
ON LIE SEMI-GROUPS
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1. Suppose we have a semi-group structure defined on

π =
{
(p1, . . . , pn)

∣∣ p1 ⩾ 0, . . . , pn ⩾ 0
}
,

a subset of real Euclidean n-space, En, by (p, q) → F (p− q) = p ◦ q. In this note we shall be
concerned with a representation T (.) of π as a semi-group of bounded linear operators on
a Banach space X. More particularly, we suppose that postulates P1, P2, P3, P5, and P6 of
chapter 25 of [2] are satisfied so that, by Theorem 25.3.1 of that book, there is a continuous
function, f(.), defined on π such that f

(
(ρ+ σ)a

)
= f(ρa) ◦ f(σa) for a ∈ π, ρ, σ ⩾ 0; that

the representation is strongly continuous in a neighbourhood of the origin and that T (0) = I.
Then for a ∈ π, ρ → T

(
f(ρa)

)
is a strongly continuous one parameter semi-group; denote

its infinitesimal generator by A(a). We shall study, under the assumption that F (p, q) is
three times continuously differentiable, the relations among the A(a) and their adjoints A∗(a).
Following a suggestion of Hille [1] we first prove some “Dense Graph Theorems.” Using
these we show that the expected linear and commutation relations hold. We also show that⋂

a∈π D
(
A(a)

)
[D
(
A(a)

)
is the domain of A(a)] is invariant under T (p) for small p in π. The

proofs are so formulated that, with minor changes, they remain valid in other situations.
We should like to thank C. T. Ionescu Tulcea who suggested that the methods of [3] might

be applicable to the questions discussed here.

2. We set

∂F k

∂pj
= F k

j; (p, q);
∂F k

∂qj
= F k

;j(p, q);
∂2F k

∂qi∂pj
= F k

j;i(p, q);

F k
i;j(0, 0)− F k

j;i(0, 0) = γkij.

F (p, q) may be extended to a twice continuously differentiable function defined on En × En.
Denote some fixed extension by F (q, p). Since

F k
j;(0, 0) = F k

;j(0, 0) = δkj ,

there are open spheres N1, N2 ⊆ N1 about the origin and three times continuously differ-
entiable functions ψ(q, h) and χ(q, h) defined on N1 × N1 such that ψ(0, 0) = χ(0, 0) =
0, F

(
h, ψ(q, h)

)
= q, and F

(
χ(q, h), h

)
= q. Moreover if F (h, p) = q

[
F (p, h) = q

]
with

p, h ∈ N2, then q ∈ N1 and ψ(q, h) = p
[
χ(q, h) = p

]
. We may also suppose that all deriva-

tives of ψ(q, h) and χ(q, h) up to the third order are bounded in N1, that T (.) is strongly

continuous in N1 ∩ π, and that det
(
F k
j;(0, p)

)
⩾ 1/2 and det

(
F k
;j(p, 0)

)
⩾ 1/2 for p in N1. If

N ⊆ N1 is an open sphere about the origin, set

E(N) =

{
y =

∫
π

K(q)T (q)x dq

∣∣∣∣ x ∈ X, K(q) ∈ C2(N ∩ π)
}
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C2(N ∩ π) is the set of twice continuously differentiable functions which are 0 outside of
N ∩ π. The set E(N) is dense in X.

Proposition 1. Let N3 be an open sphere about the origin with F (N3, N3) ⊆ N2. If
y ∈ E(N3), then T (p)y is a twice continuously differentiable function of p in N3 ∩ π.

Proof. We understand that some derivatives at the boundary will be one-sided. If y ∈ E(N3)
and ej = (δ1j , . . . , δ

n
j ) we have, recalling that K(q) is 0 outside of N3 ∩ π,

lim
s→0

s−1
(
T (p+ sej)y − T (p)y

)
= lim

s→0
s−1

∫
N3∩π

K(q)
(
T
(
(p+ sej) ◦ q

)
− T (p ◦ q)

)
x dq

= lim
s→0

s−1

∫
N2∩π

K(ψ(q, r)) det(∂ψk

∂qi
(q, r)

)∣∣∣∣∣∣
r=p+sej

r=p

T (q)x dq

=

∫
N2∩π

∂

∂pj

K(ψ(q, p)) det(∂ψk

∂qi
(q, p)

)T (q)x dq + lim
s→0

∫
N2∩π

G(q, p, s) dq

=

∫
N2∩π

∂

∂pj

K(ψ(q, p)) det(∂ψk

∂qi
(q, p)

)T (q)x dq
since G(q, p, s) converges boundedly to 0 with s. The final integral is a continuous function
of p. In a similar manner we show that it is once continuously differentiable.

We remark the following formulae, valid for y ∈ E(N3), p ∈ N3 ∩ π:
(i)

lim
s→0

s−1
(
T
(
f(sa)

)
− I
)
T (p)y = lim

s→0
s−1
(
T
(
f(sa) ◦ p

)
y − T (p)y

)
= lim

s→0

 n∑
j=1

s−1
(
F j
(
f(sa), p

)
− pj

) ∂

∂pj
T (p)y + s−1o

(∣∣f(sa) ◦ p− p
∣∣)

=
n∑

j=1

 n∑
i=1

F j
i;(0, p)a

i

 ∂

∂pj
T (p)y.(1)

So T (p)y ∈ D
(
A(a)

)
and A(a)T (p)y is given by (1).

(ii)

T (p)A(a)y = lim
s→0

s−1
(
T
(
p ◦ f(sa)

)
y − T (p)y

)
=

s∑
j=1

 n∑
k=1

F j
;k(p, 0)a

k

 ∂

∂pj
T (p)y.(2)
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(iii) Setting
(
γjk(p)

)
=
(
F j
;k(p, 0)

)−1

, we have

(3)
∂

∂pj
T (p)y =

n∑
k=1

γik(p)T (p)A(ek)y.

(iv) Setting βk
i (p) =

∑n
j=1 F

j
i;(0, p)γ

k
j (p), we have

(4) A(a)A(b)T (p)y =
n∑

k,j=1

 n∑
i=1

βk
i (p)b

i

( n∑
m=1

F j
m;(0, p)a

m

)
∂

∂pj
T (p)A(ek)y.

(v)

A(a+ b)y = A(a)y + A(b)y(α)

A(ei)A(ej)y − A(ej)A(ei)y =
n∑

k=1

γkijA(ek)y.(β)

For a proof of the latter relation, see ([2], p. 758).

3. We come now to the “Dense Graph Theorems.”

Theorem 1. Let {a1, . . . , ap} ⊆ π; if G0 is the closure in the product topology on X×· · ·×X
(p+ 1 factors) of

{
x,A(a1)x, . . . , A(ap)x

∣∣ x ∈ E(N3)
}
and

G =

(x,A(a1)x, . . . , A(ap)x)
∣∣∣∣∣∣ x ∈

p⋂
j=1

D
(
A(aj)

)
then G0 = G.

Proof. Certainly G ⊇ G0 since an infinitesimal generator is a closed operator. We show
that G0 ⊇ G. Let {br+1, . . . , bn} be a maximal linearly independent subset of {a1, . . . , ap};
it is sufficient to prove the theorem for the former set. Let {b1, . . . , bn} ⊆ π be a basis for
En. If t = (t1, . . . , tn) ∈ π, set p(t) = f(t1b1) ◦ · · · ◦ f(tnbn). Then p(t) is a twice continuously
differentiable map of π into π and may be extended to a twice continuously differentiable
map of En into En. Since

∂pk

∂tj
(0) = bkj ,

p(t) has a twice continuously differentiable inverse defined in a sphere N4 about the origin.
We may suppose that F (N4, N4) ⊆ N3 and that all derivatives of the inverse function up to
the second order are bounded in N4. If y ∈ E(N4) and p ∈ N4 ∩ π then T (p)y ∈ E(N3). For
y ∈ E(N4), set

u(y, s) =

 n∏
j=1

sj

−1 ∫
R(s)

S(t)y dt,
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where s = (s1, . . . , sn), S(t) = T
(
p(t)

)
, R(s) is the rectangle with sides [0, sjej], and R(s) is

contained in the image of N4 under the inverse map. Using (1) we obtain

A(bk)u(y, s) =

 n∏
j=1

sj

−1 ∫
R(s)

A(bj)S(t)y dt

=

 n∏
j=1

sj

−1 ∫
R(s)

n∑
i=1

ζ ik(t)
∂

∂ti
S(t)y dt,

where

ζ ik(t) =
n∑

j,m=1

F j
m;

(
0, p(t)

)
bmk

∂ti

∂pj

is once continuously differentiable. Integrating by parts we have

(4) A(bk)u(y, s) =

 n∏
j=1

sj

−1 n∑
i=1

∫
R(ŝi)

ζ ik(t)S(t)y
∣∣∣(t̂i,si)
(t̂i,0)

dt̂i −
∫
R(s)

n∑
i=1

∂ζ ik
∂ti

(t)S(t)y dt

.
Since the integral of a function with values lying in a closed subspace of a Banach space is
contained in that subspace

(5)
(
u(y, s), A(br+1)u(y, s), . . . , A(bn)u(y, s)

)
∈ G0.

Since (4) is a continuous function of y and E(N4) is dense in X, for any y ∈ X, u(y, s) ∈⋂n
j=1D

(
A(bj)

)
and (4) and (5) hold. To complete the proof it is sufficient to show

lim
σ→0

u
(
y, s(σ)

)
≡ y.(6)

lim
σ→0

A(bk)u
(
y, s(σ)

)
= A(bk)y(7)

for k ⩾ r + 1, y ∈
⋂n

k=r+1D
(
A(bk)

)
, and s(σ) = (σ, . . . , σ). (6) is clear; to prove (7) we

expand ζ ik(t) in a Taylor’s series and consider

lim
σ→0

σ−n

∫
R(ŝi(σ))

ζ ik(t)S(t)y
∣∣∣(t̂i,σ)
(t̂,0)

dt̂i

= lim
σ→0

[
σ−n+1

∫
R(ŝi)

δikσ
−1
(
S(t̂i, σ)y − S(t̂i, 0)y

)
dt̂i

+ σ−n+1

∫
R(ŝi)

∂ζ ik
∂ti

(0)S(t̂i, σ)y dt̂i

+σ−n+1

∫
R(ŝi)

∑
j ̸=i

σ−1tj
∂ζ ik
∂tj

(0)

(S(t̂i, σ)y − S(t̂i, 0)y
)
dt̂i + o(1)


= δikA(bk)y +

∂ζ ik
∂ti

(0)y
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provided

(8) lim
σ→0

σ−1
(
S(t̂k, σ)y − S(t̂k, 0)y

)
= A(bk)y.

But the left side equals

k−1∏
j=1

T
(
f(tjbj)

)[
σ−1
(
T
(
f(σbk)

)
y − y

)

+
(
T
(
f(σbk)

)
− I
) n∑

i=k+1

i−1∏
m=k+1

T
(
f(tmbm)

)
σ−1

(
T
(
f(tibi)

)
y − y

)


and (8) follows if we recall that ti ⩽ σ and that y ∈ D
(
A(bi)

)
for i ⩾ k ⩾ r + 1. Summing

over i and taking the last term of (4) into account we obtain (7).

Theorem 2. If F0 is the closure in the product topology of{(
y, A(e1)y, . . . , A(en)y, A(ei)A(ej)y

) ∣∣∣ y ∈ E(N3)
}

and if

F =

(y, A(e1)y, . . . , A(en)y, A(ei)A(ej)y)
∣∣∣∣∣∣ y ∈

n⋂
k=1

D
(
A(ek)

)
∩ D

(
A(ei)A(ej)

),
then F = F0.

Proof. The set F is closed and thus F ⊇ F0. We show F0 ⊇ F . Taking bk = ek we use the
notation of the proof of Theorem 1. For y ∈ E(N4)

A(ei)A(ej)u(y, s) =

(
n∏

r=1

sr

)−1 ∫
R(s)

A(ei)A(ej)S(t)y dt

=

(
n∏

r=1

sr

)−1 ∫
R(s)

n∑
k,m=1

δkm(t)
∂

∂tm
(
S(t)A(ek)y

)
dt

where

δkm(t) =
n∑

r=1

βk
j

(
p(t)

)
F r
i;

(
0, p(t)

)∂tm
∂pr

is once continuously differentiable. Integrating by parts we obtain

(9) A(ei)A(ej)u(y, s)

=

(
n∏

r=1

sr

)−r

 n∑
m=1

∫
R(ŝm)

n∑
k=1

δkm(t)S(t)A(ek)y

∣∣∣∣∣∣
(t̂m,sm)

(t̂m,0)

dt̂m

−
∫
R(s)

n∑
k,m=1

∂δkm
∂tm

(t)S(t)A(ek)y dt

.
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Theorem 1 implies that (9) holds for y ∈
⋂n

k=1D
(
A(ek)

)
. The proof is then completed as

above.

4. We now consider the adjoints of the infinitesimal generators. If y∗ ∈ X∗ we denote the
value of y∗ at y ∈ X by ⟨y, y∗⟩. If N ⊆ N1, set

E∗(N) =

{
y∗ ∈ X∗

∣∣∣∣∣ ⟨y, y∗⟩ =
∫
π

〈
y,K(q)T ∗(q)x∗

〉
dq,

with x∗ ∈ X∗ and K(q) ∈ C2(N ∩ π)

}
,

E∗(N) is dense in X∗ in the weak∗ topology.

Proposition 2. If y∗ ∈ E∗(N3), T
∗(p)y is twice continuously differentiable in the weak∗

topology for p in N3 ∩ π.

Proof. We merely sketch the calculations since the proof is essentially the same as that of
Proposition 1.

lim
s→0

s−1

∫
π

〈
y,K(q)

(
T ∗(p+ sej)− T ∗(p)

)
T ∗(q)x∗

〉
dq

= lim
s→0

s−1

∫
π

〈
y,K(q)

(
T ∗(q ◦ (p+ sej)

)
− T ∗(q ◦ p)

)
x∗
〉
dq

=

∫
N2∩π

〈
y,

∂

∂pj

K(χ(q, p)) det(∂χk

∂qi
(q, p)

)T ∗(q)x∗

〉
dq.

The last integral is again a continuously differentiable function of p.
We remark the following, valid for y∗ ∈ E∗(N3) and p ∈ N3 ∩ π:
(i)

lim
s→0

s−1

〈
y,
(
T ∗(f(sa))− I

)
T ∗(p)y∗

〉
=

n∑
j=1

(
n∑

m=1

F j
;m(p, 0)a

m

)
∂

∂pj
〈
y, T ∗(p)y∗

〉
.(10)

This implies that T ∗(p)y∗ ∈ D
(
A∗(a)

)
and that

〈
y, A∗(a)T ∗(p)y∗

〉
is given by the

right side of (10).
(ii) As in the remarks following Proposition 1 we may show

A∗(a+ b)y∗ = A∗(a)y∗ + A∗(b)y∗(α′)

A∗(ei)A
∗(ej)y

∗ − A∗(ej)A
∗(ei)y

∗ = −
n∑

k=1

γkijA
∗(ek)y

∗.(β′)

Theorem 3. Let {a1, . . . , ap} ⊆ π. If H0 is the closure in the product of the weak∗ topologies

of
{(
y∗, A∗(a1)y

∗, . . . , A∗(ap)y
∗) ∣∣∣ y∗ ∈ E∗(N3)

}
and

H =

(y∗, A∗(a1)y
∗, . . . , A∗(ap)y

∗) ∣∣∣∣∣∣ y∗ ∈
p⋂

j=1

D
(
A(aj)

)
then H = H0.
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Proof. H ⊇ H0 since A∗(a) is closed in the weak∗ topology. We show H0 ⊇ H. Let
{b1, . . . , br} be a maximal linearly independent subset of {a1, . . . , ap}; it is sufficient to prove
the theorem for the former set. Let {b1, . . . , bn} ⊆ π be a basis for En. Again we use the
notation of the proof of Theorem 1. If y∗ ∈ E∗(N4) set

〈
y, u(y∗, s)

〉
=

 n∏
j=1

sj

−1 ∫
R(s)

〈
y, S∗(t)y∗

〉
dt

with S∗(t) = T ∗(p(t)). As above
(11)

〈
y, A∗(bk)u(y

∗, s)
〉
=

=

 n∏
j=1

sj

−1 n∑
i=1

∫
R(ŝi)

ξik(t)
〈
y, S∗(t)y∗

〉∣∣∣(t̂i,si)
(t̂i,0)

dt̂i −
∫
R(s)

n∑
i=1

∂ξik
∂ti

(t)
〈
y, S∗(t)y∗

〉
dt


with

ξik(t) =
n∑

j,m=1

Fm
;j

(
p(t), 0

)
bjk
∂ti

∂pm
.

As above, u(y∗, s) ∈
⋂n

k=1D
(
A∗(bk)

)
for all y∗ ∈ X∗ and A∗(bk)u(y

∗, s) is given by (11).
Moreover, (

u(y∗, s), A∗(b1)u(y
∗, s), . . . , A∗(br)u(y

∗, s)
)
∈ H0.

The proof may be completed as before if we show that

(12) lim
σ→0

σ−1

〈
y,
(
S∗(t̂k, σ)− S∗(t̂k, 0)

)
y∗
〉

=
〈
y, A∗(bk)y

∗〉
for 1 ⩽ k ⩽ r, tj ⩽ σ, and y∗ ∈

⋂r
i=1D

(
A∗(bi)

)
. But the expression on the left equals〈

n∏
j=k+1

T
(
f(tjbj)

)
y, σ−1

(
T ∗(f(σbk))− I

)
y∗

〉

+
k−1∑
i=1

〈
k−1∏

m=i+1

T
(
f(tmbm)

)(
T
(
f(σbk)

)
− I
) n∏

j=k+1

T
(
f(tjbj)

)
y,

σ−1

(
T ∗
(
f(tibi)

)
− I

)
y∗

〉
;

and (12) follows since, see [3],

σ−1

(
T ∗
(
f(tibi)

)
− I

)
y∗

is uniformly bounded and

σ−1
(
T ∗(f(σbk))− I

)
y∗

converges in the weak∗ topology to A∗(bk)y
∗.
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5. If a = (a1, . . . , an) ∈ En, A(a)y =
∑n

j=1 a
jA(ej)y is defined for y ∈ E(N3). By the remarks

after Proposition 2, E∗(N3) is contained in the domain of its adjoint so that A(a) has a least
closed extension which we again denote by A(a). This notation is consistent with that used
previously.

Lemma. The set A∗(a), the adjoint of A(a), is the weak∗ closure of the operator
∑n

j=1 a
jA∗(ej)

with domain E∗(N3).

Proof. Suppose ⟨y, x∗1⟩ =
〈
A(a)y, x∗2

〉
for all y ∈ E(N3). Then, using Theorem 1 and the

notation of its proof with bj = ej, we have for y ∈ X

σ−n

∫
R(s(σ))

〈
S(t)y, x∗1

〉
dt

= σ−n

n∑
i=1

aj

 n∑
i=1

∫
R(ŝi)

〈
ζ ij(t)S(t)y, x

∗
2

〉∣∣∣∣(t̂i,σ)
(t̂i,0)

dt̂i −
∫
R(s)

 n∑
i=1

∂ζ ij
∂ti

(t)

〈S(t)y, x∗2〉 dt
.

Transposing and taking limits we obtain

lim
σ→0

σ−n

n∑
j=1

aj
∫
R(ŝj)

〈
y,
(
S∗(t̂j, σ)− S∗(tj, 0)

)
x∗2

〉
dt̂j = ⟨y, x∗1⟩.

Then, from (11),

lim
σ→0

〈
y,

n∑
j=1

ajA∗(ej)u
(
x∗2, s(σ)

)〉
= ⟨y, x∗1⟩.

The lemma is now an easy consequence of Theorem 3.
By Theorem 25.8.1 of [2] the γkij may be used to define a Lie algebra A over En. We denote

the Lie product of a and b by [a, b]. The following theorem can easily be proved using the
lemma, formulae (α), (β), (α′), and (β′) and the Hahn-Banach theorem.

Theorem 4.

I. The function a→ A(a) defined on A has the following properties.
(i) If x ∈ D

(
A(a)

)
∩ D

(
A(b)

)
then x ∈ D

(
A(sa+ tb)

)
and

A(sa+ tb)x = sA(a)x+ tA(b)x.

(ii) If x ∈ D
(
A(a)A(b)

)
∩ D

(
A(b)A(a)

)
then x ∈ D

(
A
(
[a, b]

))
and

A
(
[a, b]

)
x = A(a)A(b)x− A(b)A(a)x.

II. The function a→ A∗(a) has the following properties.
(i) If x∗ ∈ D

(
A∗(a)

)
∩ D

(
A∗(b)

)
then x∗ ∈ D

(
A∗(sa+ tb)

)
and

A∗(sa+ tb)x∗ = sA∗(a)x∗ + tA∗(b)x∗.

(ii) If x∗ ∈ D
(
A∗(a)A∗(b)

)
∩ D

(
A∗(b)A∗(a)

)
then x∗ ∈ D

(
A∗([a, b])) and

A∗([a, b])x∗ = A∗(b)A∗(a)x∗ − A∗(a)A∗(b)x∗.
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Recalling that if a sequence of once continuously differentiable functions and the sequences
of the first order derivatives converge uniformly on some domain then the limit function is
once continuously differentiable and its partial derivatives are the limits of the sequences of
partial derivatives, we have, using (3) and Theorem 1,

Theorem 5. If y ∈
⋂n

j=1 D
(
A(ej)

)
then T (p)y is once continuously differentiable in some

neighborhood, in π, of the origin and (3) holds. Consequently, T (p)y ∈ D
(
A(a)

)
for a ∈ En

and p in this neighborhood.

The following theorem is an immediate consequence of Theorem 2.

Theorem 6. If y ∈
⋂n

k=1D
(
A(ek)

)
∩ D

(
A(ei)A(ej)

)
then y ∈ D

(
A(ej)A(ei)

)
.
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