(a) We assume given the situation

D ⊂ X

↓
S

(3.1)

where X→ S is a family {Xs}s∈S of smooth curves and D = {Ds =
∑
λ nλpλ(s) :

∑
λ nλ = 0}

is a family of divisors of degree zero. Here, s→ pλ(s) is a section of (3.1). Given the situation

(2.1) we may have to pass to finite covering to be able to define divisors Ds with [Ds] = Ls.

In the preceding section we gave a method for calculating the infinitesimal invariant δνD in

terms of the variational data associated to the family of line bundles [Ds] → Xs. In this

section we shall give an alternate method for calculating δνD geometrically in terms of the

divisors Ds.
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Setting D = Ds0 and recalling our notations


T = Ts0S

V = H0(Ω1
X)

V ∗ = H1(OX)

we have for value δνD of δνD at s = s0 that

δνD ∈
{

ker{T ⊗ V → V ∗}
}∗
.

If dimS = N , then using

T ⊗ V ∼= ΛNT ⊗ ΛN−1T ∗ ⊗ V

we may think of γ ∈ T ⊗ V as a section along X of the bundle

K−1
S ⊗

(
ΩN−1
S ⊗ Ω1

X/S

)
.

In terms of coordinates as in the preceding section, if γ =
∑
i ∂/∂si⊗ωi where ωi ∈ H0(Ω1

X)

is given by {giα(zα)dzα}, then in Uα

γ = (∂/∂s1 ⊗ · · · ⊗ ∂/∂sN)⊗
(∑

i

ds(i) ⊗ giα(zα)dzα

)

where ds(i) = (−1)i−1ds1 ∧ · · · ∧ d̂si ∧ · · · ∧ dsN . Now

ΩN−1
S ⊗ Ω1

X/S
∼= ΩN

X /Ω
N
S .(3.2)

Lemma: γ ∈ ker {T ⊗ V → V ∗} is the value at s0 of the image under (3.2) of a section

(∂/∂s1 ∧ · · · ∧ ∂/∂sN)⊗ Γ

where Γ ∈ H0(ΩN
X ). Moreover, Γ is unique up to adding a section in H0(X,ΩN

S ).

Here we allow ourselves to shrink S.

Assuming the lemma we then have the

Proposition 1: The value δνD(γ) is given by

δνD(γ) = (∂/∂s1 ∧ · · · ∧ ∂/∂sN)c
(∑

λ

nλp
∗
λ(Γ)

)
.(3.3)
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Here, p∗λ(Γ) is the pullback of Γ under the section

s→ pλ(s) ∈ Xs

of X→ S, and it is understood that the RHS of (3.3) is evaluated at s0. We note that since∑
λ nλ = 0, the RHS of (3.3) is unchanged if we add to Γ a section of ΩN

S .

Before presenting the proofs of the lemma and proposition we shall give the

Example: We assume that X is a fixed curve and Ds is a family of divisors parametrized

by S = Pic0(X) with [Ds] = s. Then T = H1(OX) = V ∗ and the map T ⊗V → V ∗ is trivial.

For

γ = (∂/∂s1 ∧ · · · ∧ ∂/∂sN)⊗ ds(i) ⊗ ω

where ω ∈ H0(Ω1
X), we may take

Γ = ds(i) ∧ ω

and then

p∗λ(Γ) =

〈
ω,
∂pλ
∂si

〉
ds1 ∧ · · · ∧ dsN

where ∂pλ
∂si
∈ TpλX is the evident tangent vector. It follows from the proposition that

δνD ∈ V ⊗ V ∗

is the identity, thereby establishing the assertion made in the example just below (2.3)∗ in

the preceding section.

Proof of the lemma: We have on X the exact sheaf sequence

0→ OX → K−1
S ⊗ ΩN

X → K−1
S ⊗ ΩN−1

S ⊗ Ω1
X/S → 0 .(3.4)

Recalling that we are working in the neighborhood of a generic point of S where all direct

image sheaves are locally free and maps between them have constant rank, the exact coho-

mology sequence of the direct images of (3.4) gives a complex of vector bundles whose value

at s0 is

0→ C→ ΛNT ⊗H0
(
ΩN

X ⊗OX
)
→ ΛNT ⊗ ΛN−1T ∗ ⊗H0(Ω1

X)︸ ︷︷ ︸→ H1(OX)∥∥∥ ∥∥∥
T ⊗ V −−−−−−→ V ∗.

It follows that γ ∈ ker{T ⊗ V → V ∗} lifts to ΛNT ⊗ H0
(
ΩN

X ⊗OX
)
, and this is then the

restriction along X of a section in H0(X, K−1
S ⊗ ΩN

X ).
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Proof of Proposition 1: Arguing as in the proof of (A.9) in the Appendix, we may choose

data for (3.1) where [D] = L, degLs = 0 to be

{Uα, zα, fαβ(zβ, s), ξαβ(s)} ,

where the transition functions for Ls → Xs are constant along Xs. Our assumption that

Ls = [Ds] where

Ds =
∑
λ

nλpλ(s)

with

s→ pλ(s)

being a holomorphic section of X → S means that there are in Uα meromorphic functions

ζαλ(zα, s) such that {
ξαβ(s) =

∏
λ ζαλ(fαβ(zβ, s), s)

nλ
∏
µ ζβµ(zβ, s)

−nµ

ζαλ(pαλ(s), s) = 0
(3.5)

where pλ(s) is given in Uα by zα = pαλ(s) with

(∂zαζαλ) (pαλ(s), s) 6= 0 .

Now from the Appendix we have that δνL ∈ Ω1
S ⊗ R1

πOX/∇R0
πΩ1

X/S is represented by the

Čech cocycle

{d log ξαβ(s)} .

Setting

ζα =
∏
λ

ζnλαλ

we have

d log ξαβ(s) = δ {∂s log ζα} .(3.6)

Evaluating at s0, we have written a Čech representative of δνL ∈ T ∗ ⊗ H1(OX)/∇H0(Ω1
X)

as the coboundary of a cochain with poles.

Now an element

γ ∈ ker{T ⊗ V → V ∗}

is given as

γ =
∑
i

dsi ⊗ ωi
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where ωi = {ωiα = giα(zα)dzα} ∈ H0(Ω1
X). Then

δνL(γ) =
∑
i

〈∂si log ξαβ(s), ωi〉

where the RHS is the duality pairing

Z1 ({Uα},OX)⊗H0(Ω1
X)→ C .

By (3.5) this gives

δνL(γ) =
∑
i

Res (∂si log ζα · ωiα) .

On the other hand, by (3.5)

∂si log ζα +
∑
λ

nλ (∂zαlog ζαλ∂sipαλ) = 0 .

Thus ∑
i

Respαλ (∂si log ζαωi) = −
∑
i

Respαλnλ (∂zαlog ζαλ∂sipαλωiα)(3.7)

= −
∑
i

nλ (∂sipαλ(s)giα(pαλ(s)))︸ ︷︷ ︸
where the term over the braces is to be evaluated at s = s0 and zα = pαλ(s0).

Now we may assume that

γ = (∂/∂s1 ∧ · · · ∧ ∂/∂sN)⊗
∑

ds(i) ⊗ ωi

comes from a section ∂/∂s1 ∧ · · · ∧ ∂/∂sN ⊗ Γ of K−1
S ⊗H0(Ω1

X ⊗OX) where in Uα

Γ ≡
∑
i

ds(i) ∧ ωiα modulo ds1 ∧ · · · ∧ dsN .

Then

p∗αλ(Γ) =

(∑
i

∂sipαλ(s0)giα(pαλ(s0))

)
ds1 ∧ · · · ∧ dsN ,

and comparing with (3.7) gives our result.

(b) We now want to extend the preceding result to the situation

Z ⊂ Y

↓
S

(3.8)
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of a family of 0-cycles {zs}s∈S on a family {Ys}s∈S of smooth surfaces with{
deg zs = 0

AlbYs(zs) = 0 .
(3.9)

The formulation is analogous to what was just done. Letting s0 be a generic point and

z = zs0 , Y = Ys0 with the notations 
T = Ts0S

W = H0(Ω2
Y )

U = H1(Ω1
Y )

we have for the value δνz of δνZ at s0 that

δνz ∈ ker
{

Λ2T ⊗W ∇−→ T ⊗ U
}
.

By linear algebra, if dimT = N then

Λ2T ∼= ΛNT ⊗ ΛN−2T ∗(3.10)

and we may think of ξ ∈ Λ2T ⊗W as a section along Y of the bundle

K−1
S ⊗

(
ΩN−2
S ⊗ Ω2

Y/S

)
.

Lemma: Under the assumption (3.9), γ ∈ ker{Λ2T ⊗W → T ⊗U} is the value at s0 of the

image of a section

(∂/∂s1 ∧ · · · ∧ ∂/∂sN)⊗ Γ

where Γ ∈ H0(ΩN
Y ). Moreover, Γ|Y is unique modulo the images of

(i) ΛNT ∗ → H0(ΩN
Y ⊗OY )

(ii) ΛN−1T ∗ ⊗H0(Ω1
Y )→ H0

(
ΩN

Y ⊗OY
)
/ΛNT ∗.

The proof of this lemma is an extension of the argument used for the analogous result in the

preceding section — it involves making the linear algebra identification T ∼= ΛNT ⊗ΛN−1T ∗

in (3.10) and working through the arguments leading to the construction of δνz in the

appendix. We remark that the ambiguities in Γ will work out, (i) because of the assumption

deg z = 0 and (ii) because of the assumption AlbY (z) = 0 (the ambiguity in (ii) is essentially

the infinitesimal invariant associated to the normal function s→ AlbYs(zs)).

We write

zs =
∑
λ

nλpλ(s)

where s→ pλ(s) is a section of Y→ S.
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Proposition 2: The value δνz(γ) is given by

δνz(γ) = (∂/∂s1 ∧ · · · ∧ ∂/∂sN)c
(∑

λ

nλp
∗
λ(Γ)

)
.

Assuming the proposition we will give the

Proof of Theorem 1: We will use the opportunity to establish a more general setting

and then specialize to a situation that will give a proof of Theorem 1. Let S = Picn(X/Mg)

be the set of line bundles of degree n over a curve of genus g (passing to finite branched

coverings, etc). We then have the universal line bundle

L → X

↓
S .

Let Y = X×S X and let
Z ⊂ Y

↓
S

a family of 0-cycles zs representing the rational equivalence classes of the zLs ’s associated to

Ls → Xs on Ys = Xs ×Xs by the construction in the introduction; i.e., if Ls = [Ds] then

zs = Ds ×Ds − n Ds,∆ .

It is clear that deg zs = 0, and we will verify that AlbYs(zs) = 0. Dropping reference to the

particular point s we write

D =
∑
λ

nλpλ .

Then

z =
∑
λ,µ

nλnµ(pλ × pµ)− n
(∑

λ

nλpλ × pλ
)

where n =
∑
λ nλ. Then

Alb(Y ) ∼= J(X)⊕ J(X)

and

AlbY (z) =

∑
λ,µ

nλnµAJX(pλ),
∑
λ,µ

nλnµAJX(pµ)


−n

(∑
λ

nλ AlbY (pλ × pλ)
)
.
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The last term is equal to

n

(∑
λ

nλAJX(pλ),
∑
µ

nµAJX(pµ)

)

and AlbYs(zs) = 0 follows.

We may show that zL 6= 0 in CH2(Y ) for general X and L by showing that the infinites-

imal invariant

δνZ 6= 0 .(3.11)

We will now use the above proposition to prove (3.11), and will observe that the argument

also gives a proof of Theorem 1 in that in the argument we can fix X and let L vary.

Evaluation of δνZ at L→ X gives

δνz ∈ Λ2T ∗ ⊗H2(OY )/∇
(
T ∗ ⊗H1(Ω1

Y )
)

where T = Ts0S. (The notation means that δνZ(s0) = δνz.) By duality

δνz ∈
{

ker
{

Λ2T ⊗H0(Ω2
Y )→ T ⊗H1(Ω1

Y )
}}∗

.

Since the rational equivalence class of Z is invariant under the obvious involution (p, q) →
(q, p) (p, q ∈ X), it follows that δνz actually lies in the skew-symmetric part Λ2H1(OX) of

H2(OY ) ∼= H1(OX)⊗H1(OX) .

Thus, setting V = H0(Ω1
X)

δνz ∈ ker
{

Λ2T ⊗ Λ2V → T ⊗ U
}∗

.

In order to prove (3.11) it will suffice to show that the restriction of δνZ to a subfamily

is non-zero. For our subfamily we fix X, and changing notation we now have S = Picn(X)

and, since ∇ is zero on this subfamily and T = H1(OX) = V ∗

δνz ∈ Λ2V ∗ ⊗ Λ2V .(3.12)

We will show that:

In (3.12), δνz is the identity.

Of course, if dimV = g = 1 the statement is trivial. Only if g >= 2 do we have δνz 6= 0. The

case g = 1 will be discussed at the end of this section.

23



Proof: Write Ds =
∑n
λ=1 pλ(s), so that

zs =
∑
λ,µ

pλ(s)× pµ(s)− n
∑
λ

pλ(s)× pλ(s) .

We will use the proposition to evaluate

δνz (∂/∂si ∧ ∂/∂sj ⊗ ω ∧ ϕ) .(3.13)

If X is given by data {Uα, zα, fαβ(zβ)} then Y = X×X will be covered by open sets Uα×Uβ
with product coordinates (zα, wβ). Let ω be given by {gα(zα)dzα} and ϕ by {hα(zα)dzα}.
Then ω ∧ ϕ is given in Uα × Uβ by

(gα(zα)hβ(wβ)− hα(zα)gβ(wβ)) dzα ∧ dwβ =: kαβ(zα, wβ)dzα ∧ dwβ .(3.14)

Letting

s→ (zα(s), wβ(s))(3.15)

be one of the cross-sections pλ(s)× pµ(s), the pullback of (3.14) under (3.15) is∑
i,j

kαβ(zα(s), wβ(s))
(
∂sizα(s)∂sjwβ(s)− ∂sjzα(s)∂siwβ(s)

)
dsi ∧ dsj .(3.16)

When λ = µ, this gives zero. It follows from this together with (3.16) and the proposition

that

δνz (∂/∂si ∧ ∂/∂sj ⊗ ω ∧ ϕ) = (∂/∂s1 ∧ · · · ∧ ∂/∂sN)c
∑
λ 6=µ

(pλ(s)× pµ(s))∗ ds(ij) ∧ ω ∧ ϕ

where ds(ij) = (−1)i+jds1 ∧ · · · ∧ d̂si ∧ · · · ∧ d̂sj ∧ · · · ∧ dsN

=
∑
λ,µ

〈
ω,
∂pλ
∂si

〉〈
ϕ,
∂pµ
∂sj

〉
−
〈
ω,
∂pµ
∂sj

〉〈
ϕ,
∂pλ
∂si

〉
.(3.17)

But ∂/∂si ∈ T = H1(OX) = H0(Ω1
X)∗ is given by

ω →
∑
λ

〈
ω,
∂pλ
∂si

〉
.

From (3.17) it follows then that

δνz ∈ Λ2V ⊗ Λ2V ∗

is the “identity”, as claimed.
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Proof of Proposition 2: Using an extension of the method to establish 1.14 in [9] we will

reduce the result to the proposition given in Section 3(a) above.

Given the situation (3.8), by shrinking S and passing to finite coverings we may find a

family of smooth ample curves Xs ⊂ Ys such that the 0-cycle zs is supported on Xs. Thus

we have a situation

Z ⊂ X ⊂ Y

↓πX ↓πY
S = S .

(3.18)

We will denote by

δνZ,X ∈ R1
πX
OX ⊗ Ω1

S/∇X

(
R0
πX

Ω1
X/S

)
and

δνZ,Y ∈ R2
πY
OY ⊗ Ω2

S/∇Y

(
R1
πY

Ω1
Y/S ⊗ Ω1

S

)
the infinitesimal invariants associated to the families of 0-cycles zs ∈ Z1(Xs) and zs ∈ Z2(Ys)

respectively. We will show that:

δνX,Y may be computed, in a natural way, from δνZ,X.

When Y is regular the result is proved in [9]. The main ingredients needed to extend her

argument are the following:

(i) There is a surjection

J(Xs)→ Alb(Ys) .

In fact, there is an isogeny

J(Xs) ∼= Jvar(Xs)⊕ Alb(Ys)

where Jvar(Xs) is the “variable part” of J(Xs) when Xs varies in Ys, holding s fixed.

On the tangent space level we have

H1(OXs) ∼= H1
var(OXs)⊕H1(OYs) .(3.19)

This is the projection onto Hodge (0, 1) components of the orthogonal (under the

natural inner product) direct sum decomposition

H1(Xs,C) ∼= H1(Ys,C)⊕H1
var(Xs,C)(3.20)

where by definition

H1
var(Xs,C) = im

{
H1(Ys,C)→ H1(Xs,C)

}⊥
.
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(ii) We now let s ∈ S vary and consider the variations of Hodge structure associated to

(3.18). Then the VHS associated to {H1(Ys,C}s∈S is a sub-VHS of that associated to

{H1(Xs,C)}s∈S, and by the semi-simplicity of monodromy the sub-VHS has a natural

complement given by (3.20) that is invariant under monodromy. Thus we have

R1
πX

C = R1
πY
C⊕R1

πX,varC(3.21)

R1
πX
OX = R1

πY
OY ⊕R1

πX,varOX .

To formulate the result we work at a generic point s0 of S and use our earlier notations

X = Xs0 , Y = Ys0 , T = Ts0S. Setting

U = Y \X

there is a standard exact sequence (C-coefficients)

0→ H0(X)→ H2(Y )→ H2(U)
Res−→ H1(X)→ H3(Y )→ 0(3.22)

and

ResH2(U) = H1
var(X) .

Now (3.22) is an exact sequence of mixed Hodge structures with

ResF iH2(U) = F i−1H1
var(X)

and

F 1H2(U)/F 2H2(U) ∼= H1
(
Ω1
Y (logX)

)
F 0H2(U)/F 1H2(U) ∼= H2(OY ) .

From the fact that when s varies the whole sequence (3.22) varies to give VMHS’s, we have

H1
(
Ω1
Y (logX)

) ∇U−→ H2(OY )⊗ T ∗ .

By linear algebra this leads to a diagram

H1(Ω1
Y )⊗ T ∗ ∇Y−→ H2(OY )⊗ Λ2T ∗

↓ ‖

H1 (Ω1
Y (logX))⊗ T ∗ ∇U−→ H2(OY )⊗ Λ2T ∗

↓Res

H1
var(OX)⊗ T ∗

↓
0 .

(3.23)
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On the other hand we have

H0 (Ω2
Y (logX))

∇U−→ H1 (Ω1
Y (logX))⊗ T ∗

↓Res ↓Res

H0
var (Ω1

X)
∇X−→ H1

var(OX)⊗ T ∗

↓
0 .

(3.24)

Using ∇U · ∇U = 0, again by linear algebra the diagrams (3.23) and (3.24) lead to a map,

induced by ∇U in (3.23),

H1
var(OX)⊗ T ∗

∇XH0
var(Ω

1
X)

∇U−→ H2(OY )⊗ Λ2T ∗

∇Y (H1(Ω1
Y )⊗ T ∗)

.(3.25)

Lemma: δνz,X ∈ H1
var(OX)⊗ T ∗/∇X(H0

var(Ω
1
X)) and

∇U(δνz,X) = δνz,Y

in (3.25).

Proof: The assumption that

AlbYs(zs) = 0

means that

νZ,X(s) ∈ ker{J(Xs)→ Alb(Ys)} .

Using the discussion above together with the fact (3.19) that the tangent spaces naturally

split and that the construction of δνZ,X only “sees” tangent spaces we infer that

δνz,X ∈ H1
var(OX)⊗ T ∗/∇X

(
H0

var(Ω
1
X)
)
.

From the exact cohomology sequence of

0→ Ω•Y → Ω•Y(logX)
Res−→ Ω•−1

X → 0(3.26)

we infer a map

H1
(
Ω
>
=1
X

)
→ H2

(
Ω
>
=2
Y

)
,(3.27)

and it is a general property of fundamental classes that under this map

[Z]X −−−−−−→ [Z]Y

‖ ‖(
fundamental class

of Z in X

)(
fundamental class

of Z in Y

)
.
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The argument now consists in tracing through the constructions of δνZ,X and δνZ,Y given in

the Appendix, and verifying that, when this is done and the fundamental classes are fit into

the exact hypercohomology sequence of (3.20) and related by the coboundary map (3.27),

their infinitesimal invariants are related by (3.25).

Finally, the proof of the proposition may be completed by using the lemma together

with the proposition in Section 3(a). Since the argument is entirely analogous to that given

in [9], pages 83–85, and is just a matter of writing out the relations resulting from the

hypercohomology sequence of (3.26) and standard duality, we will not present the details.

This completes the proof of Theorem 1.

4 Proof of Theorem 2

(a) Let X → S be a family {Xs}s∈S of smooth curves of genus g for which the Kodaira-

Spencer mappings

ρ : TsS → H1(ΘXs)

are surjective. Associated to X→ S is the family {Ys}s∈S of surfaces Ys = Xs×Xs given as

Y = X×S X
↓
S .

(4.1)

For each s we have defined the (rational equivalence class of) 0-cycle zKs by

zKs = Ds ×Ds − (2g − 2)Ds,∆

where Ds is a divisor with [Ds] = KXs . Passing to a Zariski open set and finite covering of

S if necessary, we may assume given

ZK ⊂ Y

where

ZK · Ys ≡ zKs .

We want to show when g >= 4 that the associated infinitesimal invariant

δνZK 6= 0 .
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With our usual notations
T = Ts0S

V = H0(Ω1
X)

U = (V ⊗ V ∗)⊕ (V ∗ ⊗ V ) ⊂ H1(Ω1
Y )

where s0 is a generic point of S and X = Xs0 ,
3 we have for the value δνKX of δνZK at s0 that

δzKX ∈ Λ2T ∗ ⊗ Λ2V ∗/∇(T ∗ ⊗ U) .

Here, we are using the observation from Section 3 above that δνKX lies in the subspace

Λ2T ∗ ⊗ Λ2H1(OX) of Λ2T ∗ ⊗H2(OY ). By duality

δνKX ∈
{

ker{Λ2T ⊗ Λ2V → T ⊗ U}
}∗

.

From the discussion in Section 2, we may use Schiffer variations to construct elements

of ker{Λ2T ⊗ Λ2V → T ⊗ U} as follows. Given distinct points p, q ∈ X and differentials

ω, ϕ ∈ H0(Ω1
X(−p− q)) we consider

ξ = θp ∧ θq ⊗ ω ∧ ϕ ∈ Λ2T ⊗ Λ2V .(4.2)

Here, θp and θq are elements of H1(ΘX) and, for simplicity of notation, we are omitting

reference to the surjective map

T → H1(ΘX) .

Recall that θp is uniquely defined up to scaling, and that the scaling is fixed by a choice of

local coordinate z with z(p) = 0. As explained in Section 2, we may think of

θp = δ

{(
1

z

∂

∂z

)}
.(4.3)

Locally, ω = f(z)dz with f(0) = 0, and we have

ω′(p) = f ′(0) .

We note that θp and ω′(p) scale oppositely with z. A similar observation applies also to q,

and therefore the quantity

ω′(p)ϕ′(q)− ω′(q)ϕ′(p)
3Proof analysis shows that δνZK

(s) 6= 0 for any s ∈ S such that TsS → H1(ΘXs
) is surjective and Xs is

non-hyperelliptic. Also, the H1(Ω1
X)⊕H1(Ω1

X) part of H1(Ω1
Y ) does not enter into the calculation.
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is intrinsically associated to ξ given by (4.2). To express this in a coordinate free manner, θp

arises from a choice of a non-zero element of ΘX(p) |p, and ω gives an element of Ω1
X(−p) |p.

Under the natural pairing

〈 , 〉 : Ω1
X(−p) |p ⊗ΘX(p) |p→ C

we have

〈θp, ω〉 = ω′(p) .

Finally, from the discussion in Section 2 we have

ξ ∈ ker{Λ2T ⊗ Λ2V → T ⊗ U} .

Our main calculation is given by the following

Theorem: For ξ given by (4.2) we have

δνKX (θp ∧ θq ⊗ ω ∧ ϕ) = ω′(p)ϕ′(q)− ω′(q)ϕ′(p) .(4.4)

Assuming (4.4) we may complete the proof of Theorem 2 as follows: Let tp, tq be the

tangent lines to the canonical curve ϕKX (X) at p, q respectively. Choose hyperplanes H1, H2

such that {
H1 = 0 on tp ∪ q but not on tp ∪ tq
H2 = 0 on tq ∪ p but not on tp ∪ tq .

Letting ω, ϕ be the corresponding 1-forms given by H1, H2 respectively, we have{
ω′(p) = 0, ω′(q) 6= 0

ϕ′(p) 6= 0, ϕ′(q) = 0 ,

in which case δνKX (ξ) 6= 0 by (4.4). We can choose H1, H2 as above provided that

tp ∩ tq = ∅ .

However, for a non-degenerate embedded curve in Pr with r >= 3, the tangent lines at two

general points do not meet. The condition r >= 3 for the canonical curve is g >= 4, thereby

proving our result.
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Heuristic: The quantity δνKX (ξ) has the properties

(i) it is alternating in p, q and bilinear alternating in ω, ϕ;

(ii) it depends only on the “1st order behaviour” of ω, ϕ near p, q (this is because a Schiffer

variation θp leaves X − {p} unchanged).

The only quantity that has the properties (i) and (ii) is a constant multiple of (4.4). This

heuristic reasoning certainly suggests the result, provided that we know that the constant

is non-zero. Even if we assume (ii) on the basis of geometric reasoning, a computation is

required to estabish the latter point.

(b) For a line bundle L → X, we denote by Li → Y (i = 1, 2) the line bundles on

X ×X induced by the projections, and by ∆ the line bundle corresponding to the diagonal.

Thinking of Li and ∆ as elements in CH1(Y ) we have

zL = L1 · L2 − n∆ · L1 (n = degL)

where the product is

CH1(Y )⊗ CH1(Y )→ CH2(Y )

(clearly ∆ ·L1 = ∆ ·L2). Denoting by Li → Y the line bundles induced over Y = X×S X by

L → X and by ∆̃ the line bundle given by the diagonals on Xs ×Xs, we have therefore

ZL = L1 · L2 − n∆̃ · L1 .

Denoting by [J] the Chern class in H2
(
Ω
>
=1
Y

)
of a line bundle J → Y, for the fundamental

class [ZL] ∈ H4
(
Ω
>
=2
Y

)
we have

[ZL] = [L1] ∪ [L2]− n[∆̃] ∪ [L1] .(4.5)

The Leray filtration F iH∗(Ω•Y) is induced by

image
{

Ωi
S ⊗ Ω•−iY → Ω•Y

}
(we omit the π∗’s), and

[ZL] ∈ F 2H4
(
Ω
>
=2
Y

)
.

The infinitesimal invariant

δνL ∈ Ω2
S ⊗R2

πOY/∇
(
Ω1
S ⊗R1

πΩ1
Y/S

)
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is obtained from [ZL] by localizing on S and using properties of the VHS associated to Y→ S

(cf. the Appendix).

There seem to be two ways of computing δνL. One is geometric by choosing divisors Ds

with [Ds] = Ls and using the result in Section 3(b) above; this is the method used by [9].

The other is to express δνL in terms of the Kodaira-Spencer classes in H1(ΣLs); this is the

method we followed in the “toy-model” example in Section 2 above. The computation we

shall give is in some sense a mix of these two. The term ω′(p) is ultimately produced by

Resp

(
1

z2
ω
)

and the second order pole is produced from the transition functions of ΣK by the term

∂zθpαβ

in the off-diagonal spot. The calculation itself is carried out by selecting divisors Ds ∈ |KXs|
and using a more or less standard explicit relation between residues and duality.

Before turning to the formal computation we want to mention the following

Problem: Let {Ys}s∈S be a family of smooth algebraic surfaces and Ej
s → Ys (j = 1, . . . ,m)

a collection of families of rank-2 vector bundles such that if we set

zs =
∑
j

njc2(Ej
s) ∈ CH2(Ys)

where the nj are integers, then {
deg zs = 0

AlbYs(zs) = 0 .

The problem is to express the infinitesimal invariant δνz associated to the zs in terms of the

Kodaira-Spencer mappings

Ts → H1(ΣEjs
) .

(c) We now turn to the formal calculation to prove (4.4). It is based on three principles:

(i) For any line bundle J → Y given by data as explained in Section 2 above, there is a

canonical Čech representative for c1(J) in H1({Uα},Ω1
Y). The “vertical” part — i.e.,

the image in H1({Uα},Ω1
Y/S) — gives c1(Js). The “horizontal” part — which is well-

defined only for the given data — contains the “OYs-part” of the Kodaira-Spencer class
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in H1(
∑
Js) ⊗ T ∗s S (recalling that the Kodaira-Spencer class gives the tangent to the

family {Js → Ys}s∈S).

(ii) In (i) the “horizontal part” and “OYs-part” are not intrinsically defined for the line

bundles L1,L2, and ∆̃, but with the introduction of two pieces of auxilary data they

are defined for the combination (4.5). The expression “auxilary data” is being used as

in the toy model in Section 2; it refers to terms that are introduced to explicitly write

a cocycle as a coboundary.

(iii) For L = K and ξ = θp ∧ θq ⊗ ω ∧ ϕ as above, the value δνKX (ξ) may be calculated

by residues, and when this is done the auxilary data in (ii) drops out and all that is

left are the “principal parts” as explained above, and this is non-zero. Thus, although

we have not computed δνKX (ξ) for a general ξ ∈ ker {Λ2T ⊗ Λ2V → T ⊗ U}, we have

computed enough to show that δνKX is non-zero (we do not know how to compute

δνKX (ξ) for a general ξ).

Initially, we will for simplicity of notation assume that dimS = 1 and denote by s a local

uniformizing parameter on S. The extension to dimS = N with coordinates s = (s1, . . . , sN)

will be obvious and will be introduced as needed.

Given data {Uα, zα, fαβ(zβ, s), ξαβ(zβ, s)} for the situation

L → X

↓
S

(4.6)

we have in (2.9) given the transition data for
∑
L; we note that there the two right hand

entries in the top now give the Čech representative for c1(L).

For Y = X×S X as in (4.1), we will use the product coordinate data

{Uα × Uλ, (zα, wλ), (fαβ(zβ, s), fλµ(wµ, s))} .

Then the data for (4.6) induces data for L1 → Y and L2 → Y, and this in turn gives canonical

Čech representatives for [L1] and [L2]. We will write this out explicitly below.

The main remaining issue is to use the coordinate data for X→ S to canonically produce

transition data for ∆̃ and Σ∆̃. For this we use the following construction due to Grothendieck:

For any line bundle

J → Z
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over a smooth variety Z we have

Σ∗J
∼= J1 ⊗ J−1

2 ⊗OZ×Z/I2
∆Z

(4.7)

where Ji = pr∗i J and ∆Z ⊂ Z ×Z is the diagonal with ideal I∆Z
. It is useful to verify (4.7),

as this will help establish notation for what follows. We will assume that dimZ = 1; the

extension to the general case will be obvious. If {Uα, zα, fαβ(zβ)} give coordinate data for

Z and if J → Z has transition functions ξαβ(zβ), then we cover a neighborhood of ∆Z by

Uα × Uα and relative to these open sets J1 ⊗ J−1
2 has transition functions ξαβ(zβ)ξ−1

αβ (wβ).

We write

ξαβ(w + z − w)

ξαβ(w)
≡ ξαβ(w) + (z − w)∂wξαβ(w)

ξαβ(w)
mod (z − w)2

≡ 1 + ∂w log ξαβ(w)(z − w) .

We may give a section over Uα×Uα of the RHS of (4.7) by Aα(wα) + (zα−wα)Bα(wα), and

in (Uα ∩ Uβ)× (Uα ∩ Uβ)

Aα(wα) + (zα−wα)Bα(wα) =
(
1 + (zβ − wβ)∂wβ log ξαβ(wβ)

)
(Aβ(wβ) + (zβ − wβ)Bβ(wβ)) ,

or more compactly(
Aα

(zα − wα)Bα

)
=

(
1 0

(zβ − wβ)∂wβ log ξαβ 1

)(
Aβ

(zβ − wβ)Bβ

)
.(4.8)

Near ∆Z

zα − wα
zβ − wβ

=
fαβ(zβ)− fαβ(wβ)

zβ − wβ
≡ ∂wβfαβ(wβ) mod (zβ − wβ)2 ,

from which it follows that (zα − wα)Bα(wα) is a section of Ω1
∆Z

∼= Ω1
Z , and then using wα

as coordinate on ∆Z we may identify this term with Bα(wα)dwα. Thus, (4.8) gives the

transition data for the exact sequence

0→ Ω1
Z → Σ∗J → OZ → 0 ,

as claimed.

Next, we will show that the transition functions for Σ∗∆ on Y = X × X are given in

(Uα ∩ Uβ)× (Uα ∩ Uβ) by 
1 0 0

dzβ
zβ−wβ

− dzα
zα−wα 1 0

−dwβ
zβ−wβ

+ dwα
zα−wα 0 1

 .(4.9)
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This has the following meaning: Transition functions for the exact sequence

0→ Ω1
Y → Σ∗∆ → OY → 0

are given by 
Aα

Bαdzα

Cαdwα

 =


1 0 0

dzβ
zβ−wβ

− dzα
zα−wα 1 0

−dwβ
zβ−wβ

+ dwα
zα−wα 0 1




Aβ

Bβdzβ

Cβdwβ

 .

To prove (4.9) we note that, relative to the covering Uα×Uα of the diagonal, the line bundle

∆ has transition functions

µαβ =
zα − wα
zβ − wβ

.

We use coordinates z1, w1, z2, w2 on Y ×Y = X×X×X×X. Then ∆1⊗∆−1
2 has transition

functions

z1α − w1α

z1β − w1β

· z2β − w2β

z2α − w2α

=

(
z2β − w2β

z1β − w1β

)(
z2α − w2α

z1α − w1α

)−1

.(4.10)

Since

z2β − w2β

z1β − w1β

≡ 1 +
(z2β − z1β)− (w2β − w1β)

z1β − w1β

(4.11)

modulo terms vanishing to 2nd-order on the diagonal in Y × Y , we may plug (4.11) into

(4.10) to get that the transition functions of ∆1 ⊗∆−1
2 are ≡ to

1 + (z2β − z1β)− (w2β − w1β)

z1β − w1β

− (z2α − z1α)− (w2α − w1α)

z1α − w1α

.(4.12)

Using the equation

Aα + (z2α − z1α)Bα + (w2α − w1α)Cα ≡ (4.12)× ((Aβ + (z2β − z1β)Bβ + (w2β − w1β)Cβ))

we obtain

Aα = Aβ

(z2α − z1α)Bα = (z2β − z1β)Bβ +

(
z2β − z1β

z1β − w1β

− z2α − z1α

z1α − w1α

)
Aβ

(w2α − w1α)Cα = (w2β − w1β)Cβ +

(
w2α − w1α

z1α − w1α

− w2β − w1β

z1β − w1β

)
Aβ .

Then replacing z2α−z1α modulo terms vanishing to 2nd-order by dzα, we obtain the transition

matrix (4.9).
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Now we want to extend the above calculation to the line bundle ∆̃ → Y. The new

ingredient — in fact the one that makes this whole computation interesting — is that there

is now s-dependence. Following the same procedure as above, we want to see how

Aα + (z2α − z1α)Bα + (w2α − w1α)Cα + (s2 − s1)Dα(4.13)

changes coordinates. Recalling our notation{
jαβ = ∂zβfαβ(zβ, s)

θαβ = ∂sfαβ(zβ, s)

we now have

z2α − z1α = fαβ(z2β, s2)− fαβ(z1β, s1)

≡ jαβ(z2β − z1β) + θαβ(s2 − s1)

and similarly for w2α − w1α. Setting j1αβ = jαβ(zβ), j2αβ = jαβ(wβ) and similarly for θ1αβ

and θ2αβ, it follows that the transition rules for the coefficients in (4.13) are

Aα = Aβ

Bα =

(
1

j1αβ

)
Bβ +

[(
1

(z1β − w1β)
j1αβ

)
−
(

1

z1α − w1α

)]
Aβ

Cα =

(
1

j2αβ

)
Cβ −

[(
1

(z1β − w1β)
j2αβ

)
−
(

1

z1α − w1α

)]
Aβ

Dα = Dβ −
(
θ1αβ

j1αβ

)
Bβ −

(
θ2αβ

j2αβ

)
Cβ

+


(
θ1αβ
j1αβ

)
−
(
θ2αβ
j2αβ

)
(z2β − w2β)

Aβ .
Setting

ραβ(zβ) = θαβ(zβ)∂/∂zα ∈ Z1({Uα},ΘX/S)

we may rewrite the above equations along the diagonals in Y×S Y as

Aα = Aβ

Bαdzα = Bβdzβ +

(
dzβ

z1β − w1β

− dzα
z1α − w1α

)
Aβ
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Cαdwα = Cβdwβ −
(

dwβ
z1β − w1β

− dwα
z1α − w1α

)
Aβ

Dα = Dβ − (ραβ(zβ)cBβdzβ)− (ραβ(wβ)cCβdwβ)

+

[
(ραβ(zβ) + ραβ(wβ))c(dzβ − dwβ)

zβ − wβ

]
Aβ .

These may be summarized as

(4.14)
Aα

Bαdzα + Cαdwα

Dαds



=


1 0 0

dzβ−dwβ
zβ−wβ

− dzα−dwα
zα−wα 1 0

(ραβ(zβ) + ραβ(wβ))cdzβ−dwβ
zβ−wβ

(ραβ(zβ) + ραβ(wβ)) 1




Aβ

Bβdzβ + Cβdwβ

Dβds

 .

Symbolically, the RHS is
1 0 0

Extension data
for Σ∗∆ Transition

Extra extension data for Ω1
Y

data for Σ∗
∆̃




OY

Ω1
Y/S

Ω1
S ⊗OY



reflecting the exact sequences 0→ Ω1
Y → Σ∗

∆̃
→ OY → 0

0→ Ω1
S ⊗OY → Ω1

Y → Ω1
Y/S → 0 .

We next set Ki = pr∗iK where

K→ X

↓
B

is the family {KXs → Xs}s∈S of canonical line bundles and

Y = X×S X
pr1 ↙ ↘ pr2

X X
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are the projections. In (2.9) we have given the transition data for ΣL → X for a general line

bundle L → X. Taking L = K, the extension data part of the transition data for Σ∗K is


(
∂zβ log jαβ(zβ, s)

)
dzβ(

∂sjαβ(zβ ,s)

jαβ(zβ,s)

)
ds


which now taking s = (s1, . . . , sN) we may write as (

∂zβ log jαβ
)
dzβ∑

i (∂si log jαβ) dsi

 .

Pulling minus this4 back to Y = X×SX under the two projections gives Čech representatives

for [K1] and [K2].

Here we need to remark about the open coverings of Y. These transition functions and

extension data are relative to {Uα×X}, whereas those for Σ∗
∆̃

above are relative to {Uα×Uα}
— as will be seen below, the latter will be all that is needed for the calculation of (4.5) when

L = K.

At this stage, in terms of the data {Uα, zα, fαβ(zβ, s)} giving X → S we have canonical

expressions for Čech cocycles representing each of the terms in (4.5) when L = K. The

strategy for completing the calculation establishing (4.4) is this:

(i) Write each of the cocycles as a Čech coboundary of a cochain with poles — this will

enable duality pairings to be computed by residues;

(ii) Assuming that dimS = 2 and that Ts0S is spanned by Schiffer variations θp and θq,

we may lift ω, ϕ ∈ H0(Ω1
X) to ω̃, ϕ̃ ∈ H0(Ω1

X ⊗OX). Then

(
[K1] ∪ [K2]− (2g − 2)[∆̃] ∪ [K1]

)
︸ ︷︷ ︸∧ (ω̃1 ∧ ϕ̃2 − ω̃2 ∧ ϕ̃1) ∈ H2(Ω4

Y ⊗OY ) ,(4.15)

which maps naturally to

H2(Ω2
Y/S ⊗ Ω2

S ⊗OY ) ∼= Λ2T ∗ ⊗H2(Ω2
Y ) .(4.16)

Using the fact that the term over the braces lies in the second level in the Leray

filtration, and therefore in cohomology lies in

Ω2
S ⊗H2(OY) ,

4Here we note the minus sign in (2.9)
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we infer that (4.15) maps to

δνKX (θp ∧ θq ⊗ ω ∧ ϕ) ; 5

(iii) Finally, we use (i) to explicitly compute (4.15). The calculation will be based on the

following

Observation: If D1, D2 are smooth divisors meeting transversely on Y , then the cohomol-

ogy associated to

0→ Ω2
Y →

2⊕
i=1

Ω2
Y ⊗OY (Di)→ Ω2

Y ⊗OY (D1 +D2)→ Ω2
Y ⊗OD1∩D2(D2 +D2)→ 0

takes

H0
(
Ω2
Y ⊗OD1∩D2(D1 +D2)

)
→ H2(Ω2

Y )

by
ω

f1f2

→
∑

y∈D1∩D2

Resy

(
ω

f1f2

)
.

To carry out the argument, it will simplify the notation if we set

θ1 = θp, θ2 = θq

ω1 = ω, ω2 = ϕ

and give ωi explicitly by

ωi = {hiα(zα)dzα} .
5Alternatively,

Ω2
S ⊗H2(Oy) ↪→ H2(Ω2

Y ⊗Oy)

induces a commutative diagram

Ω2
S ⊗ H 2(O y) ⊗ H 2(Ω2Y ⊗ O y) −→ H 2(Ω2Y ⊗ O y) ⊗ H 0(Ω2Y ⊗ O y)



y



y

Ω2
S ⊗ H 2(Ω2Y ⊗ O y) H 2(Ω2Y ⊗ O y)



y

Ω2
Y ⊗ H 2(Ω2Y ⊗ O y)

Since
([K1] ∪ [K2]− [∆̃] ∪ [K1]) |y∈ Ω2

S ⊗H2(Oy)

we may compute how it pairs with ω1 ∧ ϕ2 − ω2 ∧ ϕ1 by wedging with ω̃1 ∧ ϕ̃2 − ω̃2 ∧ ϕ̃1.
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Then since θi(ωj) = 0 in H1(OX) we have

θiαβ(zβ)hjβ(zβ) = kijα(zα)− kijβ(zβ)(4.17)

where {kijα} ∈ C1 ({Uα},OX). From our calculation of the transition functions for X → S

and (
hjαdzα

k1jαds1 + k2jαds2

)
=

(
1 0

ρ1αβds1 + ρ2αβds2 1

)(
hjβdzβ

k1jβds1 + k2jβds2

)

we infer that (
hjαdzα

k1jαds1 + k2jαds2

)
=: ω̃jα

represents a lifting of ωj to ω̃j ∈ H0(Ω1
X ⊗OX).

We will now carry out step (i). Recalling that the Čech expression for [∆̃] ∈ H1(Ω1
Y) is

(with the above understanding about open coverings)

−

 dzβ−dwβ
zβ−wβ

− dzα−dwα
zα−wα∑

i (ρiαβ(zβ) + ρiαβ(wβ))c
(
dzβ−dwβ
zβ−wβ

)
dsi


(where we recall that ρiαβ(zβ) = ∂sifαβ(zβ, s)∂/∂zα, etc.) we observe that

δ


 dzα−dwα

zα−wα

0


=

 dzα−dwα
zα−wα

0

− (
1 0∑

i (ρiαβ(zβ) + ρiαβ(wβ)) dsi 1

) dzβ−dwβ
zβ−wβ

0

 .

Thus

[∆̃] = −δ

 dzα−dwα
zα−wα

0

 .(4.18)

Now let ϕ = {lα(zα, s)dzα} ∈ H0(Ω1
X/S) be chosen with divisor

{
(ϕ) = D =

∑
λ rλ

p, q 6∈ (ϕ) .

Then

[K1] = δ

(
∂zα log lα(zα, s)dzα∑
i ∂si log lα(zα, s)dsi

)
,(4.19)
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where the RHS is pulled back to Y = X ×S X under the first projection, and similarly for

[K2] with wα replacing zα.

Next, to simplify the calculation and make explicit use of our assumption of Schiffer

variations we will choose our covering of X as follows: U1 will be a disc with coordinate z

such that p, q ∈ U1. U2 will be a larger disc with small discs around p, q removed, and the

remaining U2 (α >
= 2) will satisfy

{
Uα ∩ U1 = ∅
rλ ∈ Uα(λ) (α(λ) >= 2)

.

p q

r
λ

αU

U

U

2

1

For θ1αβ at s = s0 we will have

θ1αβ = δ

{(
1

z − z(p)

)}
=: δ{σα}

which is explicitly given by  θ112 = 1
z−z(p)

all other θ1αβ = 0 .

There is a similar expression for θ2αβ with q replacing p. Then in (4.17) we may take, e.g.,

k11α = σαh1α .

It follows that all

kijα(rλ) = 0 .(4.20)

We will now carry out step (ii). Setting

ω̃ij = pr∗i ω̃j
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and using the general observation above together with (4.20) we have

[K1] ∧ ω̃11 ∧ [∆̃] ∧ ω̃22 =

∑
λ

Res(rλ,rλ)

(
∂zα log lα(zα, s)dzα +

∑
i

∂si log lα(zα, s)dsi

)
∧

(h1α(zα, s)dzα) ∧
(
dzα − dwα
zα − wα

)
∧ (h2α(wα, s)dwα)

]
= 0

since there are no ds1 ∧ ds2 terms.

Note: The only possible ds1 ∧ ds2 terms would arise from expressions such as

(∑
i

∂silαdsi

)
∧

∑
j

kj2αdsj

 .

But since we are evaluating at (rλ, rλ) these are zero, by (4.20). The philisophical reason they

are out is that the kjiα represent “auxilary data”, and for Schiffer variations the auxilary

data does not enter into the final expressions for the same reason as in the “toy model”

discussed in section 2. Intuitively, using Schiffer variations localizes the problem at p and q,

and since the auxilary data is not uniquely specified by the given data its value at any point

does not have intrinsic meaning.

We now turn to the evaluation of the “principal part” term

[K1] ∧ ω̃11 ∧ [K2] ∧ ω̃22 .(4.21)

As above the kijα terms drop out and (4.21) is

∑
λ,i

Resrλ [(∂si log lα(zα, s))h1α(zα, s)dzα] dsi ∧

∑
µ,j

Resrµ
[
(∂sj log lα(wα, s)h2α(wα, s))dwα

]
dsj .

The proof will be complete if we show:∑
λ

Resrλ [(∂s1 log lα(zα, s))h1α(zα, s)dzα] = ω′1(p) .(4.22)

Proof of (4.22): We have

lα(fαβ(zβ, s), s) = ∂zβfαβ(zβ, s)
−1lβ(zβ, s)
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which gives

∂s1 log lα = ∂s1 log lβ + ∂zα log lαθ1αβ −
∂zβθ1αβ

∂zβfαβ
.(4.23)

Near rλ we have θ1αβ = 0 so that

Resrλ (ω1∂s1 log lα) = Resrλ (ω1∂s1 log lβ)

as expected. Now we may consider

(ω1∂s1 log lα) ∈ H0
(
Ω1
X(D) |D

)
,

and by (4.23) under the cohomology sequence associated to

0→ Ω1
X → Ω1

X(D)→ Ω1
X(D) |D→ 0

it maps to

ω1

(
∂zα log lαθ1αβ −

∂zβθ1αβ

∂zβfαβ

)
∈ Z1

(
{Uα}, U1

X

)
→ H1(Ω1

X) .(4.24)

Call the term in parentheses ταβ; it is holomorphic since θ1αβ vanishes at the zeroes of lα.

By our choice of open covering and construction of θ1αβ, all ταβ = 0 except for τ12 and

τ12 = (∂z1 log l1)

(
1

z1 − p

)
+

1

(z1 − p)2

since f12 ≡ 1. The 1/(z1 − p)2 term comes from ∂z1θ112 — this is the crucial term, whose

intuitive origin was discussed in Section 2. Now since ω1(p) = 0

ω1 = (a(z1 − p) + · · ·) dz1

where

a = ω′1(p) .

Then near p

ω1τ12 =
ω′1(p)dz1

z1 − p
+ holomorphic terms ,

and it follows that (4.24) evaluates to ω′1(p) in H1(Ω1
X) ∼= C.
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Appendix: Definition of the infinitesimal invariants

(a) Classically, normal functions were introduced by Poincaré to study algebraic 1-cycles

on an algebraic surface. The construction extends naturally to a situation

(A.1)

Z ⊂ Y

↓π
S .

Here, Y
π→ S is a smooth family of projective algebraic varieties {Ys}s∈S, and Z ⊂ Y is a

codimension-p algebraic cycle such that Zs = Z · Ys is a codimension-p cycle on each Ys that

is homologous to zero there. In this case the Abel-Jacobi image

AJYs(Zs) ∈ Jp(Ys)

is defined, where Jp(Ys) is the pth intermediate Jacobian of Ys. Denoting by

(A.2) J→ S

the family of intermediate Jacobians, there is defined a normal function νZ by

νZ(s) = AJYs(Zs) .

In terms of the variation of Hodge structure6 {HZ, -Jp,∇} associated to (A.1), we have

Jp(Ys) = -Jps \Hs/HZ,s .

In terms of any local lifting ν̃ of ν to H, we have

(A.3) ∇ν̃ ∈ Ω1
S ⊗ -Jp−1 .

By definition, a normal function is any holomorphic section ν of (A.2) such that (A.3) is

satisfied. Setting

Hr,s = -Jr/ -Jr−1 (r + s = 2p− 1)

6Here, HZ = R2p−1
π Z and H = OS ⊗R2p−1

π C with Gauss-Manin connection

∇ : H → Ω1
S ⊗H ,

and -Jp ⊂ H is the Hodge filtration which satisfies

∇ -Jp ⊂ Ω1
S ⊗ -Jp−1 .
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there is an induced OS-linear mapping

(A.4) ∇ : Hr,s → Ω1
S ⊗Hr−1,s+1

that will be basic in what follows.

For a normal function ν the associated infinitesimal invariant

δν ∈ Ω1
S ⊗Hp−1,p

is defined to be the section induced by ∇ν̃ for any local lifting ν̃ of ν. Although νZ is

transcendental — i.e., in one form or another it involves integration — δνZ is algebraic and

in some cases δνZ(s) may be interpreted geometrically in terms of the 1st-order variation of

Zs. In general, δν was introduced in an attempt to associate geometric invariants to ν.

(b) Let Y be a smooth variety. Associated to a codimension-p algebraic cycle Z one expects

— according to Beilinson — to be able to successively associate a sequence of Hodge-theoretic

invariants

ψ0(Z), ψ1(Z), . . . , ψp(Z)

where ψi(Z) is defined only if ψ0(Z) = · · · = ψi−1(Z) = 0, and where the vanishing of all

of the ψi(Z) is equivalent, modulo torsion, to Z being rationally equivalent to zero. The

first two have been defined: ψ0(Z) is the fundamental class of Z, and if ψ0(Z) = 0 then

ψ1(Z) ∈ Jp(Y ) is the Abel-Jacobi image of Z. Now although the higher ψi’s have not yet

been defined in general (however, see [Green]), it is in some cases possible to define their “1st

variation.” More precisely, if we have a family as in (A.1), and if

ψ0(Zs) = · · · = ψi−1(Zs) = 0

for all s ∈ S, then one might expect the ψi(Zs) to give something like a normal function

νiZ(s) ∈ Jpi (Ys) .

Although this definition has not been given, one may succesively define invariants

δνkZ ∈ Hm
(
Ωk
S ⊗Hp−k,p+k−m,∇

)
that extend the definition of δν1

Z and have the property that

δνkZ 6= 0⇒
{
zs is non-torsion in CHp(Ys)
for general s

}
.
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For S affine we have

δνkZ ∈ H0
(
Ωk
S ⊗Hp−k,p+k,∇

)
.

In the situation of interest to us when zs is a family of 0-cycles or a family of algebraic

surfaces Ys,

δν1
Z ∈ Ω1

S ⊗H1,2/∇H2,1

turns out to be (see below) the infinitesimal invariant associated to the normal function

s→ AlbYs(zs) .

The second, non-classical invariant

δν2
Z ∈ Ω2

S ⊗H0,2/∇H1,1

is what is of interest to us, especially computing it in cases of geometric interest.

The invariants referred to above have been around in various guises for some time, dating

to the definition of the arithmetic cycle class by Grothendieck and Deligne and, from a

completely different perspective the paper by Mumford (where he notes the the invariant

he used was already discussed by Severi as early as 1936). More recently, special cases of

it have appeared in the work of [8], [2], the Banff lectures by Green [4], and the work of

the Japanese School (Asakura, S. Saito [6], M. Saito [7]). The use of these invariants in

geometric problems that has been most influential in the present paper are in [5] and [9].

We shall now define δνZ = δν2
Z in the situation (A.1) where {Ys}s∈S is a family of smooth

surfaces and Z · Ys = zs is a family of 0-cycles with

(A.5)

{
deg zs = 0

AlbYs(zs) = 0 .

The construction is based on four things:

(i) Z defines a fundamental class

[Z] ∈ Image {H2(Ω
>
=2
Y )→ H2(Ω•Y)} ;

(ii) the Leray spectral sequence for Y → S degenerates at E2, and under the assumption

(A.5)

[Z] ∈ F 2H4(Y,C)

where F i is the Leray filtration;
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(iii) H∗(Ω•Y) computes H∗(Y,C) and R∗π(Ω•Y/S) computes R∗πC; and

(iv) the standard properties of the variation of Hodge structure (VHS) associated to Y
π→ S.

To begin with, the Leray filtration is induced on hypercohomology by

image
{

Ωi
S ⊗ Ω•−iY/S → Ω•Y

}
whose associated graded is

GriΩ•Y
∼= Ωi

S ⊗ Ω•−iY/S .

The E1-term of the Leray spectral sequence is

(A.6) −→ Ωq
S ⊗ Rpπ

(
Ω•Y/S

) ∇−→ Ωq+1
S ⊗ Rpπ

(
Ω•Y/S

)
−→ .

The Hodge filtration on the Rpπ(Ω•Y/S) is induced by the subcomplexes

Ω
>
=p
Y/S ⊂ Ω•Y/S ,

and the spectral sequence induced by the Hodge filtration degenerates at E1. Passing to the

associated graded of the Hodge filtration in (A.6) gives the complex

(A.7) −→ Hp,r ⊗ Ωq
S
∇−→ Hp−1,r+1 ⊗ Ωq+1

S −→

where

Hp,r ∼= Rr
π

(
Ωp

Y/S

)
.

Since our considerations are local in the base, we may take S to be affine. The funda-

mental class of Z defines

[Z]0 ∈ H0(S,R4
πC) .

If this is zero then it defines

[Z]1 ∈ H1(S,R3
πC) ,

and if this is zero then we have

[Z]2 ∈ H2(S,R2
πC) .

From

deg zs = 0,

we infer that [Z]0 = 0. Then [Z]1 defines a class in the cohomology of the complex

OS ⊗R3
πC

∇−→ Ω1
S ⊗R3

πC
∇−→ Ω2

S ⊗R3
πC .
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Since also [Z] ∈ H2(Ω
>
=2
Y ) we infer from (A.6) that [Z]1 defines a class in the cohomology of

R3
π

(
Ω
>
=2
Y/S

) ∇−→ Ω1
S ⊗ R3

π

(
Ω
>
=1
Y/S

) ∇−→ Ω2
S ⊗ R3

π

(
Ω
>
=0
Y/S

)
.

Finally, passing to the quotient by the Hodge filtration we see that [Z]1 defines

δν1
Z ∈ Ω1

S ⊗H1,2/∇H2,1 .

Proposition: (i) δν1
Z is the infinitesimal invariant of the normal function

s→ AlbYs(zs) .

(ii) If AlbYs(zs) = 0, then [Z]1 = 0.

Assuming the proposition, if (A.5) is satisfied then [Z]2 defines a cohomology class in the

complex

−→ Ω1
S ⊗ R2

π

(
Ω
>
=1
Y/S

) ∇−→ Ω2
S ⊗ R2

π

(
Ω•Y/S

) ∇−→ Ω3
S ⊗ R2

π

(
Ω•Y/S

)
−→ .

Passing to the quotient by the Hodge filtration as in (A.7) we see that [Z]2 defines

δν2
Z ∈ Ω2

S ⊗H0,2/∇
(
Ω1
S ⊗H1,1

)
.

Definition: For the situation (A.1) where Y = {Ys}s∈S is a family of smooth surfaces and

zs ∈ Z2(Ys) is a family of 0-cycles satisfying (A.5), we define the infinitesimal invariant

δνZ = δν2
Z .

A special case is when

Y = Y × S

is a product. Then we do not need to assume that [Z]0 = [Z]1 = 0 to define [Z]2 as a Künneth

component of [Z], and since the complex (A.7) is trivial we have

δνZ ∈ Ω2
S ⊗H2(OY ) ∼= Hom

(
H0(Ω2

Y ),Ω2
S

)
.

In fact it may be seen that

δνZ = TrZ

is just the trace map

H0(Ω2
Y )→ Ω2

S

given by

TrZω = π∗(ω |Z) .

Thus, δνZ may be thought of as an extension to variable families of surfaces of the construc-

tion originally used by Mumford when he showed that dimCH2(Y ) =∞ if H0(Ω2
Y ) 6= 0 (cf.

[9]).
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Proof of the proposition: (i) There is an obvious formulation of the first part of the

proposition for a family D = {Ds}s∈S of divisors on a family of smooth algebraic curves

{Xs}s∈S .

Moreover, if Xs ⊂ Ys is an ample curve then

(A.8) J(Xs)→ Alb(Ys)

is surjective, and if Ds is chosen so that for each s ∈ S

Ds ≡ zs

where ≡ denotes rational equivalence, then under the mapping (A.8)

νD → νZ

and

δνD → δνZ .

Thus it will suffice to prove (i) for the case of curves.

By the theorem in section 2(b) it will suffice to prove the following:

Given the situation (2.1), evaluating at a generic point of S we have the Kodaira-Spencer

class

σ ∈ T ∗ ⊗H1(ΣL)

associated to the family {Ls → Xs}. Using the splitting

H1(ΣL) ∼= H1(OX)⊕H1(ΘX)

arising from the assumption c1(L) = 0, we write

σ = (τ, θ) ;

as was noted in section 2(b), the equivalence class

[τ ] ∈ T ∗ ⊗H1(OX)/∇H0(Ω1
X)

is well-defined independently of the above splitting. On the other hand, we have

νL(s) = [Ls] ∈ J(Xs) ,
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and we may locally lift νL to a section ν̃ of OS ⊗ R1
πC (i.e., the bundle over S with fibres

H1(Xs,C)). Then

∇ν̃ ∈ R1
πOX/∇R0

πΩ1
X/S

is well-defined and we may evaluate at a generic point to get

[∇ν̃] ∈ T ∗ ⊗H1(OX)/∇H0(Ω1
X) .

We will show that

(A.9) [τ ] = [∇ν̃] .

Proof of (A.9): We follow the notation used in the proof of the theorem in section 2(b).

Since degLs = 0 we may choose the transition functions ξαβ(s) to be constant along Xs.

Moreover, we may choose

{ζαβ(s)} ∈ H1(Xs,C)

such that

ξαβ(s) = exp ζαβ(s) .

This means we have ζs ∈ H1(Xs,C) such that ζs maps to Ls under the composite

H1(Xs,C)
exp−→ H1(Xs,C∗) −→ H1(Xs,O∗X) .

On the one hand, we have from the proof of the theorem in section 2(b) that

[τ ] = {dζαβ(s)} ∈ T ∗ ⊗H1(OX)/∇H0(Ω1
X) .

On the other hand, {dζαβ(s)} represents ∇ζ, and since ζ provides a lifting ν̃ we are done.

It remains to show that (cf. [9])

(A.10) zs ≡rat 0 for general s⇒ δνZ = 0 .

We write

zs = z′s − z′′s

where z′s, z
′′
s ∈ Y (m)

s are effective 0-cycles. We then have correspondingly

Z′,Z′′ ⊂ Y
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with

Z = Z′ − Z′′ .

The assumption in (A.10) has the following implication: First we allow ourselves to shrink S

and pass to finite coverings — this means that we may ignore phenomena that occur over a

proper subvariety of S, and that any construction that is algebraic in s ∈ S may be assumed

to be rational. Then we may find

ws ∈ Y (m)
s

and

fs : P1 → Y (m+m)
x

both varying rationally with s such that fs(0) = z′s + ws

fs(∞) = z′′s + ws .

Let γ be a path in P1 joining 0 to∞, and denote by γs ⊂ Ys the 1-chain traced out by fs(γ).

Then

∂γs = zs .

If we let Γ =
⋃
s∈S γs, then remembering that we can ignore phenomena occuring over a

proper subvariety of S we will have

(A.11) ∂Γ = Z .

It follows that [Z] = 0, and then as a consequence

δνZ = 0 .

Remark: One could formalize the argument by letting (Y/S)(k) denote the relative k-fold

symmetric product of Y→ S, and then constructing a regular map

F : P1 × S → (Y/S)(m+n)

such that (with the obvious notation) F (0× S) = Z′ +W

F (∞× S) = Z′′ +W .

Then Γ is the image in Y of F (γ × S) and by construction (A.11) is satisfied.
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