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Introduction

In this paper I want to consider not just the L-functions introduced by Artin [1] but
the more general functions introduced by Weil [15]. To define these one needs the notion
of a Weil group as described in [3]. This notion will be explained in the first paragraph.
For now a rough idea will suffice. If E is a global field, that is an algebraic number field
of finite degree over the rationals or a function field over a finite field, Cg will be the idele
class group of E. If E is a local field, that is the completion of a global field at some place
[16], archimedean or non-archimedean, Cr will be the multiplicative group of E. If K/FE is a
finite Galois extension the Weil group Wy, g is an extension of &(K/E), the Galois group of
K/E, by Ck. Tt is a locally compact topological group.

If EC E'C K and K/FE is finite and Galois, Wi/ g may be regarded as a subgroup of
Wk /g. It is closed and of finite index. If £ C K C L there is a continuous map of W, /g onto
Wk/k. Thus any representation of Wy g may be regarded as a representation of Wy g. In
particular the representations p; of Wy, g and py of W, g will be called equivalent if there is
a Galois extension L/FE containing K;/E and K,/FE such that p; and py determine equivalent
representations of Wr, . This allows us to refer to equivalence classes of representations of
the Weil group of E without mentioning any particular extension field K.

In this paper a representation of Wy, g is understood to be a continuous representation
p in the group of invertible linear transformations of a finite-dimensional complex vector
space which is such that p(w) is diagonalizable, that is semisimple, for all w in Wg/p. Any
one-dimensional representation of Wy, g can be obtained by inflating a one-dimensional repre-
sentation of Wg,p = Cg. Thus equivalence classes of one-dimensional representations of the
WEeil group of E correspond to quasi-characters of Cg, that is, to continuous homomorphisms
of Cg into C*.

Suppose F is a local field. There is a standard way of associating to each equivalence class
w of one-dimensional representations a meromorphic function L(s,w). Suppose w corresponds
to the quasi-character xg. If E is non-archimedean and wg is a generator of the prime ideal
LBg of O, the ring of integers in E, we set

1
1 — xe(wg)|wel®

if xp is unramified. Otherwise we set L(s,w) =1. If F = R and
xe(r) = (sgnz)™|z|

L(s,w) =

with m equal to 0 or 1 we set

Lis.w) = W;<s+r+m>p<w).

2
If E=C and z € F then, for us, |z| will be the square of the ordinary absolute value. If

xe(2) = |z|

rzmzn

v



vi INTRODUCTION

where m and n are integers such that m +n > 0, mn = 0, then
L(S,(JJ) _ 2<2,/T)—(s+r+m+n)r(8 +r4+m+ n)

It is not difficult to verify, and we shall do so later, that it is possible, in just one
way, to define L(s,w) for all equivalence classes so that it has the given form when w is
one-dimensional, so that

L(s,w1 ® wse) = L(s,wq)L(s,ws)
so that if E’ is a separable extension of E and w is the equivalence class of the representation
of the Weil group of E induced from a representation of the Weil group of E’ in the class ©
then L(s,w) = L(s, ©).

Now take E to be a global field and w an equivalence class of representations of the Weil
group of E. It will be seen later how, for each place v, w determines an equivalence class w,
of representations of the Weil group of the corresponding local field E,. The product

HL(s,wv)

which is taken over all places, including the archimedean ones, will converge if the real
part of s is sufficiently large. The function it defines can be continued to a function L(s,w)
meromorphic in the whole complex plane. This is the Artin L-function associated to w. It
is fairly well-known that if @ is the class contragredient to w there is a functional equation
connecting L(s,w) and L(1 — s,w).

The factor appearing in the functional equation can be described in terms of the local
data. To see how this is done we consider separable extensions E of the fixed local field F'. If
VU is a non-trivial additive character of F'let 1g/r be the non-trivial additive character of
E defined by

Ve/r(x) = Yr(Sp/re)
where Sg,/px is the trace of x. We want to associate to every quasi-character xg of Cr and
every non-trivial additive character g of F a non-zero complex number A(xg, ¥g). If E is

non-archimedean, if B’y is the conductor of x g, and if ;" is the largest ideal on which g
m—+n

is trivial choose any v with Ogy =B ™" and set
Ju, Ve (%) Xz () da

Sy ¥(2)X5" (@) da
The right side does not depend on ~. If £ =R,
Xe(r) = (sgnz)™|z["
with m equal to 0 or 1, and g (z) = €™ then
A(xp,¥r) = (isgnu)™|u|".
If B =C, yc(z) = et Rew2) and

A(xe,¥Ee) = xe(v)

rzmzn

xc(z) = 2|
with m +n > 0, mn = 0 then
A(xe,vc) =" "xe(w).
The bulk of this paper is taken up with a proof of the following theorem.
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Theorem A. Suppose F is a given local field and Vg a given non-trivial additive character
of F'. It is possible in exactly one way to assign to each separable extension E of F' a complex
number \(E/F,v{r) and to each equivalence class w of representations of the Weil group of
E a complex number e(w, Vg p) such that

(i) If w corresponds to the quasi-character xg then
€W, ¥r/r) = A(XE, VB/F).
(i)
€(wr © wa, Ypr) = €(wi, Yp/r)e(ws, Ye/F).

(#1) If w is the equivalence class of the representation of the Weil group of F induced
from a representation of the Weil group of E in the class 6 then

e(w, ¥r) = MNE/F,vp)™ (0, ¥p/r).

a5 will denote the quasi-character © — |z|5 of C'r as well as the corresponding equivalence
class of representations. Set

G(S’C‘)aqu)F) = €<Oéi7‘_é ®w’¢F> .

The left side will be the product of a non-zero constant and an exponential function.
Now take F' to be a global field and w to be an equivalence class of representations of the
Weil group of F. Let A be the adele group of F' and let ¢¥r be a non-trivial character of
A /F. For each place v let 9, be the restriction of ¥ to F),. 1, is non-trivial for each v and
almost all the functions €(s, w,, 1,) are identically 1 so that we can form the product

T ets, o vn).

v

Its value will be independent of 1) and will be written €(s,w).

Theorem B. The functional equation of the L-function associated to w is
L(s,w) = e(s,w)L(1 — s,w).

This theorem is a rather easy consequence of the first theorem together with the functional
equations of the Hecke L-functions.

For archimedean fields the first theorem says very little. For non-archimedean fields it can
be reformulated as a collection of identities for Gaussian sums. Four of these identities which
we formulate as our four main lemmas are basic. All the others can be deduced from them
by simple group-theoretic arguments. Unfortunately the only way at present that I can prove
the four basic identities is by long and involved, although rather elementary, computations.
However Theorem A promises to be of such importance for the theory of automorphic forms
and group representations that we can hope that eventually a more conceptual proof of it
will be found. The first and the second, which is the most difficult, of the four main lemmas
are due to Dwork [6]. T am extremely grateful to him not only for sending me a copy of the
dissertation of Lakkis [9] in which a proof of these two lemmas is given, but also for the
interest he has shown in this paper.






CHAPTER 1
Weil groups

The Weil groups have many properties, most of which will be used at some point in the
paper. It is impossible to describe all of them without some prolixity. To reduce the prolixity
to a minimum I shall introduce these groups in the language of categories.

Consider the collection of sequences

A1

S:C » G —> &
of topological groups where A is a homeomorphism of C' with the kernel of p and @ induces a
homeomorphism of G/AC with &. Suppose
A1

5'1:01 >G1 #2>®1

is another such sequence. Two continuous homomorphisms ¢ and ¢ from G to G; which take
C into C will be called equivalent if there is a ¢ in C} such that ¥(g) = cp(g)c™ for all g in
G. S will be the category whose objects are the sequences S and Homg, (S, S7) will be the
collection of these equivalence classes. & will be the category whose objects are the sequences
S for which C' is locally compact and abelian and & is finite; if S and S; belong to S

Homg(S, S1) = Homg, (S, S1).

Let P; be the functor from S to the category of locally compact abelian groups which takes
S to C' and let P, be the functor from & to the category of finite groups which takes S to
®. We have to introduce one more category Sio. The objects of S; will be the sequences
on S for which G¢, the commutator subgroup of G, is closed. Moreover the elements of
Homyg, (S, .S1) will be the equivalence classes in Homg(.S, S1) all of whose members determine
homeomorphisms of G with a closed subgroup fo finite index in Gj.

If Sisin &) let V(.S) be the topological group G/G°. If & € Homg, (S5,51) let ¢ be a
homeomorphism in the class ® and let G = ¢(G). Composing the map G1/G$ — G/G° given
by the transfer with the map G/G° — G/G¢ determined by the inverse of ¢ we obtain a map
®, : V(S1) — V(S) which depends only on ®. The map S — V(S) becomes a contravariant
functor from &; to the category of locally compact abelian groups. If S is the sequence

C > G > &
the transfer from G to C' determines a homomorphism 7 from G/G* to the group of G-invariant
elements in C. 7 will sometimes be regarded as a map from G to this subgroup.

The category £ will consist of all pairs K/F where F' is a global or local field and K is a
finite Galois extension of F. Hom(K/F, L/E) will be a certain collection of isomorphisms of
K with a subfield of L under which F' corresponds to a subfield of E. If the fields are of the
same type, that is all global or all local, we demand that E be finite and separable over the
image of F'. If F' is global and F is local we demand that F be finite and separable over the
closure of the image of F'. I want to turn the map which associates to each K/F' the group
C¥k into a contravariant functor which I will denote by C*. If ¢ : K/F — L/E and F and E

1



2 1. WEIL GROUPS

are of the same type let K; be the image of K in L and let ¢c- be the composition of Ny,
with the inverse of ¢. If F'is global and F is local let K; be the closure in L of the image
of K. As usual Ck, may be considered a subgroup of the group of ideles of K. ¢¢~ is the
composition of Ny g, with the projection of the group of ideles onto Ck.

If K is given let £X be the subcategory of £ whose objects are the extensions with the
larger field equal to K and whose maps are equal to the identity on K. Let C, be the functor
on £X which takes K/F to Cp. If F is given let £ have as objects the extensions with the
smaller field equal to F. Its maps are to equal the identity on F'.

A Weil group is a contravariant functor W from & to S with the following properties:

(Z) P10W 15 C*.
(i1) PyoW is the functor & : L/F — &(L/F).

(112) If p € B(L/F) C Hom(L/F,L/F) and g is any element of Wy p, the middle group

of the sequence W (L/F), whose image in &(L/F) is o then the map h — ghg™" is
i the class py,.
(1) The restriction of W to EX takes values in Sy. Moreover, if K/F belongs to EX

is a homeomorphism. Finally, if ¢ : K/F — K/FE is the identity on K and ® = @,
then the diagram

c Py c
WK/F/WK/F ’ WK/E/WK/E
CF Por > CE

is commutative and if ¢ : F/F — K/F is the imbedding, Vw is T.

Since the functorial properties of the Weil group are not all discussed by Artin and Tate,
we should review their construction of the Weil group pointing out, when necessary, how
the functorial properties arise. There is associated to each K/F a fundamental class ok, p
in H?(6(K/F),Ck). The group W(K/F) is any extension of &(K/F) by Ck associated to
this element. We have to show, at least, that if ¢ : K/F — L/FE, the diagram

1 > CL > WL/E E— @(L/E) — 1

Joe Jo

l — Cx —— Wgyp — B(K/F) —— 1

can be completed to a commutative diagram by inserting & : Wi /g — Wg/p. The map ¢c-
commutes with the action of &(L/E) on C, and Ck so that @ exists if and only if po« (o))
is the restriction g (ak/r) of Yx/r to &(L/E). If this is so, the collection of equivalence
classes to which @ may belong is a principal homogeneous space of H*(&(L/E),Ck). In
particular, if this group is trivial, as it is when pg is an injection, the class of ¢ is uniquely
determined.

An examination of the definition of the fundamental class shows that it is canonical. In
other words, if ¢ is an isomorphism of K and L and of F and E, then ¢g(ak/r) = goflaL/E =
o+ (ar/p). If K = L and ¢ is the identity on K, the relation ¢ (ax/r) = ar/p = ¢c-(an/B)
is one of the basic properties of the fundamental class. Thus in these two cases ¢ exists and
its class is unique. Now take K to be global and L local. Suppose at first that K is contained
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in L, that its closure is L, and that ' = K N E. Then, by the very definition of agk,r,
ve(ak/p) = po+(ar/p). More generally, if K is the image of K in L, and F} the image of F
in E, we can write ¢ as o103 where @3 : K/F — K1 /Fy, o3 : K1/F — K;/K; N E, and
v1: Ki/KiNE — L/E. @3 and @5 exist. If the closure of K; is L then ; and therefore
» = P3p2p1 also exist. The class of ¢ is uniquely determined.

Artin and Tate show that W /P is a closed subgroup of Wy, r and that 7 is a homeo-
morphism of Wy/p /W, /P and C'r. Granted this, it is easy to see that the restriction of W
to £X takes values in S;. Suppose we have the collection of fields in the diagram with L

and K normal over F' and L and K’ normal over F’. Let o, 3, and v be the imbeddings
a:L/F—-L/K,p3:L/F - L/K' v:L/F— L/F'.

BN
-

K/
K

F/
F

We have shown the existence of a, B , and v. It is clear that 1//\3 (Wi k) is contained in
a(Wrk). Thus we have a natural map

T UB(Wryk) [VB(WE k) = a(Wryk)/@(WE i)
Let us verify that the diagram

WL/K/W]S/K/ — ﬁB(WL/K’>/ﬁﬁ(Wg/K') - a(WL/K)/a(WIC{/K) - WL/K/WE/K

(4) | |

Ck/ > Ck
is commutative. To see this let Wi, ks be the disjoint union
L Cxh.
i=1

Then we can choose hl, g&, 1<i<r,1<j<ssothat Wk is the disjoint union
T S

JU Crajt;

i=1j=1

and DB(}) = @(h;). Using these coset representatives to compute the transfer one immediately
verifies the assertion. We should also observe that the transitivity of the transfer implies the
commutativity of the diagram
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@, .
WK/F/WIC(/F ' WK/F’/WK/F'

[ |
Cr o > Crr

if ® is the class of an imbedding @ where ¢ is an imbedding K/F — K/F".

We have still not defined ¢y for all . However we have defined it when ¢ is an
isomorphism of the two larger fields or when the second large field is the closure of the
first. Moreover the definition is such that the third condition and all parts of the fourth
condition except the last are satisfied. The last condition of (iv) can be made a definition
without violating (i) and (ii). What we do now is show that there is one and only one way
of extending the definition of ¢y to all ¢ without violating conditions (i) or (ii) and the
functorial property.

Suppose F'C K C L, K/F and L/F are Galois, and v is the imbedding L/F — L/K.
It is observed in Artin and Tate that there is one and only class of maps {f#} which make the
following diagram commutative

| I J

1 —— Ck » Wgyp ——— O(K/F) —— 1

The homomorphism on the right is that deduced from
Wep/Wik =6(L/F)/6(L/K) ~ &(K/F).

Let ¢, p, and v be imbeddings ¢ : K/F — L/F, u: K/K - L/K, v : K/F — K/K.
Then Yoy = powv, sothat vou= po @ Moreover v o ji is the composition of the map
7 : Wik — Ck and the imbedding of Cx in Wi/p. Thus the kernel of @ contains &WE/K SO
that @ o {Z)\ restricted to WL/K/WE/K must be 7 and the only possible choice for ¢ is, apart
from equivalence, 6. To see that this choice does not violate the second condition observe
that the restriction of 7 to C'p will be Ny x and that 12 is the identity on C7.

Denote the map 6 : Wr,p — Wg,p by 0/ and the map 7 : Wg/r — Ck by Tg/F.
It is clear that 7x,p o 01k is the transfer from WL/F/WE/F to ’Q/ZJ\WL/K/QZJ\WE/K followed
by the transfer from @WL/K/zZWE/K to ’(//J\CL = Cr. By the transitivity of the transfer
Tk /F © Ok = Tr/r- 1t follows immediately that if /' C K C L C L' and all extensions are
Galois the map 01,k and 01,01,/ are in the same class.

Suppose that ¢ is an imbedding K/F — K'/F’ and choose L so that K’ C L and L/F
is Galois. Let ¢ : K'/F" — L/F', pn: K/F — L/F,v: L/F — L/F'" be imbeddings. Then
oy =vopusothat ioD = Podh. Ifa: L/F — L/K, B: L/F' — L/K' are the imbeddings
then the kernel of @/b\ is ﬁBWE /i Which is contained in aWy /i the kernel of . Thus there is
only one way to define @ so that 1oV = @po zZ The diagram
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c B A1ire
WL/K’/WL/Kf —_— WL/F//BWL/K/ > WK’/F’

! |

will be commutative. Since 1o 8 = 7y, sk and Ji o & = g p diagram (A) shows that ¢ has
the required effect on Ck.

To define ¢y, in general, we observe that every ¢ is the composition of isomorphisms,
imbeddings of fields of the same type, and a map K/F — K'/F’ where K is global, K’ is
local, K’ is the closure of K, and F' = F' N K. Of course the identity

(pov)w = bwow
must be verified. I omit the verification which is easy enough. The uniqueness of the Weil

groups in the sense of Artin and Tate implies that the functor W is unique up to isomorphism.
The sequence

S(n,C) : GL(n,C) —4 GL(n,C) — 1
belongs to §;. If S : €' — G — & belongs to S; then
Homyg, (S, S(n, C))

is the set of equivalence classes of n-dimensional complex representations of G. Let Q,,(S) be
the set of all ® in Homyg, (S, S(n, C)) such that, for each ¢ € @, ¢(g) is semi-simple for all g
in G. Q,(5) is a contravariant functor of S and so is Q(S) = |~ , 2,(S). On the category
Sy, it can be turned into a covariant functor. If ¢p : § — Sy, if & € Q(S), and if p € D, let
1 associate to ® the matrix representations corresponding to the induced representation
Ind(Gl, (@), po ;b_l). It follows from the transitivity of the induction process that € is a
covariant functor of Sj.
To be complete a further observation must be made.

Lemma 1.1. Suppose H is a subgroup of finite index in G and p is a finite-dimensional
complex representation of H such that p(L) is semi-simple for all h in H. If

o =Ind(G, H, p)
then o(g) is semi-simple for all g.

H contains a subgroup H; which is normal and of finite index in G, namely, the group of
elements acting trivially on H\G. To show that a non-singular matrix is semi-simple, one
has only to show that some power of it is semi-simple. Since ¢"(g) = o(g") and ¢" belongs
to Hy for some n, we need only show that o(g) is semi-simple for g in H;. In that case o(g)
is equivalent to @;_, p(gigg; ') if G is the disjoint union

i=1

Suppose L/F and K/F belong to & and ¢ € Homg,(L/F, K/F). Since the maps of
the class o all take Wy,/p onto Wy, the associated map Q(W(L/F)) — Q(W(K/F))
is injective. Moreover it is independent of . If Li/F and Ly/F belong to Er there is
an extension K/F and maps ¢ € Homg, (Li1/F,K/F), @2 € Homg,.(Lo/F,K/F). wy in
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Q(W(Ly/F)) and wy in Q(W(Ly/F)) have the same image in Q(W (K/F)) for one such K
if and only if they have the same image for all such K. If this is so we say that w; and ws
are equivalent. The collection of equivalence classes will be denoted by Q(F'). Its members
are referred to as equivalence classes of representations of the Weil group of F.

Let F be the category whose objects are local and global fields. If /' and E are of the
same type Homz(F, E) consists of all isomorphisms of F' with a subfield of £ over which
is separable. If F'is global and E is local Homz(F, F) consists of all isomorphisms of F' with
a subfield of E over whose closure E is separable. Q(F) is clearly a covariant functor on F.
Let Fy4, and Fio be the subcategories consisting of the global and local fields respectively.
Suppose F' and E are of the same type and ¢ € Homz(F, E). If w € Q(E) choose K so that
w belongs to Q(W(K/E)). We may assume that there is an L/F and an isomorphism ¢
from L onto K which agrees with ¢ on F'. Then vy : Wg/g — Wy,p is an injection. Let ¢
be the equivalence class of the representation

o= Ind(WL/F, Yw(Wk/E), po @bﬁ/l)

with p in w. I claim that # is independent of K and depends only on w and (. To see this it
is enough to show that if L C L', L’/ F is Galois, ¢ is an isomorphism from L’ to K’ which
agrees with ¢ on L, and p’ is a representation of W/ in w, the class of

o' = Ind(Wr/r, Y1y (W), 00 (13,) ")
is also ©. Suppose 4 is a map from W+, g to W/ g associated to the imbedding K/E — K'/E
and v is a map from Wy p to Wy p associated to the imbedding L/F — L'/F. We may
suppose that 1y o = v oy,. The kernel of p1 is W, /K if, for simplicity of notation, Wy x
is regarded as a subgroup of W/ and that of v is Wf, ;. Moreover Yy (W, / x) = W5, L
Take p' = po pu. Then o acts on the space V' of functions f on W/ p satisfying f(vw) =
p(yt(h)) f(w) for v in ¢, (Wk/E). Let V' be the analogous space on which ¢’ acts. Then

V'={for|feV}

The assertion follows. Thus Q(F') is a contravariant functor on Fy and Fec.
After this laborious and clumsy introduction we can set to work and prove the two
theorems. The first step is to reformulate Theorem A.



CHAPTER 2

The main theorem

It will be convenient in this paragraph and at various later times to regard Wy /g as a
subgroup of Wy,p it FC EC K. If FC E C L C K we shall also occasionally take Wy, /g
to be WK/E/W[C(/L

If K/F is finite and Galois, P(K/F) will be the set of extensions E'/FE with ' C E C
E' C K and Py(K/F) will be the set of extensions in P(K/F') with the lower field equal to
F.

Theorem 2.1. Suppose K is a Galois extension of the local field F and vVr is a given
non-trivial additive character of F. There is exactly one function AN(E/F,1r) defined on
Po(K/F) with the following two properties
(i) A(F/F, ¢p) =1.
(i) If Er, ..., E., EY, ..., E. are fields lying between F and K, if xg,, 1 <i <7, isa
quasi-character of Cg,, if XE) 1 < j < s, is a quasi-character of C’E;,, and if

@ Ind(Wk/F, Wk /g, XE;)
i=1
s equivalent to

@ Ind(Wg/p, WK/E;.,XE;)

j=1
then .
HA<XE,->¢E1-/F))\(Ei/F7 Vr)
i=1
18 equal to

H A(XEy, Yy r)ME F ¥p).
7=1

A function satisfying the conditions of this theorem will be called a A-function. It is
clear that the function \(E/F,v¢r) of Theorem A when restricted to Py(K/F') becomes a
A-function. Thus the uniqueness in this theorem implies at least part of the uniqueness of
Theorem A. To show how this theorem implies all of Theorem A we have to anticipate some
simple results which will be proved in paragraph 4.

First of all a A-function can never take on the value 0. Moreover, if /' C K C L the
A-function on Py(K/F) is just the restriction to Py(K/F) of the A-function on Py(L/F).
Thus M(E/F, 1) is defined independently of K. Finally if £ C E' C E”

NE"/E, g) = ME"|E' g 5)\E'|E,g)E"F,
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We also have to use a form of Brauer’s theorem [4]. If G is a finite group there are
nilpotent subgroups Ny, ..., N,,, one-dimensional representations xi, ..., Xm of Ni,..., Ny,
respectively, and integers nq,...,n,, such that the trivial representation of G is equivalent to

@ n; Il’ld(G, Niv XZ)

i=1
The meaning of this when some of the n; are negative is clear.

Lemma 2.2. Suppose I is a global or local field and p is a representation of Wi p. There are
intermediate fields Fy, ..., E,, such that &(K/E;) is nilpotent for 1 < i < m, one-dimensional
representations xg, of Wk,g,, and integers ny, ..., n,, such that p is equivalent to

@ ni Ind(Wk/r, Wk /55 XE,)-

i=1
Theorem 2.1 and Lemma 2.2 together imply the uniqueness of Theorem A. Before proving
the lemma we must establish a simple and well-known fact.

Lemma 2.3. Suppose H is a subgroup of finite index in the group G. Suppose T is a
representation of G, o a representation of H, and p the restriction of T to H. Then

7@ Ind(G,H,0) ~Ind(G,H,p® o).

Let 7 act on V and o on W. Then Ind(G, H, o) acts on X, the space of all functions f
on G with values in W satisfying

f(hg) = o(h)f(9)
while Ind(G, H, p ® o) acts on Y, the space of all functions f on G with values in V @ W

satisfying
f(hg) = (p(h) @ a()) f(9)-
Clearly, V' ® X and Y have the same dimension. The map of V' ® X to Y which sends v ® f
to the function
f(g)=7(gve flg)
is G-invariant. If it were not an isomorphism there would be a basis vq,...,v, of V and
functions fi,..., f, which are not all zero such that

Z T(9)vi ® fi(g) = 0.
i=1
This is clearly impossible.
To prove Lemma 2.2 we take the group G of Brauer’s theorem to be (K /F). Let F;
be the fixed field of N; and let p; be the tensor product of y;, which we may regard as a
representation of Wy, g, and the restriction of p to Wg/p,. Then

i=1
This together with the transitivity of the induction process shows that in proving the lemma
we may suppose that & (K /F) is nilpotent.
We prove the lemma, with this extra condition, by induction on [K : F|. We use the
symbol w to denote an orbit in the set of quasi-characters of C'x under the action of &(K/F).



2. THE MAIN THEOREM 9

The restriction of p to Ck is the direct sum of one-dimensional representations. If p acts
on V let V,, be the space spanned by the vectors transforming under C'x according to a
quasi-character in w. V is the direct sum of the spaces V,, which are each invariant under
Wk r. For our purposes we may suppose that V' = V,, for some w. Choose xx in this w and
let Vj be the space of vectors transforming under Ck according to xx. Let E be the fixed
field of the isotropy group of x . Vj is invariant under Wy /g. Let o be the representation of
Wik g in Vp. It is well-known that

P = Ind(WK/F, WK/E; O').

To see this one has only to verify that the space X on which the representation on the right
acts and V' have the same dimension and that the map

F= Y plgHf
Wk/e\Wk/Fr

of X into V' which is clearly Wi/ p-invariant has no kernel. It is easy enough to do this.

If £ # F the assertion of the lemma follows by induction. If £ = F choose L containing
F so that K /L is cyclic of prime degree and L/F is Galois. Then p(W/) is an abelian group
and Wp /1 1s contained in the kernel of p. Thus p may be regarded as a representation of
Wi k. The assertion now follows from the induction assumption and the concluding remarks
of the previous paragraph.

Now take a local field £ and a representation p of Wg,g. Choose intermediate fields
Ey, ..., E,, one-dimensional representations xg, of Wg/g,, and integers n,,...,n,, so that

p= @ n; Ind(WK/Ea Wk/E;, XE;)-
i=1
If w is the class of p set

e(w, ¥p) = H{A(XEi, Ve, p)MNEi/E, ‘I’E)}n
i=1
Theorem 2.1 shows that the right side is independent of the way in which p is written as a
sum of induced representations. The first and second conditions of Theorem A are clearly
satisfied. If p is the representation above and o the representation

Ind(Wg/r, Wk, p)
then

o~ @nl Ind(Wg,r, Wik, X5,)-
i=1
Thus if &’ is the class of o

€W, vp) = H{A(XEZ-, Y r)NE Fopp) P

while

e(w, Z/}E/F) = H{A<XE17 sz/F))‘(El/E> wE/F>}ni'
=1
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The third property follows from the relations

dimw = an[El . E
=1
and



CHAPTER 3

The lemmas of induction

In this paragraph we prove two simple but very useful lemmas.

Lemma 3.1. Suppose K is a Galois extension of the local field F'. Suppose the subset A of

P(K/F) has the following four properties.
(i) For all E, with FCECK, E/E € 2.

(i) If E"/E" and E'/E belong to 2 so does E"/E.

(73) If L/ E belongs to P(K/F) and L/E is cyclic of prime degree then L/E belongs to 2.

(i) Suppose that L/E in P(K/F) is a Galois extension. Let G = &(L/E). Suppose
G = H -C where H # {1}, HNC = {1}, and C is a non-trivial abelian normal
subgroup of G which is contained in every non-trivial normal subgroup of G. If E' is
the fized field of H and if every E"/E in Py(L/E) for which [E" : E] < [E': E'| is
in A sois E'/E. Then U is all of P(K/F).

It is convenient to prove another lemma first.

Lemma 3.2. Suppose K s a Galois extension of the local field F' and F C E C K. Suppose
that the only normal subfield of K containing E is K itself and that there are no fields between
F and E. Let G = &(K/F) and let E be the fized field of H. Let C' be a minimal non-trivial
abelian normal subgroup of G. Then G = HC, HNC = {1} and C is contained in every
non-trivial normal subgroup of G. In particular if H = {1}, G = C' is abelian of prime order.

H is contained in no subgroup besides itself and G contains no normal subgroup but
{1}. Thus if H is normal it is {1} and G has no proper subgroups and is consequently cyclic
of prime order. Suppose H is not normal. Since G is solvable it does contain a minimal
non-trivial abelian normal subgroup C'. Since C'is not contained in H, H C HC' and G = HC.
Since H N C'is a normal subgroup of G it is {1}. If D is a non-trivial normal subgroup of G
which does not contain C' then D N C' = {1} and D is contained in the centralizer Z of C.
Then DC is also and Z must meet H non-trivially. But Z N H is a normal subgroup of G.
This is a contradiction and the lemma is proved.

The first lemma is certainly true if [K : F| = 1. Suppose [K : F] > 1 and the lemma is
valid for all pairs [K’ : F'] with [K’: F'] < [K : F]. If the Galois extension L/FE belongs to
P(K/F) then ANP(L/F) satisfies the condition of the lemma with K replaced by L and F
by E. Thus, by induction, if [L: E] < [K : F], P(L/E) C 2. In particular if £'/F is not
in & then £ = F and the only normal subfield of K containing F’ is K itself. If 2 is not
P(K/F) then amongst all extensions which are not in & choose one E/F for which [E : F]
is minimal. Because of (ii) there are no fields between F' and E. Lemma 3.2, together with
(iii) and (iv), show that E/F is in . This is a contradiction.

There is a variant of Lemma 3.1 which we shall have occasion to use.

Lemma 3.3. Suppose K is a Galois extension of the local field F'. Suppose the subset A of
Po(K/F) has the following properties.

11



12 3. THE LEMMAS OF INDUCTION

(i) F/F e Q.

(i) If L/F is normal and L C K then Po(L/F) C 2.
(7id) If F C EC E' C K and E/F belong to & then E'/F belongs to 2.
() If L/F in Po(K/F) is cyclic of prime degree then L/F € 2.

(v) Suppose that L/F in Py(K/F) is Galois and G = &(L/F'). Suppose G = HC where
H # {1}, HNC = {1}, and C is a non-trivial abelian normal subgroup of G which
s contained in every non-trivial normal subgroup. If E is the fixed field of H and if
every E'JF in Py(L/F) for which [E': F] < [E : F] is in 2 so is E/F.

Then A is Po(K/F).

Again if 2 is not Py(K/F) there is an E/F not in A for which [E : F] is minimal.
Certainly [E : F| > 1. By (ii) and (iii), £ is contained in no proper normal subfield of K
and there are no fields between F and F'. Lemma 3.2 together with (iv) and (v) lead to the
contradiction that £/F is in 2.



CHAPTER 4

The lemma of uniqueness

Suppose K/F is a finite Galois extension of the local field F' and ¥ is a non-trivial
additive character of F. A function E/F — A(E/F,vr) on Py(K/F) will be called a weak
A-function if the following two conditions are satisfied.

(i) M(F/F, V) =1.

(i) If Ey,...,E,., E},..., E. are fields lying between F' and K, if y;, 1 <i<r,isa
one-dimensional representation of &(K/E;), if v;, 1 < j < s, is a one-dimensional
representation of &(K/FE}), and if

@Ind (K/F), 6(K/E), i)
is equivalent to

@Ind (K/F),8(K/E;),v))
then .

TT 20w ¥uye)ME:/Fvr)

i=1
is equal to

H A(XE;@DE;/F))\(E;‘/E Vr)

j=1
it xp, is the character of U, corresponding to p; and x E/ is the character of CE;
corresponding to v;.

Supposing that a weak A-function is given on Py(K/F'), we shall establish some of its
properties.

Lemma 4.1.

(i) If L/F in Po(K/F) is normal the restriction of A(-,v¥r) to Po(L/F) is a weak
A-function.
(i) If E/F belongs to Po(K/F) and \N(E/F,yr) # 0 the function on Py(K/E) defined
by
ME' /B b r) = ME'[Fop)ME/F, )
s a weak \-function.

Any one-dimensional representation u of &(L/E) may be inflated to a one-dimensional
representation, again called u, of &(K/FE) and

Ind(&(K/F),&(K/E), )

13



14 4. THE LEMMA OF UNIQUENESS
is just the inflation to &(K/F) of
Ind(&(L/F),8(L/E), ).

The first part of the lemma follows immediately from this observation.
As for the second part, the relation

(E JE, Ypip) =1
is clear. If fields F;, 1 <i <7, Ej, 1 < j < s, lying between £/ and K and representations p;
and v; are given as prescrlbed and 1f

@Ind (K/E),(K/E;), ) = p
is equivalent to
@Ind( (K/E),®(K/E}), uj) _
then
@ Ind(6(K/F), &(K/E;), 11)

is equivalent to

@ Ind( (K/F),&(K/E)), uj)

so that
(A) H A(XE; Ve, ) NELF,Yp)
is equal to -
(B) H A(XE;ﬂﬁE;/F)/\(E}/F, V).
=1
Since p and ¢ have the same dzmension
SUIE: B =Y IE - B
i—1 j=1

so that § .
[T AE/F @) B = TTME/F, p) 5,
i=1 j=1
Dividing (A) by the left side of this equation and (B) by the right and observing that the

results are equal we obtain the relation needed to prove the lemma.
If K/F is abelian S(K/F) will be the set of characters of Cp which are 1 on Ng/rCk-.

Lemma 4.2. If K/F is abelian
NE/FUp)= [  Alprtr).

HFES(K/F)
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pr determines a one-dimensional representation of &(K/F') which we also denote by .
The lemma is an immediate consequence of the equivalence of

Ind(&(K/F),&(K/K),1)

and

P md(8(K/F),8(K/F), ur).

urp€S(K/F)

Lemma 4.3. Suppose K/F is normal and G = &(K/F). Suppose G = HC where HNC =
{1} and C' is a non-trivial abelian normal subgroup. Let E be the fized field of H and L that
of C. Let T be a set of representatives of the orbits of S(K/L) under the action of G. If
p € T let B, be the isotropy group of n and let B, = &(K/L,). Then [L, : F| < [E: F] and
ME/F,¢p) = H A(Hlij#/F))\(Lu/R Yp).
peT
Here (K/L,) = (K/L) - (6(K/L,) NG(K/E)) and 1 is the character of Cy,, associated
to the character of &(K/L,) : g — u(g1) if
9=0q192, G €G(K/L), go € B(K/L,)NG(K/E),

We may as well denote the given character of &(K/L,) by u' also. To prove the lemma

we show that
Ind(6(K/F),6(K/E),1) =0

is equivalent to

P md(&(K/F), 6(K/L,),1').
peT
Since 71" has at least two elements it will follow that

[E: F] =dimInd(&(K/F),8(K/E),1)
is greater than
(L, : F]=dimInd(&(K/F),&(K/L,),1).
The representation o acts on the space of functions on H\G. If v € S(K/L), that is, is a
character of C, let ¢, (hc) = v(c)if h € H, ¢ € C. The set

{v,|veSK/L)}

is a basis for the functions on H\G. If y € T let S, be its orbit; then
Vi=2_ Cu
veS,

is invariant and irreducible under G. Moreover, if g belongs to &(K/L,,)

o (9)tu = 1 (9) V-
Since

dimV, = [8(K/F): 6(K/L,)]
the Frobenius reciprocity theorem implies that the restriction of o to V), is equivalent to
nd (6 (K/F), &(K/L,). ).

Lemma 4.2 is of course a special case of Lemma 4.3.
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Lemma 4.4. \(E/F, V) is different from 0 for all E/F in Po(K/F).

The lemma is clear if [K : F|] = 1. We prove it by induction on [K : F]. Let & be
the set of E/F in Py(K/F) for which A\(E/F,vr) # 0. We may apply Lemma 3.3. The
first condition of that lemma is clearly satisfied. The second follows from the induction
assumption and the first part of Lemma 4.1; the third from the induction assumption and the
second part of Lemma 4.1. The fourth and fifth follow from Lemmas 4.2 and 4.3 respectively.
We of course use the fact that A(xg, Vg), which is basically a Gaussian sum when E is
non-archimedean, is never zero.

For every E'/E in P(K/F) we can define A\(E'/E,1gr) to be

AE'JF,p)ME/F,p) .,
Lemma 4.5. If E”/E’ and E'/E belong to P(K/F) then
)\(E”/E, wE/F) — )\(E”/EI? wE//F))\(E//E, wE/F>[EII;E/].
Indeed
ME" /B, bpyr) = ME"[Fp)ME/F, p) "
which equals
(M1 o) ME [, 0p) T N Fpe) EEIN B F, )1
and this in turn equals
)\(E”/E/, wE’/F))\(EI/E, wE/F>[E/I;E/} .
Lemma 4.6. If \{(-, V) and Xo(-, V) are two weak \-functions on Py(K/F') then
/\I(E//E7 ¢E/F) = /\Q(E//E7 ¢E/F)
for all E'/E in P(K/F).

We apply Lemma 3.1 to the collection & of all pairs £'/E in P(K/F') for which the
equality is valid. The first condition of that lemma is clearly satisfied. The second is a
consequence of the previous lemma. The third and fourth are consequences of Lemmas 4.2

and 4.3 respectively.
Since a A-function is also a weak A-function the uniqueness of Theorem 2.1 is now proved.



CHAPTER 5

A property of A-functions

It follows immediately from the definition that if ¢;(x) = ¥g(8z) then

Alxe, V5) = xe(B)A(xe, VE).

Associated to any equivalence class w of representations of the Weil group of the field F' is a
one-dimensional representation or, what is the same, a quasi-character of Cr. It is denoted
det w and is obtained by taking the determinant of any representation in w. Suppose p is in
the class w and p is a representation of Wy r. To find the value of the quasi-character detw
at B choose w in Wi, p so that 7x,pw = 3. Then calculate det(p(w)) which equals det w(83).
If F C F C K the map 7 = 7/ can be effected in two stages. We first transfer
WK/F/W]C{/F into WK/E/WIC{/E; then we transfer WK/E/W[C{/E into Ckx. If Wk, is the
disjoint union
U WK/sz‘
i=1
and if w;w = w;(w)w;(i) then the transfer of w in Wx/p/Wg p is the coset to which
w' = [];_, wi(w) belongs.
Suppose o is a representation of Wy,/p and
P = Il’ld(WK/F, WK/E7 O').

p acts on a certain space V' of functions on Wi/ and if V; is the collection of functions in V'
which vanish outside of Wy, gw; then

v
=1

We decompose the matrix of p(w) into corresponding blocks pj;(w). pji(w) is 0 unless j = j(7)
when pj;(w) = o (u;, (w)). This makes it clear that if tz/p is the representation of Wy/p
induced from the trivial representation of Wy g

det (p(w)) = det (LE/F(w))dimU det (U(w’))

or, if 0 is the class of o,
dim 6

detw(B) = {dettg/r(B)} " {detf(B)}.

Lemma 5.1. Suppose F is a local field and E/F — NE/F,)r) and w — e(w,Yg/r) satisfy
the conditions of Theorem A for the character ¢Yp. Let Yi(x) = Yp(Bzx) with § in Cp. If
E/F — NE/F,¢%) and w — €(w, w’E/F) satisfy the conditions of Theorem A for ' then
NE/F, ) = det tpyp(B)AE/F,¢r)
and
E(Wawjv;/F) = detw(B)e(w, Vr/r)-

17
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Because of the uniqueness all one has to do is verify that the expressions on the right
satisfy the conditions of the theorem for the character ¢%. This can now be done immediately.



CHAPTER 6

A filtration of the Weil group

In this paragraph I want to reformulate various facts found in Serre’s book [12] as
assertions about a filtration of the Weil group. Although some of the lemmas to follow will
be used to prove the four main lemmas, the introduction of the filtration itself is not really
necessary. It serves merely to unite in a form which is easily remembered the separate lemmas
of which we will actually be in need.

Let K be a finite Galois extension of the non-archimedean local field F' and let G =
&(K/F). Let Op be the ring of integers in F' and let pp be the maximal ideal of Op. If
1 > —1 is an integer let G; be the subgroup of G consisting of those elements which act
trivially on Op/pd*. If u > —1 is a real number and i is the smallest integer greater than or
equal to u set G, = G;. Finally if u > —1 set

o /r(u) :/0 mdt

The integrand is not defined at —1 but that is of no consequence. ¢, is clearly a piecewise
linear, continuous, and increasing map of [—1,00) onto itself. The inverse functionﬂ Vi/F
will have the same properties.

We take from Serre’s book the following lemma.

Lemma 6.1. If F C L C K and L/F is normal then ¢ox/r = ¢r/r © 9r/L and Yr/p =
Qh{/L o @DL/F-

The circle denotes composition not multiplication. This lemma allows us to define pg/r
and ¢, p for any finite separable extension E/F by choosing a Galois extension L of F' which
contains F and setting

YE/F = YL/F o YL/E
1/)E/F = YL/E° ¢L/F
because if L' is another such extension we can choose a Galois extension K containing both
L and L' and
YL/F© 1/)L/E = YL/F O YK/L ° ¢K/L © 77Z}L/E = PK/F © 1/)K/E =YL /Fo° 1/)L//E
YL/E © ¢L/F = $YL/E°¥PK/L O YKL © ¢L/F = YK/E ° ¢K/F =YL /E° ¢L'/F-
Of course ¢g/r is the inverse of pg/p.
Lemma 6.2. If EC E' C E" and E"/E is finite and separable, opr/p = g /g0 @pr /e and
Q/JE”/E = wE”/E’ o wE’/E-

"n this chapter Yk /r does not appear as an additive character. None the less, there is a regrettable
conflict of notation.

19
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Each of these relations can be obtained from the other by taking inverses; we verify the
second
¢E///E/ o @DE//E = PrL/E" © Q/JL/E/ o YrL/E © %DL/E = PL/E" O 7WZJL/E = ¢E~/E-
It will be necessary for us to know the values of these functions in a few special cases.

Lemma 6.3.
(i) If K/F is Galois and unramified V5 /p(u) = u.
(i) If K/F s cyclic of prime degree { and if G = Gy while Gy11 = {1} where t is a
non-negative integer then
Vi/r(u) = u
=t+l(u—t)

£ <
VoA

These assertions follow immediately from the definitions.

Lemma 6.4. Suppose K/F is Galois and G = &(K/F) is a product HC where H # {1},
HNC = {1}, and C is a non-trivial abelian normal subgroup of G which is contained in
every non-trivial normal subgroup.

(i) If K/F is tamely ramified so that Gy = {1} then Gy = C' is a cyclic group of prime
order £ and |G : Go| = [H : 1] divides ¢ — 1. If E is the fized field of H, Vg p(u) = u
foru <0 and Yg/p(u) = lu for u>0.

(i) If K/F is wildly ramified there is an integer t > 1 such that C = G; = --- = G4
while Gy = {1}. [Go : Gy] divides [Gy : 1] — 1 and every element of C' has order p
or 1. If E is the fized field of H and L that of C

Yryp(u) = u u<0
=[Gy : Gi]u u>0
while
t
VYp/p(u) =u u < G Gl
t t t
_[GQG1]+[G11](U_[GQG1]> U> [GoiGl]

We observed in the third paragraph that C' must be its own centralizer. G cannot be {1}.
Thus C' C Gg. In case (i) Gy is abelian and thus Gy = C. In both cases if ¢ is a prime dividing
the order of C' the set of elements in C' of order ¢ or 1 is a non-trivial normal subgroup of G
and thus C itself. In case (i) C is cyclic and thus of prime order ¢. Moreover, H which is
isomorphic to G /Gy is abelian and, if h € H, {¢ € C' | h¢ = ch } is a normal subgroup of G
and hence {1} or C. If h # 1 it must be 1. Consequently each orbit of H in C' — {1} has
[H : 1] elements and [H : 1] divides ¢ — 1.

In case (ii) G is a non-trivial normal subgroup and hence contains C. G and C' are both
p-groups. The centralizer of G in C' is not trivial. As a normal subgroup of G it contains C.
Therefore it is C' and G is contained in C' which is its own centralizer. Since each Gy, 1 > 1,
is a normal subgroup of G, it is either C' or {1}. Thus there is an integer ¢ > 1 such that
Gy = Gy = C while Gy = {1}. If ¢ > 0 is an integer let U} be the group of units of Ox
which are congruent to 1 modulo p"gl; let U I((_l) = Ck, and if U > —1 is any real number let
i be the smallest integer greater than or equal to u and set U% = Ul. If 6; is the map of
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Gt/Gyyq into phe /pttt and 6y the map of G/Gy into UL /UL introduced in Serre then, for g
in Gy and h in C,

0i(ghg™") = 0o(9)'©:(h).
If h # 1, ghg™* = h if and only if fy(g)" = 1 and then g belongs to the centralizer of C, that
is to G1. Again C' — {1} is broken up into orbits, each with [Gy : G1] elements and [Gy : G1]
divides [G; : 1] — 1. Observe that ¢ must be prime to [Gq : Gy].

It follows immediately from the definitions that H, = H N G,,. In case (i) Hy will be {1}
and g, p(u) will be identically w. Thus ¢ g/r = ¢k/p and, from the definition, Vg /r(u) = u
if u < 0 while g p(u) = [Go : 1Juif w > 0. In case (ii), x/p(u) = v if u < 0 and

u u

ere() = T T G Gl
if u > 0 while ¥x,/p(u) = v if u < 0 and

Vi p(u) = [Go : Gilu 0<u< ———

:t—i-[Gg:l](u—m) mgu

The lemma follows.

Lemma 6.5. For every separable extension E'/E the function Vg g is convex, and if u is
an integer so is Vg p(u).

All we have to do is prove that the assertion is true for all E'/E in P(K/F) if F is an
arbitrary non-archimedean local field and K an arbitrary Galois extension of it. To do this
we just combine the previous three lemmas with Lemma 3.1. We are going to use the same
method to prove the following lemma.

Lemma 6.6. For every separable extension E'/E and any u > —1
Y e () ”

We have to verify that the set & of all E'/E in P(K/F) for which the assertion is true
satisfies the conditions of Lemma 3.1. There is no problem with the first two.

Lemma 6.7. E'/E belongs to & if and only if for every integer n > —1
d) / (TL) n
Npp(Ug’'") C UL

and . )1
NE//E(UE/E /e ) C Ug“.

If E'/E belongs to & choose € > 0 so that ¢ g p(n + €) = Yp/p(n) + 1. The smallest
integer greater than or equal to n + € is at least n + 1 so

VYpr/p(n)+1 n+e n
Npp(Ug/ /277 CURe CURT

Conversely suppose the conditions of the lemma are satisfied and n < u < n 4+ 1. Since
Ype(n) is an integer the smallest integer greater than or equal to ¥p//p(u) is at least
¢E//E(n) + 1. Thus

P

Vi p(u) 1 p(n)+1 n ”
Nep(Ug ") C Npyp(Ug” /27 ) CURT = Ug.
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Lemma 6.8. If L/E is Galois then, for every integer n > —1,

P n n
and D
Npp(U P2 C Ut

The assertion is clear if n = —1. A proof for the case n > 0 and L/E totally ramified is
given in Serre’s book. Since that proof works equally well for all L/E we take the lemma as
proved.

Lemma 6.9. Suppose K/F is Galois and G = &(K/F). Suppose G = HC where H # {1},
HNC = {1}, and C is a non-trivial abelian normal subgroup of G which is contained in
every non-trivial normal subgroup of G. If E 1is the fixed field of H

Npp(Ug™"") € U
for allu > —1.

Let L be the fixed field of C. If K/F is tamely ramified K/E and L/F are unramified so
that Vg r = Y/ and Up = Cp NUg, Up = Cp N U} for every v > —1. If a belongs to Ck,
then delete Ng/po0 = N pa. Since K/L is Galois

N (U™ ™) € Cp 0 Ny (UP<"™y € CpnUr = U,
If K/F is not tamely ramified

p% _ EmpLGO:Gl]n_m
ifn>1and 0 <m < [Gy: Gy]. Thus
Up=GgNUL

if 1 <v<0and

Up = Cp N U™
if v > 0 or, more briefly,

Uy = Cp N U<
for all v > —1. In the same way we find

U = Cpn Uy

for all v > —1. Since K/L is normal

N (U ™™y € Cp 0 Ny (U3 € cp oy o™ = o,
Lemma 6.6 now follows immediately.

Lemma 6.10.

(a) Suppose K/F is Galois and G = B(K/F). Suppose t > —1 is an integer such
that G = Gy # G- Then Y p(u) = u for u < t. Moreover Ni/p defines an
isomorphism of Cr /UL with Cr /U and if =1 < u < t the inverse image of Up/Uk
is U /U%.. However the map of C /UL into Cr /UL defined by the norm is not
surjective.

(b) Suppose K/F is Galois and G = B(K/F). Suppose s > —1 is an integer and
G=G,. IfFCECK, Yg/p(u) =u foru <s and Ng/p defines an isomorphism
of Cg/UL and Cp/Us. If —1 < u < s the inverse image of Up/Us is U /U3,.
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If t = —1 the assertions of part (a) are clear. If t > 0, K/ F is totally ramified. The relation
VYr/p(u) = u for v < t is an immediate consequence of the definition. Since the extension
is totally ramified Ng,r defines an isomorphism of U LU and Upt /U, Tt follows from
Proposition V.9 of Serre’s book that if 0 < n < t the associated map Up /Ut — UR /UL
is an isomorphism but that the map Ul /UL — UL /UL has a non-trivial cokernel. The
first part of the lemma is an immediate consequence of these facts.

To prove part (b) we first observe that there is a t > s such that G = Gy # Gyyq. It
then follows from part (a) that the map Ng,p determines an isomorphism of Cx /U and
Cr/Uj under which Uy /U3 and U /Us correspond if —1 < u < s. Let E be the fixed field
of H. We have H, = H NG, = H, so that Nk, determines an isomorphism of Cx /U}
and Cg/U; under which Ut /Uj. and U /Uj, correspond if —1 < u < s. Moreover if u < s,
VYr/p(u) = Vi p(u) = u so that g p(u) = u. Part (b) follows from these observations and
the relation NK/F = NE/FNK/E

If £ is any non-archimedean local field and v > —1

Ui =\ Up
v<u
If a belongs to C'g set
vg(a) =sup{u| o € Ug}.
Then vg(1) = oo, but vg(«) is finite if a # 1 and « belongs to UgE(a).

If ¥ €L CK, tg/pp/r will be any of the maps Wy, — Wi, p associated to the
imbedding L/F — K/F. We abbreviate 7x,p,p/r to T/p. If w belongs to Wi/, o(w) is the
image of w in (K /F), and E is the fixed field of o(w), we set

UK/F(UJ) = YE/F <UE (TK/E(w))> .
Note that we regard Wy g as a subgroup of Wy, p. If v > —1 let

Wig/r = {w|vkr(w) = v}
We shall show that W} s is a normal subgroup of Wy r. These groups provide a filtration
of the Weil group, some of whose properties are established in the following lemmas.

Lemma 6.11. Ifo € &(K/F) andt =sup{u | o € G, }, set vg/p(0) = @i r(t). Then
vi/r(0) = max{ vk p(w) | o(w) =0 }.
If o = 1 both sides are infinite and the assertion is clear. If ¢ # 1 let E be the
fixed field of 0. If o(w) = o, w belongs to Wg,g and vg/p(w) = (,DE/F(UK/E(U))). Also

vir(0) = op/r(vi/e(0)). Consequently it is sufficient to prove the lemma when F = E.
The set

S={x/r(w) | o(w) =0}
is a coset of Ni/p(Ck) in Cp and Cp is generated by Ng,/r(Ck) together with any element
of S. Moreover s = max{ vp(83) | B € S} is the largest integer such that SN U} is not empty.
Since G = Gy # G431 the preceding lemma shows that s =t = @g/r(t).

Lemma 6.12.
(a) For all w and wy in Wi/p, vi/r(w) = vip(w™t) and vi r(wiww;') = vk p(w).
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(b) If F C EC K and w belong to Wk, then
vie/r(w) = @ryr (vie/p(w)).

w)

(c) For all w in Wk/p, Tr/r(w) C U;K/F( .

The first two assertions follow immediately from the definitions and the basic properties
of the Weil group. I prove only the third. Let me first observe that if ¥ C F C K and
w C WK/ E, then

TK/F(UJ) = NE/F(TK/E(w))

To see this, choose a set of representatives wy, ..., w, for the cosets of Cx in Wg,r and then
a set of representatives vy, ..., v, for the cosets of Wi g in Wg/p. Let wyw = a;wj;) with a;
in C'k; then

T

TK/E(U)) = H a;.

i=1
P . . _1 . oy
However v;w;w = V;ja;0; T UjWj(;) SO that

TK/F(’UJ) = H ijaivj_l = HUjTK/E(’w)Uj_l = NE/F (TK/E(U}))
j=1

j=1i=1
In particular, if E is the fixed field of o(w), Tk p(w) is contained UEE/F(UK/F(w)) and 7/ p(w)
is contained in

Ng/p (U}’Q’E/F(”K/F(w”) c ),

Lemma 6.13. If u and v belong to Wi, then
vyr(uv) = min{ vk p(u), vi/r(v) }

Let 0 = o(u) and let 7 = o(v). Because of the second assertion of the previous lemma we
may assume that o and 7 generate (K /F). Let E be the fixed field of or. If

t = miﬂ{#}K/F (vi/r(9)) s Yreyr (Ve (7)) }

and G = B(K/F) then G = Gy # Gy41. According to Lemma 6.11, if

s = min{vK/F(u), UK/F(U)},
then ¢ > ¢k, p(s) which, by Lemma 6.10, is therefore equal to s. Since

T/F(uv) = Tie/p (W) T P (V),
Tr/r(uv) lies in Up. On the other hand

Tr/p(uv) = NE/F(TK/E(UU))
so that, by Lemma 6.10 again, 7x/g(uv) belongs to Uj, and

v /p(uv) = og/p(s) = s.
Thus the sets W} @ 2 —1, give a filtration of W, by a collection of normal subgroups.

The next sequence of lemmas show that the filtration is quite analogous to the upper filtration
of the Galois groups.

Lemma 6.14. For each v > —1 the map Tk pr/r takes G”;(/F mto Gj{/F.
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If w belongs to Wx,p let W = Tx/pr/r(w). We must show that
v (W) 2 viyr(w).
Let 0 = o(w) and let & = o(w). If F is the fixed field of o then E = E N L is the fixed field
of &. Since
vrr(W) = 95/ F <"UL/E(@)>
and
vg/r(w) = YE/F (UK/E(U’)>
we may suppose E = F. Since Tx/p(w) = 77,/7(W), Lemma 6.12 implies that 77, (W) lies in
U;;K/ 7 Ty
v r(W) = vp(12r (W) = viyr(w).
Of course Wg/p is Cr and, if v > —1, W}/F = Up.

Lemma 6.15. For each v > —1, T/ maps W}’(/F onto Up.

Since v; < vy implies W}?/ r C W;’{l/ # it is enough to prove the lemma when v = n is
an integer. The lemma is clear if [K : F] = 1; so we proceed by induction on [K : F|. If
[K : F] > 1, choose an intermediate normal extension L so that [L : F| = £ is a prime. Let
G = 6(L/F). Lemma 6.12 implies that

P v v
WK%F( = Wi 0 WK/F'

There is an integer ¢t > —1 such that G = G, and Gy, = {1}. Tt is shown in Chapter V of
Serre’s book that if n >t

NL/F(UEZ}L/F(n)) — Ug
By induction

P n P n
TK/L(WK%/F( )) — ULL/F( )'

Since TK/F(U)> = NL/F(TK/L<QU)) if wisin WK/L;
Tx/r(Wi/p) = Up

if n > t. Suppose & generates G. Then Vir(G) = t. By Herbrand’s theorem there is a o in
&(K/F) with vk p(0) = t whose restriction to L is . By Lemma 6.11 there is a w in Wg/p
such that o = o(w) and vk, p(w) = t. Then 7, p(w) lies in U}, but not in Np,#(Cy). From
Serre’s book again
Yrp(t
[Uft—, . NL/FUFL/F( )] = f

so that U}, is generated by 7x/r(w) and Ny, F(Usz/ r () ) and hence is contained in the image

of Wi /P To complete the proof of the lemma we have only to observe that Lemma 6.10
implies that
n P n
Up = ULNp, p(UL "™
if n <t
Lemma 6.16. Suppose F C L C K and L/F and K/F are Galois. Then, for each v > —1,
TK/F,L/F TMaps W}’(/F onto Wz/F.
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If [L: F| =1 this is just the previous lemma so we proceed by induction on [L : F]. We
have to show that if @ belongs to Wy, there is a w in Wi/ such that W = 7x/p 1 r(w)
and v p(w) = vy p(W). Let & = o(w) and let E be the fixed field of . If E # F
then, by the induction assumption, there is a w in Wk/g such that 7 7 ; z(w) = w and
V(W) 2 vy p(W). By Lemma 6.12, vgyp(w) 2 vy p(Ww). Moreover, we may assume that
Tk /B,/F 18 the restriction to Wy 5 of Tk /r/r-

Suppose E = F. Then v p(W) = UF(TL/F(@)). Choose w; in Wi/ so that 7x/p(w:) =
Tr/p(W) and v p(wi) = vp (TL/F(@)). Let Wy = Tx/p,/r(w1) and set © = w; 'w. Certainly
v p(U) = vyp(w). Moreover, 7p/p(u) = 1. Let FF C Ly C L where L,/F is cyclic of prime
order. If @ does not belong to Wy, the group Cr is generated by N, ,r(Cr,) and 71,p (%),
which is impossible since 77,/ (u) = 1. Thus @ belongs to W, /1, and, as observed, there is a
u In WK/L1 such that TK/F,L/F(U> = TK/Ll,L/Ll(u) = . Then TK/RL/F(u’U)l) =w.



CHAPTER 7

Consequences of Stickelberger’s result

Davenport and Hasse [5] have shown that Stickelberger’s arithmetic characterization of
Gaussian sums over a finite field can be used to establish identities between these Gaussian
sums. After reviewing Stickelberger’s result we shall prove the identities of Davenport and
Hasse together with some more complicated identities. However for the proof of Stickelberger’s
result itself, I refer to Davenport and Hasse.

IfZ=e7 and a belongs to GF(p) the meaning of Z“ is clear. If k is any finite field
and S is the absolute trace of  let 10 be the character of x defined by ¢%(a) = Z5). If
X« 1S any character of k* and v, is any non-trivial additive character of k we will take the
Gaussian sum 7(x,, %) to be

- Z X;l(a)wm(a)'
aekr*
We abbreviate 7(x,, ¥?) to 7(xx)-

Let £, be the field obtained by adjoining the nth roots of unity to the rational numbers.
If = Z — 1 then in €, the ideal (p) equals (ww?!). If ¢ = p/ and & has ¢ elements then in
€,_1 the ideal (p) is a product pp’--- where the residue fields of p,p’, ... are isomorphic to .
In €p4-1)

(p) = (PP’ )"~
with P = (p, w), P’ = (p/, @), and so on. The residue fields of B, P, ... are also isomorphic
to k. Choose one of these prime ideals, say 8. Once an isomorphism of the residue field with
K is chosen the map of the (¢ — 1)th roots of unity to the residue field defines an isomorphism
of k* and the group of (¢ — 1)th roots of unity. Then x, can be regarded as a character of the
latter group. Choose a = a(x,,P) with 0 < o < ¢ — 1 so that x,({) = ¢* for all (¢ — 1)th
roots of unity. Write!

a=ag+apt---Fa;p! 0<a; <p.
Not all of the a; can be equal to p — 1. Set
ola)=ag+a1+---+ar
Y(o) = aplaq! -+ apy!
The following lemma is Stickelberger’s arithmetical characterization of 7(x.).

Lemma 7.1.
(a) T(xx) lies in €yy—1) and is an algebraic integer.
(b) If xx = 1 then 7(x.x) = 1 but if x, # 1 the absolute value of T(x.) and all its
conjugates is /q.
(¢) Every prime divisor of T(xx) in £yq—1) is a divisor of p.
(d) If B is a non-zero element of the prime field then the automorphism Z — ZP of
€, q—1) over €1 sends T(xx) to xx(B)T(Xx)-

27
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(e) If B is a prime divisor of p in €,4—1) and a = a(x, p) the multiplicative congruence

(mod™ )

T(Xk) =

18 valid.

(f) Suppose € is a prime dividing ¢ — 1 and x,, = X\ X" where the order of X!, is a power
of £ and that of X" is prime to (. If {* is the exact power of { dividing ¢ — 1 and
A = (o — 1 where {y is a primitive £*th root of unity then

T(xx) = 7(x1) (mod A).

Before stating the identities for Gaussian sums which are implied by this lemma, I shall
prove a few elementary lemmas.

Lemma 7.2. Suppose 0 < o < pf —1 and
O‘:ao—i-Oélp—l-'--—l—ozf_lpf*l 0<a; <p.
Suppose also that 0 < jo < j1 < --- < j, = f and set
Bs = aj, + ajp+ -+ Oéjs+171pjs+1*js*1.
Ifo= ZZ;(I) s and y = HZ;(I] s! then
ol
l = ?(;; (mod™ R).

First of all, I remark once and for all that if n > 1,0 < u < p" — 1, and v = u (mod p")
then v = u (mod* p). Thusif 0 <u<p*—1landv >0

u

(u+ vp™)! = (vp™)! H(w +op"™) = u! (vp™)!  (mod* p).

w=1

Alsoifv >0

P
(vp" +w) = (v+1)p"! (mod” p)
w=1
and, by induction,
vp™)! =0l (p™!)?  (mod” p).
In particular p V! = p! (p™)? = (—p)(p™)?. Apply induction to obtain
p' = (=p) 7T (mod” p).
From the relations
= . Mz
=|la-29)= p-1
p=Il0-2)=(=p [[ 7
i=1 =1
and Zi 1
7 _1 =1+Z+---+2Z" =i (mod* p).

We conclude that
p=@p-D (=)l =-x"" (mod" p).
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The lemma itself is clear if » = f so we proceed by induction downward from f. Suppose

r < f,jsto—7Js =t > 1, and the lemma is valid for the sequence jo, j1, ..., Jst1—1, Jsa1y- -« Jr-
To prove it for the given sequence we have only to show that if
T =g+ apt+ %'SH_QPFQ

and y = «;,,, 1 then
t—1

oty wortyp ;
Ay = @y medtp):
But "
@ #7 D = (—p)" = (mod” p)
and -
(z +yp ) = alyl ()Y = aly! (=p) 7T (mod” p).
Lemma 7.3. Suppose Py, ..., B-—1 and 7, ...,V-—1 are non-negative integers all of which
are less than or equal to ¢ — 1. Suppose that ¢ = p’ is a prime power and
r—1
Y Bt <2q —1).
i=0

Suppose also that 6;, 0 <i<r—1, are gwen such that 0 < 6; < q—1,

Z 8iqt < q —1
i=0

and B B
> (Bi+7)g =) 4" (mod g —1).
=0 =0

(a) If SI0(Bi +v)d' < ¢~ and if v is the number of k, 1 < k < r, for which
S0 (Bi+ %) = q then
r—1
D B+ — ) =v(g—1).
i=0
(b) If Z:;g(ﬂi +%)q" } q" — 1 and if v is the number of k, 1 < k < r, for which
1# Zi:ol (Bi +7i)q" = q" then

-1
Zﬁz'i_’% z _V(q_1>
=0

Observe immediately that if 1 < k& < r, then 0 < 1 + V-1 < 2(¢ — 1) and

Z(ﬂz +7)q <2(g—1) Z ¢ =2(¢" - 1).

If r =1 then By + v = do + €(q¢ — 1) with € equal to 0 or 1. If ¢ = 0 we are in case (a) and
v =0 while 5y + v — 6o = 0. If e = 1 we are in case (b); here v =1 and By + vy — dp = ¢ — 1.
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Suppose then that » > 2 and that if 8),...,8 1,7, 7—2: 00, --,0._5, and v/ are given
as in the lemma (with r replaced by r — 1) then

r—2

D Bi+i-) =V(g—1).

i=0

We establish part (a) first. In this case

r—1

r—1
Z(ﬂi +7)q = Z 0i’
i=0

i=0

and
r—2 r—2
Z(ﬁz‘ +7%)4" = Z 0iq' +eq"!
i=0 i=0

with € = 0,1 — 8,1 —v,_1. If € were negative the left side of the equation would be negative;
if € were greater than 1 the left side would be greater than 2(¢"~* — 1). Since neither of these
possibilities occur € is 0 or 1.
Suppose first that e = 0. If 327_2 ¢’ < ¢"~* — 1 choose B/ = B, v = 7, 0 < i <7 — 2.
Then 0} =6;, 0 < i <r—2, and v/ = v. The assertion of the lemma follows in this case. If
;;géiqi =q¢ ' —1thend;=¢—1,0<i<r—2 Then By+7 =¢—1 (mod ¢q) and, as a
consequence, By + 7o = ¢ — 1. We show by induction that 6; + v =¢—1,0<i<r—2. If
this is so for ¢ < j then

r—2 r—2
Z(ﬁi +7)4 = Z(q —1)q".

Hence 3; +7v;, = ¢—1 (mod ¢) and ; + v, = ¢ — 1. It follows immediately that v = 0 and
S (Bi+ v — i) =0.
Now suppose that e = 1. If
r—2
S (Bt =20 1)
i=0
then 5; =v=q—1,0<i<r—2,0g=q—2,and 9, =q—1, 1 <i<r—2. Thusv=r—1
and
r—1
Y Bitn—8)=1+@r-1(g-1)—1=(r—-1)(g—1)
i=0
Suppose then that
r—2
Z(ﬁi +7)g <2(¢ 7 1),
i=0

From the relation
r—2 r—2

S Bitwd =) 6+ 1+ (¢ 1)

1=0 i=0
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We conclude that Zg;g 0;¢" < ¢"~' — 1. Then for some m, with 0 <m <r—2,6,, <q— 1.
We choose the minimal value for m.

r—2 r—2
Y Bit+1)d = 0n+Dg™+ Y did + (- 1),
i=0 i=m—+1

Thus if £, = f;, 7, = %, 0 < i <r—2, then 8, =0, i < m, &, = 6 + 1, and & = 4,
m < 1 < r—2. Arguing by congruences as before we see that 3; +~; = ¢ — 1 for i < m. Thus
k-1
Z(Bi +7)¢ =¢" -1
i=0
for k£ < m. However G,, + vm # q — 1 and thus 3, + ¥, + 1 is prime to q. Moreover if

r—1>2k>m
k—1

L+ (B +7)0" = (B + Ym + )™ (mod ¢").
=1

Thus it is greater than or equal to ¢* if and only if it is greater than or equal to ¢* + 1. It
follows that / = v + m and that

r—2 r—2

> Bitri—0)=—mlg—1)+> (Bi+7—0) =vig—1)+1

i=0 i=0

Since B,_1 + 7,_1 — 6,_1 = —1 the assertion of the lemma follows.
Now let us treat part (b). In this case

r—1 r—1
S Bi+v)d = did'+ (¢ - 1)
i=0 i=0

and
r—2 r—2
L+ Z(ﬂz + )¢ = Z 0iq' +eq
i=0 i=0

withe=0,_1— 01 —7%_-1+¢q AgaineisOor 1. If ;= =q—1for 0 <i <r — 2 then
e=1land ; =g—1for 0 <i<r—2. Alsor =r and
r—1
Z(ﬁz +%—0) = —-1)(q—1)+ b1 +7%1—61=71(g—1).
i=0
Having taken care of this case, we suppose that
r—2
S Bi+r)d <20 -1).
i=0
First take e = 0. If 5o = 0 then 1 + By + v =0 (mod ¢) and 5y + 79 = ¢ — 1. Thus one of
them is less than ¢ — 1. By symmetry we may suppose it is fy. Let ) = 5o + 1, 5 = 5,
1<i<r—2and v =, 0<i<r—2. Since §p =0

r—2
i <q T —q<q T -1
1=0
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and 0, =9;, 0 <i<r—1. Alsov =1+ 1 so that
r—1

— r—2
Z(5i+7i—5i) :Z<5z{+%{—5§) —l+g=v(g—1)
i=0 =0

as required. If §o > 0 take ) = 3; and 7, = 7;, 0 < i < r —2. Then 6y = §y — 1, 0} = &,
1<i<r—2 Alsoif k<r—1
k-1
S B+ =d—1# -1 (mod q)
i=0
and the left-hand side is greater than or equal to ¢* if and only if it is greater than or equal
to ¢* — 1. It follows that v = v/ + 1. Consequently
r—1
> B+ —6) Z Bitv—6)—1+qg=v(g—1).
i=0 =0
Ife=1takey, =~ and B =05, 0<i<r—2. Thend, =6;,0<i<r—2,andv=1v'+1
so that

r—1
Z(ﬂi +7 —0;) =V (g = 1)+ (Br—1 + Y1 — 6—1) = v(g — 1).
1=0

Lemma 7.4. Suppose B; and ~y; are two periodic sequences of integers with period r. That is
Bitr = Bi and Vi = y; for all i in Z. Suppose 0 < 5; <q—1,0< v < q—1 forallt and

that none of the numbers
r—1

= Y (Bivk +%irn)d
i=0
15 divisible by q" — 1. Let

r—1 r—1
Z(ﬁi + ’Yz')qi = Z@qi (mod ¢" —1)
i=0 i=0

with 0 < 9; <qg—1 and Z;:Ol 0iq" < q" — 1. If p is the number of €, 1 < k < r, which are
greater than or equal to ¢~ — 1 then
r—1
Z(ﬁz‘ +7 —0;) = p(g —1).
i=0
Since €y < 2(¢" — 1) and is not divisible by ¢" — 1 it is less than 2(¢" — 1). Thus all we
need do is show that the p of this lemma is equal to the v of the preceding lemma. Observe
first of all that €; > ¢" — 1 if and only if ¢; > ¢".
Suppose g < ¢". If 1 <k <r

S Bi+wd <dq
i=k
so that

r—1

Z(ﬁi +y)g " < g

i=k



7. CONSEQUENCES OF STICKELBERGER’S RESULT 33

Thus, if €, > ¢",

r—1 r—k—1
<D B+ 7i00)d + Y Bk + Yien)d
i=r—k =0
k-1
<q" g (514’%)6] +q
=0
and
k-1
(B: +v)d' = "
=0
Conversely if 1 < k < r and
k-1
(B +7)d" = ",
=0
then
r—1 r—1
(/Bz-l-k + '71+k Z 6z+k + %—I—k)

<.
g
@
1
- w
L

= qr b (ﬁz + ’72) qr.

=0
Thus o = v in this case.
Now suppose g = ¢". If 1 <k <r
r—1 k—1
Z(ﬁi +7)¢ =2 q" — Z(ﬁz +7)4 = ¢ —2(¢" - 1).
i=k i=0
If
k—1
(Bi+)d = q" -1
=0
then
r—1 r—1 r—k—1
> Bk +vie)d = D Bk +vien)d + Y Bigk + Yisn)d’
=0 i=r—k =0
k—1 r—1
:qu (ﬁz“'%)q +q kZﬁz+72)
=0 i=k

>q¢ " -1 +qF—2+2¢7"
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Thus €, > ¢" — 1 and hence ¢, > ¢". Conversely if ¢, > ¢,
-1 r—1

Y Bt wd = > Bk +viek)d'
i=0 i=r—k
r—k—1
Z ﬁz+k + 71+k)q
1=0
>q —2(¢"-1)
_ qr 2q7"—k + 2
Thus
k-1
(Bi +7)d = ¢ —1
=0

and again u = v.

Lemma 7.5. Suppose ¢ = p’ is a prime power, { is a positive integer, and ({,q) = 1. Let
(m =1 (mod q) and if x is any integer let p(x), with 0 < ¢(x) < q, be the remainder of x
upon division by q. If 0 < 5 < q and if ¥(x) = p(z)!

05 7y L8 = k)m)
— || ————==1 (mod" p).
a L=
If £ = {1 + ug with ¢, > 0 and u > 0 then /¢ = ¢ (mod* p). Moreover

T e(@B—km) 55w (B-km) | | F (8- km)
|1 U(—km) 11 U(—km) ££ U(—km)

k=0

and

-1
Hwkm Hw = [[w(-km
k=01 k=t
Thus it is enough to prove the lemma w1th ¢ replaced by ¢;. In other words we may suppose
that 0 < ¢ < q. The case ¢ = 1 is trivial and we exclude it from the following discussion.
Finally we suppose that 0 < m < q.
Let g— 1 =1rf+ s with 0 <r and 0 < s < £. Arrange the integers from 0 to ¢ — 1 into
the following array.

0 1 D /-1
¢ 041 A 20— 1
Bl —m

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, B
(r—]_)é (T—l)g—f—l .................................. q_é ...... Tg_l

rré 7‘€+1 .............................. r£+5
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Since ¢ does not divide ¢, 1/ + s = g — 1 does not lie in the last column. Also ¢ — ¢ lies in the
column following that in which ¢ + s lies.

We replace each number j in the above array by ¢(jm). The resulting array, which is
written out below, has some special features which must be explained. The first column is
explained by the observation xfm = z (mod ¢). The other entries, apart from those at the
foot of each column, are explained by the observation that, when 1 < 7 and xf + j lies in
the first array, o(x + myj) > r while 0 < p(mj) + z < g + r so that p(z +mj) = ¢(mj) + x.
The position of ¢ — 1 is explained by the relation m(q — ¢) = —mf = g — 1 (mod ¢q). The
other entries at the feet of the columns are explained by the observation that if 1 < j </ —1
then p(jm) > r > 1 while m(qg — k) = m(qg—€) + m({ — k) = ¢(({ — k)m) — 1 (mod q) if
1<k<<l—1.

0 TTh o+ o e e e e e e e e e e e e e e e e e e e e e e @((f—l)m
Y T A L e (p((g_1)m)+1
e((B—C+1)m) —------mm oo bmmmm e
77777777777777777777 @(Bm)
T g—1----. @((g_g_s)m)_l
r 2 o S T @((ﬁ—l)m)—l

Suppose first of all that f < ¢ — 1. Then the numbers go((ﬁ — k)m), 0<k< /(-1
constitute the first 8+ 1 together with the last £ — 8 — 1 numbers in the array. (The order of
the numbers in the array is the order in which they appear when the array is read as though
it were a printed page.) The numbers o(—km), 1 < k < ¢ — 1, are the last £ — 1 numbers of
the array, that is, the numbers after ¢ — 1. Cancelling in the product of the lemma the terms
in numerator and denominator corresponding to the last / — § — 1 terms of the array, we

obtain

B B

H H(p Jjm) ' (mod* p)
le Jj=1

as required.

Now take 5 > ¢ — 1. Then the numbers 5,3 —1,...,8 — (£ — 1) occur as indicated in the
first array. In particular there is exactly one in each column. The numerator in the product
of the lemma is the product of the factorials of the corresponding elements of the second
array. The denominator is the product of the factorials of the elements appearing after ¢ — 1.
As indicated t is the element lying above ¢ — 1. Thus ¢ is larger than any element appearing
in a column other than that of ¢. The product of the lemma is ¢! times the product of the
factorials of the other elements on the broken line divided by the factorials of the elements at
the foot of the column in which they lie. Thus it equals ¢! divided by the product of all the
elements below the broken line except those which lie directly below t. But t! is the product
of all numbers in the second array except those which lie below ¢. Thus the quotient is the
product of all numbers which lie above or on the broken line, that is,

B B
H o(gm) = Hjm =m”B  (mod* p)
j=1 j=1

as required.
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Lemma 7.6. Suppose that ¢ = p/ is a prime power, that { is a positive integer dividing ¢ — 1,
that 0 < a1 < q — 1, that ({,0q) = 1, and that

a; ¢ —1

v g—1

Then as is an integer and 0 < ag < ¢ — 1. Moreover if

Qg =

as =" +ng+ - +v-1q""
with0 < v <qg—1for0< 1<l —1 then

-1 R
Y vi=ar+ Y g 7
j=0 J=1

and

—1 —1 jg—1
E‘“nyj!Eal!H( 7 ) (mod* p).
§=0 j=1
Certainly 0 < ay < ¢ — 1; moreover

¢ —1

qg—1
so that as is an integer. Let oy = mf + k with m > 0 and 0 < k </ and for 0 < 7 < /¢ let
with §; > 0 and 0 < i; < ¢. Clearly 4,1 = dy—1 = 0. Also ({ — 1)k ={ — k+ {(k — 1) so that
19 = {—k and (50 =k-—1. If] >1 then ((5]‘_1 —(5])£ = ]{?—I—(’LJ—Z]_l) Since —{ < ij_ij—l </
and 0 < k < ¢ the right-hand side is greater than —¢ and less than 2/ so that 6;_; — ¢; is 0
or 1. Ifitis 1 then k+4; > ¢ and i; > ¢ — k. If it is 0 then ¢; = ¢;_; — k < £ — k. Recalling
that ig = ¢ — k we see that
S={j|1<j<l-1and ;1 —0;=1}={j|0<j<landi;>(—k}.
We shall prove that

=14qg+---+¢"'=¢ (mod /)

-1
’70=m+i0(q )+7<7—50

14
and (G- 1)
”yj:m—i—iqu +5j*1_5j 1<]<£
Since (k, ) = 1 the numbers i, are distinct and it will follow immediately that
—1 /—1 q— 1 -1 q— 1
= (ml+ k P L
gw W+)+§J 7 m+§] 7

Moreover we will have

R T

JjeS
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Recall that k — g = 1. Dividing the first term by
/—
— )

we obtain

The product of the last two terms is

ﬁ <m+1+j$).

j=t—k
Ifl1<n<mand 0<j</{—1then nl —j < a; < q so that the product of ¢™* and the
first of these two expressmns is multiplicatively congruent to
—1 m
H H (nl — ) = (mt)!
7=0n=1

Moreover, if { —k < j <l —1,then0< (m+1){—j < (m+1){—({—k)=a; <qand the
second of these expressions upon multiplication by ¢* becomes multiplicatively congruent to

-1 k

1T (on+De—3) = TJont + ).

j=l—k j=1
The relations together imply the second identity of the lemma.
To verify that the «;, 0 < j < ¢, have the form asserted, we start with the relation
-1

¢ —1 m€ +k ¢ q]k
Qg = . 1 7 JZO m—+ Z
The second term is equal to
-1 j—1 1 -2 _q
SN d |k rb=k+Y -1 - L= k.
: , l , l
7=0 =0 j=0

Thus

Moreover m < % so that

1 1
th—dy <01 41=9¢

O<m+i0'q£ ;

and

1 -1
7 +5j,1—(5j<£'q7+12q.
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The required relations follow immediately.

Now we can state and prove the promised identities for Gaussian sums. Each of these will
amount to an assertion that a certain number in €,,_1) is 1. To prove this we will show first
that the number is invariant under all automorphisms of £,,_1) over £,_;) and thus lies in
£,_1. The only prime ideals occurring in the factorization of the number, which is not a prior:
an algebraic integer, into prime ideals will be divisors of p. We show that every conjugate
of the number has absolute value 1 and that it is multiplicatively congruent to 1 modulo
every divisor of p. It will follow that it is a root of unity in ¢,_; and hence a (¢ — 1)th root
of unity if ¢ is odd and a 2(q — 1)th root of unity if ¢ is even. If ¢ is odd the multiplicative
congruences imply that the number is 1. If ¢ is even they imply that the number is +1. To
show that it is actually 1 some supplementary discussion will be necessary.

Stickelberger’s result is directly applicable only to the normalized Gaussian sum 7 ().
We shall have to use the obvious relation 7(x,, ¥,) = xx(8)7(xx) if ¥e(a) = ¥0(Ba). If k is
an extension of A and 1, is given, we set

Uie/a(@) = Y (Seya(a))
for avin k. If x) is given X,/ is the character defined by
Xie/a (@) = xa (Nayala)).
Lemma 7.7. If k is a finite extension of the finite field and x and ¥y are given then
T(Xn/)\awn/)\) = {T(XA, w,\)}[m\}-
Since x,/x(8) = xa(B)FA it will be enough to show that

() = {7000},

B {T(X)\)}[X:)\]

T(XH/)\) '
Let A have ¢ = p’ elements and let x have p* = ¢/. It follows immediately from Lemma 7.1
that the absolute value of p and all its conjugates is 1, that it lies in €,4s_y), that it is
invariant under all automorphisms of €,,s_;) over £;s_;, and that its only prime factors are

Set

of
divisors of p. The mapping 5 — N,/\/ sends S to 6?11. Thus if @ = a(xy, p) and P divides

p
¢ -1

qg—1
Applying Lemmas 7.1 and 7.2, we see that

-1

&(Xn/rs D) = a=a+aqg+---+aq

[0}

() = = (mod” )
and
wl@ N
T(Xu/2) = a7 (mod” ).

Consequently

w=1 (mod" P).
Thus 1 = 1if ¢ is odd and p = £1 if ¢ is even. If x, = 1 then x,/\» = 1 and, from part (b) of
Lemma 7.1, p is 1. If ¢ = 2 then x, = 1. Suppose then ¢ is even and greater than 2. If x, is
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not identically 1 choose a prime r dividing the order of y). Set xa = X\ X5 where the order of
X4 is a power of r and the order of x/ is prime to r. The analogous decomposition of x,\ is
Xk /AXZ /»- Of course X and x,/x have the same order. Define i/ and p” in the obvious way.

According to part (f) of Lemma 7.1

p=pu" (modr).
Since r does not divide 2 this implies that u = p”. Thus one can show by induction on the
number of primes dividing the order of y, that u = 1.

Lemma 7.8. Suppose X is a finite field with q elements, k is a finite extension of A\, and
[k : N = f. Suppose € is a prime and the order of ¢ modulo € is f. Let T be a set of
representatives for the orbits of the non-trivial characters of k* of order £ under the action of
&(k/A) and let x\ be a character of \*. If 1y is any non-trivial character of A

X)\(XE)T(Xi,Qﬂ)\) H T(um wn/)\) = T(X/\, w)\) H T(Xﬁ/)\umwn/)\>~
us€T €T
Since the isotropy group of each point in 7" is trivial
) TT 8 = a(®) T e (Da(®)
€T €T
and we may content ourselves with showing that
AT TT 7(e) = 7000) T 70ck/ame)-
ux€T ux€T

Of course ) (¢%) is the value of xy at the element of the prime field corresponding to ¢¢. Let u
be the quotient of the right side by the left. The characters of k* of order ¢ are the characters
pk 0 < k < {, defined by

F—1
q

Since the order of ¢ modulo ¢ is f, if T = { uk ‘ ke A } every non-trivial character of order

¢ is representable as ;/'(q with 0 <@ < f and k’ € A. n(q'k) is the remainder of ¢’k upon
division by ¢. Thus as we already saw, T has £ e L elements. Lemma 7.1 again shows that p
and all its conjugates have absolute value 1 and that p is invariant under all automorphisms
of €,4r_1) over £,r_5.

Let a = a(xy, p) and let B = a(x5,p). Then fa =B +v(qg—1) withv > 0. f0< k < ¢
let

f f—
aut, ) = k- 1 Z
Jj=

k-L—

with 0 < 7]’? < ¢— 1. In particular, 7 is the residue of
(modulo /) then

L modulo ¢q. Moreover if k; = ¢'k

apk, B Z g
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It is understood that if j 4+ > ¢ then 7]+Z Vﬁife- Thus if ¢(x) is the remainder of z upon

division by g,
F—1
j<f} go(k-qg ) 0<k</?

Certainly

I _ I _
¢ —1 ¢ —1
a(Xuatty, B) = —1 a+k- 7 <mod (¢F — 1)).

Let 0 < k' < Candlet v+ k =k (mod ). Since, by definition, fov =+ v(qg — 1)
f—1 f—1 -1 B -1
q q q 14
k = : k (mod (o' - 1)).
q_la—i- 7 7 q—1+ 7 mod (g )

Since 0 < B < ¢ — 1 the right side is non-negative and at most ¢/ —2. Thus it is a(X,{/,\p%, T).
Let

-1
a(xupatih, B) = o8¢
=0

with 0 < 5 < ¢— 1. Thus 6} is the residue of

I 1 f_
q B a1
l q -1 l
modulo ¢. Since x,y is invariant under automorphisms of /A
f—1
(/s B) =D 00,¢
j=0
if k1 = ¢’k (mod £). Since the residue of T a modulo ¢ is «,
f—1 |
{a}u{(sf 0<j<t, keA}: ¢<q —- 51+k‘1 - ) 0< k<t
q—

Since xx(¢*) = % (mod* *B) the number p is multiplicatively congruent modulo 3 to

the quotient of
oot f-1
Z Z k
7—1 s € = (5
a! erA H 5k ’

j=0"7 k€A j=0
by
’ —1
PP , ! k
B'H H €= Z’Vj'
keA llj=o07 J k€A j—0
Since
f-1 f-1

(a+ 5 =) o,

<
Il
o

<
|
o
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we conclude from Lemma 7.4 that

foa+Z plg—1),

if p is the number of 7, 0 < i < f, such that

F—1 i
! 1a+awwmﬂﬁ>¢
q J—
Since ; ;
g’ —1 0 g -1
the number
f-1
(C=Da+) > (3 —5)
k€A j=0

is (¢ — 1) times the number of k, 0 < k < ¢, such that

1 F_1 F—1p F_1
q q _q q
k- E 4 (k >q.
q_1a+ 7 q—1€+( +v) 7 q
The number of such k is v because v < ¢ and
f_ f_
¢ —1p3 qg —1
Za0—y >1 f_1=¢f
_1£+( +v) ; +q q
while ; 8 ; ; ;
qg —1 qg —1 ¢q/ —1 qg —1
Z4-1 < (-1 =q¢ —1.
1T )=
Thus

f-1
ZZ vig=1) - —-1la=a-p.

keA j=
If f/m =1 (mod q)

and

f—1 f—1
w(qg -qfl+kq€ )_¢«5—mm)

It follows immediately from Lemma 7.5 that

f—1 f—1
Ca T =8 11 T

keA j=0 keA j=0
Thus p = 1 if ¢ is odd and p = £1 if ¢ is even. If x), = 1 the number p is clearly 1.

This time too, one can apply part (f) of Lemma 7.1 and induction on the number of primes
dividing the order of x, to show that u =1 if ¢ is even.
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Lemma 7.9. Let A be a finite field with q elements and let k be a finite extension of A with
[k @ A] = € where € is a prime dividing ¢ — 1. Suppose x» is a character of \* whose restriction
to the (th roots of unity is not trivial and x, is a character of K* such that x’ = Xr/x- If T is
the set of non-trivial characters of \* of order ¢

X700 ) T 720 1) = 7 /)

ux€ET

If o € &(k/)\) define 7 by x%(a) = x.(a” ). Since X7/n = Xu/2s X2t = Xux and x7
is a character of order ¢. If x7~! =1 for some ¢ # 1 then it is 1 for all & and x.(a) = 1 if
a is a (¢ — 1)th power, that is, if N, \(a) = 1. Consequently there is a character vy of \*
such that x, = v,/x. Then V5 = x» and Y, is trivial on the ¢th roots of unity, contrary to
assumption. Thus

(X7t o#A1}={pp | meT}.
If € X and = N,/\(7) then

X(8) = [ xx (™) = () T (1) = o (B) T [ 10 (8),

o#l o#l
because () = pue/a(7), and it will be enough to show that

XAO700) T 7)) = 7(x0)-
uXET
Let 41 be the quotient of the left side by the right. Thus y is a number in €,,_1) and the
only primes appearing in the factorization of u are divisors of p. Since X,/ is not identically
1 neither is x,.. Thus the absolute value of p and all its conjugates is 1. Let o = a(xa, p)
and let 5 = a(xx,P) where B divides p. Then
¢

Eﬁzaq _11 (mod (q£—1)>.

. . e .
Since ¢ divides ‘2_—11 we can write

B ¢—-1 a ¢ -1
T -1 7 T
Since the restriction of y, to the fth roots of unity is not trivial, « - % Z=0 (mod (q— 1))
Thus ¢ does not divide «. For all 7 > 0

T(x2) = 7(xn)-

B

Moreover
al—1la of—1 , g —1la . . ¢ —1

¢ = - — t—1
a(xi , B) o R +(¢' = 1)

qé—loz_i_ ¢ —1 =1
— o — .
qg—11¢ q—1 J 14

Since ‘f;_—_ll =i (mod ¢) we choose i so that i« = j (mod ¢); then

¢ —-1la

ot W) =777 (mod (@' - 1),
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Both sides of this congruence are non-negative and less than ¢ — 1. Thus it is an equality

and we can assume that § = % - 7. The set T consists of the characters ui, 1<5<l-1,
defined by _
j J

Under the automorphism z — 2™ of k,ge_1) over kg the number u is multiplied by
< (m)xa(m Alm) which 18 ecause m belongs to A. Let
X2t (m)x et 1 hich is 1 b belongs to A. L
=Y tng+ - +y1q
s g+t !
with 0 <~; < ¢—1. Then

€

—1
szo 5!

/—1
T(XH) (IIlOd* (‘p)7 €= Zf}/ja
=0

and
-1 ‘ éawE’ {—1
aO700) [[7() = iy, (medt B, d=a+) j- —
i=1 o[ (-4 )! j=0

Lemma 7.6 implies immediately that g =1 (mod* ). Thus =1 if ¢ is odd and p = £1 if
q is even. If ¢’ is a prime divisor of ¢ — 1 different from ¢, we write x) as x) x5 where the
order of x) is a power of ¢’ and the order of x4 is prime to ¢. In a similar fashion we write y,
as X5 x7. The pair xy and x” also satisfy the conditions of the lemma. The final assertion of
Lemma 7.1 shows that, if 4’ is defined in the same way as u, u = p”. Arguing by induction
we see that it is enough to verify that ;1 = 1 when the order of y, is a power of ¢. Applying
the last part of Lemma 7.1, again we see that there is a prime ¢ dividing ¢ such that

T(xx) =7(xe) =7(}) =1 (mod q).
Since x(¢) is an ¢“th root of unity for some w,
WO =1 (mod g).

Thus =1 (mod ¢) and p = 1.






CHAPTER 8

A lemma of Lamprecht

Let F' be a non-archimedean local field and let ©r be a non-trivial character of F'.
n = n(yp) is the largest integer such that ¢p is trivial on PL". If xr is a quasi-character of
Cr, m = m(xr) is the smallest non-negative integer such that xr is trivial on U@. If v in
CF is such that yOp = }”” set

S ¥ (2)x5' (@) da

Ar(XF, Yr;) = .
e fUF@DF(%)xEI(a)dOé

Then

A(xr,Yr) = xXr(V)A1(XF, YF; 7).

As suggested by Hasse [8], we shall, in the proofs, of the main lemmas, make extensive
use of the following lemma which is central to the paper [10] of Lamprecht.

Lemma 8.1.
(a) If m = m(xr) = 2d with d integral and positive there is a unit 5 in Op such that

Yp (%r) = xr(l+ 1)

for all = in BL. For any such B
Mulrvrin) = v (2) G 9)

(b) If m = m(xr) = 2d + 1 with d integral and positive there is a unit 5 in Op such
that, for all x in PL,
T
Y (%) =xr(l+2).

For any such 8, Ai(xF,¥r;7y) is equal to
B\ 4 foF/va @DF(M%)XEIO + 0z) d

VY ; XF (B) S
fop/qu Y (%)X}l(l + 0x) dx

if 60p = PL.
Let m = 2d + € with € = 0 in case (a) and € = 1 in case (b). The function ¢p <%),

x €O0p,y € q3dF+f can be regarded as a function on
Or/PBh x P/ FBE.

45
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For fixed z it is a character of B4 /P which is trivial if and only if z € 9% and for fixed y
it is a character of Op /B% which is trivial if and only if y € 8. Thus it defines a duality of
Op /%% and PL/Pr. The existence of a 3 such that

xr(l+2) = (%)

for  in PL follows immediately from the relation

xr(1+2)xr(1+y) = xr(1+ 2 +y)

which is valid for x in %4

from 1 for some x in PP
In case (a)

. The number S must be a unit because yr(1 + z) is different

[ oe(2)ton
Loy or ol [ or(5) e

The main integral is 1 or 0 according as a — 3 does or does not lie in B¢ Thus this expression
is equal to

is equal to

AT _
or ()t @ s v,
The first part of the lemma follows.

In case (b)
/U vr (%)X?(a) da

/UF/U;EH Vg (%)XFl(a){[p?l Vp <@> d:v} dov.

The inner integral is 0 unless a — 3 lies in BE when it is 1. Thus this expression is equal to

)
(0 (§>XF1(5)[UF : U™ /OF/mF Yr (%) Xp (14 0z)da.

The second part of the lemma follows.
The number §3 is only determined modulo B¢. When applying the lemma we shall, after
choosing f3, set
B

Aolxr ety = wF(;)x;%m

and then define As(xr, ¥ r;7y), which will be 1 when m is even, by the equation,

A1(Xr, V) = Da(Xrs V1) As(XE, YF; 7).

When we need to make the relation between [ and yr explicit we write 5 as S(xr). To be
of any use to us this lemma must be supplemented by some other observations.

is equal to
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If K is a finite Galois extension of F' any quasi-character xz of Cr determines a one-
dimensional representation of Wy /r whose restriction to Cx is a quasi-character xx/r of Ck.
The character xx,/r may be defined directly by

XK/F(Oé) = XF(NK/FOé)-
More generally, if F is any finite separable extension of F' we define xg/r by
XE/F(a) = XF(NE/Fa)-

To apply the lemma of Lamprecht we shall need to know, in some special cases, the relation

between 3(xr) and B(xg/r)-

Suppose m is a positive integer and m = 2d + € where € is 0 or 1 and d is a positive
integer. Let m’ = ¢ /p(m — 1)+ 1 and let m' = 2d' + € where ¢ is 0 or 1 and d' is a positive
integerﬂ Since Yg/p is convex

m—1\ 1 1 1 ,
IDE/F( 5 ) < §¢E/F(m -1)+ in/F(O) = §(m/ —1)<d +e¢

and
d/ + 6/ = ¢E/F(U)
with u > mT’l Since the least integer greater than mT’l is d 4+ €, Lemma 6.6 implies that
Ni/p(Ug ™) < Up < U™
In other words, if x € ‘BdE/JFE/ then
NE/F(]- + [E) —1€ ;}Bté—i-e.
Lemma 6.6 also implies that
if 2 € P If x € PLT and y € P then

Ng/p(l+2+y) —1= Ngp(l +2)Ng/p (1 + . i x) -1

is congruent to
modulo P7. Thus if z € ‘]3dE/+E/ and y € ‘BdE/J’E” so that zy € P, then
Np/r(l+z+y) —1=Ngp(l+2+y+ay) —1 (mod PF).
The right side is
Ng/p(1+2)Ng/p(1 +y) — 1,
which equals
and this is congruent to
modulo ‘B%. Thus the map
Pgjp iz — Ngjp(1+7) -1

'We are here dealing not with an additive character, but with the function of Chapter 6!
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is a homomorphism from P&+ /P’ to Pdte /P, If E C E' we can replace F by E, E by
E', m by m’, and m’ by ¥ g /p(m’ — 1)+ 1, and define Pg//p. Since Yg/p = g /p 0 Yp/p and

the relation
PE’/F == PE/FOPE’/E

is valid.
If n = n(yr) and n' = n(Yg/r), choose vp in Cp so that ypOp = "+ and vg in Cg so
that ygOp = g”"’. I apologize again for the unfortunate conflict of notation. g, r is on

the one hand a function on {u € R |u > —1} and on the other a character of E. However,
warned one again, the reader should not be too inconvenienced by the conflict. Define

e Op /8% — Op/PBY,

or (xPE/F(y)> - <PE/F(5U)?J> ‘
03 YE

It will often be necessary to keep in mind the dependence of P /O VR and vg. Then we
shall write

by the relation

E/F@) = PE/F(:E; VE, VF)-
It is clear that
PE’/F(J:; Ve, VF) = PE’/E (PE/F@WEWF); 7E',7E>~
Lemma 8.2. Let K/F be abelian and let G = &(K/F). Suppose there is an integer t such

that G = Gy while Gy.1 = {1}. Suppose m > t+ 1 and m > 1 and vr is chosen. If pp
belongs to S(K/F), the set of characters of Cr/Nk/pCr, then m = m(ur) so that for some

alpp) in Op
pr(l+ ) =Yg (%)

{}olr all x in PBLE. The element i may be taken equal to vr and if P}}/F(ﬁ) = P}‘{/F(ﬂ; YE,YF)
en

Nicsr (Piye(8)) = [1(8+ aur))  (mod 34)

HE
for all B in Op.
If t = —1 then n(vr) = n(Yk,/r) and m' = m so that yx may be taken equal to yp. If
t > 0 the extension is ramified. Let ‘Bi?/ " be the different of K /F. Then
n(Yx/r) = [K : FIn(Yr) + 0k/p-
By definition
By Proposition 4 of paragraph IV.2 of Serre’s book dx/p = ([K : F) — 1)(t +1). Thus
m* +n(Yrr) = [K : Fl(m+n(dp))

and we can again take yx = vp.
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Since m(up) =t + 1 we have m > m(pur) and

pr(l+2+y) = pr(l +2)pr(l+y)
for x and y in 2]3‘1@“. Thus the existence of a(up) is assured. The last assertion of the lemma
will be proved by induction. We will need to know that if z =y (mod ‘B%) then

When proving this we may suppose that 2O = P} with r < d' and that £ belongs to Ok.
Then

— X
Ni/re — Nigjpy = NK/Faz{l — Niyr (1 + ) }

If r > d there is nothing to prove. Suppose r < d. If ' —r = ¢g/r(u) and s is the smallest
integer greater than or equal to u the right side belongs to P337". Since the derivative of ¢/ p

is at least one everywhere ¢i/p(u+r) > d. But
m' —1
2
Thus u+1r > mT_l and s+ 17 > d.
_ Suppose F' C L C K and L/F is cyclic of prime order. Let H = &(K/L) and let
G = &(L/F). Certainly H = H; while H,y = {1}. Since ¥x/r(t) = ¥k 1(t) = t, we have
Y r(t) =t and, by Herbrand’s theorem,

G,=G =HG'/H=G/H =G.
Moreover ¢ 4+ 1 = v /p(t 4 0) with § > 0 so that
G =G = HG"™/H = H/H = {1}.

Finally, ¢p/p(m —1)+1 > t+1 so that L/F and K/L, with m replaced by ¥, p(m —1) +1,
satisfy the conditions of the lemma. S(L/F) is a subgroup of S(K/F). If up and vp belong
to S(K/F) then pur/p = v p if and only if up and vp belong to the same coset of S(L/F).
Take S to be a set of representatives for these cosets; then

S(K/L) = { pryr | nreS}.
We take a(uprr) = a(ur) + a(vr) if up belongs to S and vp belongs to S(L/F). If up

belongs to S we take a(ur,/r) to be P} /p (a(per)). If the lemma is valid for K/L and L/F
then

d >

1 1 —1
= §¢K/F(m —1)+ 5¢K/F<O) > wK/F<m2 )

Ng/r <P1*</F(/3)> = Np/rp <NK/L (PI*(/L (Hﬁ/p(ﬂ))))

which is congruent modulo B¢ to

Nr/r H (PL*/F(B) + Pl p (@(MF)))

HF€ES

I1 {NL/F (P /(8 + i) ) }

up€S

or
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This is congruent modulo B4 to

II 11 {8+alur) +alve)}

rr€SvreS(L/F)

H {B+alur)}-

nrp€S(K/F)
Thus it is enough to prove the lemma when K/F is cyclic of prime order. In this case
more precise information is needed and the assertion of the lemma will follow immediately
from it.

Lemma 8.3. If K/F is unramified and m > 1 we may take Py (8) = 5.

which equals

According to paragraph V.2 of Serre’s book
Ng/p(1+y) —1= Sk/r(y) (mod Pr)
if y € ‘B%ﬁl. Thus Pk/r(y) = Sk/r(y) and
xP, x
wF( K/Fy) = Vi (—y>
TR TF

Lemma 8.4. Suppose K/F is abelian, totally ramified, and [K : F| = { is an odd prime. If
d > t+ 1 we may take P, (8) = 5.

The relation
m =t+1+lm—-1—t)=Im—(t+1)({—1)
implies that m’ = m (mod 2), € =€, and
(-1 (—1

d = tld+ (e—t—l):d+T(m—t—1).
Since
%(m—t—l)}m—t—l}d#—e
we have
d+¢€e>2(d+¢)>=m.
Moreover

2(d/ + 6,) + 5K/F S m' + (5K/F
- l
so that by Lemma 5 of paragraph V.3 of Serre’s book

if 2 € P, The lemma follows.
Let p be the characteristic of Op /Br.

Lemma 8.5. Suppose K/F is abelian, totally ramified, and [K : F] = { is an odd prime.
Suppose t +1 < m < 2t + 1. Choose a non-trivial character pur in S(K/F). We may choose
a = a(pr) so that «Op = P4, if m =t + 1+ v, so that o = Ngray for some oy in Og,

and so that
azx
pr(l+x) =vp <—)
YE
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for x in P%.. Here s is the least integer greater than or equal to % If ¢ is a (p — 1)th root
of unity in I there is a unique integer j with 1 < j < p — 1 such that ¢ — j lies in *Pp. Set
,u% = uy. We may take a(u%) to be Ca. If B belongs to Op we can find a By in Ok such that
B8 = Ng/pf1 (mod PBt). Then

Piyp(B) = 5 — ﬁlo% (mod PL).
If
up(l 4 o) = w(“—)
YF

for x in P% then, necessarily, aOp = PBY%. Choose 4; in Ok such that 6;0x = PY and set
0 = Ng/pd1. Set a = ed where € is yet to be chosen. We must have

0T

(14 ) = w(—)

YF
it x € P%. This equation determines the unit € modulo B’ if » =t — s. Since any unit is a
norm modulo B we may suppose € = N, k/r€1. Take ap = €,0;. () exists for a similar reason.
The number ¢ — j must lie in pOp. But K/F is wildly ramified, because 2t +1 > m > 1,
¢ =p and p = Sk,p(1) so that, by paragraph V.3 of Serre’s book, p belongs to P if u is the

greatest integer in
(¢—1) t+1
—(t+1) > —.
U

However d 4 ¢ > s so that d + € +u >t + 1 and, if = belongs to PE, (¢ — j) lies in P

Thus '
Vr <—&(C — ])1‘) = pr(1+(C—j)x) =1
YF
and .
L) = b1+ 2) = v (222) = v (£22)
YR YF
Since

23+5K/F S t+1+5K/F
14 - 14
The lemmas of paragraph V.3 of Serre’s book imply that
NK/F(1+ZL‘) = 1+SK/F($)+NK/F($) (mod mﬁ;l)
if  belongs to P and then
As we observed d 4+ € > s. Moreover d + € < t+ 1 so that
d + e+ 5K/F
l
and Sk/p(x) and N p(x) belong to ‘B?ﬁg if x belongs to ‘,B‘Il;“. Thus, for such z,

@Z)F (O&N[ﬁp(%’)) _ 1/)F (—OZSK/F(LC)) ‘
TF TF

=t+ 1.

>d+e
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Again

! /
so that
Nk/p(l1+2) =1 = Sk/r(z) + Nx/r(z)  (mod PF)
if 2 € PLH. Moreover

{—1
d’+6’:d+e+T(m—t—1)>d+e

so that Ny p(z) and hence Sg/r(z) belong to PE. Thus
T
1

But $,2/a; belongs to PEHe " and
(-1

d+é—v=d+e+ v—v>d+e

so that

<BPK/F($)) - <5SK/F($) + BNK/F($)>
Y| ————— | =¥r
YF TR

which equals

()2 PSkyp(x) — aSxsr (é'%) = VYK/F ((ﬁ - a—ﬁl) i)

TF o ) YR

as required.

Lemma 8.6. Suppose K/F is a wildly ramified quadratic extension, m > t + 1, and
m=t+1+wv. Let up be the non-trivial character in S(K/F). If 5 belongs to O there is a
Bi in Ok and a & in Ul such that f = dNg/pf1 (mod PBt). We can choose a = a(pur) so

that 5
pp(1 4 o) = w(ﬂ)
YF

if © is i P and so that o« = Nk pay for some ay in Ok. Here s has the same meaning as
before. Thus, if r is the integral part of %, t+1=r+s. With these choices

0 ,
2 e (8) = 6— % (mod L),

(631
If = 0 the existence of § and f; is clear. Otherwise we can find a 3; such that N pf1 /8
is in Uf. We choose ¢ accordingly. If m =t + 1+ v and

pr(l+x) =9Yp <Oé;;x>
TE

for z in P% then Opa = P%. Choose 1y in Ok so that Ogn = P and set n = N pnr. Set
a = en where € is yet to be chosen. We must have

pr(l+z) = <en5x)
YE
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if x € P%. This equation determines the unit e modulo B%. Since any unit is a norm modulo
P’ we may suppose € = Ng,per. Take a; = €.
Since the extension is quadratic

NK/F(l + x) =1+ SK/F<5U> + NK/F(x)

Since
s+0k/p _s+i+1 >
2 2
both Sk/p(z) and Ng,p(x) are in B3 if & belongs to P and

e (aéNK/F(x)> . (—aasK/F(x)> |
F F

We have m’ =2m — (t+1) and ' = m — s, so that ' + € =m —r and d' + ¢ —v = s. Thus

if 2 belongs to PLHe

B

and fiz /oy lies in P35 Consequently
Py px ad\ x
m(ﬁmF)zww<@—&—)—)
TF o1 ) VF

Lemma 8.7. If K/F is a tamely ramified quadratic extension and m > 2 we may take

PI*(/F(B) = 3.

Notice that t +1 = 1 so that m > ¢t + 1. In this case m’ =2m — 1, d = m — 1, and
d+e =m. If v € PLte

as required.

is congruent to
modulo ‘BZ. The lemma follows.
To complete the proof of Lemma 8.2 we have to show that if K/F is cyclic of prime order

Nige(Prgr®) = T (B+a(ur))  (mod $f).
RFES(K/F)
We consider the cases discussed in the previous lemmas one by one. If the extension is
unramified we may take all the numbers a(ur) to be 0. The congruences then reduce to the
identity " = ™. The same is true if K/F is cyclic of odd order and d >t + 1 or K/F is
quadratic and ¢ = 0. If K/F is cyclic of odd order £ and ¢ +1 < m < 2t + 1 the right side
becomes
Bé _ 60/_1-

If =0 (mod P%) both sides are congruent to 0 modulo B4. Suppose 3 does not belong to
B and BOr = P%. Then 0k = P% and

zwm@—@%>
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is congruent to

¢ -1 - i gt i [ P12
8~ pa +;<—1> 8B (M)
modulo P4. If x € K then Ei(z) is the ith elementary symmetric function of z and its
conjugates. Moreover 5y /By belongs to ‘B%_l)(v_u). fe—-—1>2:>1
il—=1)(v—u)+L-1)(t+1) - (—=1D(v+t+1)
14 ~ 14

— fu.

The right side is

-1
le)m pu = d — lu.

The argument of paragraph V.3 of Serre’s book shows that
o
Ng/r (5 - 51a—1) == pa™"  (mod PB}).

For a wildly ramified quadratic extension we use the notation of Lemma 8.6. The right
side of the congruence may be taken to be 32 + Bad. The identity is again non-trivial only if
BOr = P4 with v < d. Then the left side may be taken to be

Cx ﬁ?asK/F@; ) +0%aNk/rb

which is congruent to

B2+ aBs — 8 5SK/F(?OZ‘)

modulo PB4. Since

v—u+t+1 m
—_— > — —u>d—-u
2 2

I5; SK/F(§1Q> =0 (mod P%L).
o%]

Suppose xr is a quasi-character of Cr, m = m(xr), and 8 = B(xr). If, as sometimes
happens, m’ = m(xx/r) we can take 3(xx/r) = PI*{/F(ﬂ)'
Lemma 8.8. Suppose K/F is Galois and G = (K /F). Suppose s > 0 is an integer and
G* ={1}. If m = m(xr) and m > s then
m' = Ygp(m —1) + 1 =m(Yk/r).
It follows from paragraph V.6 of Serre’s book that

if v > s. Thus xg/p is trivial on Uy 1f u > Q/}K/F(m — 1) but is not trivial on U}, if
We can now collect together, with one or two additional comments, the previous results in
a form which will be useful in the proof of the first main lemma. We use the same notation.

we have

Lemma 8.9. Suppose K/F is a cyclic extension of prime order £, xr is a quasi-character
of Cp, m(xr) 2 t+1, m(xr) > 1, and m(xx/r) — 1= wK/F(m(XF) — 1).
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(a) If K/ F is unramified we may take B(xxe) = Bxr) and Blurxr) = A(xr) for all
pr in S(K/F).

(b) If € is odd and d >t + 1 we may take B(xk/r) = B(xr) and B(urxr) = B(xr) for
all pp in S(K/F).

(¢) If € is odd and t+1 < m < 2t + 1 and pp is a given non-trivial character in S(K/F)
we may choose o = app) = Ngypon as in Lemma 8.5 and B = B(xr) = Ni/rbh
for some 1 in Ux. Then we may choose

ﬁ(XK/F) =pB- 510%

and
B(pixr) = Nig/e(B1 + Can).
(d) If € is 2 and K/F is wildly ramified we choose a = a(up) as in Lemma 8.6. We
may choose = B(xr) in the form 0N pf1 with 0 in Up. Then we may choose

ad
5(XK/F) =pB- 6104_1
and

Burxr) =B+ ad.
(e) If € is 2 and K/F is tamely ramified we may take B(xx/r) = B(urxr) = B(XF).

Only part (c) requires any further verification. It must be shown that

Ngyr(Br+ () = B+ (o (mod PL).

The left side is congruent to

ﬁﬂkm(1+£%).
B
All we need do is show that
Io B
The right side is
1+ Ng/r (ﬂ) )
o

According to paragraph V.3 of Serre’s book the congruence will be satisfied if
v+ (0—1)(t+1)
l
Butt+1=d+4+zwithax>0sothatd+x4+v=2d+¢cand v =d+ ¢ — x. Thus
v+l —=1)(t+1) dte—x+({—1)(d+ ) e+ (0 —2)x
l l

The preceding discussion has now to be repeated with different hypotheses and different,
but similar, conclusions.

> d.

—d+ > d.
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Lemma 8.10. Suppose K/F is abelian and G = B(K/F). Suppose there is at > 0 such
that G = Gy while Gy = {1}. If2<m <t +1 then m’ = Ygp(m — 1) + 1 is just m. Let
t+1=m+wv, let § be such that 6Op = ‘B?Hnw”, let €, in Ok be such that e,0x = P,
and let € = Ng/per. We may choose yp = d/€ and vk = 0/ey. Let r be the greatest integer in
S and let s =t+1—r. If pp is a non-trivial character in S(K/F) then m(up) =t+1. Let

pr(l+ ) = ¢F<W)

for x in *P3.. Then
5 TT (B¢ + B(ur) = Nigyr (Piy(8)) - (mod ).

BF#L
The relation m' = g /p(m — 1) + 1 = m is an immediate consequence of the definitions.
Since the extension is totally ramified
n(gr) =K : Fln+ ([K: F]—1)(t+1)
if n = n(vp). Thus
m4+n=(t+1+n)—v
and
m' +n(gp)=[K:Flt+14+n)+(m—t—1)=[K:F](t+1+n)—o.
Consequently vz and yx can be chosen as asserted. The results of chapter V of Serre’s book
imply that m(up) =t + 1 if pp is not trivial.

We saw when proving Lemma 8.2 that if + = y (mod ‘B%) then Ng/px = Ng/ry
(mod B%) and that if F € L C K both L/F and K/L satisfy the conditions of the lemma.
For L/F, € is replaced by Nk, re1 and, for K/L, € is replaced by N/ re,. Take QE/F to be
PL*/F in the special case that m =t + 1 and ¢; = 1. Then

Ngo(e)x Pl (8 ePrr(x
@/JL/F< /L )(5 /()>:¢F< /5( )5)

by definition. The right side is equal to
xQE/F<Eﬁ)
byp| —5 |

QZ/F(EB) = Ngy(er) E/F(ﬁ) (mod 7).
If pup belongs to S(K/F) but not to S(L/F) then m(ur/p) = m(pr) and B(u/r) may be
taken to be Q7 (B(ur)). Let S’ be a set of representatives for the cosets of S(L/F) in
S(K/F)— S(L/F) and suppose the lemma is true for K/L and L/F. Then

Ng/p <P1*</F(5)> = Np/r <NK/L (P;(/L (PE/F(5)>)>

Thus
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is congruent to

Nijr | PLp(B) H {NK/L(GI)PL*/F(B) +QE/F(6(MF))}

pres’

modulo B%L. This in turn is congruent to

Npsr (PE/F(B)> H Nr/r <QE/F(EB + 5(/@)))

urp€es’

Applying the induction hypothesis to the first part and Lemma 8.2 to the second, we see
that the whole expression is congruent to

B3 I (eB+B(wr)) T (8+8ur) +Br)

vreS(L/F) preSs’
vp#l vpeS(L/F)

modulo PB4 as required.
Once again we devote a lemma to cyclic extensions of prime order.

Lemma 8.11. Suppose K/F is cyclic of prime order ¢ and 2 < m < t+ 1. Choose a
non-trivial character pp in S(K/F). There is an oy in Uk such that if & = Nk poy

(14 ) = w(%)

for z in PB3.. If B belongs to Op there is a By in Ok such that f = Ni/p(81) (mod PB%).
Then

e(8) = 0 = fro (mod B)

Since B(jup) is determined only modulo B% and s <t we can take 3(up) = Nk poy for
some o7 in Ug. The existence of 3; also follows as before. Since t +1 > m
/ / . .
2(d —i—e)—i—(f D(t+1) > m+ (¢ g1)<t+1) > m

and
Nk/p(1+2) =14 Skyr(x) + Nxyp(z)  (mod Py)
if 2 belongs to PEL. Thus

(255 () ),

Butd +€ +t>1t+ 1 so that

Nk/r(e1z)B = aNgyp (— . ZL‘) (mod PL)

Sincet+1=m+uv,d 4+ +v>sandif y= ﬁifl -« then y which lies in ‘Bfﬁeu”’ also lies
in ‘P%. But
25+ (t+1)((—1)

/ >t+1
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so that
Ng/r(1+y) =1+ Sk/p(y) + Niyr(y)  (mod PHH).

—aNgp(y) o aSk/r(y)
(o) )

Ui <w) — bir (%1 (foo-2 51)33)
as required.

Since 2 < m <t + 1 the extension is wildly ramified, £ = p, and once the character up is
chosen as in the previous lemma we can define u% as in Lemma 8.5. The left side is congruent
to

Consequently

In conclusion

5(513_164—1 n (_1)130[@—1)‘
If 8 € PB4 this is congruent to 0 and so is the right side. Suppose 3O0p = PB% with u < d.
The right side is congruent to

Ng/r (55 - 51%) = ﬁOéZ_lNK/F (ﬁﬂi — 1).

510461

Since 01 (SNl (-1 o1
R R R N SR ES I

7 d

this is congruent to

(8.1) ﬁo/—l{NK/F <£%é> + (—1)5}.

Since
BNw/e(Br') =1 (mod PE).
We see that
B Ngpft =55 (mod Ri)
and that the expression (8.1)) is congruent to
ﬁ@eﬁ—l + (_1>Zﬁo/—1
modulo 4.

Lemma 8.12. Suppose K/F is abelian and G = B(K/F). Suppose there is an integer
t such that G = Gy while Gy11 = {1}. Let xr be a quasi-character of Cr and suppose
2 <mxp) <t+1. Ifm(xrp) <t+1 then m(xx/r) = m(xr). If m(xp) = t+ 1 then
m(pupxr) <t+1 for some pp in S(K/F) if and only if m(xx/r) < m(xr).

It follows immediately from Lemma 6.7 that if xp is any quasi-character of C'r and F
any finite separable extension of F' then

m(XE/F) — 1< ¢g/r (m(XF> - 1)‘
In the particular case under consideration Lemma 6.10 shows that if m = m(xr) < t then
Nygp: Up— U — U~ UL
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is an isomorphism. Thus y,r(a) will be different from 1 for some o in Up~" and m(xx/r)
will be at least m. If m(xr) =t + 1 then m(upxr) is less than ¢ + 1 for some pup in S(K/F)
if and only if xf is trivial on the image of Ul /UL in UL/UL™. This is so if and only if
m(Xx/r) < T

We shall need the following lemma in the proof of the first main lemma.

Lemma 8.13. Suppose K/F is cyclic of prime order, xr is a quasi-character of Cr with
m(xr) <t+1, and m(xx/r) = m(xr). Choose a, oy, €, € in Lemma 8.11. We may choose
B = B(xr) = Ng/pfr with By in Uk and we may choose

€ a
Bxx/r) = b —bo
Moreover m(pSxr) =t + 1 and we may take
B(M%XF) = Ng/r(Con + e151).

Since B(xr) is determined only modulo B4 and d < ¢ the existence of 3 is clear. It is

also clear that m(uSxr) =t + 1. The elements 5(xp), B(xk/r), and B(uSxr) are to satisfy
the following conditions:

(i) If z is in P

(ii) If = is in PL

Xi/p(l+2) =vYg/p (M)

(iii) If = is in P%

W5 (1+ 2)xr(1 + o) = r (W—“)

o
We have already shown that 3(xx/r) may be taken to be

€ o
B — h—
€1 a1

,B(M%XF) must be congruent to (a + €8 modulo 7%

Ng/p(Con + €181) = (aNgyp (1 + ﬂ)
Caq
Since , )
v+ —=1)(t+1) > _1(t—|—1) >r

l l
The right side is congruent to

modulo P’ E|

%(1998) The manuscript of Chapter 8 ends here.






CHAPTER 9

A lemma of Hasse

Let A C k be two finite fields and let G = &(k/\). If z € Kk set

Wi/ ( E 71 1%

where the sum is taken over all unordered pairs of distinct elements of G. It is clear that

Wi/ (T + 1Y) = WA () + Weya(y) + Suya () Sea(y) — Seya(zy).
One readily verifies also that if A <7 < k then

e/ (@) = Wiy (S (@) + Sya(weyn(2))

Suppose 1, is a non-trivial character of A\ and ¢, is a nowhere vanishing function on A

satisfying the identity
oa(z +y) = eal@)ea(y)a(zy).
Define ¢,/» on x by
@n/k(fc) = SOA( H/)\( ))wA( WH/A(x))-
Then ¢,./x(z + y) is equal to
P (SR/A(HT + Z/))%(—wn/A(ﬂf) — WA (Y) = Sk () Skya(y) + Sn/x(ﬂfy))
which is
Pre/M(T) /2 (Y)VreA ()

If the fields have odd characteristic the following lemma is, basically, a special case of

Lemma 7.7. That lemma has been proven in a simple and direct manner by Weil [14]. We

shall use his method to prove the following lemma which in characteristic two, when it cannot
be reduced to the previous lemma, is due to Hasse [8].

—ZSOA(I)

Lemma 9.1. Let

TEA
and let
%/A Z %/A
TEK
Then
o(Pr/n) = 0(90/\)[“]-
If

PX)=X"—aX™ +bX™ % — +...
is any monic polynomial with coefficients in A set m(P) = m and

XA(P) = @a(a)r(=b).

61
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If the degree of the polynomial is 1, b is taken to be 0; if the degree is 0 both a and b are
taken to be 0. If
P(X)=X" —ad/X™ L4y X™ 2 4...
then
PP'(X) = X" —(a+a) X" 4 (b4 Y + ad) X — 4
and
XA(PP') = gala+a)ha(=b =V —ad’) = xa(P)xa(F).
If t is an indeterminate we introduce the formal series
1

Bt = xaPe® =TI (1= apem®) .

The sum is over all monic polynomials with coefficients in A and the product is over all
irreducible polynomials of positive degree with coefficients in . If r > 2

> xaP)=0

m(P)=r
so that
Fi\(t) =1—0o(p)t.
If we replace A by &, @x by @/, and 95 by 1,/x, we can define F,/5(¢) in a similar way.
If £ =[r: A and T is the set of kth roots of unity, the problem is to show that

[ 7a(¢t) = Fopn(h).
CeET
Suppose P is an irreducible monic polynomial with coefficients in A and P’ is one of its
monic irreducible factors over . Let m = m(P) and let r be the greatest common divisor of
m and k. The field obtained by adjoining the roots of P to x has degree mTk over A\ and is
the same as the field obtained by adjoining the roots of P’ to x. Thus m(P') = ™ and P
splits into r irreducible factors over k. We shall show that

k/r
e (P) = {a(P)}"
Thus if P/, ..., P! are the factors of P and ¢ = %
H{l - XN/A(Pi/)tkm(P{)} — {1 - X/\(P)Ztem}r
i=1
which equals
[T{1—ap)cmemy.
CeT
The necessary identity follows.
Let v be the field obtained by adjoining a root x of P’ to x and let i be the field obtained
by adjoining = to A. If
P(X)=X"—aX™ ' 4+bpX™2...
then
a= Sun(x)
and
b= wy(z).
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Thus
XA(P) = o (Sua (@) r (~wia (@) = (@)
Since ¢,/x(x) is equal to
O3 (5072 (Supx @) ) 03—t (Suyu2)) + Sopa(ul)) )

which in turn equals

90/@/)\( 1///{( ))wn/)\( wV/H('Z'))'
We conclude that

Xu/A(P) = @ua(2).
Replacing & by p we see that ¢,/ (z) equals

() s (=) = ey (-5 a?).

One easily shows by induction that for every integer ¢

(9.1) {oun (@)} = Gt Vs (—N = %2).

The relation

¢
XeA(P) = {xa(P) }
follows.
Taking 1 = X in the identity (9.1]) we see that

{a(@)} = oalta)s (—e@@

for every integer /. Moreover {gp,\(O)}Z = ¢a(0) so that ¢,(0) = 1. If the characteristic p of
A is odd take ¢ = p to see that {gpk(x)}p = 1. If the characteristic is 2, take ¢ = 4 to see that

{cpA(x)}4 = 1. Suppose ¢ is another function on A which vanishes nowhere and satisfies

Az +y) = P\(@) s (y)en(zy).

Then ;" is a character and for some a in A

Ph(z) = pa(z)dn(ax).
Of course

pa()a(az) = oxa(z + a)py ().

Thus

a(2)) = @5 (@) (p).
If a and b are two non-zero complex numbers and m is a positive integer we write a ~,, b if,
for some integer r > 0, (%)mr =1.

Lemma 9.2. If o € \*, the multiplicative group of A, let v(«) be 1 or —1 according as « is
or is not a square in \. Suppose P\ (x) = Yx(ax), @\ and ¢\ are nowhere vanishing, and

AT +y) = eal@)er(y)a(ry)
while
o\ +y) = P\ (@) R\ () V) (2y).
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Then
a(p)) ~p v(a)a(ea).
Moreover
a(en) ~ap ‘0(%)|-

Suppose first that p is odd. By the remarks preceding the statement of the lemma it
is enough to prove the assertions for one choice of ¢, and ¢/. For example we could take

oa(x) = \IIA(@> and if a = $? we could take ¢} (z) = %\(@)- In this case it is clear

that o(py) = o(¢)). However if « is not a square, we take ¢ () = sz(aT‘”?). Then

oon+ale) =2 (3 ) =0

TEA

a(2) = ¥y (—%2>

so that o(¢y) = v(—1)o(p,). Moreover it is well known and easily verified that o(p,) # 0.

Since
{ole)} = (=D} |o(en)]" = o)

With this choice of ¢,

we have
a(en) ~ap ’U(SOA)|-
The absolute value on the right is of course the ordinary absolute value.

Suppose p is 2. Again any choice of p, and ¢) will do. In this case « is necessarily a
square. Let a = % We can take ¢} (z) = oa(Bx). Then o(¢)) = (). It is enough to
prove the second assertion for any 1, and any ¢,. Let ¢ be the prime field and let ¢4 be the
unique non-trivial additive character of ¢. Take 1y = 1y /4. Let ¢4(0) = 1, ¢4(1) = i. One
verifies by inspection that

Po(r +y) = @o(2) s (y) s (ry).
Take oy = /4. Since
o(ere) = {o(p)} .
it is enough to verify that
a(ps) ~2 |a(s)|
Since o(p,) = —1 4 ¢, this is no problem.

If a is a non-zero complex number set

Alg) = =

= m.
The following lemma explains our interest in the numbers o () ).

Lemma 9.3. Suppose L is a non-archimedean local field and xp is a quasi-character of C,
with m = m(xr) = 2d + 1, where d is a positive integer. Let 1y be a non-trivial additive
character of L and let n = n(vyyr). Let v be such that yOp = PB7*" and let 5 be a unit such

that
o1+ 7) = w(%)
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for z in PLTL. Choose § so that 605, = B¢ and let 1y be the character of X\ = O /B, defined
L L

by
Ya(r) =y (65 x)

~
If ) is defined by

or(a) = o (22 )1+
then

ox(® +y) = eal@)ea(y)alry)
and

As(xe,vr,7) = A[—o(en)].

In the statement of this lemma we have not distinguished, in the notation, between an
element of Oy and its image in A. This is convenient and not too ambiguous. It will be done
again. The only questionable part of the lemma is the relation

oA +y) = ea(@)ox(y)Va(ry).

Since
(14 6x)(1 + 0y) = (14 dx + 6y)(1 + 6*zy)  (mod P7T)
we have

52
Xz (1 +6z)xz (1 + 6y) = x2' (1 + 6z + 0y)yr, (—6 . y) :

The required relation follows immediately.
There are a few remarks which we shall need later. It is convenient to formulate them
explicitly now. We retain the notation of the previous lemma.

Lemma 9.4. If m(ur) < m(xyg) then
As(prxe, Yi;y) ~p As(xe, Yri7)
and if m(ug) < d we may take B(prxr) = B(xr) and then
As(prxe, Y v) = Asxe, ;7).
In both cases m(uzxz) = m(xz). Moreover if x € P2

o1 (M’“‘L—W> — p(1+2)xo(1+2) = xp(1+z)

which in turn equals

" (5(XL)$)

L .
Y
Thus
Blurxe) = B(xz) (mod Pr)
and if
2
NOE (—5 (Xg)é $>
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while

R ey

then ¢, = . The first assertion of the lemma now follows from the previous two lemmas.
It is clear that we can take S(urxr) = B8(xr) if m(ur) < d. Let the common value of the
two numbers be 5. Then

o (%“”)u;u S (14 o)

v (%) \i' (14 bx)

We see now that the second assertion is completely trivial.
There is a corollary of this lemma which it is convenient to observe.

is equal to

Lemma 9.5. Suppose m(x1) = 2d + € where d is a positive integer and € is 0 or 1. If
m(pr) < d and py, is of order r then

A(prxe, ¥r) ~r Alxe,¥r).

Choose v in the usual way so that

A(xr, ¥r) = x.(v)A1(xz, ¥r;7)
and

A(prxe, ¥r) = xo(v)pe(v) A(pexe, Yr;7y)-
It is clear that
pr(y) ~r 1.
If we take
B(prxr) = B(xr)

then, clearly,
Ao(prXe, ¥rsy) ~r DXL, YL, 7).
To complete the proof of Lemma 9.5 we have only to appeal to Lemma 9.4.

Lemma 9.6. Suppose K is an unramified extension of L and xr, is a quasi-character of Cp,
with

m=m(xg) =2d+1
where d is a positive integer. Let 1y, be a non-trivial additive character of F' and let n = n(1y,).

Suppose
xo(l+z) =4y (%)

wy,

for x in Pt Take

If
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and if
Sl

Pr(T) = Yi/L (W) Xy (1+ @i)

L
for x in k = 0g /Px then ¢ = pu/x. Moreover if [K : L] = { then

m-+n — mTn £
As(Xx/L, Vi, @) = (=1 {As(xp, o, @)}

Once we prove that ¢, = ¢,/ this lemma will follow from Lemmas 9.1 and 9.3. If =
belongs to K let E?(x) be the second elementary symmetric function of x and its conjugates
over L. If z belongs to Og

Nigr(1+ wiz) = (1+ @ Sk/1r) (1 + widEQ(x)> (mod B7).

Since
E*(z) = wyn(z)  (mod Pr)
we have
©n() = A (Sk/LT)Ur (—wiyn(2)) = @uyn(T).
Now suppose K is a ramified abelian extension of L and [K : L] = ¢ is an odd prime. Let
G = &(K/L) and suppose G = G while Gy11 = {1}. Suppose

m=m(xy) =2d+1
is greater than or equal to ¢ + 1 and

xo(1+ 1) = w(%)

wy,

(-1
d=/0d——|t
- (F)
and if z belongs to O set

wdll’ 7 7
o\(2) = YryL (im—K—i—n> Xz <1 + Skyn(wher) + E2(w§l<$)>-

L

for = in ’B%H. Let

Suppose also that
WL = NK/LWK-
The assumptions listed, we may now state the next lemma.

Lemma 9.7. If
2
=S ZK

then € is a unit. Moreover ¢\ is a function on A\ = Op /P + Ok /B which satisfies
(@ +y) = (@) @5 () va(ery)

() = 1 (f—ﬁ) |

if
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If
e
ox(@) =V —gmm | X (L+ i)
wr,
then
Alo(pn)]" = Alo(4h)]-
Since )
d+ (¢ _gl)(Hl) >4
the number
k(@)

lies in B¢ . Moreover E?(wwfx) is a sum of traces of elements in P2¢. Since
2+ (0 —-1)(t+1) (-1

=2d > 2d
0 A
it lies in P2¢. If x lies in P it lies in PP and
S/ (@)
lies in P4 because
"+1 -1 1 -1
d + +(£€ )(t + ):d+1+%>d+1.

Thus if = belongs to Pk
/8 4 _ ’
P(x) =1 <W5K/L(W?<x) Xz (1 + 5K/L(W?<ﬂ?)> =1L
L
Since
B (= (z+))
is equal to
E2(w?<lx) + Ez(w%y) + SK/L(W%Z')SK/L(W?{I:Q) — SK/L(wf(dlxy),
the expression
L+ S (@@ +9)) + B (= (@ +)
is congruent modulo P} to the product of

1+ Sk/p(wha) + E*(whe)

and
1+ SK/L(W?(I?/) + E* (@)
and
1 — Sg/n(wid xy).
Thus
iz +y) = @i (2)h(y)va(exy).
Since

2d' + (L —1)(t+ 1)
14

> 2d
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the number € is in Op. We conclude in particular that if y belongs to Pk then

P +y) = ph(@).
If t = 0 let o be a generator of G and let w7 = v. In this case 2d' = 2d{ and
2d

w%dl 1 de(e—1
—2d H Wg ¢ =V ) (mod P
wL T€G

and
e = "D (mod Py
isaunit. If ¢t >0
o = 'l (mod Fr)

€= Sk/L (%) (mod PB).

L

so that

It is shown in paragraph V.3 of Serre’s book that the right side of this congruence is a unit.
First take p odd and let

el ()
R A0

Making use of the calculations in the proof of Lemma 9.2 we see that

1+ Sk/p(wha) + E*(wia)

Then

Alo(p)] = n(-1)F w(

of v, is the non-trivial quadratic character of A*.
Since

is congruent to

{1 + SK/L(wKx)}{l + EQ(wKa:)}
modulo B} the value of ¢\ (z) is

0 <<SK/Ly)2 +2aSk/Ly — 2E2(9)>

2
if p
Wk
= —=x
Y w%
Thus
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Replacing x by

a’/'__
d/
Wk

and summing we find that

o(¢) :w(“f‘ ) —Z@”(?)

Collecting this information together we see that to prove the lemma when the residual
characteristic p is odd we must show that

£—1
V)\(—l)T = Z/)\(E).
Since v#(=1) is certainly a square we have to show that
£—1
w(=1)7 =w(0)
when t = 0. If the field A is of even degree over the prime field both sides are 1. If not, an

odd power of p is congruent to 1 modulo ¢ and the relation follows from the law of quadratic
reciprocity. If ¢ > 0 then

€ = Sk/L (%) (mod Pr)

L
and we can appeal to paragraph V.3 for a proof that

e+u =0
has a solution in A\. Thus vy(¢) = vy(—1) and we have to show that
n(-1)"7 =1.

If p=1 (mod 4) then vy\(—1) = 1 and if p = 3 (mod 4) the exponent is even.
Before considering the case p = 2, we remark a simple consequence of the preceding
discussion.

Lemma 9.8. If p is odd let

Ift=0 and
= s
then
(T x?
o <;) = ) €<? + ozx)
and if t > 0
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In both cases

, SK L(y+a)2 —€a2
mw:w(( S )
with p
_ Pk
y—w%x.

If £t =0 then y = px. Thus if x belongs to Op, as we may assume,

2 .2 2
WC\(E) :¢A<€(x+02 fa ) =y €<%+ax>

If t > 0 then ¢ = p is odd and
dld+ (¢ —1)(t+1) :1{(6—1)(25—1)— (E;Dt}:%{(6—1)4—([_1)25}21

14 l 2

so that, if z € Op,
Skip(y +a)* =ex®  (mod Pr).
Now take p = 2 so that ¢ is necessarily 0 and again let

(e-1)
M _— Vde 621
so that p
w
—Z{ =p  (mod PBr)
wr,

If xisin Op and y = ﬁ then

is equal to

lx (-1

. (T) it (14 et 2 ain?)
wr,
Since 00— 1 00— 1
14 ij‘-f:v + %w%‘im? =(1+ fw%x) (1 + %w%d:ﬁ)

modulo ‘BT we have

,(x —L(l—1)

P <;> = paA(lx) Py (Tm2)

which equals

{Sﬁx(l’)}e-
{oa(@)}" = oa(22) P (—2?) = Pa(—2?).

Since the characteristic is 2 there is an a # 0 such that

a(x?) = Ya(ax).

Then the complex conjugate of py(z) is

() Ya(ax)

Moreover
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and

o(pn) = —Z%@ + o)

which equals

— Z ox(z)er(a)r(ar)

is equal to )

pa(@)a(px)
Consequently 1

Alo(en)]" = ¢a(a) = Ao ()]

Since

{@A(l")}4 =1
we have

if /=1 (mod 4) and

if =3 (mod 4).
We have to show that

pala) = =1
if /=1 (mod 4) and that
441
pala) > =1
if £ =3 (mod 4). These relations are clear if ¢ is congruent to 1 or 7 modulo 8. In general if
(=1 (mod 4)
- C—1)(¢—3

and if £ = 3 (mod 4)

(@) %(_(H 1)8(6— 1)@2)'

Let ¢ be the prime field and let 1), be its non-trivial additive character. Choose a; such
that

Uajo(®) = a(aiz).

Ua(@?) = e <x2> = ¢A/¢( - ) = Ya(arz)

a? oy

Then

and o = ;. Thus
Ua(@®) = ¥ae(1).
The right side is +1 or —1 according as f = [\ : ¢] is even or odd. But ¢ divides 2/ — 1 so
that, by the second supplement to the law of quadratic reciprocity, f is even if ¢ is congruent
to 3 or 5 modulo 8.
There is a complement to Lemma 9.7.
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Lemma 9.9. If m(xz) > 2(t + 1) choose S(xk/r) = B(xr) =B in Op. Ift+1 <m(xr) <
2(t+ 1) choose B(xL) = p and
«
5(XK/L) =B-p—
g
as in Lemma 8.9. Then m(xk/r) =2d + 1 and
Blxx L)wd/$ - /
Vr/L (# XKl/L(l + wher)

L
18 equal to
fobz\ _ / ,
Vi1 (wTIin Xz (1 + Sk(@wgz) + E2(w?(:v)>.
L

From Lemma 8.8 we have

as required. If d >t + 1 then

(C+1), (-1

d >
2 2

(d—t)=m

because ¢ is odd. Moreover,
3d + (0 —1)(t+1) - m + (0 —1)(t+1)
l - l

=m.
Consequently
Nio(l+ wiha) =14 Sk (whe) + EB*(wha)  (mod BT)
and the lemma is valid if m > 2(¢t + 1).
Ift+1<m<2(t+1) we still have
3d +(—1)(t+1)
14

=Zm
so that
NK/L<1 + w}l{x)
is congruent to
modulo P7'. Since d’ > d + 1 this is congruent to
{1 + SK/L(W%ZB) + EQ(w%:E)}{l + NK/L(W%QE)}

modulo P7*. Certainly

, BN whx
XL (1 + NK/L(“?{@) =L (% .
wr,
Moreover, if m =t+1+wv
0 —
d—v=d+ 3v/d/s



74 9. A LEMMA OF HASSE

if 5 is the least integer greater than or equal to % Thus, just as in the proof of Lemma 8.5,

BN, (whx) N1 <%w%x>
V| — 55— | =Yt

m+n m+n
Wy, L
is equal to
()
wi’”"

Multiplying the inverse of this with

d/
ol (-52) )

Bwga
z/JK/L (W .

we obtain

The lemma follows.
If m =t + 1 we may still choose

B(xxsw) = B — ﬁlo%

as in Lemma 8.9. However the relation between ¢, (z) and

B(XK L)wd/x _ /
pr(T) =YKL (# Xy (1 + @)
L

will be more complicated. Here x = Ok /B is the same field as A = O /B. We introduce
it only for notational purposes.
Because m =t + 1 the number ¢ is at least 2 and

d:d’zz.
2
Since 24 Do 1
DD
p
and d D(t+1
DD
p

the expression
Ng/o(1+ o)
is congruent to
{1 + SK/L(wf(x) + EQ(w?(x)}{l + w%NK/Lx}
modulo ‘B7* and

XL <1 + SK/L(w?{:L’) + E2(w§l<x))
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is equal to

m4+n
Wg

- < B8k (@) + ﬁE?(wKx)>
According to Newton’s formulae
SK/L(W?IQ) — SK/L(W?($)2 + 2E2(’W?(.CE) =0.
Thus 1
E*(whx) = —QSK/L(w%lxz) (mod PB7T).

Observe that p is equal to £ and therefore, in the present circumstances, odd.
Let pr, be a character in S(K/L) as in Lemma 8.9(c) and let

ax B x?
o = | U+ wie) = | p + 72
w; 2

_ @
P=7y

with

Certainly
fr (NK/L(l + @?@) =1

if x belongs to Og. Replacing x by oy we see that

1 B B
VYo | = | @Sk/L <—1w§l<$) - SK/L (_1?3?%2) + Ng/L(frofx)
is equal to
22
1/1)\ p; + 7z
if

1

1 1 _d 1 _2d, 2 1 _d
=19 _'éw — —S _ftw N _/éw T
d K/L< . Kx) K/L( KT K/L ) K

which is congruent to

—NK/L.CC = —qP
(67 07

modulo *B;.
Let
P -
pa(z) =1 (m Xp (1 + wir)
wr,
equal

22
l/J,\( +J:E>



76 9. A LEMMA OF HASSE

If z belongs to Ok
%P —BNg/rx
Xo' (1 4+ @i Nigjrx) = (- + Uﬂﬁp) Ui <WTI1(J/F7L~L> :
L

We now put these facts together to find a suitable expression for ¢, (). We may as well
take x in Or. Then ¢, (z) is the product of

Bwla
wK/L <w2n+n
and
51@ w?(x -1 d
@/JK/L( P X, (1+ @i Ng/rx)
and

v (—%{smw;zx) - %SK/L@W)}) |

L
The second of these three expressions is equal to the product of

2P 2P
(O3 —+0$p (O _17—0_171717
af? wfgﬁ epﬁl
wK/L < 20 % 5. 92 min TP,\ Oél
2d
WK
€ = SK/L (w%d> .
The product of the first and third is equal to

W (%)

As proven in paragraph V.3 of Serre’s book the elements of Uy congruent to

1+ (ex + 2P)w},

and

modulo P4 are all norms, so that

Ua(pa?) = a(—pex).

2p
¢A< 62'0511 T > = 1y <01%> .

In particulaif]

1(1998) The manuscript of Chapter 9 ends with this formula.
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The first main lemma (chapter missing)

Editorial comment: This chapter is missing. Please see comments on this webpage:
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CHAPTER 11

Artin-Schreier equations

The theory of Artin-Schreier equations is central to Dwork’s proof of the second main
lemma. We first review the basic theory, which we take from Mackenzie and Whaples [11],
and then review Dwork’s rather amazing calculations. These we take from Lakkis [9].

We start with an exercise from Serre’s book [12]. Suppose F is a non-archimedean local
field and K/F is Galois. Let p be the residual characteristic. With the convention (0) = B¥
we let

pOr = "Px.
Suppose G = &(K/F) and 0 € G; with i > 1. Let
w = wkg(l+a)
with a in B%. Let
o(x) =27 — .
@ is an F-linear operator on K. If x = awﬁ} belongs to ‘Bj}( then
o) =2 —z=(a’ — oz)wig + a(wﬁg — W)
is congruent to
awl (@7 —1) = aw%{(l +a) — 1}

i1 .. .
modulo ‘BZ;J 1 This in turn is congruent to

(awl)(ja) = jax

i
modulo L7+,

1]
() =27 —1
then, as an operator,
p
DY &
=14+ —-1=
p=trer-1=3 ()

If = belongs to iﬁﬂ then
PH(@) = (G +i) (G + (k= Di)a*s  (mod P
and 1 (x) is congruent to
pjax+j(j+i)--- (j + (p— 1)i)apa:
or to
pjax + j(j771 — " HaPx
modulo ‘,B’;j FeHlgp pOx = PS%. We deduce the following congruences:

We seem to be dealing with yet another use of the symbol !

79
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(i) If (p —1)i > € then

W(z) = pjaz  (mod PEITH),
(ii) If (p — 1)i = ¢’ then
Y(x) = pjar + j(1 — Z‘zofl)apaj (mod ;B?He +1)_
(iii) If (p — 1)i < ¢’ then
Y(z) =51 — P HaPr  (mod P,
Observe that if (j,p) = 1 and o belongs to G;, with i > 1, then

p(r) =0 (mod Py ™)
for all z in ‘BJI; if and only if o belongs to G, 1. It follows immediately that if o belongs to
Gy and 7 > 1 then o
p(r) =0 (mod Py’

for all z in f,B’['( only if o belongs to G;.

If o is replaced by o P then ¢ is replaced by ¥. If k£ > pe_l and Gy, # {1} then, for some
i >k, G; # {1} and G;41 = {1}. Taking (j,p) = 1 we infer from (i) that if o belongs to G;
but not to G;41 then o® is in G but not in Gyye41. This is impossible. Thus Gy = {1} if
k > peT/l. If Gy # {1} then p divides ¢’ so that if (p — 1)i = ¢’ the number i is also divisible
by p. The congruence (ii) reduces to

Y(z) = j(pa+a?)  (mod P,
Thus if o belongs to G; its pth power o? lies in GG, and is therefore 1. Consequently
pa+a’ =0 (mod Prth).
Letting a = aw’, and p = Bw$ we find that
o’ + fa=0 (mod Pk).

Since this congruence has only p roots the image of ©; lies in a subset of U /Ui with p
elements and G is either {1} or cyclic of order p.

If (p—1) < ¢ and (i,p) = 1 the congruence (iii) implies that o” belongs to Gp;41 if o
belongs to G;. However if (p—1)i < €’ and p divides ¢ it shows that ¢” belongs to G,; but not
to Gpiy1 if o belongs to G; but not to G;;1. Thus o — ¢® defines an injection of G;/G,+1 into
Gpi/Gpiv1. If G;/Gi4q is not trivial neither is G,,;/Gpirq and (p — 1)pi < €' If (p — L)pi < €
we can repeat the process. Thus, for some positive integer h, (p — 1)p"i = ¢’ and Gpr; is not
trivial. It is then cyclic of order p. According to Proposition IV.10 of Serre’s book those k£ > 1
for which Gy /Gri1 # {1} are all congruent modulo p. In particular if Gy/Gj,1 is not trivial
for some k£ > 1 divisible by p it is not trivial only when k is divisible by p. The preceding
discussion shows that if 4 is the smallest value of & > 1 for which G /Gy is non-trivial then
any o in GG; but not in G4 generates G; = GG;. In other words:

Lemma 11.1. If Gy is not cyclic then (i,p) =1 if i > 1 and G;/Gi41 # {1}.

Lemma 11.2. Suppose K/L is cyclic of prime degree and G = &(K/L) is equal to G, with
t > 1 and (t,p) = 1. Then there is a A in K and an a in L such that aOr, = B;" and

AP — A =a.

/
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We observe first of all that [/ : L] must be p and that if pOx = P then (p — 1)t < ¢'.
If x belongs to K the symbol O(z) will stand for an element in 2Of and the symbol o(x)
will stand for an element in 5B 5. If

with a; in F' then

p—1
7 —1=Y a;w( %0—1) 1)
=1
and if w% ! = (1 + awl)
i = 1] = |(1+ awh) — 1] = |k
for 1 <7 < p. Thus
o7 o] = leiel{ plal ikl < [kl

There is equality if ag = 0. In particular if
p—1
y= Z a;
i=1
then
¥ —1=9y" -1
and

g

ly” — x| = |wi||yl-

If x belongs to K let
p(x) =2 —x.
Then

(11.1) pCo ) b —plo) = 3 (1)t

Since ¢’ — (p — 1)t > 0 the right side is o(y) if

vg(x) = —t
and
vk(y) = —t
We define v (z) by the equation
2] = | [,
To prove the lemma we construct a sequence Ay, A1, Ao, ... and a sequence Og, Oy, ...

with the following properties:
(i) vg(A,) = —t for all n > 0.
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(ii) If o is a given generator of G and ( is a given (p — 1)th root of unity
A — A, =(+o(1).

(iii)
p(AZ> - p(An> = @Z - G)n
and

|@Z - ®n| = |w§(||@n|
Apir = A, + O,

P(AT ) = P(Anir) = o(p(AT) = p(An)).

It will follow from (iii) and (v) that {©,} is converging to 0. Then (iv) implies that {A,}
has a limit A. (i) implies that vg(A) = —t and (v) implies that AP — A = a belongs to F.
From (ii)

A7 —A=(+o(1).

To construct Ag let o belong to U} and consider

af o o’ —« o Y
= + — (wﬁl ) 1) = —taa + o(1)

ot ¢t ot
Wik Wk Wk Wk

if
@y = wr(l + awk).
We can choose « so that

—tac = ¢+ o(1).
Then we set o
AO — _t
Wk

We observe in passing that conditions (i) and (ii) determine A,, modulo 't

Suppose Ag, ..., A, have been defined. Then
(A7) = p(A) +p(C+o(1)) +o(1)

which equals
p(An) +p(C) +o(1) = p(An) + o(1).
Choose ©,, so that
@Z -0, = p(ArUz) - p(An)
and
167 — O] = |@||On].
Then vk (0©,) > —t and if
A=A, +06,
Vi (Apy1) = —t. Moreover
i1 — M1 = A7 — Ay +0(1) = ¢+ o(1).
and

pP(As1) = p(An) +p(O,) +
with z = 0(0©,,). Then
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Also
p(07) —p(On) = (67 — O,) + (67 — On).
Since v (©7 — O,,) is positive, the right side is
— (07 —0,)+0(0) —0,).
Thus
p(AT 1) — p(Anta),

which equals

P(AT) = p(As) = (©F — ) +o(p(A7) — p(Ay))
o(p(A7) = p(An))-
Lemma 11.3. Suppose Ay belongs to K, a belongs to L, vy(a) = —t and

AL = Ay = a+O(w)
with v > 1. Define A,, inductively by

is

Api = AP —a.
Then
An—l—l - An - O(An - An—l)
ifn>2andifr > (e’—(p—l)t)

Api1—A, =0 (w;:(n_l)(e/_(p_l)t)).

Moreover

lim A, = A

n—oo
exists and AP — A = a.

The last assertion is a consequence of the first. It is clear that
Ay — Ay = O(wl).
Suppose n > 2, and
A, — A, =x=0(1).
Then
App1 — A=A — AP = (A, 1 +2)P —A,

(z) AN R
k=1

which is o(x) because ¢’ — (p — 1)t > 0. If

= O (w;;r(nQ)(e’(pl)t))

is equal to
p—1

andr > e — (p— 1)t it is
r+(n—1)(e'—(p—1)t
O (wK ( )>

The lemma has a couple of corollaries which should be remarked.
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Lemma 11.4. Ifaisin L, vi(a) = —t, AP — A =a, and € is a (p — 1)th root of unity, there
is a number A¢ such that
A¢=A+E+0(@y P

and

Azg —A¢ =a.

Relation shows that A + £ satisfies the conditions of the previous lemma with

r=e —(p— 14t
Lemma 11.5. Suppose A belongs to K, b belongs to L, v, (b) = —t and

AP — A =b.
Then for any u in Ui“ the equation

AP — A =bu
has a solution in K.

Take, in Lemma 11.3, a = bu and A; = A. Lemma 11.5 shows that if S is the set of all
in L with vy (a) = —t for which the equation

AP — A =q
has a solution in K then S = SUL™.

Lemma 11.6. If ( is the integral part off) the number of cosets of Uf“l m S is
p—1
T[OL . mL]H_Z.

Fix a generator o of G = &(K/L). If a belongs to S, A?» — A =a, and £ is a (p — 1)th
root of unity

(EA) — €A = &a.
By Lemma 11.4 there is a (p — 1)th root of unity ¢ such that

A7 =A+(+o(1).
Then

(§A)7 = EA + &0+ o(1).
Thus if S” is the set of a in L with vy (a) = —t for which

a=AP— A
with
A7 =A+1+0(1)
the number of cosets if UE“ in S is p — 1 times the number of cosets of UE“ in S’.
Choose Ay, with vg(Ag) = —t, for which Aj — Ay = ag is in F and

AJ = Ao+ 1+0(1).
If vg(A) = —t, AP — A'is in F, and

A7 =A+1+0(1)
then, according to an earlier remark,

A:A0+QO
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with Qo = O(Ao).
Choose any Qg = 0(4¢) and set Ag = Ag + . According to the relation (A)

p(Ao) = p(Ao) + p(Q0) + 0(S2).

Since
Qg - QO = O(W%Qo) = 0(1)
we have
p—1 p . .
0 -5 =3 (%) 08705 - ) = o - )
Thus

p(Ao)” — p(Ao) = QF — Qo + 0w Q)
and p(Ap) is in L only if
Qg — QO = O(@%QQ),
that is, only if Qy = ag + 0(£29) with ap in L. On the other hand, if
Qg — QO = O(W%Qo)

and we construct the sequence Ag, A, Ao, ... as before and let
A = lim A,
n—oo
then
A= AO + O(Qo).

We conclude that the number of cosets in B3 /B3, s > —t, containing an )y such that
(Ao + 0)" = (Ao + €2)
is in L is 1 if p does not divide s and is [Oy, : B] if it does.
Choose A so that
AP — A =aq
is in S’. If © belongs to B3, s > —t, but not to P35+ and
(A+QP-A-Q=0b

is also in S’ then a and b belong to the same coset of UL if and only if

b=a+o(1).
Ifs>0
p(A+Q) =p(A) +0o(1)
but if s <0,
PA+Q)=p(A)+ Q7 —Q+0(Q)
and

P —Q40(Q2) =0(1)
if and only if s = 0 and
Q=¢+0(1)
where £ is some (p — 1)th root of unity. The lemma follows.

85
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If 2 ={x1,...,2,} let E%(z) be the ith elementary symmetric function of zy,...,x, and
let
Si(x) = sz
k=1
If Z is an indeterminate and
QZ)=) (-1E'(x)z" =[] - x2)
=0 =1

then .
> Six)Z
=1

is clearly —Z times the logarithmic derivative of Q(Z). Thus

n n

Zsi(x)zi Y (-1)E(2)Z | == (-1)iE () 2"

=0 1=0

This identity which we refer to as Newton’s identity is equivalent to the formulae of Newton.
It implies in particular that

i1
(11.2) D (1Y S (@) B (x) = (—1)THE ()

5=0
if 1 <7 < n. We may divide Newton’s identity by Q(Z) and then expand the right-hand side
to obtain expressions for the S?(z) as polynomials in E'(z),..., E"(z). The coefficients are
necessarily integers. To calculate them we suppose that x4, ..., z, lie in a field of characteristic
zero. Let

QZ)=1+P(Z).

Then

— (=" k
logQ(2) = =) = (P(2))".
k=1
The coefficient of Z~! in the derivative of the right side is
i(k—1)! , aj
> Y aoalliEel
k a1+ +an==k 7j=1
ai1+2az+-+nap=t
This expression is therefore equal to —S*(z).
Suppose K/L is a ramified cyclic extension of degree p and G = &(K/L). Let G = G,
and Gy11 = {1}. Suppose u < ¢, A is in K, and
AOg =P
We take {z1,...,2,} to be A and its conjugates under G. In this case we write
E'(x) = Ei/(A)

and ' '
S*(x) = S (A).
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If 1 <7< p—1and ~; is any integer less than or equal to
—iu+(p—1)(t+1)

p
we have ’
By (A) =0 (mod BY).
We may take
U — 1)t
L -t
p p
If 2u + t is not divisible by p this inequality may be supposed strict.
Suppose oy, ..., q, are non-negative integers,
p
S o=
i=1
and
p
i=1
If
p—1
Y= Z Vil — UOép.
i=1
Then
P ) oy
(11.3) [[{Fw)} " =o=h.
i=1
We have ' . .
N> My b]{;t _ Dapt.
p p p

The inequality is strict if a; is non-zero for some ¢ such that tu + ¢ is not divisible by p.
We record now some inequalities that ~ satisfies in various special cases. They will be
needed later. We observe first of all that, if 1 < ¢ < p, 7; is non-negative and is positive
unless p divides iu + t.
(i) If £ = p and k = 2 then
l+ut+y>1+t
In this case o, = 0 and the left side is at least

2(p—1)

1+ t>1+¢.

If p is odd the inequality is strict.
(ii) If £ = p and k = 2 then
v >0
Moreover the inequality is strict if p is odd. This statement is of course weaker than
that of (i).
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(iii) If £ = p, k > 3, and p is odd, then

t—u
yZ2u+ ——
p
o, is again 0. The left side is at least
3(p—1 t— 1
—u—l—%t:ujLTu%—]—?{(?)p—ll)t—(2p—1)u}.

The final term is non-negative. The inequality is strict if u # ¢. If w = ¢ and p does
not divide u it is again strict for then «; # 0 for some ¢ < p — 1 and for such an ¢
the number 7u + ¢ is not divisible by p.
(iv) If & < p then
t—u

p—Du+~y>u+

except when ay, = k or ay, = p — 1. We have to show that
u—1
(p—2)u+7+7 2 0.

The left side is at least

¢ 1 p—1[+
p—2——+ —}u +4— o
i) >
If o, # k the coefficient of ¢ is positive and we need only show that it is at least as

great as the negative of the coefficient of u or in other words that

p—1
=D ai|+—2p=t
=1

This follows from the assumption that o, < p — 2.
(v) If k< p—2and o, = k then
(p—Du+~vy > u.
In this case
v = —ku.
There are circumstances in which the estimates for +; and therefore those for v can be
substantially improved. We will discuss them shortly.
Suppose now that K/F is a totally ramified Galois extension and G = B(K/F) is the

direct product of two cyclic groups of order p. By Lemma 11.1 the sequence of ramification
groups is of the form

G=Gi=Gy=CGhm =Gy £ Gy = = Gy £ Gy = {1}
with (u,p) =1 and uw =t (mod p) or of the form
G=G,1=Gy =G = =G # G ={1}

with (¢,p) = 1. In the second case we take u = t. In the first case let L; be the fixed field of
G, and in the second let L; be any subfield of K of degree p over F. Let Ly be any subfield
of K different from L; which is also of degree p over F. Let G = &(K/L;) and let

G =Gl £ G, = {1},
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Then s; =t and sy = u. According to Proposition IV .4 of Serre’s book,
O/ =" —p)(u+1)+(p—1)(t+1)

and
and
O/, = (p— 1)(u+1).
Thus 1
O, /F = 5(5K/F — kL) = (p—1)(u+1)
and

1
(SLz/F:}_?(éK/F_(SK/Lg) = p—1(u+1)+t+1).

(p—1)
| B
If G = &(L;/F) and ‘ . .

az — 6; ?é @;+1 — {1}

then ¢; = v and

t—u
tg =u-+ .
p
Lemma 11.7. Suppose A belongs to K, vig(A) = —u, and
AP —A=a

belongs to L. IfY belongs to Lo then
vr, (SK/LI (YN)) > (p— 1)ty — ity +vr, (V)
and
. <E}(/L1(YA)) > (p— Dty +i(v,(Y) — 1)
for1 <i<p-—1.
We show first that if § belongs to L; and

p—1
0=> VA
=0

with Y; in L then
UL, (}/Z> =it + UL, (9)
for 0 <i<p—1. Since t; = u and
v (0) = Oggﬁl{vK(K) —iu}
the inequality is clear for ¢+ = 0. To prove it in general, we use induction on i. Suppose
0 < 7 < p—1 and the inequality is valid for i < j.
Let
pOp = B%.
Applying the exercise at the beginning of the paragraph to the extension L,/F we see that

pe}(p—l)tgz(p—1)<u—l—t;u).
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If ¢ is any (p — 1)th root of unity then, by Lemmas 11.3 and 11.4, there is a ¢ in G such that
AT = A+ &+ O(ah P,

We may write

as a linear combination

with coefficients from L,. Since
v, (07 —0) = v, (0) + t1
we may apply the induction assumption to see that
v, (Xjo1) = (J— Dty + v, (67 —0) > jtg + v, (0).
On the other hand
A7 — AT = (A +€)T — AT O~
so that 67 — 0 is equal to

k=0
with )
n = 00~ ")
Thus if
p—1
n= ZIAZ
=0

with the Z; in L, we have
v (Zi—1) = (j — Du+vg(0) + p*e — (p — 2)u.
But
ple—(p—2)u+(j—Du>plp—u—(p—2)u+(j—1u
which equals
((p=1)*+j)u = pju.

] 1= ZY()€Z] —|—Zj_1

Since

we have
PN
E Yi(.)iu > ju+ v, (0)
- J
i=j

for all £. We obtain the required estimate for v, (Y;) by summing over .
We now show that

o (Sin (VYA)) > (0= D)tz = ity + 03, (Y)
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for Y in Ly and 1 <7 < p— 1. All we need do is show that for any 6 in the inverse different
of Ll/F

Spapr (0, T S0, (YA ) € O
or that if 8 is in L; and
vi () = —(p— Dt +1) +its — (p— 1)ts — vp, (V)
then
(11.4) Sir <GSK/L1(YA")) = Sk (0Y AY)

is in Op.
Let

p—1
0=> YA
3=0

with Y; in Ly for 0 < j < p— 1. Then

p—1—i p—1
YA = D" YYNT 4 (a+A) > YA
j=0 Jj=p—i
Since
AP —A=q
we have '
}(/LQ(A) =0

for1<i<p—1and

-1

By, (8) = (=1)".

The relations (11.2)) imply that '

Sk/r,(A") =0
for 1 <7< p—1 and that

Si/a(A7) = p— 1.
Thus (11.4)) is equal to
(P = 1)SLy/p(YYpo1-3) + Spyyp(paY Yys)

if 2 < p—1 and to the sum of this and

SLa/r(YYpo1)
ifi=p—1.

We know that
UL, (Y;) Z jt1 + VL, (9)
for each j. Thus
v, (YYpri) 2 (p—1—i)ti = (p— 1)(ts + 1) + ity — (p— 1)tz
which is at least —(p — 1)(t2 + 1). So is
v, (paYYyp 1) Z (p— Dta =t — (p— (1 + 1) + ity + (p —)t1 — (p — Dt
Ifi=p—1
v, (YY) 2 (p—Dir— (p=D(tr + 1) + (p— Dts — (p — 1)tz
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is also at least —(p — 1)(t2 + 1). All we need do now is observe that
Spor(Br ) C O,

To complete the proof of the lemma we have to show that
oL, (E;;/Ll(YA)) > (p— Dty +i(v, (V) — 1)

for 1 <7 < p— 1. This has been done for i = 1; so we proceed by induction. Applying the
relations ((11.2)) we see that
i—1

(—1)" B, (YA) = Z(—l)jS;/le (YA>E;{/L1 (YA).

§=0
According to the induction assumption and the first part of the lemma, with Y replaced by
Y7, a typical term in the sum on the right is O(w} ) with
v=p—Dta— (i =t + (i = v, (V) + (p = Do+ j (v, (V) — 1)
if 7 > 0 and
v=(p— 1)ty — ity +ivg,(Y)
if 7 = 0. The lemma follows.

We apply the second estimate with Y = 1 to improve, when A = A, L = Ly, and certain
auxiliary conditions are satisfied, our estimates on the number ~ appearing in (11.3)).

(vi) Suppose p is odd and
(=(p—-1r+j+1
If k> v+2and o <k —2 then
Jti+ 7 = pla.
Ifk>v+2and a, <k—1 then
ji+y=>(p—Dta+ 14
andif k>v+1anda, <k—-1
Jjti+v 2 (p—1Dta —t1.
In the present circumstances
v = (p— 1)ty — ity
for 1 <i<p—1. Thus

p—1
Jhh+y =gt + Z a; ((p— Dta —ity) — apty

i=1

which equals

jtl + (p — 1)kt2 — £t1 — (p — 1)Oép(t2 — tl)
or
(p — ].)ktg — (p — ]_)th — tl — (p — 1)O[p(t2 — tl)
If o, < k — 2, this is at least

20— Dta+(p—1)(k—2—v)t; — t4
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which in turn is at least pty if p>3and k> v +2. If o, <k -1
vy=2p—Dta+(p—1)(k—1—=1v)t; — t;.
The required inequalities follow.
We shall use all these estimates for v in the next sequence of lemmas.
Lemma 11.8. If A is as in Lemma 11.7 and p is odd then
SLl/FNK/LlAESLQ/FNK/LQA (H’lOd ;Bl—i_tz).
The assertion of the lemma may be reformulated as
SK/LQNK/LlA = SK/LlNK/LQA (mod q31+pt2)'
Notice that
Earlier we applied Newton’s identity to express ST, na (A) in terms of the elementary symmetric
functions of A and its conjugates. Since

pe = (p— 1)ty
we can apply the estimates (iii) for v to see that

Sk (D)
is congruent to
(1L5) PNij A+ 2 Z Bl (DB (A) + { Sk, (A)}.
Jj=1
Since
AP —A=q
we have

Sk (D) = Sgyp, (B) = Siz/p(a).

According to Lemma 11.7 the left side belongs to P (p=l)t2=t1 ) particular it belongs to By,.
We need to know that it belongs to ‘BIHQ This is clear if p> 3 orty>t;. To prove it in
general we first observe that all terms but the last in ((11.5)) are congruent to 0 modulo q31+t2.
The middle terms are taken care of by the estimates (ii) for 7. To take care of the first we
have to show that

pe—u = 1-+ts.
We know that pe > (p — 1)t, and that if ¢ = u the inequality is strict. We need only show
that

(p — 1)t2 — u tg
with a strict inequality if ¢ # u. This is clear since to > u and ty > w if t # u. Thus

Sk A = (Sgyr, A)P — Spyyr(a)  (mod Pri2).

We now need only show that

Spayp(a) =0 (mod P).
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The left side belongs to ‘Bﬁbl if b is any integer less than or equal to
—u+ (p—1)(ta+1)
p :

We may take

p
which is greater than or equal to except when p = 3 and ¢ = u. In this case, which is
the one to worry about, ¢, = u is prime to p and

—u+(p—1)(ta+1)  u+2

P 3

b=

1+to

has integral part at least “TH

We apply (11.5) again to see that
SK/LlNK/LgA = SK/Lla = S%/LI(A) - SK/LI(A)

is congruent to

p—2
p . )

=2
We have still to consider
(11.6) Sk/r. N/, A
There are some general remarks to be made first. Suppose A belongs to K and
v (A) = —u.
If x and z also belong to K and A
zN € Og

and

o= m?t+(p271)u
then

Nics, (#(A+ 2P*1) = Nigzu, (2A71) - (mod P,
It is enough to show that

P Jj+1 .
NK/L1 (1 + K) =1 (mod m}jt—ﬁ-P )

This follows from Lemma V.5 of Serre’s book and the relations
1+t+p*u>14+t+pu

and
l+t+pu+(p—1)t+1)
p
According to Lemmas 11.3 and 11.4 there is for each o # 1 in G? a (p — 1)th root of unity
¢ = &(o) such that

=1+t+pu.

AT — (A + g)p —a+ O(ﬁi{(er—(P—l)U))‘
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We have
pe—(p—Duzp-{p-Dutt}—(p-1u
which equals
p=Dt+@=2)p—Duzt+plp-2u.
If t = u the first of these inequalities is strict and if ¢ > w the last is. Thus
pe—(p—1u=1+t+pp—_2u
and
2(p’e — (p— 1)u) > {1—|—t+(p—1u}+{1+t+(( 1)2—2p)u}.
The second term is positive unless p = 3.
The expression

(A+8)" -
is equal to -
seer 8 (e
But .
(}Z)) _ p(p—1)- .Zt!(p —i+1) _ (_1)i+11§ (mod p?)
and

2p’e — (p — )u = 2(p°e — (p — 1)u)
which is, as we have just seen, at least 1+t + (p? — 1)u. Thus if p > 3

AT=(A+6)(1-Z(6)  (mod P

- S

Expanding the denominator we obtain

if

Ifizp—1
g
a;=(—-1)» ==0 (mod p)
=17
Clearly
() = O(pA"?) = O(af ")
Ifp=3,

3(p’e = (p—Du) = {1+t+ (P> — Du} + {21 +¢) + (2p° — 6p + 1)u}.
The second term is at least 3u and in particular, is positive. Lemmas 11.3 and 11.4 show that
A= ((A+¢)° - a)3 —a (mod ‘]3}{+t+(p2_1)u).

The right side equals
(A4 € +36A% + 3¢2A)° — a.
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(P*—1u

Expanding the cube and ignoring all terms in ‘,BHH we obtain

A+§+3A3{i 222}+9A45

which we write as

(A+&)(1—2(9))

Z(€) = 3A? i a; (2) +9A? i (%)

i=1

with

Since
2(p’e — (p—2)u) = 2(p°e— (p— u) +2u > 1+t +p°u
and
pPe—(p—2uzl+t+(p—1)0>u>1+t+pu
for all odd p, lemma V.5 of Serre’s book shows that

N (28 + 971 (1= 2(9))™) = {NM (a(a+5y1) } {1- 8120}

modulo ‘BHH p=bu 1f xAJ lies in O.

The expression is equal to
NK/L1A+ Z NK/LIAJ‘

o€G?
o#1

The preceding remarks show that, if p > 3, this is congruent to

Ng/o, A+ Z Ng o, (A + f){l - SK/le(f)}
13

modulo ‘BHH P=D¥ Gince
2pe +u+ (p— 1)t
p

t
22(p—1)(u+7)tu>t+pu

we have '
Nicjoy (A + &) Swyn, (apAP~1IEY) € Py
if i > p and we may replace Sk, Z(§) by

p—1

ZpgiSK/Ll (a; AP~17)
i=1
if p > 3. Of course
NK/L1 A—}—é' Zé-l ZEK/Ll

Putting these observations together we see that, if p > 3, (11.6) is congruent modulo
‘,]31;1”’ " to the sum of
NK/LlA + (p - 1){SK/L1A + NK/LIA}
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and
—plp— 1) @Sy, (AP HEL (A)
and
—p(p — D){pap—1Sk/r, (D) 4+ ap—2Sk/1, (D) }.
Since

pSyr, (D) € P

the last expression may be ignored as may the term in the second corresponding to 1 = p — 2.
Since

=0 (mod p)

and
Sk/n (A%) =p
and
3p%e —ty = 1+ pty
the sum in the second expression need only be taken from 1 to p — 3. The relation (11.2])
implies that

PShn (DB (A) = (=1)'p(p — 1 =) ER (D) B (D)

modulo ‘BILTP 2 To complete the proof of Lemma 11.8, for p > 3, we need only show that
ity + (p—)ap—i—1 = (=1)"  (mod p)
forp—2>p—1>1i>2 This amounts to showing that
i—1 p i— 1

7j=1
We may replace the p — ¢ in front of the second sum by —i. Making the obvious cancellations
we obtain

p—z—ll p—i 1
— —,E—l— ) .

If L occurs in the sum on the right so does ﬁ.
The proof for p = 3 can proceed in exactly the same way provided we show that

(11.7) QZ{NK/Ll(A+§)}{SK/L1(€iA4_i)}
lies in ‘B?g’” for + > 1. Since
2p%e —u > 2(p — Dty — u > 3ty
and one of the inequalities is strict
INK/, (A + &) € P,

The expression

giSK/Ll (A4_i)
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is clearly integral for ¢ > 4. By, for example, Lemma 11.7 it is also integral if ¢ is 2 or 3. Thus
i =1 is the only case to cause a problem. If i = 1 we sum over ¢ to see that (11.7) equals

18{ B /1, (8)Ske/1, (A%) + S, (A7) }.

The terms appearing in the expression in brackets have been shown to lie in Oy, .
There is one more lemma to be proved before we come to the basic fact of this paragraph.
If z is in K we set

9(x) = S5, /r (Nky0, ASkyr, (2)) = S1ayr (Nijr, ASk/r,(2))
and
]’L(.T) = SLl/F(NK/Ll(xA)) — SLQ/F(NK/LZ(IA».

In the following lemma p is supposed odd.
Lemma 11.9.
(a) Suppose x is in Ly, 0 < j < p—1, and a7 lies in B3>~ If j # p — 2 then
g(xA7) =0 (mod Pr ")
but if j = p — 2, there is an w in Ly such that
wr = —a:Ef(_/lLl(A) (mod P 7")
and
g(zAN) = —{S1,/rr — Sp,/r(aw)}  (mod PR ).
(b) Suppose x isin Ly, 0 < j<p—1, and zAJ lies in Pr. If j #£p—2
h(zAT) =0 (mod P?)
but if j=p—2

h(zA) = (p— 1) (1 . {EJ;;/;(A)}QD) Ni/p,

1+pt2
modulo P .
. 14+pt
The congruences modulo ‘B}Jb are of course equivalent to congruences modulo P LJI“D 2.

We start with part (a). If « belongs to Oy, then
9(z) = Sk, (2Sk/1, (N1, A) — pra).
Because of the previous lemma this is congruent to
Sk, (xSL, pa — pra) = Si,/pxSr,ra — S, r(va)

modulo P2, We saw before that

Sr,/ra € ’BILT”.
The same argument shows that

Sp,/p(za) € Pri'.

p belongs to ’B(Lp;l)w. Since the integral part of

(p—1)(t2+1)

p
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is at least
(p— 1)ty

so does St,/rpx. This takes care of the case jp: 0.
If 1 <j=p—1then g(zA’) is equal to
St (/02 (A N1, 8) ) = (p = 1)1, (0)
where ) =0if j#p—1and 6§ =1if j =p — 1. Consider
Z; = 2Sk1, (A Ngyp, A).
It lies in Ly and is equal to
TN Ny, A+ Y wA% Ny, A,

oeG?
o#1

We observe first of all that if A is in K, vg(A) = —u, z is in Ly, A lies in ‘B}?”‘“, and
z lies in ‘B%_l)(l’b—tl) then
x(A—{_Z)]NK/Ll(A_I_Z) E{BAJNK/LIA (mod m};"pt2)
provided p is greater than 3. To establish this congruence we show that
J
I+ i NK/L1 1+ i =1 (IﬂOd mg_l)@-i-(p—i—l)tl).
A A
To show this, one has only to observe that £ and all its conjugates lie in mg—l)ptz—(p—mm and
that

(p=1pta—(p—2)t1 = (p— D2 + (0~ 1)* = (p — 2))ta
which equals
(p—Dta+ (p—1p—2)+1)t1 = (p— D2+ (p+ 1ty
if p > 3.
Suppose for now that p > 3. Since
ple—(p—1u = (p—1)(pta — t1).

Lemma 11.4 implies that Z; is congruent to

J?AjNK/LlA + Z $<A + g)jNK/Ll (A + f)
3

L4t
modulo 7"

1 — —i i
Nijia(A+€) = €4 L+ e Ny A+ > B, (D)
i=1
According to Lemma 11.7 this is congruent to
£+ Nijp, A+ B (A)
modulo P52, Thus if A7 belongs to Pi 2",

1
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modulo ‘,B?p 2 We expand (A + £)7 and sum over £ to obtain
(11.8) prN Ngjp, A
if j<p—2.If ) =p— 2 we obtain
prAN Ny, A+ (p — 1)x(1 + E?/L(A))
and if j = p — 1 we obtain
The expression (11.8)) lies in

1+p2e—pty1
K

provided zAJ lies in P
pPe —pty = p(p — 1)tz — pty = pto.

Since
Ly R = Pt
and
Starr(Pri) S BE 2,
we have

g(xA7) =0 (mod PL ")
if 1 <j<p—2andzA lies in P>

Since
-1
Ef{/h(A)
lies in Op,,
Zj = (w — 1)1['
with

wr=/2Z;j+z= —:UE%721<A> (mod P 7")
if 7 = p —2. We may take w in Ly and then
glaN) = —{SLQ/FOC - SLQ/F(MJ)} (mod 5"2).
If j =p—1 then '
9(@A7) = Sp,/r(Z; = (p — V)za)
and
Z;—(p—1)za
is congruent to
(0= Do{ N/, A+ pA + (p = DAE ] (A) - A7
modulo ;7. The product
{(p =Dz }p{pA}
lies in ;7 and
(p = DER,(A) = =Ef () (mod PBi'™™).

It is easily seen that

AP+ AR (A) = Ny, A
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is equal to
- Z ) AP By p, (D).

Recalling that #AP~! is supposed to lie in Px we appeal to Lemma 11.7 to see that the
product of this expression with x lies in ‘BHP 2 Thus

g(xA7) =0 (mod P ™).
If p=3and £ =¢(0) then
A% = A+ E4+3EA* +3632A + 2

with
z2=0 <w§<(p2€(pl)u)).
If
Ay, =A+E&+ 3§A2
then

A% = A, +38A + 2.
If we can show that
3E2A + 2 = O(wd V1)
it will follow that
(11.9) AN/, A% = 2AI Ny, A, (mod P, 7*2)
if zAJ lies in ‘B?Q_tl
3EA = O(wh: ple= )
and
ple—t1 =pp—1ta—t1 = (p— L)ta + pty
because (p —1)? > p. Moreover
2(p*e — (p— )u) = 2(p(p — Dt — (p — 1)t1)
which is at least
(p—Dta+ ((2p—1p—1) —2(p—1))ts
and
Cp-Dp-1)-200-1)=2p-3)(p—1) =p.
We want to replace Nk, A, by

NK/Ll (A + 5)
in the right side of (11.9)). To do this we have to show that
A,
NK/L1 <A—+§> =1 (mod gp(P 1) t2+(P+1)t1)
Since N
=1 O pZe—t1
Are PO
and

ple—t1 = plp— Dty — t,
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we have only to verify that
(11.10) pip(p—Dta —t1} = (p— Dt + (p+ Dty
and that the integral part of
plp =Dty —t1 +(p—1)(t+1)
p

(11.11)

is at least

(p—Dta+(p+ 1ty
p
The inequality (11.10]) is clear. Since t > t; the integral part of (11.11)) is at least
pp=Dta+ (p =2t _ (= Db+ (- 1+ @ -2))t

=

p p

and
(p—1P2+(@-2)=p+1
Just as when p > 3 we may replace Nk, (A +§) in (11.9) by
£+ Ny, A+ B (D).

Thus Z; is congruent to

$AjNK/L1A + Zl’(A + 6 + 3£A2)] (5 + ]\[K/LlA + éE?(/Ll(A)>
3

modulo };rm if p=3, jis1or2, and zA7 belongs to };rtr“. If j = 1 this expression is
equal to
(11.12) prN N/, A + 22(1 + 3A2) (1 + B2, (A))

and if 7 = 2 it is equal to
(11.13) prAN Ny yp, A + 256{2(1 + 3A2)A(1 + Ef(/LI(A)) + (1 + 3A2)2NK/L1A}.
The term ‘
prA’ Nk, A
can be ignored as before because it lies in &B?p "2 Also
3z AT = O(w}(+p2e+t2_2t1)

1+to—tq
K and

because zA’ lies in B
pPe+ta — 2t = p(p — 1)ty — t, = pto.
We may also replace the factor 2 in (11.12)) by 1. Thus (11.12)) is congruent to
_J;(l + E%(/Ll (A)>

modulo ‘,B?p "2 At this point we may argue as we did for p > 3. To simplify , we
observe that
IA*Ng/p, A = O(w@e™™)
and that
2p2€ — 7t1 > 12'[52 — 7t1 2 3t2.
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Moreover
3zA Ny 1, A = O(wif? e
if A2 belongs to Px and
p € — Stl 6t2 — 3t1 = 3t2

Thus (11.13)) is congruent to
2x{2A<1 + E%/Ll(A)> + NK/LlA}

modulo ‘B?gt? We may again argue as we did for p > 3.
We turn to the second part of the lemma. We observe first that if x belongs to Lo, y
belongs to K, and

ry € ‘P
then
h(zy) = h(y)Ni/p, (x)  (mod P52).
The left side is
Sa/F(Nkj @ Nk, yA) = Spye(a? Ny, yA).
Since Ng/r,® = N, px lies in F' this equals
{Ni/r,x}h(y) + Sp,yp{ Ni/r,(yA)(Np, rz — a¥) }.

The second term is the trace from Lo to F' of

N, px — P
{NK/Lg(fU?/A)}{m}

if, as we may as well assume, x # 0. All we need do is show that this expression lies in ‘BIHQ

for then its trace will lie in €B1+t2. The first factor lies in ‘BlLQ "2 The second factor is equal to

H 27ty —1
oeG”
Since p > 3 it will be sufficient to show that the image of the homomorphism
xr— oz H x°
Plex

of Cp, into Uy, is contained in Ué‘z*l)m. Let p be a generator of G and let P(X) be the
polynomial

—

p—1

(X' =1 =) X' —p

1 =0

p—

i

then

Let
QX) = (X -1y

If 1 <7< p—1 the ith coefficient of Q(X) is
(_1)])—1 z( ) ( Z) 1

7!

(mod p).
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Since both P(X) and Q(X) are divisible by X — 1
P(X) = Q(X) + p(X — R(X)
where R(X) is a polynomial with integral coefficients. For all z in Cp,,
Tl =1+w
with w = O(w@p). Then
e — (1+wP=14+uwP=1 (mod PB)

and
2P(P=1)R(p) Uftz_
2
Ifa>1and
w € ‘P7,
then
p—1 1+ w? wl —w _ a+ta

One then shows easily by induction that, for all z in C, and all n > 1,
A= UE;Q.
If z lies in Px we may take y = 1. Applying Lemma 11.8 we see that
h(z) = Np,yprh(1) =0 (mod PL).
If1<j<p-—1,xliesin Ly, and A7 lies in Py,
h(zA7) = P; — Q; (mod B ")
with
Pj = NLQ/FxSLl/F(NK/LlAj+1)
and
Qj = NLQ/FJUSLQ/F(NK/LQAjJrl)-
The expression P; is congruent to

(11.14) Niyypad Nigyo A+ " Ny, (A + 67 {1 - Sk 2"
§

modulo ‘BILTP "2 Since we are working modulo ‘,Bi’p " we need only consider

(11.15) (1— Sk/m Z(€)""

modulo ‘Bﬁ?“l. Suppose first that p > 3. Then
Z(€) = O ™)

and
ple—(p—2)u>=plp—1)ta — (p — 2)u = p(p — 2)ta.
Moreover the integral part of
pp—2)t2+ (p—1)(t+1)
p
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is at least

(p—1)

t

(p—2)ty — »
and twice this is at least pty + t1. We replace (11.15)) by
1= (G + 1Sk, Z(§).

Since
p—2 i
(11.16) Z (&) = pAP? Zai <%> (mod p?)
i=1
and
P’ =O0(wi)
while

2p°e = 2p(p — 1)ty = p(pta + t1),
we may replace Z(&) by the right side of (11.16]). By Lemma 11.7
P/, (AP = O(wp; ™)
ifl1<i<p—2and
pe + ity = (p — V)ta + ity = pta + 4

if i > 2. We replace Z(§) by
pa EAPT2,

We may write (11.14) as

j+l
NioypaNg/, A1+~ Niyi, (1 + %) {1 = S/, (par€AP?)}
3

§ J+1
NK/L1 (1 + Z)
§

j+1
Lo /FTINK /Ly + % K/Ll( + j)

When we expand

and sum over ¢ we will obtain

which we write as

Ni/ww Nigjoy A= Nigpr, (A + 67
3
plus a sum of terms of the form

A )
apNp,re Ny, A Bl (Z) Sk (A7)

where « is rational and lies in O and 7 is at least 1. Since

, 1
Biou, (5) = 0t
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for 7 > 1 and
PSk/1, (AP2) = O(w]?),
these supplementary terms may be ignored.
Now take p = 3]

%(1998) This is where and how the manuscript of Chapter 11 breaks off.



CHAPTER 12

The second main lemma

Suppose K is a normal extension of the local field F' and G = B(K/F) is the direct
product of two cyclic groups of prime order ¢. Let Xx be a quasi-character of Ck. If o
belongs to G define X7 by the relation

X2 () = Xe(a” ).

Suppose that X7 = Xk for all ¢ in G but that for no quasi-character X» of Cr does
X =Xgp. [ FCLCK and [K : L] = ¢ then Xk can be extended to a quasi-character of
Wk, because Wi/ /Ck is isomorphic to &(K /L) which is cyclic. If this quasi-character is
XL then XK == XK/L

Lemma 12.1. Suppose Ly and Lo are two fields lying between F' and K and
(K : L] =[K: L] = ¢.

Suppose X, is a quasi-character of Cp,, X1, is a quasi-character of Cr,, and
Xk = Xk/n, = Xi/Lo-

Then
A(XLlale/F) H A(MFawF)
BFES(L1/F)
18 equal to

A(XwaLg/F) H A(MF7¢F)-

pr€S(L2/F)

Because of the assumption on &(K/F) the field F' must be non-archimedean. To prove
the lemma in general it is enough to prove it for a given L; and all Ly. There are three
possibilities to consider.

(i) The sequence of groups of ramification takes the form

G=G1#Gy==G#Gu1=-={1}.
(ii) The sequence of groups of ramification takes the form
G=G_1=Go=G1= =G, #Gu1 = =G #Gpp1 = - ={1}.
(iii) The sequence of groups of ramification takes the form
G=G1=Gy=G,=-=Gt#Gy1=---={1}.

In the first two cases we take G* = &(K/L;) to be G;. In the third case the choice of L; is
immaterial. ‘

If the relation X7, = &7, obtains for one o different from 1 in G' = &(L;/F) it obtains for
all such o and A7, is of the form X7, ,r for some quasi-character Xr of Cr. Then X = Xk /p,

107
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which is contrary to assumption. Thus the characters X gl__l with o in G' are distinct. They
are clearly trivial on N/, Ck so

{ x| oed@ } = S(K/L;) = { pryr | pr € S(L;/F) ).

Here j is 2 or 1 according as ¢ is 1 or 2.
Let t; > —1 be that integer for which

cie]
while ,
Gti—&-l = {1}
Then

In the first case Ly/F is unramified and Lo/ F' is ramified. We choose @y, arbitrarily and
take wx = wyr,. Also we set

Wi,
In the second and third cases K/L; and K /Ly are ramified and K/F is totally ramified. We
choose w;, first and set

= wr = Ni,/F@L,.

WL, = NK/Lin
and

wr = Ng/Frok.

Let m; = m(AL,). The m(X7) = m; and

m(/\fgi_l) g m;.

Thus m(v) < m; if v belongs to S(K/L;). If G' = (K/L;) and if
GL =G
while '
G;Ll,ri-l = {1}
then m(v) = u; + 1 if v is non-trivial. Thus u; + 1 < m,;. Since v X, is of the form X7 for
all vin S(K/L;),
m<VXLi) = m(‘XLz)
Lemma 8.8 and 8.12 imply thatE|
m(Xi) = by, (mg — 1) + 1
Thus m(Xx) = m; if K/L; is unramified and
m(Xk) = m; — 6(K/L;)
if K/L; is ramified. If n = n(yr) then n; = n(¢r,/p) is n if L;/F is unramified and is fn + 0
if L;/F is ramified.
In the first case
0K /Ly) =6(Ly/F)=0.
The relations
S(K/F) = 6(K/Ly) + (6(Ly/F) = 8(K/Ly) = (¢ + 1)(¢ — 1)

'We are encountering once again the conflicting uses of the symbol .
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and
6(K/F) = 0(K/Lg) 4+ 6(Lo/F) = b= (ta +1)({ — 1)
imply that ¢, =t. Also
m(XK) = My = €m1 — 5(K/L1) = €m1 — (52

so that
msy + ng = €(my + nq).
Moreover
Xr, (@ ™) = Xie(wd ™)
is equal to
mi1+ni
Xy, (@ ™) = Xy, (@t ™) A, H @’
oeG”
and
H XL? wL2U = H IuL2/F(wL2)
o€Ga urp€S(L1/F)
is equal to
I  wr(@r) = (1)
nrp€S(L1/F)
If
Si=S(Li/F) — {1}
then
H:U’ t1+1+n — (_1)71((71)
and

H:U“ t2+1+n -1

Thus we have to show that
(_1)M1(£—1)A (XLl , le/mel+nl)

is equal to
A (XLza 7~pI12/}7‘7 m1+n1 H A :U’F7 ¢F7 t+1+n)

In the second and third cases the relations
and
K/F)=06(K/Ly)+ 5 = 6(K/Ly) + s
imply that m; + §; = mgy + 5 and hence that m; + ny = mg + ny. Thus

Xy, (@ 7) = X (wig"™) = Xp, (@ ™).

H/L t+1+n -1

Since
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we have to show that
Ar( Xy, Yryp, @) H Ay (pp, ¥p, @)
S/

1

is equal to
A ( Xy, r, p wp ) H A (pr, Yp, wg ).
S/

Suppose X}, is a quasi-character of Cr. According to Lemma 10.1,

A tngr) [T Alee,vr)

pr€S(L1/F)
is equal to
(12.1) | | AV
pr€S(L1/F)
and
A(Xiz/F, 7)) H A(pr,vr)
preS(La/F)
is equal to
(12:2) I Ay vr).

pr€S(L2/F)

Suppose m’ = m(X},) = 2d’' + € and d’ is greater than or equal to both 1+ ¢; and 1 + 5.
Choose v in F such that
m/+n

70F = PF
and then choose 8 = f(XF). By Lemma 9.4 the expression ((12.1)) is equal to

(A e} ] )NF (%)

wrES(L1/F

and is equal to
{A(vaﬂ/}F)}e H HE (%)

pr€S(L2/F)
Consequently
s
A(XL, ps¥ryyF) T wr (— Alpr, r)
prES(L1/F) i
is equal to

A(XL, 5y VLo/r) H 0% <§)A(MF;¢F)
wrES(L2/F) i
Suppose that both m; = m(XL,) and my = m(X,) are at least 2 and let m; = 2d; + ¢;.
Suppose that
m(XEIXI/,i/F) < d;

i
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for 7 equal to 1 and 2. Then
m; = m(Xy,p) = Y p(m —1) + 1.
If

Bix
ryp(l+1)= wLi/F( S
for x in ‘}3%‘?” then, by Lemma 9.4 again,

_ Bi
A(Xp, Yuyr) = X0 X e (7 A(XL, s YLy F)-

Thus to prove Lemma 12.1 in the present circumstances we have only to verify that

() T w)

ureS(L1/F)

wn?) 11, 0()

pr€S(La/F)

is equal to

Suppose first that ¢ is odd. Then

| | 103 (1) =
pr€S(Li/F) p
and we need only verify that

il (5 e (5,) =20 (5,4 (3)

According to Lemmas 8.3 and 8.4 we may take f; = s = .

Certainly
/ z _ X/ ,y_ﬁ _ / Z
L,/F 6 - ‘R /Bg — ““Ly/F 6 .
Since CF is the product of N, /rCp, and Ny, ,rCr, we may write % as a product

% = Np,/r01N1,/F02.

Consider

X1, (N, rd5) = Xk (95)
where j is 1 or 2 according as 7 is 2 or 1. The right side equals

XL, (05) = X, (Neoy) [T X, (657°).
o€B(L;/F)
The product is equal to
T #e,e())
pnreS(Li/F)

which is 1 because ¢ is odd.

Before discussing the case ¢ = 2 we consider the circumstances under which, for a given
Xp, and A, a quasi-character X}, with the properties described above exists.
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Lemma 12.2.
(a) If L;/F is unramified, x belongs to UE;H, and
NLi/F(m) =1
then
X, (z) =1.
(b) If L;/F is ramified, K/L; is unramified, x belongs to UZH, and
NL,L-/F(«'E) = 1
then
X, (z) = 1.
(¢) If L;/F and K/L; are ramified, x belongs to Ufft#l, and
NLi/F(CE) =1
then
X, (z) = 1.

Choose some non-trivial o; in G = &(L;/F). Then

ot -1
—_— 1
KL, = XLi

is a non-trivial character in S(K/L;) and
m(pr,) = u; + 1.
Since L;/F is cyclic there is a y in Cp, such that
=Y
We shall show that y can be taken in UZ?H. Then
X, (z) = pr,(y) = 1.
Suppose L;/F' is unramified. If we cannot choose y in U} uitl there is a largest integer
a > —1 such that we can choose y in U}, where a is of course less than u; + 1. Choose such a
y. Then a is not —1 because we can always divide y by a power of wp. If a were 0 then y

could not be congruent to an element of Up modulo Br. Then y°i~! would not be in U}.
Since u; + 1 > 0 in the present situation this is impossible. Let

0'7;—1

y=1+ewp.
Then e cannot be congruent to an element of O modulo Br. Thus

€ —€ 7_é 0 (mOd ;BLZ)
and
Yyt =14 (7 — €)wh  (mod ‘,B“H)
is not in U7H!. This is a contradiction.
Now suppose L;/F is ramified and K/L; is unramified. Then ¢; + 1 > 1 and w; +1 = 0.

We need only show that y can be taken to be a unit. Write

_ b
y - ewLi
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where € is a unit. If b is congruent to 0 modulo ¢ we can divide y by some power of wr to
obtain an element of Up = U%. To see that b must be congruent to 0 modulo £ we suppose
the contrary. Then

y = Egiil(wL, = (w1, ) (mod B H)'
If t; = 0 the residue of w?flfl modulo Pz, is a non-trivial £th root of unity and

(@7 )" #1  (mod Pr,).
If t;, > 0 then
=5 = 1+ o
where « is a unit. Thus
(wzﬁl)b =1+ abthi (mod B H).
The right side is not congruent to 0 modulo BY% +1.

Now suppose L;/F and K/L; are both ramified. Then ¢ = p and both u; and t; are at
least 1. Again suppose that y cannot be chosen in U} Y1 and let a be the largest integer such
that y can be chosen in U®. The argument just used shows that a > 0. Since L;/F is ramified

Uy = UkUp™,
Therefore a is not divisible by p and in particular is at least 1. Let
y=1+ew],
where [ is a unit. Then
Yt = (1+ w7 ) (1 + ewy,)” L

Let
€ = e + it
and
wz_l =1+ awtgi
where « is a unit. Then y°i~! is equal to

{1 +(e+n@ith(1+ awtgi)“w%i}{l +ew? 3!
which is congruent to
1+ aaewtiJra

modulo ‘Bt iTotl  Therefore a > u; + 1. This is a contradiction.
Lemma 12.3. If L, /F is unramified we can choose X}. such that

and
If m(XL,) > t+ 1 then m(X}) will equal m(Xp,).
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By the previous lemma, we can define a quasi-character X of
NLI/FU}lLi-I-l
by setting
Xp(Npyyra) = Xp, (2).
We extend X, to a quasi-character, which we again denote by X, of Cr. Then

m(X, '\ X, p) < up + 1.

1

However XlngI’{/F, XL_II Xil/F, and XL_21X£2/F satisfy the conditions of Lemma 12.1. Therefore

1
Since L, /F is unramified u; and ¢y are both equal to t. Thus

m(X, X, p) =t +1
and

m(X, X, p) = Lur +1) =6 = lug +1) = (( = 1)(L+ 1) =t + 1.

The last assertion of the lemma is clear.
Lemma 12.4. If K/F is totally ramified then

m(Xr,) =t +u; + 1.
There exists Xp. such that

m(X, X, p) =t +u + 1

for i equal to 1 and 2.

In the present circumstances ¢; and u; are both at least 1. Choose a non-trivial ¢; in éi
and let

o1
KL, = XL:
as before. Choose y in U so that
pr(y) # 1.
Then
X,y ) # L
However if

y=1+ewy

where € is a unit then
il =14 uiaew%jui (mod &B’Z;H“H)
if
wzi._l =1+ aw] .

In particular

in—l c Uzz"l'uz
so that

m(Xr,) =t +u; + 1.
Just as in the previous lemma, we can find a quasi-character X} of Cr such that

m(‘XElXil/F) = tl + ur + 1.

1
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We have seen that my + 0; = mo + d2. The same argument shows that
m(X, X, ) + 61 = m(X) XL, i) + 0.
To complete the proof of the lemma we show that
ty +up + 0 =ty + us + 0.
Since
bi=U—-1(t;+1)
we have only to show that
up + 1+ L0t +1) =ug + 1+ L(ta +1).

Multiplying the left or the right side by ¢ — 1 we obtain §(K/F). The equality follows
immediately.

Lemmas 12.3 and 12.4 together with the remarks which provoked them allow us to prove
Lemma 12.1 in many, but by no means all, cases. We shall not however apply these lemmas
immediately. We shall rather begin the systematic exposition of the proof of Lemma 12.1
taking up the cases to which these lemmas apply in their turn.

Suppose first that L is unramified over F'. As before m; = m(Xy,). Then

mgzml—l—(f—l)(ml—t—l)}ml

because u; = t. Since the number m; is at least t +1 and ¢t > 0 it is at least 1. If m; = 1
then t = 0 and my = 1. Once we have treated this case, as we shall immediately, we may
suppose that moy > mq > 1.

If my =1 let

A=0r,/Br, = Or/Pr
and let

K= OK/SBK = OL1/§’BL1'
k is an extension of A. The restriction of &7, to Uy, defines a character Xy of A* and the
restriction of X7, to Uk defines a character X, of k*. The restriction of X'x to Uk defines a
character of * which is equal to &/ and to X,f so that

X=X, ).
As o varies over 52, w%;l, taken modulo B, , varies over the ¢th roots of unity in A and if
X 5;1_1 =v

then
X\(w7, ') = v(wr,).
The right side is not 1 if o # 1 because v is then non-trivial. Thus the restriction of X, to

the ¢th roots of unity is not trivial. To every up in S(Lg/F') is associated a character p of
A* which is of order 1 if up = 1 and of order ¢ otherwise. If v is the additive character of A

defined by
() = tr (%)

A1 (/l’Fa wa w};rn) =A [_T(/’l’/\a w)\>]

then
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if pup is not trivial. Moreover

VLo/F (#) = Ya(lx)

F

and
A ( Xy, r, e, wp ™) = A[=XA(OT (X, ¥a)]-
Finally
A1(‘)(131 ) le/F7 w117+n) =A [_T(Xm ¢n/>x)] .
Thus the required identity is a consequence of the relation

(X, Vupn) = (OT(X0,02) T 7(mr )
uAFL
which we proved as Lemma 7.9.
Retaining the assumption that L;/F is unramified we now suppose that m; > 1. There
are two possibilities.
(a) my > 2(t+1)
(b) t+1<my <2(t+1).
The second possibility occurs only when ¢ > 0.
If m; > 2(t+ 1) choose &7}, so that

for 2 =1 and 2. It is clear that
m(‘)([leil/F) < dl
if m; = 2di + ¢;. Since mgy > m; we also have

m(X )X, p) < da.

Moreover
m' =m(Xp) =my
so that d’ is greater than or equal to both 1+t =1+t and 1 +¢; = 0. Lemma 12.1 for
Ly,p unramified and my > 2(t + 1), follows immediately if £ is odd. Suppose £ = 2.
If t = 0 we can invoke Lemmas 8.3 and 8.7 to see that if 5 = (X)) we may choose
Br = B(xr,/r) and B2 = B(X], ) equal to §. If ,u%l) is the non-trivial element of S(L,/F)

) is the non-trivial element of S (Ls/F'), we have only to show that

()
(2 (G)
0 (2) ()

and we need only show that if § is in Cr then

X, () (8) = Xp, ()2 (0).

and ug

is equal to

Certainly



12. THE SECOND MAIN LEMMA 117

We may write
0 = Np,/r61NL,/r02.
Then '
p (Np, ypdi) = 1
and, if 7 is 1 or 2 according as 7 is 2 or 1,
Xr, (N, /r;) = X (65) = X, (57)
which equals ' '
XLj(NLj/F5j)ng/F(5j) = X1, (Ni,/p6)) il (N1, r05).
The required equality follows immediately.
If ¢ is positive we may still choose 5; = 8. If m; —t — 1 = v then, by Lemma 8.6, we may
choose 35 in the form
Ba=0B+n
with 7 in *B7,. Since v > ¢+ 1

X;;(ﬂﬁ £2/F<ﬂ2) :ngl(ﬁ) [//Q/F(ﬁ)'

This observation made, we can proceed as before.

Some preparation is necessary before we discuss the second possibility. Suppose that t is
positive so that ¢ is equal to the residual characteristic p. The finite field A\; = Oy, /Py, is
an extension of degree p of ¢ = Op/PrF.

The map

r— a2l —ux
is an additive endomorphism of ¢ with the prime field as kernel. Choose a y in ¢ which is
not in the image of this map and consider the equation

2 —x=uy.

If z, in some extension field of ¢, satisfies this equation and ¢ has ¢ elements then 29 # z.
However

(e =2} — (% —2) = (e =)' = (e —2) =y —y = 0.
So

q

r —Tr =z

where z is a non-zero element of the prime field. Then
2 = (42 ="+ z=2+22
and in general .
! =x+nz.
Thus the lowest power n of ¢ such that 29" = z is n = p and z determines an extension of

degree p. Consequently x may be chosen to lie in A; and then A\, = ¢(x).
Let E"(z) be the rth elementary symmetric function of = and its conjugates. Since

we have
(12.4) E"(z)=0

if1<r<p—i,
(12.5) ErY(z) = (—1)P
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and, of course,
(126) Ep<l‘) = N)\l/qg.’L'.

If X\ is a non-zero element of the prime field we can replace y by Ay. Then x is to be replaced
by Ax. Also we can replace x by z + A without changing y.

Let R(L1) be the set of (¢” — 1)th roots of unity in L;. Choose a v in R(L;) whose image
in Ay is x. If we are dealing with fields of power series, v will also satisfy the equations
(12.3), (12.4), (12.5) and (12.6). Let us see how these equations are to be modified for fields
of characteristic zero. F and L; are then extensions of the p-adic field Q,. Let F° and LY
be the maximal unramified extensions of Q, contained in F' and L, respectively. R(L) is a
subset of LY and p generates the ideal Bro and the ideal P ro- Thus

YW=+ (=1)’Np,pry =0 (mod p)

and
E"(y) =0 (mod p)
if 1 <r<p-—1while
EPH(y) = (-1)"  (mod p).

sm= Y 7
c€B(L,1/F)
The following relations are special cases of Newton’s formulae.

S'(y) - E'(y) =

Let

S?(v) —
S3(y) = E'(7)S*(v) +

SPH) = E)STH ) A+ + ()P e - DEPTH(7) =0
SP(y) = EY()S"TH () + -+ (= 1)PpET(v) = 0.
We infer that
5"(y) =0 (mod p)
if 1 <r <p-—1and that
SPTHy) = (=1)P(p — DE'(y)  (mod p).
Combining the first of these congruences with Newton’s formulae we obtain
S"(y) =r(=1)""E"(y) (mod p*)
ifl<r<p—1 Ifpisodd
SP(y) = pEP(y) = E'(71)S" () = EP7'(7)S'(7)  (mod p?).
The right side is equal to
E'(y)(S7H(y) = EPH(y)) =0 (mod p?).
If p is even
2
S*(y) +2E%(y) = {E'(7)}



12. THE SECOND MAIN LEMMA 119

Since

E'(v)=1 (mod 2)
we have

S%(y) +2E%*(y) =1 (mod 4).
If o # 1 belongs to &(L,/F) there is a (p — 1)th root of unity ¢ such that

7" —v=( (mod p).
By a suitable choice of y the root ¢ can be made to equal, for a given o, any chosen (p — 1)th
root of unity.

The above relations are of course also valid when F is a field of power series.
Choose a non-trivial character pp in S(Lg/F') and choose « so that

ax
pr(l+x) =Yp <m>
Wp

if z is in *P%. Here s is the le@st integer greater than or equal to % If ¢ is a (p— 1)th root
of unity we define u% to be u if j is the unique integer such that

(=7 (mod p).
As we observed in the proof of Lemma 8.5,

uw1+@:ww(;%§¢>

F
if z is in P7.
Let m; = 2d; + ¢; as usual. If 8; in Ly is such that

afx
X, (1+2) =9, r (ﬁ)
W
for x in ‘Bde“l then, if o # 1 belongs to G = &(Ly/F) and z belongs to ‘]3dL11+61,

whw<%%%%?f>=kﬁ%1+@

F
is equal to
al,r
YLy /F (W)
if (, is such that
X7t = g
Thus if
v=m;—1—1t
we have

B — B =Gy (mod PP).
It is clear that
CUT = C;— + CU (mOd (‘BL1)'
Suppose
7" —=7=¢& (mod p)
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where &, is also a (p — 1)th root of unity. Then
507' = f; + 50 (mOd le)‘

We observed that we could arrange that

gU = Co
for one non-trivial 0. Once we do this, the equality will hold for all 0. Then v#7 —~? = ¢,
(mod p) and
(1 = 7'@p)” = B — '@ (mod BE)
for all o because, as we observed in the proof of Lemma 8.5, p belongs to B} if r+s=1+1
and
2(r+v) 2 t+2v=2m; —2 -2t +1,
which is at least
(m—1)+(m—1—t)=>my —1
so that 7 + v > d;. Since Ly /F is unramified there is therefore a § in F' such that
b1 —YPwp =06 (mod q3dL11)
We may suppose that
p1 =B+ @k
[ is a unit unless v = 0. If v = 0 then, by replacing v by a root of unity congruent to v + 1

modulo P, if necessary, we can still arrange that 3 is a unit. S is congruent to a norm
Nyp,/rf modulo Bf. Since d; <t Weﬂ

%1998) At the moment this is all that could be found of Chapter 12.



CHAPTER 13

The third main lemma

Suppose K/F is Galois and G = &(K/F'). Suppose G = HC when H # {1}, HNC = {1},
and C' is a non-trivial abelian normal subgroup of G which is contained in every non-trivial
normal subgroup of G.

Lemma 13.1. Let E be the fixed field of H and let Xr be a quasi-character of Cp. If
m = m(Xr) then
m(XE/F) = Q/JE/F<m — 1) + 1.
Set
m' = m(Xg/p) — 1.
Observe that m' — 1 is the greatest lower bound of all real numbers v > —1 such that Xg/p

is trivial on Uy and that m — 1 is the greatest lower bound of all real numbers u such that
X is trivial on Uj. Since
Y u u
we see immediately that
m' —1 < Yp/p(m —1).
To prove the lemma we need only show that
P m—1 m—

We show this with m — 1 replaced by any u > —1.
By Lemma 6.15, 7x/r maps WI%’/F onto Uj. The projection of W;/F on (G is a normal

subgroup of G. Thus it is either {1} or a subgroup containing C'. If it is {1} then
Wip = Wip 0 Ck = U;ﬁK/F(U)
and b/ p(w) Vi)
Up = Ni/p(Ug™""") = Ngyr(NkyeU")
which, by Lemma 6.6, is contained in
P u
Suppose the projection is not {1}. If L is the fixed field of C' the group W /p contains,

(13.1) {wvw’%’l

w e WK/F7 v E WI%/F N WK/L }

Since C' is generated by
{opotp~! ‘ ceG, peC}

121
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the group generated by the set ({13.1]) contains a set of representatives for the cosets of Cx in
Wi r. This group clearly lies in the kernel of 7x,p. Thus every element of TV /p 1s congruent
modulo the kernel of 7x,p in W IF to an element of

Wi O Wiyp = W}ﬁfg(“)

and
Up = iyp (Wit p) = iy (Wpeest ™),
which is
Ng/r (TK/E(WE%F(U)»
and this set is contained in
Ny (U,

Suppose F is non-archimedean, K;/F| is Galois, and F; C E; C K. Let uy be a
character of &(K;/E;). We may also regard j; as a character of Cg,. Let o be an element
of &(K;/Fy) and define the character of uf of &(K;/EY) by

17 (p) = p(opo™)
for p € &(K,/EY7) or, what amounts to the same

1

pf (@) = p(a” )

for a € Cg. Since
-1

Vrg/r (@) = Vr R (@7 )
the next lemma is a congruence of the definitions.

Lemma 13.2.
A(p‘{, wEf/Fl) = A(Uly wEl/Fl)-

We return to the extension K/L and the group G. Let T be a set of representatives for
the orbits under G of the non-trivial characters in S(K/L). If p € T, let G, be the isotropy
group of p and let F), be the fixed field of G,. Let H, = H N G),. Since C is contained in
G, we have G, = H,, - C. Then p may also be regarded as a character of C'. Let i/ be the
character of G, defined by

i (he) = u(c)
if h € H, and c € C. Eventually we must show that
(13.2) A(Xpsp,vee) [ [ AW, vr )
peT
is equal to
(13.3) A(Xp,Yr) H AW Xp, p, 5, r)
peT

if Xr is a quasi-character of C'r. At the moment we content ourselves with a special case.
The next lemma will be referred to as the Third Main Lemma.

Lemma 13.3. If K/F is tamely ramified the expressions (13.2)) and (13.3) are equal.
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As we observed in Lemma 6.4 the extension L/F will be unramified and ¢ = [C' : 1] will be
a prime. Choose a generator wp of Pp. Since F,/F is unramified we may choose WF, = WF.
Choose wg so that Ng/pwp = wp. Certainly

Or/Fp = 0kg/p =0
while
O/ =4 — 1.
Since
Sr/r = Ok/r +40r/p = Ok + Op/F
we conclude that

Clearly
Z[FM:F]:Z[H:HM]:Z[G:GM]

is just the number of non-trivial characters in S(K/L), that is £ — 1. Moreover m(u') = 1.
Let E, be the fixed field of H,. Then

NEN/FH(WE) = NE/F(WE) = WF-
Thus, as an element of Cr,, wp lies in the image of W, under 7x/r, and hence p/(wwp) = 1.
Also
n(¢E/F) = En(wF) + 5E/F = fn + (f — 1)
while
n(Yr,/r) = n.
If m = m(Xp) = 0 then
m(XE/F) = m(XFM/F) =0
and
XE/F(W?—M—l) _ XF(W?+€_1> _ X wF HXF‘L/F 1+ )

m
so that the lemma amounts to the equality

HA wFH/FawF ) = H ( wFu/F’ 1+n)'
m

If m > 0 then, by Lemma 6.4,
and
m( X r) + n(Ye/r) = €m+n).
Since K/E is unramified

However
XK/F = (,U//-XFH/F)K/FH
so that
Ucr, (MW Xe,r) — 1) = m(Xgyp) — 1= €(m — 1)
or

(u XFL/F) - 1 SDK/FAL (ﬁ(m — 1)) =m — 1.
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Consequently
Since it is clearly less than or equal to m it is equal to m. Because
Xy p(wpt™) = Xp(wpd ™) = Xp(@p ™) [ [ Xr, p(=pt™)
o
we have to show that

A (Xeyp, VE/p, wp ") H Ay (i g, e, wp ™)
is equal to
Ay (Xp, Yp, wip ™) H Ay (W X, p,thp, s o).
Let ¢ be the field O /P p, let A = O /B, let ¢ be the number of elements in ¢, and let

f=M:9=[L:F]

Let 6 be the homomorphism of C' into A* introduced in Chapter IV of Serre’s book. Thus
0(c) = =% (mod Pr)
so that ift h € H ) )
O(h~tch) = (ol ") = (wg ) =0(c)™
Let hy be that element of H such that
alo = qf

if & € X and let ¢y be a generator of C. Then 6(cy) has order ¢ and, since the centralizer of
Cin H is {1},

0(hy"chg) = 0(co)”
is 0(cp) if and only if f divides 7. On the other hand, it is 6(co) if and only if ¢ divides ¢" — 1.
Thus the order of ¢ modulo ¢ is f. We also observe that both C' and its dual group are cyclic
of prime order so that any element of H which fixed an element of T" would act trivially on

the dual group and therefore on C' itself. It follows that F}, = L for all pin T'.
Suppose first that m = 1. Let 1,4 be the character

Yo(@) = b (%)

on ¢. Since Op /P is naturally isomorphic to Op/Br and the map = — Ng/px gives the
map = — x¢ of ¢ into itself while the map x — Sg /r2 induces the map z — fx the required
identity reduces to the equality of

()7 (X5, 00) T 7(1as vonss)
pneT

and
(X ) [ [ 7(1a s tre)-

peT
This equality has been proved in Lemma 7.8.
Now let m be greater than 1. Since F, = 1 for all 1 we are trying to show that

Ay (Xpyp, e, @) T Ar (s oy, @3 t™)
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is equal to
AI(XFa ¢F7 w}ﬂ“r”) H A1(IM‘X‘L/F7 wL/F’ w?—i_n)

Since the action of H on C is not trivial £ cannot be 2. If x lies in 7" and g~ lies in the
orbit of v then
A(v, Y p, W) = Ay(p @DL/F,W}?M)
is u(—1) times the complex conjugate of

Ay (g, Yp e, @™,

Since the order of p is ¢, u(—1) = 1 and, if p # v, the product of the two terms corresponding
to pand v is 1. If

—1 _ qr
pot=p

with 0 < r < f lies in the orbit of y, then ¢ divides ¢" + 1. Thus ¢ divides ¢*" — 1 and 2r = f.
By Lemma 7.1

‘T(M,\WA/@} = \/C]_f =q

and

T(pn, ¥ae) = —Ai(p, Yrr, @wp ™)

if 1y /¢ has the same meaning as before and p is the character of A* induced by p. Since

0= A1 (M? wL/Fu w}f“)
is its own complex conjugate, it is 1. If a € ¢ then
pH (@) = pa”) = p(a).
Since u(«) is an fth root of unity it is 1. Thus
(b, ass) = T(1a)-
However it follows from Lemma 7.1 that
7(ua) =1 (mod n)

where 7 is a number in €,,s_;) which is not a unit and whose only prime divisors are divisors

of /. Thus

T

—0q¢" =7(uy) =1 (mod ¢)
and 0 = 1. We are reduced to showing that
A1<XE/F7 ¢E/F, w}nM)
is equal to
Ay (Xp, Yp, wp™™) H Ay (X p, Yryp, wip ™)
Let = B(XF). By repeated applications of Lemma 8.9 we see that we may take

5(XL/F) = 5(XK/F) = 5(,MXL/F) = g.

If B(Xg/r) is chosen we could also take
B(Xk/r) = B(Xe/r)-

Thus if

m’ = m(XE/F) = m(/'\f'K/F) = 2d/ —+ 6/

we have

8= B(Xg/r) (mod PE).
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Since both sides of the congruence lie in F

B =pB(Xgyr) (mod PBE)

and we may take

B(Xg/r) = 8.
Then
m+n fﬂ —1/nf
DNo(Xg/p, VE/p, wp ") = Yp —n Xz (8)
F
while
No(Xp, o, ™) [ [ Ao(ue, orye, @5 ™)
peT
is equal to
g 1t
VYr (W) Xp (87
To complete the proof of the lemma we have to show that
(13.4) A3(Xp, Yr, i ™) H As(pXr, Yr e, wpt™)
peT
is equal to

As( X p, Vp/p, wp ™)

when one, and hence both, of m and m’ is odd.
As remarked in Lemma 9.4

A3<NXL/F7 ¢L/F7 w}wn) = A3<XL/F7 wL/Fv W?M)-
According to Lemma 9.6, the right side is equal to
€A3(XF7 Ur, W?M)[L:F]

where € is 1 if f = [L: F| is odd and —1 if it is even. Thus ([13.4)) is equal to

GZ_TI{A:;(XF, Vp, Wit}
As before
¢ = Or/Br = Op/Pe.
Let ¢, be the function on ¢ defined by

po(r) = Yr (%) Xp' (1 + wha)

Wp

if m=2d+ 1. Then m' = 20d + 1 so that d' = {d. Let ], be the function on ¢ defined by

B -
<,0/¢<51?) =YE/F (W XE/lF(l + wde).
F

Because of Lemma 9.3, to complete the proof of the lemma we have only to show that

7 Alolpy)| = Alo(2)].
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Since d’ > m and
3d +0—1
- " >m
14
we have
Nij(1+ wia) = 1+ @whSkype + wi Ex p(x) - (mod )

if F2. / () is the second elementary symmetric function of = and its conjugates over L. Thus
Ng/p(l+wha) =1+ ohSpre + w%dE?E/F(x) (mod B7).
This in turn is congruent to

(14 @4 Sp/ra) (1 + w%dEf(/F(@).

Thus
P() = pollw)s(~ ()
if
Yolo) = pr (%)
pu(x) = y(la)iby (#ﬁ) = {ps(@)}".

Suppose first that p is odd and let

%m:w(igﬁﬂ

o) = vy (—&“ _22““3) —y, (—M _ )w (“;‘“ ) -

Referring to the observations in paragraph 9 we see that we must show that

=1 -1 —la? —lo?
€fV¢>(—1)2¢¢< ; ) = V¢(5)¢¢>< ; )

€T = (1) T u(0)
if v, is the quadratic character of ¢*. Let ¢ be the number of elements in ¢. If ¢ is an even
power of p the right side is 1 and if ¢ is an odd power of p the right side is, by the law of
quadratic reciprocity, w(p) if w is the quadratic character of the field with ¢ elements. Thus
in all cases the right side is w(q). If f is odd then ¢/ is a quadratic residue of £ if and only if
q is. Since

so that

or

¢ —1=0 (mod ¢),
q is a quadratic residue and both sides of the equation are 1. If f is odd the left side is
(—1)8771. Since f is the order of ¢ modulo ¢, this is w(q).
Now suppose that p = 2. If
hs(—2%) = y(az)
then, by the remarks in the proof of Lemma 9.7, we have to show that

L= £—1

€T o) =1
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if /=1 (mod 4) and that
441

if /=3 (mod 4). We also saw in paragraph 9 that

{os()} = ¥y(a?)

was +1 or —1 according as ¢ is or is not an even power of p. By the second supplement to
the law of quadratic reciprocity

pola) > = w(q)
if /=1 (mod 4) and

4+1

o) = = w(g)
if /=3 (mod 4). We have just seen that

The lemma is proved.



CHAPTER 14

The fourth main lemma

In the previous paragraph we said that we would eventually have to show that

(14.1) A(XE/F,VE/FP) H AW Yr,r)
peT
is equal to
(14.2) A(xr, ¥r) H A XF, ps VE, F)-
peT

However we verified that the two expressions are equal only when K/F' is tamely ramified. In
this paragraph we shall show that they are equal if Theorem 2.1 is valid for all pairs K’/F’
in P(K/F) for which [K': F'] < [K : F].

Lemma 14.1. Suppose K/F is wildly ramified and Theorem 2.1 is valid for all pairs K'/F’
in P(K/F) for which [K': F'] < [K : F]. If xr is any quasi-character of Cp the expressions

(14.1) and (14.2) are equal.

If a and b are two non-zero complex numbers and m is a positive integer we again write
a ~y, b if, for some non-negative integer r, ¢ is an m"th root of unity. Define the non-zero
complex number p by demanding that

A(XE/r YE/F) H Al Yp, r)
peT

be equal to
PA(XF, YF) H A('Xp, 7,05, F).

peT
We have to show that p = 1. Lemma 14.1 will be an easy consequence of the following four
lemmas.

Lemma 14.2. If m(xp) is 0 or 1 then p =1 and in all cases p ~o, 1.

Lemma 14.3. If [G : Gy] is a power of 2 then p ~, 1.

Lemma 14.4. If the induction assumption is valid, if F C F' C L, if F'/F is normal, and
if [F': F) = {is a prime then p ~y 1.

Lemma 14.5. Suppose H = HyHy where Hy is a cyclic normal subgroup of H, [Hy : 1] is a
power of a prime £, and [Hy : 1] is prime to £. If the induction assumption is valid p ~y 1.

Grant these four lemmas for a moment and observe that if m and n are relatively prime
then p ~,, 1 and p ~,, 1 imply that p = 1. If £ is a prime which divides [G : G| there is
a field F” containing F' and contained in L so that F’/F is normal and [F’ : F| = {. Thus
Lemma 14.1 follows from Lemma 14.4 unless [G : Gy] is a prime power. Lemma 14.1 follows
from Lemmas 14.2 and 14.4 unless [G : G| is a power of 2 or p. Suppose [G : Gy] is a power

129
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of 2 or p. Then p ~ja.q, 1 except perhaps when [G : Go] = 1. If £ is a prime which does not
divide [G : Gy but does divide [Gy : G1] let Hy be the ¢-Sylow subgroup of G¢/G,. H is a
normal subgroup of G/G; which we may identify with H and H/H; has order prime to Hs.
Thus, by a well-known theorem of Schur [7], H = H; Hy where H; N Hy = {1} and H; has
order prime to Hs. It follows from Lemma 14.5 that p = 1 unless [G : Go] = 1 or [G : G4]
is a power of 2 or p. If [G : Gy] =1 and ¢ is a prime dividing [Gy : G4], there is a field F’
with F' C F’ C L such that F'/F is normal and [F” : F| = (. Thus if [G : Go] = 1 it follows
from Lemma 14.4 that p = 1 unless [G : G4] is a power of 2. However if [G : G] is a power
of 2 there certainly is an " in L with [F' : F| = 2. It follows from Lemmas 14.3 and 14.4
that p = 1 in this case unless p = 2. If [G : G4] is a power of p then Gy = G; and G/G is
abelian. By assumption the abelian p-group G/G; acts on the p-group C' = G faithfully and
irreducibly. This is impossible.

We prove Lemma 14.2 first. Let ¢t > 1 be such that C = G; while G, = {1}. Let 6, be
the homomorphism of G; into PB4 /PB4 and 6y the homomorphism of Gy/G into U /Uj
introduced in Serre’s book. If o € Gy and v € G} then

Oi(oyo ) = (B5(0) — 1)6:(7).
If o is not in Gy then 6(c) is not 1 and v — oyo~'y~! is a one-to-one map of C' onto itself.
Thus, if 0 € Gy,
p(oyo™t) = pu(v)
implies p = 1 or 0 € G. Consequently if p # 1, G, NGy = Gy, and L/F),, is unramified.
Since pu = //L/Fu,
m(p') =m(p) =t + 1.
Observe also that ¢t must be relatively prime to [Go : G4]. In particular if ¢ is even, [Gq : G4]
is odd.
The relations
o= ([Gy: 1] = 1)(t+1)
5L/F = [GO . Gl] — ]_
(5K/E‘ = [Go . Gl] —1
and
5K/F - 5K/L + [Gl : 1]5L/F - 5[{/}_«7 + [Go : Gl](SE/F
obtained from Proposition 4 of Chapter IV of Serre’s book, imply that

op/r = ([G1:1]—1) <[G0t—Gﬂ+ 1>.

n(wpu/p) = [GO . Gl]n + [GO . Gl] -1

If n = n(¢F) then

and
n' =ngr) =[G : n+ ([G1:1] - 1) <m + 1).

Choose a generator wg of P and a generator wg of Pg. Then set wy, = Ni/ wk and
wr = Ng/pwg. There is a unit ¢ in K such that
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Taking the norm from K to L of both sides we see that if ¢ =[Gy : 1] and k = [Gy : G;] then
G
L
T
Let m = m(xp). If m — 1 is equal to 5! then [Go : G1] divides ¢ and [Gy : G1] is 1.
Suppose that

== NK/L(S.

t
m< ——— + 1.
[G():Gl]

Then
t

m(Xe,/r) < Vr,/F (m) + 1.
However ¢p, /r = ¢©1/F, ©Yr/r = ¥r/F so that
¢FM/F(U) = [G() . Gl]u
if u > 0. Thus m(xp,/r) <t-+1and m(u'xp,/r) =t + 1. Moreover, by Lemmas 13.1 and
6.4, m' = m(xg/r) = m. Choose a generator wp, of ‘Br,. Then
LF:r)
NFLL/F(W%M) = ’yﬂwF *

where 7, is a unit. The order of w?”w%ﬂ in F, is 1+t +n(¢p,/r). Observing that

Z[F#ZF]:q—l

“w
we see that
Al(XE/F7¢E/F’wE H Aq( wFu/FﬂwF+ wF )
neT
is equal to
HXF(% {A (XFs Yr, g™ HA ,UXFM/FawFu/FawF—i_ WF )
"
It is now clear that p =1 if m = 0.
If
> d +1
m = ————
[GO . Gl]

so that in particular m > 2, then
t
= =Gi:1m—(Gy:1]-1)| =———=+1
m' =m(xg/r) =[G : 1lm — ([Gy : 1] )([G03G1]+ )
is also greater than or equal to 2 and
m' +n' =[Gy : 1](m+n).
Since m’ > 2 and K/E is tamely ramified
Since
m(Xr,/r) < VYpyr(m—1)+1
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and
VY, r(m—1)+12> g, /r (%) +1=1t+1
we have
m(ﬂ/XF#/F) <Yp,(m—1)+1.
However
XK/F = (M,XFM/F)K/FH
so that
Vr/r, (VE r(m—1)) + 1 =Yg p(m — 1) + 1 = m(xg/r)
is at most
vicsr (m(p'xr, r) = 1) + 1.
Thus
m(p'xF,F) = Yr,r(m —1) + 1.
Consequently

m(p'xrp, r) + (g, r) = [Go : Gi](m +n).
Since the range of each p’ lies in the group of gth roots of unity

Av(xg/p, VB, @i ) H Ay (i p, p, o o)
I

is equal to

(AN (XF7 Yr, W?Jrn) H Ay (M/XF,L/Fa l/)Fu/Fy w}fﬁn)
I

with o ~, p.
The next step in the proof of the lemma is to establish a simple identity. As usual let r
be the integral part of &1 and let r + s = ¢ + 1. Choose B(y/) so that

VR, F (%) =u(1+x)

F WE,

for z in % . There is a unit o, in L such that a,@j = @f. Then

o, B(p)x
_— g 1
¢L/F< e p(1+ )
for z in P57 . We take S(p) = a,,f(1'). If 0 € G a possible choice for B(u?) is

B(w)
Let ¢ = Op/Br = Op/Pgr and let ¢4 be the additive character of ¢ defined by

Ys(x) = Yr (%)

There is a unique « in ¢ such that

t
o WL

ot”’
wp,

Yolaw) = Py (a).
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Finally let

I want to show that

(14.3) H% —H Ng,/rB(1)

in ¢.
Let A = OL/%L = OK/%BK If
@i
@,
then w; = dw in X\. We need the following lemma.
Lemma 14.6. Suppose K'/F' is an abelian extension and G' = &(K'/F'). Suppose there
is at > 1 such that G' = G} and G, = {1}. Let wgs be a generator of Py, let wp =

NK’/F’(wK’)y CLTLd l@t
wt/
:S/ ’ i<l .
w K'/F (w%)

Also let ¢ = [K' : F']. There are numbers a, ..., f in Op such that for all z in Op
NK’/F’(l + in%/)
18 congruent to

1+ (27 + az¥? + - + faP + wr)wt,

modulo t+1 .

Suppose F' C L' C K’ and the lemma is true for K'/L" and L'/F’. The lemma for K'/F"
follows from the relations
[K': F'|=[K': L'|[L': F']
and
Ny (1 + 2w@l) = Ny yp (Ngryp (1 + 2wl))

whe \ wt, whe
SK//F/ _t prm— SL//F/ t SK//L/ t .
wF/ wF/ WL,

The lemma for extensions of prime order is proved in Serre’s book.
Suppose then

and

Ngjp(l+awl) =14 (29 + -+ + wa)w)  (mod Pr)
for x in Oyp,. Since
Uaslaz) =g (aSys(@)) = o ((SA/¢($))Q>
which in turn equals

Vo(Sx677) = Pasp(x?)

we conclude that
Vo (y(xq +oe At Wf)) = Ux/¢ ((ayl/q +- W?/W)
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Also
(a4 4+ wy)? = oy + - 4+ wiy?
is a polynomial Q(y) in y.
For each v in S(K/L), we choose (1(v) so that

Y/ F (%) =v(l+x)

for z in PB;. Since k¥ =k in A

o (kB () (@7 + -+ wa)) = g (B () [(ke) -+ + wha] )

if x is in Op. The left side is also equal to

borr (mv)PK/mxw@) .

1+n__t
Wp Wy,

Thus Q(kB:1(v)) = 0. Since Bi(11) = Ba(1a) (mod PB) implies v = 5 we have found all the
roots of Q(y) = 0. Thus

qu
= [T#8:v) =[] B1(v) (mod PBy).
v#1 v#1
Let M, be a set of representatives for the cosets of G, in G. Then
H Ng,/rB(p) = H H Bu)”
,lLGT ,LLET O'EM;L

is congruent to
~1

[1aw < 11 I1 f,j—

v#£l peT ceMy,

modulo PB. To verify the identity (14.3) we have to show that

¢
H H ozZZ—th H%w =07 (mod Pg).
m

n o oeM,

Since

B wzt 7t[FL;;F]

Yo = H o0 wWp
oceM, M

the congruence reduces to

t(g—1)

L =47 (mod Pg)

n (11;1) -
Wp

which is valid because the left side is Nk /10 and
NK/L5 =0 (mod mK)
If m = 1 then m(xr,/r) < 1 and we can take B(u'xp,/r) = B(1'). Then

AQ(,U’/7 wFu/Fa w}:‘+nw%u)
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is equal to
XF (NFH/F (B(") ) ANo(WXE, 7y VE, P wzl;rnw%u ).

Lemma 9.4 implies that

A3(,u/7 iﬁFH/F, w}ﬁnw%ﬂ) = AS(N/XFH/Fa wFH/Fy W}jnwfwﬂ)

If x belongs to Og then
x

¢E/F (W) = ¢¢(w1x).

E
If x4 is the character of ¢* determined by xr then

Ay (xp, Yr, @) = A[=7 (X, 1))
and
(X, Vg @E) = o) A| = (G 5)] -
The right side of this expression is equal to
Xo(wio™ ) A[=T (x4, ¥y)]-
The identity now shows that p =1 when m = 1.

Suppose that
t

l<m< -———+1.
[GO . Gl]
Let 8 be a given choice of 5(xr). Then
B(xer) = Piyp(B @y ™, wpt™)  (mod Pf)

if m" =2d' 4+ €. On the other hand

wL/F(m — 1) + 1+ Tl(wL/F) = [GO : Gﬂ(m — 1) +1+ [G : Go]n -+ [GO : Gl] —1

which equals [Gy : G1](m + n) and Lemmas 8.3, 8.4, and 8.7 imply that

Ppp(B, @3t @it = B (mod BT)

if
Yrp(m—1)+1=2d; + €.
If
Vrp(m—1)+1=2d; +¢€
then /
Pisis(B0cew) @+ @) = Blueyr) - (mod ).
Thus /
B(xrsr) = Preye(B, a8 ™ @i t™)  (mod PY).
Let
v=t+1— (Yprm—1)+1) =t —[Go: Gi](m — 1).
If -
Y= zn];q
F
and

135
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then
* m'4n’ m+n\ _ px m/+n’ m-+n d;
PK/F<67WE+ 7wF+ ) :PK/L(ﬁvwE+ 7WF+ ) (mod By)

is congruent to
14+n

VIP;‘(/L(V@ w};nthwI—{v’ wp "y )
modulo ‘,Bf,lé.
It is clear that

I i

AQ(XE/Fa VYE/F, @ o ) ~p X;“l (NE/F (B(XE/F))>

and that

AQ(:U’/7 wFH/Fv w?‘Jrlw%u) ~p L.

If we choose

/ / WtF,u
Bt xr,r) = BW) + B—25
Wg
then
/ n+1__t —1 / w%u
Ag(p XF,/Fs VR, /F, @ WFH) ~p Xr | Nr./F Bu') + 5%
F
Moreover
AQ(XF: ¢F7 wngn) ~p X;‘l (6)
Let
ANo(XE/F VE/p, g ) H No(pthp, r, w%“w%u)
o
equal
Ao (xF, Yp, W) H ANo(WXF, 7y, P w}lflwfm) H XF(V)
I I
Since

Xr(u) ~p 1
if u € U}, all we need do to show that 7 ~, 1 is prove that

BHNF»L/F (/BW,) +p wjﬁ)
o F

w

is congruent to

Nesr(B(xe/r)) H Y
w
modulo Bp.
As before we choose f(u) = o, B(1'). If v = p7 a possible choice for B(v) is
t
w
of (M/)a_(f
p T

We can also choose

/ , Wy,
Bluxr/r) = (') + mefl = Qu (B(M ) + 5wm“1) :
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Then a possible choice for B(u”xr,/r) is
o Fy, 0 w o’ t wt
%{B(u’> } ) e R

L @7’ F
We apply Lemma 8.10 with F' replaced by L,
S = 1+n

@y,
Niss (5(X1::/F)>
Y

w]l 11 aZ(ﬁ(u’Hﬁ;ﬁl) g—%

neT oceMy,

and €; = w}j.. It implies that

is congruent to

modulo B;. The last expression is equal to

vas 11 Newsr (5(1/)

peT

t

) W IT
t

w
F ueT ceM,

and we have to show that

YNx/L(Y) H”Vu H H Mwat

neT oceMy,

is congruent to 1 modulo P. First of all,

m n n — v —_ w
NK/L(W/) 'y "+n'—q(1+ )qut+ =7 1 Fﬁ .
ol
L
Since
-1
O{O- t[FM:F]
7}1 = H ﬁ Wp p
oeM, L
the required relation follows.
Define n by setting
NA3(XE/F VE/F, w?}*”) H Az(i VF,/F, w?nw%ﬂ)
neT

equal to
A3(XF7¢F7 m+7L HA3 /“LXFM/FJwFu/F7wF+ wFN)
peT
We now know that 7 ~, p. We shall show that n ~, 1. This will prove not only the assertion
of Lemma 14.2 but also that of Lemma 14.3, provided of course that

t
[Go:Gi]’
Lemmas 9.2 and 9.3 imply directly that 7 ~, 1 if p is 2.

m—1<
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Suppose p is odd. Lemma 9.4 implies that

ANs(p s p, r, wp ") ~p Ds(W XE, 7y VB, P, D5 D)

Since m’ = m all we need do is show that
AS(XE/F7¢E/F: oy ) ~p A3(XF,1/1F,W?M)
when m is odd. Let ¢ = Op/Br = Op/Be. Let ' = B(xg/r) and let B = B(xr). If Yy is

the character of ¢ defined by
Bx
,l/}:i)(%) = ’l/}F (wgﬁ-l

and 1} is the character of ¢ defined by

() = Y (%)

and if ¥f(z) = ¢ (dx) then, by Lemmas 9.2 and 9.3, all we have to do is show that 0 is a

square in ¢. If
n+1
w
w1 = SE/F (f—lﬂ>
Wg

then § = wl% in ¢. To show that ¢§ is a square we show that §7 is a square.

N /
07 = Ng/pa = Bl_q%(ﬁ)w%
We saw that
N
s (11X (i (025
in ¢. But
o
f—>"-=0 (mod‘P.)
w

F
because t > [Gy : G1](m — 1). We also saw that
-1

aq
H o H Ne,rB(W) ¢ = =
1 1 “1

in ¢. Since 3179 is clearly a square, we need only check that « is a square. The character
T = Py(2? — ax)
is identically 1, so that the kernel of the map
r—a?—ax

is non-trivial. Thus o = 297! for some z in ¢.
Now suppose that
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We have to show that the complex number ¢ defined at the beginning of the proof satisfies
o ~9, 1. To prove Lemma 14.3 we will have to show that o ~, 1 if [G : G4] is a power of 2.

Given 3 = (xr) we may choose 3(xr/r) = B(XF./r) = . Moreover
Bxer) = Piyw(B, @i ™, wit™) - (mod Bf)
if m" = m(xg/r) = 2d' + ¢. By Lemmas 8.3, 8.4, and 8.7
P p(B, @t o) = Piyp(B(xesr), wp ™, @i t™) = B(xe/r)

modulo P2 if

Thus )}
B(xe/r) = Pie/p(B. @i, wpt™)  (mod P).
If
¢FM/F(m —1)+1=2d,+e¢,
and

VE.F (M) =/ (1+x)

m
Wp

dyutep

for  in P F, | We may take

B xE,r) =B+ aly).
If
VﬁL/F(m — 1) -+ 1= 2d1 + €1

pw(l+z) =vrr (M)

m
Wp

then

for = in ‘BdLlJrq. If v = u” then

v(l+x) =rr (ﬁﬁ?)

F

for = in ’B‘éﬁel. Lemma 8.2 implies that
NE/F (5(XE/F)) = NK/L (ﬁ(XE/F))

BIT I B+ aw))

pneT oeM,,
modulo B;. The last expression is equal to

B H Ng,/F (5 + a(lil))'

peT

is congruent to

Moreover
Ao(xr, Yr, @i ™) ~p X5 (B)
ANo(p s p, p, @yt o) ~p

Ao(XE/F, VE/Py TET™) ~p X5 (NE/F (ﬁ(XE/F))>
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No(W' Xp, p, VE, o, @ET™) ~p XF (NF,L/F (B+ a(ﬂ')))-

Define 7 by demanding that

As(XE/F,lDE/F,wF HA:; @ZJFH/F,WFJ“ wF )

be equal to
TA3(xF, Yp, wE ") HA3 1\ XE,F, R, P, TR
o
Since xr(u) ~, 1 if u € U}, the preceding discussion shows that o ~, 7. Lemmas 9.2 and
9.3 show that 7 ~9, 1. Lemma 14.2 is now completely proved. To prove Lemma 14.3 we have
to show that 7 ~, 1 if [G : G;] is a power of 2. We may suppose that p is odd.
There are a number of possibilities.

(i.a) tis even and m is odd. [Gy : G;] must be odd and hence 1, for we are now assuming
that [G : G4] is a power of 2. Since

m(xr,/r) = [Go: Gi](m —1) +1

and ([G | )
1 = 1)t

=[Gy 1](m—1)—

m(XE/F) [ 1 ](m ) [GO : Gl]
both m(xr,/r) and m(xg/r) are odd.

(i.b) ¢ is even and m is even. Again [G : G1] is 1. This time both m(xp,/r) and m(xg/r)

+1,

are even.
(ii.a) t is odd and m is odd. Then m(xr, r) is odd. If
Gy 1] -1
[Go : G

is even, m(xp/r) is odd. Otherwise it is even.
(ii.b) t is odd and m is even. If [G : G1] is odd, that is 1, then m(xp,/r) is odd and
m(xg/r) is even. If [Gy : G1] is even, then m(xr,/r) is odd and m(xg/r) is even or

odd according as
[Gl . 1] —1
[Go . Gl]
is even or odd.
If ¢ is odd then clearly

HA3 p,p, @ ") ~p L

We are going to show that thls is also true if ¢ is even. Then L/F, and hence F,/F, is
unramified. Let ¢, = O, /Bp,. If

Vou 3) = gy (%)

F

and if ¢4, is a nowhere vanishing function on ¢, satisfying

0o, (T +Y) = 04, ()04, (V) 1g, (TY)
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then
Az VF,/F, w?nwﬁ) ~p A[—a(go%)] .
If o belongs to ¢, let Vg, (a) equal +1 or —1 according as « is or is not a square in ¢,. If
¢ = Op/Br then
Vo, (@) = v5(Ng, /6(c)).-

T
T) = —_
then, according to paragraph 9,

Aol Vr e @E ) V¢<NFM/F(5(M’))>{A[—U(w)]}[FH:F}

if ¢, is any nowhere vanishing function on ¢ satisfying

Po(z +y) = po(2)0s(x) s (y).
Thus if a is the number of p in T'

HA3 g, r, " WF )

If

is equal to
(=1 | [T Neyw (BG) | Alo(es)"™]

where n ~, 1 and ¢ = [G; : 1].
We saw in paragraph 9 that

Alo(ps)?] ~p vs(— [|0 o) ] = vg(—1).
Since t is even Gy = G and G/G1 = G/Gj is abelian. If 0 € G

{neSW/L) | u=p)
is a subgroup of S(K/L) invariant under G. It is necessarily either S(K/L) or {1}. If o
is not in Gy, it is not S(K/L). Thus G, the isotropy group of y, is G; for all y in 7" and

F, = L. Moreover
HNFH/F(ﬁ(/LI)) = H H B()
o w o€G/G1

We may regard C' = G as a vector space over the field with p elements. If 0 € G/G and
the order of o divides p — 1, then all the eigenvalues of the linear transformation ¢ — oco™?
lie in the prime field. Since the linear transformation also has order dividing p — 1, it is
diagonalizable. Since G /G, is abelian and acts irreducibly on C| the linear transformation is a
multiple of the identity. In particular if og is the unique element of order 2 then ogco, ' = ¢
for all c. As a consequence p° = p~! and

B(p)™ = —=p) (mod Pr)



142 14. THE FOURTH MAIN LEMMA

if we choose, as we may since F,/F is unramified, wp, = wp. If D is the group {1, 00} and
M is a set of representatives for the cosets of D in G/G then

IT I Bw) =y

HeT 0eG /Gy
if
v=111I s
pneT ceM
Clearly

g—1
17 =(=1)=9* (mod P).
If x is the non-trivial character of D and

UCG/G0—>D

is the transfer then
a

77 =x(v(0)"y
for all ¢ in G/Gy. vy(¥?) = 1 if and only if X(v(a))a is 1 for all 0. If o is a generator of
G /Gy then

[G:Gol
U(O‘)ZO’GQGO = 0y

so that v4(v?) = (—1)®. Putting all these facts together we see that
H A3(,u/, @DFH/F, ’Zﬂll;_nthu) ~p 1

m

Observe that if we had taken wp, to be §,@p then Np, ,rB(p') would have to be multiplied
by
{NF u/ F 6.“} !
which is a square modulo Pr because ¢ is even. Thus the result is valid for all choices of wp, .
Eventually we will have to discuss the various possibilities separately. There are however
a number of comments we should make first. If m is odd and m(xp,/r) is odd then

A3(#’)(117‘#/1?7 QﬁFu/F, W?%) ~p Vo, (5 + a(u’))A[—a(gp%)}
if

F

x
Vou @) = Vi e (w—> .
m—1
Observe that, because m is odd, we may take the number ¢ in Lemma 9.3 to be w,* . Of
course g, is any function on ¢, which vanishes nowhere and satisfies

0o, (T + 1) = 04, (2)Ps, (Y) o, (xY).
Applying Lemma 9.1 we see that

if k= [GO : Gl], if

F

bt = o e
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and if ¢, bears the usual relation to 14. We use, of course, the relation

kS, /0(x) = Sr,p(x).
Observe also that
o (B + i) = vs(Nouso (8 + ali) ).
If m is odd
As(xp, Y @i ") ~p —1(B)Alo(04)]-
If both m and m’ = m(xg/r) are odd and if ' = B(xg/r) then

As(XE/F, VEp, wET) ~p _Vcb(ﬁl)A[U(SOiz))}

if 7, bears the usual relation to the character

T

V() = Yp/r o

o, ©
There is a unit € in Ok such that wp = ew}. If 0 € C then
25 = =1 (mod PBg)
because ¢t > 1. Thus the multiplicative congruence
w} = Npjpwg = wr  (mod” Pg)

is satisfied and

1 w}f”
(g—1)t = 14+n/ (IHOd* SBE)
wg " “E

If
14+n
w
«=s(2)
Wg

vy(w) = vr (;—9”)

F

as before, then

Since
v(B') = vs(B')! = vy(Ne/rB')
we have
Ag(XE/F,l/JE/F,W?M) ~p _V¢(NE/F5/)V¢(W1)A[U(S%)]'
Define n by demanding that
Ag (XE/Fa ¢E/F7 W?M)
be equal to

nAs(xr, Yp, wp™") H As(W'xp, rE,m i ™).
m

We have to show that 1 ~, 1. If both ¢ and m are even this is clear. If ¢ is even and m is
odd, we are to show that

o (N )volwn) ~p (=1)wo(=1) 5 v () T 05(8) [T v (N 0(8 + au))
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if a is the number of elements in 7". Since ¢ is even k is 1. As before
B Nowss(B+a(u)) =8]] TI (B8+a))
Iz n oeG/Gy

is congruent to Ng/p’ modulo Pg. All we need do is show that

q

a a1
vo(wi) = (=1)"v(=1) =
Since ¢ is even each v, is a square in ¢. Applying the identity (14.3) we see that

vo(wr) = ve(wi) = vs(a)v, " | T NeeB)

We have seen that « is a square in ¢ so that v,(a) = 1. We also saw that

qg—1

vo | T[] NeyrB() | = (=1)we(—-1)"=

when t is even. The required relation follows.
We suppose henceforth that ¢ is odd. The discussion will be fairly complicated. Suppose
first that m is also odd. Then
[GO : Gl](m - 1) 7ét

and ;
m—1>———
[Go : Gl]
so that
f+a(p)=pF (mod PyL)
and -
[T Qalu a0, 5 ") o (<)% (K5 s (B ) Alr(i0)]
m
Thus if % is odd we have to show that
(14.4) (—1)" g (k)vs(—1) 5 2~y 1
and if % is even we have to show that
(14.5) vo(wn) ~p (—1)wy(—1) 5

Now suppose m is even. If [G : G;] is 1 there is nothing to prove. If k = [Gj : G1] is even
then

— 1>
m [GoIGl]

and

B+a(p)=F (mod Py).

k(m—1)
F,
V6 (2) = ¥rr | B~

F

If
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and gpﬁm is a function on ¢, which vanishes nowhere and satisfies

P, (T + ) = @y (7)6}, (Y)g, (Ty)
then
A3(N,XFH/Fa 1/)Fu/F, w?ﬁn) ~p A [—0(80;%)} .
If
euw}?_l = w];;imfl)
then ¢, is a unit and
Vo, (1) = Uy, /6 (kBeuT)

if, as before,

By Lemma 9.1, A[—0 (¢, )] is equal to

[Fu:F]

Z (k a ) Vg (5 L ) Vo(Ng,jscu) Alo(ps)] "

If q;kl is even we have to show that

(14.6) (=1 HN¢H/¢€N %(_1)% ~p 1

m

If % is odd then m’ = m(xpg/r) is odd. If
m’—1
wy X
V() = VyF (5'#>
F
and @7 bears the usual relation to ¥ then

As(xe/r, VE/p, wp ) ~p A [_U(SOZ)} :
Now v4(8") = v,(6')? and

(Bl)q = NE/FB,
which in turn is congruent to
SII I (B +atw)) = s
neT oceMy,
modulo P Let
it = w%m%)

and, as before,

wll;r”
w1 = SE/F A
Wg

Al=0(2h)] ~p volwn)vslenva(B)A[-0(20)].

then

We saw that

wh =wr  (mod” Pg)
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so that
e =1 (mod Pg).

Thus we have to show that

g—1 1

(14.7) v(wi) ~p (= 1) g (kv (—1) 5 2wy | [ No, 0

The four identities (14.4)), (14.5)), (14.6)), and look rather innocuous. However to
prove them is not an entirely trivial matter. We first consider the case that G /G, is abelian.
If oy € G/G| is of order 2, the argument used before shows that ogcoy* = ¢! for all ¢ in C.
Since the representation of G/G on C'is faithful, G/G; has only one element of order 2 and

q—1

is therefore cyclic. In this case F}, = L for all p and a = eZent We may choose wp, = wy. If

Nyjrwy, = WWE:GO]

[T ="
n

If [Gy : G1] =1 we may choose w; = wp so that 7 = 1. The argument used before shows
that

then v, = 7" and

vo| TT T 8)7 | = (1) we(~1)"7 .

neT ceG/G1

The identity ((14.3]) shows that

-1
vo(w) = (=1)wy(~1) 7.
The identity ((14.5) which is the only one of concern here becomes

vo(~1)'T = vy(=1)'
which is clear because k = [Gy : G4] = 1.
Now take [G': Go] = 1. We may choose wg = Nk/pwg so that wp = Ny /pwy, and 7 is
again 1. It is perhaps worth pointing out these special choices are not inconsistent with any
choices yet made in this paragraph. This is necessary because the arguments appearing in

the functions A, must be the same as those appearing in the functions As. We previously
defined

1+n t
_ Wp wr,
5 1+n wt
and showed that

i

Ng/Lo L
K/LY = "1

Wg

Observe that

because
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is just the set of kth roots of unity in ¢ and k is a power of 2. It is not 1 because
[Go : Gl] = [G : Gl] > 1.

Since
0! = NK/L(S (Il’lOd (43[()

we have
q—1

vo(8) = vs(~1)'F".

B1(v)x
Y F (W =v(l+2)
for x in P35 and v in S(K/L) then, as we saw when proving the identity (14.3)),

If as before

wi =091 Hﬂl(y) (mod Py).
v#1
Thus B
vo(wi) = vo(=1)% [[vs(B1(v)).
v#1
We can choose g elements v; in S(K/L) so that every non-trivial element of S(K/L) is of
the form I/ij, 0 < j <p. Then

g—1

[1v (i) =, i_[ ﬁjﬁ(%‘) = vy(—1)5 1
VAL e

because

When m is even

Since a = % the identities ((14.4]), (14.5)), (14.6) and (14.7)) become

(14.4) o (k)(—1)5 = 1
(14.5') Vo(—1)5T = y(—1)'F

(14.6) vo(—1) = 1

(14.7) vo(—1)"F vo(— 1) = vy(k)vs(—1) T Fivg(~1)'F .

If p=1 (mod 4), the identities (14.5)) and (14.6") are clearly valid. Moreover for (14.5) and

(14.6") the number ‘I;kI is even. Since k is a positive power of 2, ¢ is an even power of p if

p =3 (mod 4). If ¢ = p*/ then

-1
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and the left side of is 1. If % is even (|14.5) and are now clear. If it is odd, 4
divides k because 8 divides ¢ — 1. But { 6y(c) | o € Go/Gy } is the set of kth roots of unity
in Op/Pr = ¢ so —1 is a square in ¢, v4(—1) = 1, and the relations are valid in this case
too. The relations and are obvious if the degree of ¢ over the prime field ¢ is
even. Since ¢* contains the kth roots of unity and £ is a power of 2, the degree can be odd
only if k£ divides p — 1. Since
g—1 _q—-1 p—1
ko p—1 k
and q;kl is now odd p%l must also be odd and by quadratic reciprocity

1o(k) = 1) = Vi (<1 (P ) = i (1)

p—1
=1 — .
P (mod k >

If p=1 (mod 4) the two relations are now clear. If p = 3 (mod 4) and ¢ = p/

—1
1o gptpp
p—1

must be odd. It is therefore congruent to 1 modulo 4. (14.4") becomes

V¢0(_1)V¢>0(_1>% =1

N

because

and ((14.7')) becomes
V¢0(_1) = V¢0(_1)'
There is no question that both these relations are valid.
We have still to treat the case that G/G; is abelian while neither [G : Go] nor [Gy : Gy] is
1. Then
k
NryeB) =< ] Bw)p  (mod Br,)

c€G/Go
is a square in ¢ and the identity (14.3)) implies that

Vg(wr) = vs(7")
Cp/NppCy is cyclic of order [G : Gi]. It has a generator which contains an element of the
form y,wp. Moreover the coset of

— G:G —
(mwr Npjpowy = ol

is a generator of Up/Ur N Ny /pCr. The order of this group is a power of 2 and p is odd
so every element of Ur N Np,/pCp is a square. Consequently 7 cannot be a square and
vy(y) = —1. If m is even and F” is the fixed field of G, then

m—1
k m—1
(7t ([ Npypop o
€p=|— = —— w]
wF wWF

c€Go/G1

([ Nypwr ml
wF

)[G:Go}

m—1

which is congruent to
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modulo PBy. Since [F': F| is even

m—1

NL/FWL m—

Noujoen = Nprypeu = (W ="
F

and
Vo(No,/6€u) = vo(y) = —1
Because
qg—1
a =
[G . Gl]

is integral, - is even, and we need only worry about the identities (I4.5) and (I4.6). They
both reduce to

q—

vo(—1)F = 1.
To prove this we show that Z-* is even if v4(—1) = —1. Since
k= [UF . UF ﬂNL/FOL]

and this index must divide the order of ¢* the number v4(—1) is —1 only if £ = 2. Of course
p will be congruent to 3 modulo 4. Since 4 divides ¢ — 1, ¢ is an even power of p and ¢ = 1
(mod 8). Thus

is even.

Now suppose that G/G; is not abelian. Let 0 — z(0) be a given isomorphism of Gy/G4
with Z/kZ and let © — o(x) be its inverse. Let 7 — A(7) be that homomorphism of G/Gy
into the units of Z/kZ which satisfies

z(tor™h) = X1)z(0).

There is precisely one element of order 2 in Gy/G1, namely O'(%

of G/G;. Since G/G is cyclic, G/G; is non-abelian only if & > 2. Choose a fixed o( in G
which generates G/Gy and set

>, and it lies in the center

to = A(0o)
and
wo = (a5 ).
We shall sometimes regard C' as a vector space over the field with p elements. If o belongs to
G /G4 let w(o) be the linear transformation

c— oco L.

The dual space will be identified with S(K/L) and 7* will be the representation contragredient
to 7.
The relation

Nees)=3 ] Bw)

0€G/CGuGo



150 14. THE FOURTH MAIN LEMMA

together with the identity ((14.3) implies that

Vo(wi) = g H%
m

Moreover if m is even and F ;/t is the fixed field of G, Gy,

E m—1 m—1
_ [k _ ) Nryr @, 1o
€y = = @E,
wrp wrg

c€Go/G1

m—1
_NFM/F[LWF,L
wF

(m—1)t
NFH/F;LWF#
wWF

m—1

which is congruent to

modulo Pr,. Since

{N%/(beu}t = NFL/F{_
which equals
(_1)t[¢u:¢]ﬁ%l
and t is odd,
Vo(Nousen) = vo(=1)1uy(v,,).
These relations will be used frequently and without comment.
I want to discuss the case [G : Go] = 2 and pp = —1 (mod 4) first. Since

(—ho)® = py = Aog) =1 (mod k)

we must have
— Mo = ]_ (mOd k)

or, if £ >4,

k

—Ho =3 +1 (mod k).
Then
po =—1 (mod k)

or

k
Since

po—1=2 (mod 4)

the centralizer of og in Go/G consists of the identity and 0(%). Thus z(c?) is 0 or %

Suppose g = —1 (mod k) and (o) = £. If o belongs to Go/G; then ggooy' = o~

and (0g0)? = o2. Thus a(g) is the only element of order 2 in G/G;. If o belongs to G/G;

then o has a non-trivial fixed point in S(K/L) if and only if 7(c) has 1 as an eigenvalue. If
o # 1 there is an integer n such that ¢™ has order 2. Then 7(0™) also has 1 as an eigenvalue.
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Thus if any non-trivial element of G/G; has a non-trivial fixed point there is an element 7 of
order 2 such that m(7) has 1 as an eigenvalue. The usual argument shows that

)

so that, in the case under consideration, only the identity has fixed points. Then

_ a1
[G . Gl]
In particular q;kl is even. We choose wp, = wr and let
VWEE:GO] = Np/r@r.

Only identities (14.5) and (14.6)) are to be considered. ([14.5)) reduces to
a1
vs(7)" = (=1)"vs(—1) =

and ((14.6) reduces to

(=1) (= 1)1y ()i (1) 5 = 1.
Since [G : G| is even they are equivalent. Suppose ¢ has r elements. If z € A = O /9B, then
2% = 2" for some f. If o belongs to Go/G; then

Tfagl
90(0’)”0Tf = 60(0’00’0’61)Tf = <wLo_0 > = 90(0’).

wr,
Thus
,ugf =1 (mod k)
and
r=-—1 (mod 4)
so that v4(—1) = —1. Since, in the present case,
qg—1
“T ok
the identities become
ve(7)" = 1.

The map

TL/F : WL/F — Cp
determines a map of G/Gy onto Cr/Np,pCr. The image of oy contains an element of the
form ~;p where 7; is a unit. The image of o2 is 1 because the commutator subgroup

contains
{J((uo - 1)3:)} ={o(z) ’ =0 (mod2)}

and in particular contains o2. Since [G : Gg] = 2 the number v, 2 lies in Up N Np/pCp. The
index of the commutator subgroup of G/G; in G/G, is 4 so

[UF : UF N NL/FCL] = 2.
Consequently ;2 and 7 are both squares and ve(y) = 1.
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Now suppose o = —1 (mod k) and z(o3) = 0. Every element of the form ogo, 0 € Gy /G,
has order 2. If w(0go) = —I then oo lies in the center of G/G; which is impossible. Thus
7(0po) has 1 as an eigenvalue. If 7 € Go/G; then

T ogoT = 0poT?

so there are two conjugacy classes in the set 0oGy/G;. One has oy as representative and the
other has o1 = gpo(1).

Let V be a non-trivial subspace of S(K /L) invariant and irreducible under the action of
Go/G1. Suppose first that V' is also invariant under 7*(og) so that V = S(K/L). Choose
vo # 0 so that 7*(0g)vg = vg. Let X be the field obtained by adjoining the kth roots of unity
to the prime field. Certainly A’ C A and, since

0o(0)7° = Oy(0y tooy),
N is not contained in ¢. Let ¢’ = ¢ N N. We may regard {1,00} as &(N\/¢’). The map ¢
which sends ¢ in Go/G; to (65'(0),1) and oo to (65" (c),00) is an isomorphism of G/G;
with the semi-direct product of the kth roots of unity in A" and &(\'/¢'). There is a unique
map, again denoted by ¢, of V onto X’ such that ¢(vg) = 1 while

p(m*(T)v) = @(7)p(v)

for 7 in G/G;. Of course the kth roots of unity act on X' by left multiplication. The Galois
group acts by opa = a% . Putting the actions together we get an action of the semi-direct
product. To study the action of G/G; on V' we study the equivalent action of the semi-direct
product in N.

It is best to consider a more general situation. Suppose ¢’ is a finite field with p/ elements,
X is an extension of ¢’ with p’ elements and I' is the semi-direct product of the group of
kth roots of unity, where k divides p® — 1, and &(X/¢'). T acts on X as before. Let £ = nf.
If 0 <ji <n,j= (ji1,n), and p is the automorphism = — 2P of X /¢' then the number of
elements of \ fixed by a member of T of the form (a, p’) where « is a kth root of unity is the
same as the number of elements fixed by some other member of the form (3, p™7). Indeed if

b‘]—,1 = — <mod E)
J J

and b is prime to the order of (a, p’') we can take
(B.p77) = (a, p)".
Let 0 be a generator of the multiplicative group of \'. The equation
can be solved for f if and only if om® 1) has order dividing k, that is, if and only if p* — 1
divides km(p’/ — 1) or, if
p—1
. k .
if and only if u divides m(p’/ — 1). Let u(j) be the greatest common divisor of v and p?/ — 1.

u divides m(p’/ — 1) if and only if ﬁ divides m. The number of such m with 0 < m < p° —1
is

u =

u(j)

EL 1) = (k.
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Once m and j are chosen « is determined. The number of non-zero x in A" which are fixed
by some (3, p~7) where j divides n but by no (3, p~*) where i properly divides j is

%: [ (%) u(i)k

if pu(+) is the Mébius function. The number of orbits formed by such x is
1 AW
w2
ilj

so that the total number of orbits of I' in the multiplicative group of X\’ is

which equals

The product is over primes.

Lemma 14.7. ]f’% 1s odd then

(=1)* g (k)vg (—1) 20 +2 = 1.
The identity of the lemma is equivalent to
(~ 1)y () (~1) 7 =1
because
v (k) = v (=1)vg (u).

By the law of quadratic reciprocity, the left side of the identity is equal to

(=1 (p"[u)
if (p/|u) is Jacobi’s symbol. If u = 1 there is only one orbit so

(-1t =1.

Of course (p/|1) = 1 so the identity is clear in this case.
We prove it in general by induction on the number of prime factors of u. Let my be a
prime factor of u and let u = 7¥v with v prime to my. Let v(j) be the analogue of u(j). Then

u(j) = Wg(j)v(j). Let b be the analogue of a. Then
=a—b= 1——)—= —1).
v a |Z FT[ ( 7T> i (WO )
Observe that my and all v(7) are odd. To prove the lemma by induction we must show that
(14.5) (~1) () = 1.

Let
n = 2Yn,
with n; odd. There are two possibilities to be considered.
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(1)
mo=1 (mod 2v™).
Since the order of p/ modulo 7, divides n, the quotient of 7y — 1 by this order is
even and p/ is a quadratic residue of my. Also if ¢ divides n

@ _q

i
is divisible, in the 2 adic field, by 4 if 2 divides % and is always divisible by 2. Thus
v is even and (| is valid.
(i)
o = 1+ 2%
with ¢ < y and w odd. Let ¢ # ny divide n; and consider

(14.9) Z H ( W) 22“2) (@D _ 1),

n_
274

If x(2¥1) = 0 the sum is zero. If x(2¥7) # 0, let z be the smallest integer for which
x(2%) # 0. If j < z then z(274) = 0. If j > 2

21—% 1
P 1= - > P

The residue of the sum modulo 7 is 2/~*. Thus
x(274) = x(2%)
if j > z and ((14.9) is equal to

AIe-

n
T 1

7

y— u 2y)
Z J+1 o 1)'

We write ,
v(2Y1) <= v(277)
2y T . 2i+1
j=z
as
— 2] 1 i)
Jj=z+1
If k is replaced by Z# the number of elements of A\* fixed by some (a, p~2'%) but by no
(o, p~?71) s

4

[o@i) —o@ 9 )P L

v

The collection of such elements is invariant under the group obtained by replacing k by r-t

and ¢’ by the field with p*/ elements. The isotropy group of each such point has a generator
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of the form («, p*w) and, therefore, has order 57 and index M Thus 22 =Y divides

[o(@i) - mzjln}ﬁ

v
so that 27 divides ' '
v(2%) —v(277H).
Since "t is divisible by at least one prime, the expression ([14.9)) is congruent, in the 2-adic
field, to

(-2

|2t
modulo 4. Since z < ¢ and the product is not empty this is congruent, in the 2-adic field
again, to 0 modulo 2. Thus v is even or odd according as

Y

SO (1-1) premd e )

J=0 | =|2v—J

is or is not divisible by 2 in the 2-adic field. Consequently

Y= zy: 11 (1 - %) ”(2;?“) (7@ _ 1) (mod 2).

T|2v—3

Of course x(2yn1) =x # 0. Let z again be the smallest integer for x(2°n;) # 0. Then
z < ¢ and

x(2'n1) = 2(2%n,)
if 7 > 2. The sum above is equal to

v(2%n4) Y v(29ny) — v(27Iny) -
EEEERDY 3 (w5 —1).
Jj=z+1

As before, this is congruent modulo 2 to

v(2%ny) , ,
If 2 < ¢ this is even and the order of p modulo 7y divide (plmg) =1. If z =¢

then
-1 1<

— = <f) 2w) =z (mod 2)

i=1
so that v == (mod 2). However the order of p/ modulo 7 is divisible by 2% so that it does
not divide 7 and

('lm5) = (=1)".
The relation ((14.8]) is now easily verified.
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We return to the original problem. Since X' is a quadratic extension of ¢ and X is not
contained in ¢ the degree of ¢ over ¢’ is odd. Since V and X\ have the same number of
elements g = p*. If % is odd, the relation ((14.4) follows immediately from the equality

(D) vg(R)re(=1) T 72 = (=1) v (kg (—1) 5 +2

and the preceding lemma.
The number of p in T" with isotropy group of order 2 is u(1) and the number of p with

trivial isotropy group is w For points of the second type [¢, : ¢| = 2 and for points of
the first type [¢, : ¢] = 1. Since, as we verified earlier,

vo(wr) = v | [ [
I

and
Vo(Np,j0€a) = vs(—1) 0y (v,)

the identity ((14.7) reduces to
w(l) =1 (mod 2)

which is true because u(1) divides u = % which, when ((14.7)) is under consideration, is odd
by assumption.
The identity (14.5) may be formulated as

vo| [T | = (D) we(-1)"%
w
and (14.6) as

q—1

vo | [T | ve(=1)2n09 = (=1)"0y (= 1) 5.
I

For these two identities %2 is even. Again

k
> léu: ¢l =u(l) (mod 2).
But

and
2a = u(l) +u(2)
so u(1) is even. It will be enough to verify (14.5).
We may choose T so that if p is in T then its isotropy group is trivial or contains one of
og or o1. If g lies in the isotropy group of x and v in the orbit of u corresponds to ™ in X
then,
a?emr = m
for some kth root of unity . This is possible if and only if p* — 1 divides &2(pf — 1) or 2u
2u f—l)

divides m(p’ — 1). This is the same as requiring that 2% divide m(f—

a() o The number v is
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even. We have already observed that if r is the number of elements in ¢ so that z7° = x" for
x in ¢ then
por =1 (mod k)
and in particular
por =1 (mod 4).
Since [¢ : ¢'] is odd and iy = —1 (mod 4) the highest power of 2 dividing p/ — 1 is 2. Thus

2u_ and puf(zl are relatively prime so that % divides m(f{l;l) if and only if % divides m.

u(1) )
There are “(;)k such m with 0 < m < p® — 1. The corresponding characters v fall into @
u(l) u(l)
2

orbits. Thus there are =~ elements in T" whose isotropy group contains oy and whose

isotropy group contains ;. Let Ly be the fixed field of oy and L, the fixed field of oy. Let
wr, and wy, generate ‘P, and P, respectively and let

Nro/F@L, = Yo@F
Np,/r@L, = N@F
Ni/rwop, = Y.
We have to show that

w(l)  u(l)  y2)—u(l) gq=1
vo(20F 1 E ) = (1)1
First we prove a lemma, special cases of which we have already seen.

Lemma 14.8. Suppose L/F is normal but non-abelian and [L : F| is a power of 2. Suppose
H = 6(L/F) and the first ramification group Hy is {1} but [H : Ho) > 1 and [Hy : Hy] > 1.
Let @y, generate the prime ideal of Op, let wp generate the prime ideal of O, and let

Npjpwr = ’YWE:HO] .

Then v is a square in Up.

The hypotheses imply that the residue field has odd characteristic. Let A be the fixed
field of Hy and L’ be the fixed field of the commutator subgroup of H. Then A C L' and if

WL = NL/L'WL

then
NL’/FwL’ = VW?:F]-
Of course [A : F] = [H : Hy]. Since H is nilpotent but not abelian L’ cannot be a cyclic
extension. If v is not a square in Up then v~! generates Ur/Ur N Ny pCr. Since
w?:F] =~"" (mod Ny ,rCr).
wr would then generate Cr /Ny, srCrr, which is impossible.

Returning to the problem at hand, we observe that the quotient of G/G; by the squares
in Go/G is a group of order 4 in which every square is 1. The fixed field F” of this group is
the composite of all quadratic extensions of F'. Fy = F' N Ly and F; = F' N Ly are the two
different ramified quadratic extensions of F'. Define

@Wry = Nio/Fy @ Ly
and
wFl = NLl/Flel'
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Then

Np,/F@FR, = Yo@F
and

Np jrwr = N@F.
We need to show that

Yo
vo(yom1) = V¢<—) = —1.
i
If not, % is a square and thus in Np, /rCr,. Then ~ywr belongs to
NpyyrCry N NpypCr, = NprypChp.

This is impossible because F” contains an unramified extension.
We observed before that since

po = Aog) = —1  (mod 4)
the number v,(—1) is —1. The identity (14.5)) reduces to
(D)% = (-1 ()%

u(1) N u(2)
1

Since

a=—"+—

2 2

and
q_
)

this relation is clearly valid.

We continue to suppose that pp = —1 (mod k) and that 02 = 1, but now we suppose that
V' is not invariant under 7*(0y). Since 7*(0¢)V NV and 7*(0¢)V +V are both invariant under
G/Gh, the first is 0 and the second is S(K/L) so that S(K/L) is the direct sum V @& 7*(0o)V.
Let V have p’ elements so that ¢ = p?. If X is again the field generated over the prime field
by the kth roots of unity N has p’ elements. If ¢ = X N ¢ has p/ elements then p’ = p*/ so
that p* =1 (mod 8). Also k divides p’ — 1 so that

g—1 (p'—1
= (—k )(p“r 1)
1s even.

If 0 € Gy/G the non-zero fixed points of ogo are the elements of the form
v@® T (0g0)v
with v # 0. There are (p* — 1)k of them altogether and they fall into p’ — 1 orbits. The
remaining
(r* =1) -~k

elements fall into )

{0 =1 - 0 - Dk}

orbits. Thus
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Since, for the same reasons as before, vy(—1) = —1 the identity (14.5)) becomes

£

(14.10) vo [[w] = (1"

while ((14.6) becomes

‘1

vo | [T |ve(=0)™9 = (-1)"=".
o

Since
Z[qﬁumﬁ]zp —1=0 (mod 2)
only (T4.5) need be proved. ([4:4) and (I4.7) are not to be considered because < is even.

We proceed as before. The points in T' can be chosen so that their isotropy groups are
4 4
either trivial or contain oy or ;. pT_l will have isotropy groups containing oy and pT_l will

have isotropy groups containing ;. The argument used above shows that the left side of
(14.10)) is equal to

as desired.
Now suppose k > 8 and

—1 (mod k).

k
o = A(og) = 3

We are of course still supposing that [G : Go] = 2. If o belongs to G/G then

_ E_
o0g0o 1 — (0 2 2
and
(000)* = of k/2,
Thus

k
2((090)%) = z(0) + §x(0).
Since x(03) is 0 or g, we can make the sum on the right 0. Replacing oy by oyo if necessary,
we suppose that 02 = 1. Then (0g0)? = 1 if and only if

k
§x(0) =0 (mod k)
which is so if and only if oyo is conjugate to o.

Take V in S(K/L) as before. If V' is invariant under 7*(0o) and X with p‘ elements and

¢’ with p/ elements have the same meaning as before, then
k

for some integer w so that

k k

and
a—1
k

Il
NS

—1 (mod 2)
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is odd. Thus the identities (14.5)) and (14.6) are not to be considered. The identities ({14.4])
and (14.7)) follow from Lemma 14.7 exactly as above.
Suppose then S(K/L) is the direct sum V & 7*(00)V. If V has p* elements then g = p?*

and .
g—1 p —1
T (Y

is even because k divides p’ — 1. The non-zero elements of S(K /L) which are fixed points of
some ogo with o a square in G¢/G; are the elements

v® T (0g0)v
with v # 0. There are (p’ — 1)% such elements and they fall into ’% orbits. The remaining

k

(P* —1)— (" - 3

non-zero elements have trivial isotropy group and fall into

{0 -n-0' -3}

20 1

orbits. Thus .
p—1
TR
Since, as before, v4(—1) = —1 the identity (14.5)) becomes

p

a =

(14.11) vo| TTw | = (-0"

while ((14.6) becomes

4

. p —1
vo | [T | (~1)70 = (1)
1"

Again

Sl o =2t =0 (mod 2)

so that it is enough to prove (14.11)). The identities (14.4]) and (14.7)) need not be considered.
If X and ¢ are defined as before and ¢’ has p/ elements, then X’ has p’ = p?/ elements so

that
p'=1 (mod 8)
and ’% is even. We may suppose that each p in T either has trivial isotropy group or is

fixed by 0p. Lemma 14.8 shows that those p with trivial isotropy group contribute nothing
to the left side of (14.11]). If Lg is the fixed field of oy and

NLO/FWLO = Y%WF
the left side of K is

pf-1

Vs(Y0) 2
which is 1. The truth of the identity is now clear.
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We return to the general case so that [G : Go] may be greater than 2 and py may be
congruent to 1 modulo 4. Of course [G : G| is still even. Let

lrca.
Ao = A (002 [G'GO})

Lra.
)\0 — Mg [GGO] )

so that

If [G : G| > 2 then

A =1 (mod4).
If [G: Go] = 2 then A\g = uo. Since the case that [G : Go] = 2 and pp = —1 (mod 4) is
completely settled we may suppose that \g =1 (mod 4). Set

Any element of G/G; which does not lie in Go/G; and whose square is 1 is of the form

o(z)m. If

U([)G:GO] = o(y)
then )

(o(x)70)" =0 ((Mo+ L)z)15 = o (yo + (Ao + 1)z).
Since G /G is not cyclic yq is even. Since
M+1=2 (mod 4)
there are exactly two solutions of the equation
Yo+ (Mo+ 1Dz =0 (mod k).

Let xg be one of them. Then xy + % is the other. We may suppose that k& does not divide z.
Set

po = o(xo)T0.
We observed before that if o # 1 belongs to G/G; and 7*(o) has a non-zero fixed point then

some power of ¢ is of order 2 and has a non-zero fixed point. Since 0(%) has no non-zero

fixed point this power must be py or 0(%) Po- Since 0(%) lies in the center of G/G4, o must

OO

is of order 4 and every element in it is of order 2, so it cannot be contained in the center of
G/G,. However it is a normal subgroup and its centralizer H* has index 2 in G/G,. G/G,
may be identified with H. Every element o of H such that 7*(¢) has a non-zero fixed point
lies in H*. S(K/L) is the direct sum of V' and W where

V:{U}W*(po)v:v}
W ={w|r(po)w=—w}.

lie in the centralizer of py.
The group



162 14. THE FOURTH MAIN LEMMA

If o in H does not belong to H* then 7*(c)V = W and 7*(¢)W = V. The number of
non-zero orbits of H in V U W is the same as the number a’ of non-zero orbits of H* in V. If
V has p’ elements so that ¢ = p* the number of non-zero orbits of H in V& W — (VUW) is

g =12 p'—1 p-1
[G . Gl] k [G . Go] )
The action of H* on V must be irreducible although it is not faithful. However the action of
H*N Hy = Hj is faithful.

Let F” be the fixed field of H* in L or, what is the same, of H*C in K. Let C* C C be
the orthogonal complement of V' and let H' be the subgroup of H which acts trivially on V.
H'C' is a normal subgroup of H*C' and its fixed field K’ is normal over F'. If H' = H*/H"
and C' = C/C' then G' = G(K'/F') = H'C'. Moreover H' N C" = {1} and H' # {1}
because a(%) does not lie in H'. Since the action of H' on " is faithful and irreducible, C’

is contained in every non-trivial normal subgroup of G’. To complete the proof of the four
identities (14.4)), (14.5)), (14.6)), and (14.7]), we use induction on [K : F].
Let &’ be the order of Hj and let ¢/ = O /Bpr. If K/F is replaced by K'/F’ the identity

(14.4) becomes
/ f_
(14.4") (=) My (K vy (—1) 2 T2 = 1.
T is to be replaced by T”, a set of representatives for the non-zero orbits of H' or H* in V/,

which may be identified with the character group of C’. We may suppose that 7" is a subset
of T. Because H|, # {1} the identity (14.5) for the field K’/F’ may be written as

/ sz
(14.5") vo | TT 70 | = (~)% v (—1) "%

neT’

Of course
tF:F)

NF#/F/<w§7H) = VLWF' Y
Recall that t is odd. By Proposition IV.3 of Serre’s book, ¢t has the same significance for
K'/F" as it had for K/F. The identity (14.6) may be written as

i A Z—
(14.6") (1w | T ol | v (1) er oy (1) 5 = 1.

peT!

and ((14.7)) as
/ Pé* Y
(14.7") (=1) v (K g (—1) 57~ 2y (—1) D wd) = 1

Assuming (14.4")), (14.5"), (14.6”), and (14.7"]) we are going to prove (14.4)), (14.5)), (14.6)),
and (|14.7)).
Since Hj is isomorphic to Hg either k' = k or k& = £. Suppose first that £ is odd. Then

kK = %, for if not
g—1 (p'—1
TZ( : )(p“rl)
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would be even. Thus Hy = Gy/G is not contained in H* and F’/F is ramified so that ¢’ = ¢.

Since
g—1 (p'=1\('+1)
ko k! 2

the number 1% is odd. To prove ((14.4]) we have to show that
(~ ) vy (2)us(~1)" = 1

2(_1 Z_l E_l 14 1
5P p D {p+ _1}

2k k k 2

Since Gy/G1 is not contained in H*, 7y does not commute with Go/G; and the map A of
G /Gy into the units of Z/kZ is faithful. Thus

X Z 1 (mod k).
But
XA =1 (mod4)
so that k£ > 8. In general if k > 4, the group of units of Z/kZ is the product of {1,—1} and
{a|a=1 (mod4)}.
If
a=1+2%
with x odd and 4 < 2° < k then
o =1+ 2"y
with 7 odd. One shows easily by induction that the order of o is 2%k so that
{ala=1 (mod4)}
is cyclic of order ¥. This implies in the particular case under consideration that [G : Gy

" o__ pe_l pe_l
“=\Tw 20G: Gol |

divides %. Write
2[G : Gy =K.

We consider various cases separately. As before g = A(0g). If ¢ has p/ elements then
pop’ =1 (mod 8).

a” is odd if and only if

(i)
po=1 (mod 8).
Then
vs(2) = vs(=1) =1
and the order of o in the units of Z/kZ which is equal to [G : G| divides £. Thus
a” is even. The identity follows.
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(i)

Then

po =3 (mod 8).

vg(2) = vy(—1) = —1.
Since po = 3 (mod 8) the numbers iy and Ao are different. Thus A is a square and
hence congruent to 1 modulo 8. Then £ > 8 and

p'=1 (mod 8).
Then
j=———=-=0 (mod 2).
Since g # Ao, the index [G : Gp| is not 2. Thus the order of g is at least 4 and is
therefore the order of — 9. Since —pg =5 (mod 8) its order is £ and
k
G : G| = 1

Consequently a” is odd. Again ((14.4)) is satisfied.

(iii)
po =5 (mod 8).
Then v4(2) = —1 while v4(—1) = 1. The order of py which equals [G : Gy| is again
E so that a” is odd and (14.4) is satisfied.

(iv)
po =7 (mod 8).
Then v,(2) = 1 while v4(—1) = —1. Again k > 8 and
=0 (mod 2).

The order of g is again at least 4 and therefore equal to the order of —puy and that
divides £. Thus [G : Gy] divides £ and a” is even. (14.4) follows once more.

Since ¢ = ¢ all we need to prove (14.7) once (14.4) and (14.7"]) are granted is show that
Z (61 9] =0 (mod 2).

pneT-T1"

This is clear because, for these p, F,, = L and ¢, = O /P, is of even degree over ¢.
Finally we have to assume that 2 is even and prove (I4.5) and (T4.6)). First a lemma.

Lemma 14.9. [fq;k1 is even,

)\(aé[G:GO]) =1 (mod 4),
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Since the action is faithful, Gy/G; is not contained in H* and k' = g As before \y = 1
(mod 4) and \g Z 1 (mod k) together imply that k& > 8 and k' > 4. Since k" divides p* — 1,

p'=1 (mod 4)
p-1

q—1 pf—1 pt+1
ko k! 2
the number T is even.

If o belongs to H* and o acts trivially on H{ then

W=t (o)

Mo?) =1 (mod k)
and o2 belongs to Hy. Thus o belongs to poHy U Hy. Since py belongs to H! the image of
o in H' lies in H). Thus G'/G} acts faithfully on G}/G}. If o belongs to H' then o acts

trivially on Hj because the representation of H on V is faithful. Thus H' is contained in
poHy U Hy and is therefore just {pg, 1}. Thus

0y . )
and pTH is odd. Since

so that

1
GGy =[H :H)|=[H": HH' = 5[G : Gol.
Suppose that
0
(14.12) (—1) vy (—1)5 = 1.
Since ¢’ = ¢ and, because k' > 4 divides p’ — 1,
g—1 _ (p'=1\[p'+1)_ (p' -1
% ( 2% )( 5| = | o | (mod?2),

all we need do to establish the lemma is to show that
a”"=0 (mod 2).

As before [G : Go] divides £. If
k
Z = TL[G . G()]

2
a//:l(p£_1)2 =n pg_l
k |G : Gy k'
is certainly even because 2k’ divides p* — 1.
If [G: Gyl =4 let

then

If
Ay =1 (mod 4)

we may suppose that (14.12)) is true by induction. If [G : G| = 4 and
Ay =3 (mod 4)
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or if [G : Go] = 2 we must establish it directly.
Suppose first that [G : Go] = 2. If ¢ has p/ elements then
M=p=p =1 (mod4)
so that v4(—1) = 1. It is clear that in this case

/_pe_l
= T

a

a’ is thus even and is valid.

Now suppose [G : G| = 4 so that [G' : Gp] = 2. If o, generates G’ modulo Gf then )| is
the image of o{, in the group of units of Z/k'Z. We have already studied the case that A\, = 3
(mod 4) intensively. Let

xr:0 — (o)
be the map of G}/G) onto Z/K'Z. If Xy = —1 (mod k) and z((0})?) = %/ we showed,
incidentally, that is valid. If \j = —1 (mod '), z((c))?) = 0, and the action of Hj

on S(K'/L') is reducible, we saw that p’ is a square p** and that the left side of (14.12) is

pll—l
(=1)
But the field with p* elements must contains the k'th roots of unity and &' = 0 (mod 4).
Thus

p ' —1=0 (mod 4)
and (|14.12) is again valid. If ¥’ > 8§,
k/
Ay = 3~ 1 (mod k)
and the action of H) on S(K’/L’) is reducible, the left side of (14.12)) is

o
(—1)" .
This time
p' —1=0 (mod 8).
To complete the proof of the lemma we show that in the case under consideration the

action of Hfj and S(K'/L') or, what is the same, the action of Hj on V is reducible. If not
the field generated over the prime field by the &’th roots of unity has p‘ elements. Thus

p'=1 (mod 4).

However as we have observed repeatedly, the number of elements in ¢ is congruent to 3
modulo 4. Thus ¢ is even. Let ¢ = 2¢'. Either p” —1 or p* + 1 is congruent to 2 modulo 4. If
p" +1=2 (mod 4) then &' divides p* — 1 because

‘ o
pr—1 p—1 /
k' :< k! )(pe—i—l)

. . .« . /
is even. Since k' cannot divide p* — 1 we have

pel =3 (mod 4)
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and ¢ is odd. Indeed it is 1 but that does not matter. Since k divides p’ — 1, the kth roots of
unity are contained in the field with p’ elements. Adjoining them to ¢ = O/ we obtain a
quadratic extension because 4 does not divide . Therefore if o belongs to Go/G,

Oo(0) = Op(0)70 " = fy(0) D)
so that
Mod)=1 (mod k).
This contradicts the assumption that G/Gy acts faithfully on Go/G;.
Returning to the proof of (14.5)), we suppose first that Hy is not contained in H* so

that the action of G/Gy on Gy/G is faithful. Because of Lemma 14.9 the identity (14.5) is
equivalent to

V¢ H NFu/nyu = 1
peT

If pu belongs to 7" but not to 7", then F), = L and, by Lemma 14.8,

Vo (N, /) = 1.
If 1« belongs to T" then G, is contained in H*C so that F), contains F’. Moreover we do not
change F), if we replace K/F by K'/F'. Let wps generate Py and take wp = Npjpwps. If
E' is the fixed-field of H* we may suppose that

wp = Np/prwp
and that

wWE — NE//EZTJE/.
Then

Wrp = NE/FWE

as required. Let

tFu:F']
t_ :
NFH/FWWFM =7,w &

Then
Vo = Nevyp,,-
Since F'/F is ramified v, is a square in Up and ((14.5) is proved. To prove (14.6]) we have to
show that
V(1) Trernt] =y (1) Prertond) =
But 7% is even and this follows from the simultaneous validity of (14.5")) and (14.6")).
We have yet to treat the case that £ is even and Hy is contained in H*. Then F'/F is

unramified and &' = k. Suppose first of all that 3% is also even. Then

g—1 (p'—1)\[p'+1
2k k 2
is even. Hj is contained in H* and H is generated by o9 and Hy. Consequently oy is not

contained in H* and "
Uopoaal =0 <§)p0.
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Since pg = o(xg)To,

(o — Dzg = (mod k)

NN

if o = A(op). If
o = (7"
and m is the greatest common divisor of yy and k£ then by the definition of zy the greatest
common divisor of zg and k is 7. Therefore % is the greatest common divisor of pg — 1 and
k. In particular m < k. The order of o¢ in H is
k
m
Therefore [G : Go| divides 5-[G : Go] and H* contains a cyclic subgroup of order
k
2m
If o is the element of order 2 in this subgroup, then o belongs to Hy and 7*(0) does not have
1 as an eigenvalue. Thus no non-zero element of V' is fixed by any element of this cyclic
subgroup and

G : Gyl

(G : Gy.

pP—1=0 (mod i[G : G0]>.
2m

In particular [G : G| divides p* — 1 and

" _ pé_l pe_l
R (G2 Gy

is even. As before v,(7,) =1 if u belongs to T" and F, = L. If F,, # L then u belongs to 1"
and G, lies in H*C so that F}, contains F’. In the present situation F’/F is unramified and
we may take wp = wp. If

t[F:F']
t %
Np,/p@p, = 7,%p

then

. t[Fyu:F|
_ / k
NFM/FWF# = (NF’/F’YH)WF

The identity ((14.5)) reduces to

vo| [] Neyry | = (-1)°
neT’
or

vo | [T 7] = (D"

peT’!

Since ¢’ is a quadratic extension of ¢, the number v, (—1) is 1 and this relation is equivalent

to ((14.5")). To prove ((14.6) we have to show that

V(b(_l)zm[mv] -1
This is clear because 2 divides each of the degrees [¢, : ¢].



14. THE FOURTH MAIN LEMMA 169

Finally we have to suppose that ’% is odd. Since [¢' : ¢] = 2 the relation ([14.4”)) amounts

to
(—D)* =1,
Again
(14.13) vo| T | = ver | T1 7%
peT neT’
If 1 belongs to T" and o # 1 belongs to G, then some power of o will equal py. Since
14 l
p—1 [F, : F']
koo 2 k
peT!
is odd and
[F, : F']
k

is a power of 2, there is at least one p in 7" for which [F), : F'] = k. Then G, must contain
an element of the form o(zp)o2. Then

20\ 70

1G:Gy]

G:G —1
po = o(xo)To = (0(20)00)4[ o) _ g 02—1
Ho —
Thus
5[G:Go)
0 ! 20 =x9 (mod k)
M% 1 0 = 40 .
Let )
Z[G : GQ] = 2b.
Since
pa =1 (mod 4)

and, as before, the greatest common divisor of zy and k is 7 if the greatest common divisor
of yo and k is m, we infer that

%[G:Go} b 2]+1

Ho —1
- @ @ @ @ = M
pg — 1 ]Hl T H
is multiplicatively congruent to
[G . G[)]
4
modulo 2 and that the greatest common divisor of 2z and £ is
2m
[G : Go] ’

In particular @ divides m. z is odd if and only if

1
= §[G’ : Gy.
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If 4o =1 (mod 4) the order of pg in the group of units of Z/kZ is m because, as we observed

when treating the case that ’% is even, the greatest common divisor of o — 1 and k is %
However )
P29 = () =1 (mod k)

and in this case m divides 3[G : Gy]. Thus
1

if 4o =1 (mod 4).

We shall define a sequence of fields F®, LO K@ 1 < i < n. nis an integer to be
specified. We will have FO C L C K® and K@ /F® and L®/F® will be Galois. Let
GO =&(KD/FO) and CO = &(LW/F®), There will be a subgroup H® of G® such that
H® #£ {1}, HONC® = {1}, and GW = HOC®. O will be a non-trivial abelian normal
subgroup of G® which is contained in every other non-trivial normal subgroup. H™ will be
abelian but H® will be non-abelian if i < n. Moreover k@ = [H{" : 1] will be at least 4 for
all i and k@ will equal 2k(+D if i < n. If z is an isomorphism of HY" with Z/k®Z and &
belongs to H® let

z(oro™t) = XD (0)z(7).
Then A% (o) will be congruent to 1 modulo 8 if i < n. If ¢ is the number of elements in
C® then

¢ —1
k()
will be odd.
F’" and K’ have already been defined. L’ is just the fixed field of C".
-1 pt—1
Kook

is odd. If ¢’ in H' is the image of o in H*C' then
N(o") = Ao) (mod k).
Since o is a square modulo Hy
N()=1 (mod k).
If FO L® and K@ have been defined and H® is not abelian we can define FO+1,

LD G+ by the process we used to pass from F, L, K to F', L', K'. We have seen that
if

is odd then

is also odd and that
k0 = 2k,
We have also seen that k@ > 8 if H® is not abelian. If H® is abelian we take n = i.
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When we pass from the ith stage to the (i 4 1)th we break up 7, the analogue of 7', into
TG+ and a complementary set U®. We may think of 7 as lying in 7. If O'(()i) generates
H® modulo H" then

)\/<O'(()i)) =1 (mod 8).
We saw that this implies that U(®) has an even number of elements. If ; belongs to U® then
F, is equal to L® . Thus we may suppose that

Vgt H ’}/'L =1.

Moreover L% /F() is non-abelian and therefore L") /F® is not totally ramified. Thus y is
not in U® if [F, : F'| = k.

Since L™ /F™ is abelian the isotropy group in H™ of any u in T is trivial so that
E, = L™ for such p. Since

[F, : F] (L™ F]
S B2 g ),
peT’ peTm
There are an odd number of elements in 7™ and
(L™ F'] = F.
Choose zg 50 that o(zp)o? lies in &(L/L™). It then fixes each y in T,
Since L™ /F’" must be totally ramified there is a 6 in Uy such that
NL(n)/FwL(n) = (5@%
The right side of ([14.13)) is equal to v4(d). L™ is contained in L. Choose wy in Wi r so
that 7,/p(wy) = wp. We may suppose that oy has been chosen to be o(wy). Let Ly be the
fixed field of Hy. Choose ug in Wy, so that o(ug) = 0(z) and so that 77,1, (uo) is a unit.
Clearly z is even if and only if 77,1, (ug) or
NLO/F(TL/LO(UO)) = TL/F(UO)
is a square. Since o(z)o2 lies in &(L/LM),
Uowg
lies in W}, L) - We may take
Wm) = TL/L(m(uowS).
Then
Ny jp(@pm) = 11yp(wowd) = T/r@}
and 6 = 7/p(uo) is a square if and only if zj is even.
Since (—1)¥*! =1 the relation (I4.5) amounts to
()" Mug(—1)5 = (=)™,

(14.6) is equivalent to (14.5)) because each [¢, : ¢] = 2[¢, : ¢'] is even. Recall that

" o__ pe_l pf_l _ pé_l
a‘( K >([G;GO]):[G:GO} (mod 2)
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q—1 pt—1 pi+1 pi+1
o :( : )( 5 )E 5 (mod 2).

o =1 (mod 4)
then v4(—1) = 1 and, as we observed earlier, z; is odd. We have to show that a” is even.
We showed before that H* has to contain a cyclic subgroup of order %[G : Gy] and that
%[G : Go] has to divide p* — 1. But % is the greatest common divisor of jp — 1 and k. Since
4 divides yp — 1 and k, it divides £ and 2[G : Gy divides p® — 1. Thus a” is even.
If

and that

It

o =3 (mod 4)
then v4(—1) = —1. Moreover k > 2 so that p’ =1 (mod 4) and

g—1 p‘+1
= =1 d 2).
% 2 (mod 2)
We have to show that a” is odd if .
m = §[G . Go]

and even otherwise. But pig = 3 (mod 4) so that £ =2 and m = %. Thus [G : Go] = 2m if
and only if [G : Go] = k. If |G : Gy] = k then
p-1

k
is odd. Otherwise 2[G : Gy] divides k and a” is even.

Lemma 14.3 is now completely proved, so we turn to Lemma 14.4. In the proof of both
Lemma 14.4 and 14.5, we will combine the induction assumption with Lemma 15.1 which
is stated and proved in paragraph 15, the following paragraph. Suppose F' C F' C L and
F'/F is cyclic of prime degree ¢. Let &(K/F') be H'C where H' C H and let E’ be the
fixed field of H'. Then E’/E is cyclic of prime order ¢. If S(F'/F) is the set of characters of
CF/NF//FCF/ then

" _—
a =

(mod 2)

S(E'/E) ={vgr |vr e S(F'/F)}.
From Lemma 15.1 we see that for any quasi-character xp,
Ind(WK/E, Wk B, XE'/E) = @ VE/FXE/F-
vpES(F'/F)

Therefore
Ind(Wg/p, Wk /e, XE'/E) ~ @ Ind(Wgk/r, Wi/, VE/FXE/F)

VR
which is equivalent to

@ @ Ind(Wk/p, Wi/r,, W'VE, /FXF.F) | © VEXF

vp neT
If 7" is a set of representatives for the non-trivial orbits of H' in S(K /L) then
Ind(WK/F/, WK/E’; XE’/F) =0
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is equivalent to

@ Ind(Wie/r, Wi/, 1 XF ) | © XEr/r-
neT’
Moreover
Ind(Wie/p, Wieypr, 0) = Ind(Wg)r, Wi/, XE/E)-
Applying the induction assumption to L/F we see that

H A(vr, xr, ¥F) H H A(N/VFH/FXFH/Fa U, p)ME/F,¢p)

vrp peT

is equal to

(14.14) {A(xpp V) AE'JF9r)} H AW XEy e br p)MEL ) Fr)

peT’!

The application is legitimate because the fields F’, F},, and F /Q all lie between F' and L. By
Lemma 4.5

NELJF br) = NEL/F' ) MF [ F, ) )
Also
AEFFpp) [T AEFopp) T = A(FJF, ) P50
peT!

Since the fields F” and F’ lie between F” and K we can apply the induction assumption to
K/F' to see that (14.14)) is equal to the product of

)\(F//F, 2/}F>[E’:F’]

and
AXEp, Ve ) NE [ F Y F).
Applying the induction assumption to K/E we see that

A(XE’/F» ¢E//F)

is equal to
H AWe/pXe/rsVEF) pMNE /B Y r) "
vp€eS(F'/F)
We conclude that the quotient
(14.15) H A(vexr, Yr) HueT A(/L/VFH/FXF,‘/Fa wF,L/F)
‘ . A(vg/rXE/F VE/F)

is independent of yr. Taking xr to be trivial we see that it equals

I Alvp, ¥r) [ er AW've, r Yr.F)
Avg/r, VE/r) '

(14.16)

VF
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It is easily seen that the complex conjugate of A(vp,r) is

ve(=DAWE Yr).
Thus
A(vr, ¥p)A(vp', Yr) = ve(-1).
If 7 is odd the right side is 1. Since
and vp # vt if £ is odd, the product
H A(vp,vr) = 1.
vr€S(L/F)

For the same reasons

H Avg/p,Ye/r) = 1.

vpr€ES(L/F)

However, if £ is 2

A(”Fﬂ#F) = A(szlﬂ/fF)
has square +1 and is therefore a fourth root of unity. Thus

H A(vp, Yrp) ~ H A(vg/p, Ve/F) ~2 1.
veS(L/F) veS(L/F)

On the other hand, m(y') =t + 1 > 2 while m(vg, ) < 1. Thus Lemma 9.5 shows that

A(M,VFM/F; wFH/F> ~¢ A(Mla wFM/F)-
Thus the expression (14.16)) and therefore the expression (|14.15)) is equal to
¢

H A, r)
peT

where 1 ~y 1.
If m(xr) is 0 or 1, Lemma 14.4 is a consequence of Lemma 14.2. We suppose therefore
that m(xr) = 2. In this case Lemma 9.5 implies that

H A(vpxr, ¥r) ~ A(xr, ¥F)"

vE
and that
H A(vg/pxe/rVe/r) ~ AMXer, Ver).
173
We also saw in the beginning of the paragraph that, in all cases, m(y'xr,/r) > 2. Thus
A(W'vE, )pXE, P VB ) ~0 AW XE, P VE, F)-

Putting these facts together we see that if
¢

o8 Alxr, ¢¥r) H A(W'XE, rs VE, F)

pneT
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is equal to
¢

Alxee Ver) [ AW, Ve, r)

peT

then o ~; 1. Since o = p’ we conclude that
P~y 1.

Finally we have to prove Lemma 14.5. Let F’ be the fixed field of H;C and let L’ be the
fixed field of HyC'. Let E' be the fixed field of H; and let K’ be the fixed field of H,. Let
P be a set of representatives for the orbits under &(L/F) of the characters in S(L/L'). If
v is one of these representatives, let H,H,C with H, and H; be its isotropy group and let
F, be the fixed field of H,HsC'. Applying the induction assumption and Lemma 15.1 to the
extension L/F we see that

A(XF’/F7 wF’/F)p<F,/F7 ¢F)

is equal to

(14.17) H A(V/XFU/F, Y, p)NF, FYr).
veP

Let

R={veP|F,=F}
and let S be the complement of R in P. R consists of the elements of S(L/L’) fixed by each

element of &(L/F). It is a subgroup of S(L/L’) and its order r must therefore be a power of
¢. The expression ((14.17) may be written as

[T AW XE ) S [T AW XE p Ym2)AEF/F,br)

vER ves
If F is replaced by E and F’ by E’ then P is replaced by
{VK//L/ { v=vp € P}.
Also F, is replaced by E,, the fixed field of H,H,, and v/ is replaced by vy, JF- Applying
the induction assumption to K/FE, we see that
A(Xp e Ve ) ME' [ E E/F)
is equal to the product of

T AWk exee, ver)

VER
and

H AW, /5, XE s V8, 7)NE B, Vi) F)

ves

This equality will be referred to as relation (14.18).
To derive this equality we have used not only the induction assumption but also
Lemma 15.1, which implies that

Ind(Wg/e, Wk/er, XE1/F)
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is equivalent to

@ Ind(Wie/m, Wi/, Ve /pXE/F) ¢ © EB Ind(Wi)m, Wi/B,, Vg, /5, X B,/ F)
R S
Thus

IndWg/p, Wk /g, XE7/F)
will be equivalent to the direct sum of

B md(Wir. Wi/, Vig e X/r)
R

and
@ Ind(Wi/r, Wk/B,, Vg, /5, XE,/F)-
s

If v is in R we can apply Lemma 15.1 to see that
Ind(Wx/r, Wi/, Vi/pXE/F)

is equivalent to

@Ind(WK/FaWK/FWM,V}?M/FXFM/F) DV xF.
peT
We can obtain
Ind(Wg/p, Wk /5, , V};;/F,, XE,/F)
by first inducing from Wx,g, to W/, and then from W, to Wi/ p.
If T, is a set of representatives for the orbits of S(K/L) under the action of &(K/F),)
and F, , is the fixed field of the isotropy group of ;1 in 7}, then, by Lemma 15.1 again,

Ind(Wx/r,, Wk/E,, Vg, /5, X B,/ F)
is equivalent to
@ IHd(WK/Fu, WK/F%#? /’LIV}’—VVW‘/FD XFV““‘/F).
T,
Since [K : F,] < [K : F] if v belongs to S, we can apply the induction assumption to see that

Ay, )5, XE, P VB, P)MELFy VR, 1)
is equal to
1T AW'vh,, 6 XE0 e O )N Fo) Foy tor, r)-
peTy
This equality will be referred to as relation (14.19).
It also follows that
Ind(WK/F, WK/EV; V/E'V/FVXEU/F)
is equivalent to

@ Il’ld(WK/F, WK/FV#N M/V%‘V,M/FVXFV#/F)'
METIJ

The fields F, and F,, all lie between F' and L. Thus we have expressed
(14.20) IndWg/p, Wk /g, XE7/F)
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as a direct sum of terms of the form
(14.21) Ind(Wg/r, Wk /a, Xar)
where M lies between F' and L. Moreover such a representation is in fact a representation of
Wi/ obtained by inflating a representation of Wi, r, namely, by inflating
Ind(Wre, Wr e, Xar)-

Thus any other expression of (14.20)) as a sum of representations of the form ((14.21)) will lead,
by an application of the induction assumption to L/F', to an identity between the numbers

A(XM: 77Z)M/F)-

To obtain another such expression, we observe that the representation ([14.20f) can be
obtained by first inducing from Wy/g to Wi/p: and then from Wi p to Wi/p. If T' is a
set of representatives for the orbits of non-trivial characters in S(K/L) under the action of
G(K/F') and F), is the fixed field of the isotropy group in &(K/F') of yu in 7" then

Ind(Wg/pr, Wi /1, X1 /F)
is equivalent to

@ Ind(Wp, Wi/, M/XF;/F) D XF/F-

peT’!

Thus (14.20)) is equivalent to the direct sum of

Ind(WK/Fa Wk, XF’/F)
and
GB Ind<WK/F7 WK/FL ) ,U,XF/L/F)'
peT’
We shall describe the resultant identity in a moment. We first apply the induction assumption
to the extension K/F" to see that

A(xe /e Ve ) NE | F e p)
is equal to
A(XF'/F,¢F//F) H A(M,XFA/F7¢FL/F)A(FL/F/7¢F’/F)'
neT’
This equality will be relation (14.22).

The two expressions for the representation ((14.20f) lead to the conclusion that the product
of

(14.23) T2 xr vr)
VER
and
(14.24) H H A(W'Vp, pXFyF VEp)NEL/ FYR)
veER peT
and
(14.25) IT 11 Ao, 0 XE s, ) N(F | Fy )
IIES METI/

is equal to the product of
A(XFr, Ve r)NEF'F,¢p)
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and

1T 24'xEy e ¥r p)MEL/F br).

peT’
Applying relation (14.22) and Lemma 4.5 we see that the second of these two products is
equal to

A s iy ) AE [ F' oy ) AF ) 27,
According to the relation (14.18)) this expression is the product of

H AV rXE/F VB F) H A(Vg/pXE/F, VE/F)

VER vesS
and
[TNE./E, ver)
veS
and
(1426) )\(E//E7 2pE/F)il)\(EDI/F”? wF’/F))\<F//F7 wF)[El:F/]'

Equating this final product to the product of (14.23)), (14.24)), and (14.25) and then
making certain cancellations by means of ({14.19)), we see that the product of (14.23)) and

([[4.24) and

T I1 A o/ B iom, o) N(Ep/ Fotbr)
veS ueT,
is equal to the product of
H A(Vg/pXE/F VE/F)
vER
and

[ B/ oo, )N E B i)

ves
and the expression ((14.26)).
In particular, the expression

H A(V'xF, VF) HueT A(M/V%H/FXFM/Fa VF,/F)
AV pXE/P, VE/F)

veER
is independent of yr. Taking xr to be trivial we see that

AWXFF) [ er AW VE, jpXF P VR F)
v | AWg pxep Yep) Her AWve, e UE, r)

is equal to
A(Vlu 1/)F)
A(V/E/F, YE/r)

VER

The set
R’:{V"VER}
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is a group of characters of C'r or of H. Regarded as characters of H the elements of R’ are
just those characters which are trivial on H;. As a group R’ is cyclic and its order is a power
of £. The argument used in the proof of Lemma 14.4 shows that

H AW Ypp) ~ 1
VER
and

[T AWEae vr/p) ~ 1.
VER
If m(xr)is 0 or 1, Lemma 14.5 is a consequence of Lemma 14.2. We may as well suppose
therefore that m(xr) > 1. If v belongs to R then v/ is 1 on Np,rCr. Therefore m(v'), as
well as m(vp, ) and m(vg ) is at most 1. We saw in the beginning of this paragraph that

m(xg/r) would also be at least 2. We also saw that m(u'xr,/r) would be either ¢ + 1 or
Vg, p(m —1) + 1. In any case it is at least 2. Also m(y') =t + 1 is at least 2. Lemma 9.5
therefore implies the following relations:

XFs V)

(VXF7¢F ~ (
(XE/F,¢E/F)
(
(

//XFH/Fa @DFu/F)

)
AWy pXE/F, VE/F) ~

)

) Ve, r).

A
A
AUV, pXFF VryF) ~e A
A(p'Vp, 5 YryF) ~e A
We conclude finally that
{ A(xr,VF) [Ler AWXE P, VF, F) }r o1
A(XE/Fy Q/)E/F) HMeT A, 7#FH/F) ’

if 7 is the number of elements in R. The lemma follows.







CHAPTER 15

Another lemma

Suppose K/F is normal and G = &(K/F). Suppose H is a subgroup of G and C is an
abelian normal subgroup of G. Let E be the fixed field of H and L that of C'. If y is a
character of C' and h belongs to H, define p” by

p'(c) = p(heh™).
The set of characters of C' may be identified with S(K/L). If a belongs to Cf,
() = p(h(a)).
The set of elements in S(K /L) which are trivial on H N C' is invariant under H. Let T be a

set of representatives for the orbits of H in this set. If u € T" let H, be the isotropy group of
u, let G, = H,C and let F), be the fixed field of G,. Define a character 1’ of G, by

1 (he) = p(c)
if h € H, and c € C. p/ may be regarded as a character of Cf,.
Lemma 15.1. If xr is a quasi-character of Cr, then
P = Iﬂd(WK/F, WK/Ea XE/F)

15 equivalent to

GB Ind(Wx/p, Wi /p,, ' XF,/F)-

peT

Let G' = HC and let F” be the fixed field of G’. F" is contained in E and in the fields F),.
Because of the transitivity of the induction process, it is enough to show that

Ind(Wgk/r, Wk, XE/F)
is equivalent to

@ Ind(Wi/p, Wik, W XE, 7))

peT
If
Xpr = XF'/F
then
XE/F = X/E/F’
and
XF,/F = X/F,l JF’-

Consequently we may suppose, with no loss of generality, that F” is F.
If K’ is the fixed field of HNC and v € S(K'/L), let ¢, be the function on W, p defined
by
ou(he) = xr(Tr/r(he))v(Tk/L(c))

181
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for h in Wg/g, ¢ in Wg/r. p acts on the space of all functions ¢ on Wy, satisfying

p(hg) = XF(TK/F(h))<P(9)
for all h in Wk /g and all g in Wi ,p. The set

{o, ‘ veSK'/L)}
is a basis for this space. Clearly

p(c)py = Xr (TK/F(C))V(TK/L(C>)<PV
if ¢ belongs to Wi/, and
p(h)gy = xr (i (h)) e,
with v/ = Vhil, if h belongs to Wy, g. Thus if R is an orbit of H in S(K'/L)

e, =V

is an invariant subspace.
Let 1 be the element common to 7" and R and consider
o= Iﬂd(WK/ﬂ WK/FW //XFH/F)-

If Wi/ is the disjoint union

U Wy, hi
i=1
and if ¢;(w) = 0 unless
w € WK/FH h;
while
pi(whs) = 1 xr,/r (5, (W)
for w in Wi/, , then
{pil1<i<r}
is a basis for the space U on which o acts. If v; = p and if ) is the map from U to V which
sends ¢; to X7 (Ti/r(hi)) ey, then, as one verifies easily,
Ao(w) = p(w)A

for all w in Wy, p. The lemma follows.
The lemma has a corollary.

Lemma 15.2. If Theorem 2.1 is valid for K/F then
A(XE/F7 wE/F) H A(Nla wFH/F)
peT

18 equal to

H A XF, rVE, F)-

neT
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If Theorem 2.1 is valid
A(XE/p Vep)MNE/F,¢r)
is equal to
H A(,U/XF#/Fa Q/}F#/F))\(FM/Fa ¢F)-
peT
Taking xr = 1, we see that

ME/F,Yp) = HA Ve, ) NEL/F Yr).
peT
Substituting this into the first equality and cancelling the non-zero factor
[ AFu/Fovr)
peT

we obtain the lemma.
To define the A-function we shall need the following lemma.

Lemma 15.3. Suppose Theorem 2.1 is valid for all Galois extensions Ky /F, with F C Fy C
Ky CK and [K; : Fi] < [K : F]. Then

A(XE/F,VE/FP) H Al Yp,r)
peT

18 equal to
H A(M/XFM/F7 wF,L/F)'

peT

The conclusion of this lemma is the same as that of the previous one. There is however a
critical difference in the assumptions.
Let F' be the fixed field of HC. If

Vi = Vi

then for all separable extensions E’ of F’

ij’/F’ = YE/F.
If [K: F'] < [K : F] the relation of the lemma is a consequence of the induction assumption
and the previous lemma. We thus suppose that F' = F' and G = HC.

Suppose in addition that there is a subgroup C; of C, which is neither C' nor {1}, whose
normalizer contains H. C is then a normal subgroup of G. Let F; be the fixed field of HC}
and L; the fixed field of C;. Lemma 15.1 applies to the extension K/F;. Thus there are
fields Ay, ..., A, lying between F; and L; and quasi-characters x4, ..., x4, such that

Ind(Wg/r,, Wik/B, XE/F)
is equivalent to
@ Ind(Wk/r,, Wic/a;5 Xa;)-

i=1
The induction assumption then implies that

(15.1) A(XE/r VE/F)NE/F1 YR )
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is equal to
(15.2) TT A Yayp)AA Fy vop, p).
i=1

Inducing the first of these two representations from Wy /r, to Wk, we obtain
Ind(WK/F7 Wk E, wE/F)-

Thus

(15.3) @ Ind(Wxr, Wik, 1/ XF,/F)
peT

is equivalent to

(154) @Ind(WK/F,WK/A“XAi)~

i=1
We recall that there exist surjective homomorphisms
TK/FLF - Wkp = Wy p
Ti/A Ly A Wiya, = WLy a,
TK/Fu,11/F, * Wk/E, — WLy/F,
whose kernels are all equal to the commutator subgroup W o of Wg/r,. Moreover the
diagrams

Wija, — Wiyya,

| |

Wgp —— Wryr

and
Wk, —— WiyE,

| |

Wgp —— W r

may be supposed commutative. Since W /1, lies in the kernel of x4, and p'xp,/r the

equivalence of ((15.3) and ([15.4) amounts to the equivalence of
@ Ind(WLl/F7 WLl/F/_L’ /’L,XF‘/L/F)
peT
and ,
@ Ind(Wr, /e, Wi, /4, X4,)-
i=1

The induction assumption applied to the extension L;/F implies that

H A(xa,, Ya,r)MA/FYF)
i1
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is equal to
T A6k 2. 0r, P)NEL F 2pp).
neT

It also implies that

)\(Az/Fa 77Z}F) = )\(Az/Fl, ,ngl/F)A(Fl/F’ @DF)[Ai:Fﬂ.
Since

YA R =[E: R

we infer from the equality of (15.1]) and (15.2) that
A(Xe/r, V) NE/ B i e) ME F ) P
is equal to
H A(,U/XF#/Fa %DFM/F))\(FM/F, ¢F)-
peT
Taking xr = 1 to find the value of

ANE/Fy,bp, yp)A(F1 )/ Fapp) P

and then substituting the result into the equation and cancelling the common factors, we
obtain the assertion of the lemma.

Now suppose that H contains a normal subgroup H; # {1} which lies in the centralizer
of C. H; is a normal subgroup of G if, as we are assuming, G = HC'. K1, the fixed field of
Hy, contains E and all the fields F),. Lemma 15.1 together with the argument just applied to
L; shows that

Ind(WKl/Fa WKl/E, XE)

is equivalent to

@ Ind<WK1/F7 WKl/Fw ,UIXFH/F)-

peT
In this case the assertion of the lemma follows from the induction assumption applied to
K, /F.

We have finally to suppose that G = HC', C' contains no proper subgroup invariant
under H, and H contains no normal subgroup lying in the centralizer of C. In particular
HNC = {1}. I Z is the centralizer of C' then Z = (ZNH)C and ZN H is a normal subgroup
of H. Consequently Z = C'. If D is a normal subgroup of G and D does not contain C' then

DNC = {1},

This implies that D is contained in Z. Thus D is contained in C' and D = {1}. If H # {1}
the assertion of the lemma is that of the third and fourth main lemmas. If H = {1} then
G = C and C is cyclic of prime order so that the assertion is that of the first main lemma.






CHAPTER 16

Definition of the \-functions

In this and the next three paragraphs, we take a fixed Galois extension K/F, assume
that Theorem 2.1 is valid for all Galois extensions K'/F’ with FF C F/ C K' C K and
[K': F'] < [K : F], and prove that it is valid for K/F itself. The first step is to define and
establish some simple properties of the function which will serve as the A-function.

Lemma 16.1. Suppose
E/F" — XNE/F' 1p)
is a weak \-function on Po(K'/F'). If o € &(K'/F") let
={o o) |acE}.
Then
MET/F ppr) = ME[F' 1ppr).
If p is a character of (K /E) let u” be the character of &(K/E?) defined by
1 (p) = p(opo™).
According to Lemma 13.2,
A Ygespr) = A, VE/pr).
The representation
Ind(&(K'/F'),8(K'/E), )
acts on the space U of functions ¢ on &(K'/F’) satisfying
p(p7) = nlp)p(r)
for all 7 in &(K'/F’) and all p in &(K’/E). The map ¢ — ¢ with
(1) = ploT)
is a (K'/F’) isomorphism of U with the space on which
Ind(&(K'/F'), 8(K'/E7), 17)

acts. Thus the two representations are equivalent.
If

@Ind (K'/F"),&(K'/E}), ;)
is equivalent to

EBInd (K'/F'), &(K'|F;),v;)
then

@Ind (K'/F'),6(K'/E7), u])

187
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is equivalent to
@Ind( (K'/F'), &(K'/F}), v} )

and, with the conventions of the fourth paragraph,

r

[T Ocer s mr o) AET JF )

=1

is equal to
H A(XF;, ¢FJ¢/F’))\(F]Q/F/7¢F')‘
j=1
Since
A(XF]?: ¢FJF’/F’) = A(XFj ) ¢F]-/F')
and

A(XEzg’ ¢ES/F/) = A(XE” ¢E1/F/)a
we conclude that

[T AGE e m)NETJF )
i=1
is equal to

HA(XFJ-, @/)Fj/F')/\(Ff/F/a Vpr).

j=1
In other words

E/F" — XNE°/F'{p)
is a weak A-function on Py(K'/F"). Lemma 16.1 follows from the uniqueness of such functions.
We return to the problem of defining a A-function on Py(K/F). Choose a non-trivial

abelian normal subgroup C of G = &(K/F) and let L be the fixed field of C. If E is any
field lying between F' and K let H be the corresponding subgroup of G. Choose the set T’

of characters and the fields F), as in the previous paragraph. Since F,, C L the numbers
AE,/F,¢F) are defined.

Lemma 16.2. Suppose F'C E C Ky C K with Ky/F normal so that \(E/F,v¥F) is defined.
Then
ME/F Yp) = H AW Yp,  p)NFu/Fp).

peT

Let K7 be the fixed field of Hy. If Hy N C # {1} we may enlarge K; and replace H; by
H; N C. Thus we may suppose that either H; is contained in C' or H; N C' = {1}. In either
case H; is contained in the centralizer of C'. We saw in the previous paragraph that under
these circumstances

Ind(Wr, /. Wi, /e, 1) ~ @ Ind(Wi, /7, Wic, /5, 1),
peT
Consequently

ME/F,¢p) = [ AW, )M EL/F,p).

peT



16. DEFINITION OF THE A-FUNCTIONS 189

In general, we define
ME/F,r) = [ AW, ¢ 0)A(Fu/ F t0r)
HeT

if E/F isin Po(K/F). T is, of course, not always uniquely determined. We may replace any
pin T by p° with o in H. Then H, and G, are replaced by 0 'H,0 and 0!G 0 while F,
is replaced by F and p is replaced by (1/)?. Since

A r e )NEFoe) = A7 g ) MES /o)

the number \(E/F, 1) does not depend on T. A priori, it may depend on C but that is
unimportant since C' is fixed and, the uniqueness having been proved, we are interested only
in the existence of a A-function.

We shall need only one property of the function just defined.

Lemma 16.3. I[f F C E C E' C K then
AE'[F.pp) = NE' ) B, bgp)ME F, o) =4,
If E = F then
ME'JE, Yg/r) = NE'/F,9yF)
and if E # F
is the value of the A-function of P(K/E), which is defined by assumption, at E'/E. Since
ME/F yp) =1
the assertion is clear if E = F. It is also clear if E = E'.

Let E be the fixed field of H as before and let F” be the fixed field of HC'. We suppose
that H # G. Lemma 4.5 and the induction assumption imply that

AEu/F gr) = MEF p ) ME' [ Foapp) 8,

The relation
[E:F =Y [F,: F
implies that
ME/F.4op) = ME/F',pyp)MF'[F,op) 4,
There is a similar formula for A\(E'/F, ). If F' # F, the induction assumption implies that
ANE'JE, g p)ME/F' g o) E = X(E'[F' g ).
Since
[E': F'|=[E": E|[E: F
the assertion of the lemma is proved simply by multiplying both sides of this equation by
AF'JF, )P,

Now suppose that G = HC and H N C = {1}. Let E’ be the fixed field of H' and let F”
be the fixed field of H'C' = G’. Each character of H' may be identified with a character of
Cp /N Ck and each character of G’ may be identified with a character of Cp /Ng,pCk.
Any character xg of H' may be extended to a character yp of G’ by setting

Xr(po) = XE'(p)
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if p€ H and o € C. Then
XE/ = XE’/F"
It follows from Lemma 15.1 that there are fields of F;(E’), 1 < i < m(E'), lying between F’
and L and characters pip gy such that
Il’ld(WK/F/, WK/E’; XE’)

is equivalent to

m(E’)

P md(Wicyp, Wism ), i Xy ).

i=1
If E# E' so that F # F’, the induction assumption implies that

Axe Ve p)NE' | F' Yp F)
is equal to
m(E’)
H A(pr, ()X Fy(B) /P wFi(E’)/F)A<Fi(E)/FI7 ¢F'/F)-
i=1
We have seen that the lemma is valid for any pair F’, E for which HC' # G. In particular,
it is valid for the pair E’, F’ and the pairs F;(E’), F'. Multiplying the equality just obtained
by
A(F' ) F, )P

we see that
(16.1) A(xe Ve p)ME | F,¢F)
is equal to
m(E")
(162) H A(MFZ‘(E’)XFi(E’)/FU wFZ(E’)/F))‘<FZ(E/)/F7 ¢F) .
i=1

If I = F the equality of (16.1)) and (16.2), for a suitable choice of the fields Fj(E'), results
from Lemma 15.1, Lemma 15.3, and the definition of
)‘(E//F> wF)
In any case the equality is valid for all fields lying between E and K.
Suppose Ey, ..., E., E, ..., E] are such fields, xp, is a character of Cg,/Ng/p,Ck, Xg, i
a character of CE;. /NK/EECK, and

@ Ind(Wg)e, Wk/E,, XE,)
i=1
is equivalent to

@ Ind(Wg/g, WK/EgaXE;-)-

j=1
Then

(16.3) B E) =) [E}: E|
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and, by the transitivity of the induction process,
r m(E;)
B D md(Wir, Wi, s 11,50 X072
i=1 k=1

is equivalent to
s m(E))

@ @ Ind(WK/F; WK/FZ(E;.)a MFZ(E;)XFZ(E;)/F;)-
j=1 =1
If E; is the fixed field of H; and Ej the fixed field of H then F; and F] are the fixed fields of
H;C and H;C. This equivalence and the induction assumption for L /F imply that
r ’IT'L E )
H H A ,qu ) X Fr( i)/Fiy¢Fk(Ei)/F))\<Fk(Ei)/F7 ¢F)
=1 k=1
is equal to

H H Apr, () XFo(E /7 VR(E) /F))\<F4(E]/~)/F, ¢F)-

j=1 (=1
This equality, the equality of ((16.1)) and (16.2]), and the relation ((16.3)) imply that

[T AGE Yo p)AE) P bp)ME/F,bp) P
i=1
is equal to
[T ACz, v p)ME) /F pp)NE/Fpp) 7,
j=1
Consequently
E, — /\(E//Fa IZ)F))‘(E/F7 7v/}F)_[E/:E]
is a weak A-function on Py(K/FE). The lemma of uniqueness implies that
NE'JFpp)ME/F o) = \(E') B, dgyr).
This is, of course, the assertion of the lemma.

At this point, we have proved the lemma when various supplementary conditions are
satisfied. Before proving it, in general, we make an observation. Suppose

FCECE CE'CK
and the assertion of the lemma is valid for E”/E’ and E'/E. Then
ME"[F,4pp) = NE"/E', pp)ME' | F.ipp) "]
and /
ME'[F,pr) = ME'/E, ¥rp)ME/Fp) 7.
Moreover, by induction,
ME"/E,¢gip) = ME"|E' g p)ME'/E, wE/F)[E”:E/]'

The assertion for E”/E is obtained by substituting the second relation in the first and
simplifying according to the third.
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If the lemma is false in general, choose amongst all the extensions in P(K/F') for which it
is false one E'/E for which [E’ : E] is a minimum. Let E be the fixed field of H and E’ that
of H'. According to the previous discussion G = HC, H N C # {1}, and there are no fields
lying between E and E’. If H' N C = H N C, which is a normal subgroup of G, the fields F,
E, and E' are contained in the fixed field of H N C' and the assertion is a consequence of the
induction assumption. Thus H' is a proper subgroup of H'(H N C'). Because there are no
intermediate fields H = H'(H N C).

As we have seen there are fields Fi, ..., E, lying between E and the fixed field K; of
H N C and characters ug,, ..., pg, such that

IDd(WK/E, WK/E’7 1)

is equivalent to

@ Ind(Wk/e, Wk/E,, tE,)-
i=1

Then .
MNE'/E ¢pr) = | [ Alps,, Yp2)MEi/E s r).
=1

By the induction assumption, applied to K;/F,
MEi/E, bp/p)NE/[F,p) 5" = NE;/ F, yrp).

Thus ,
is equal to

i=1
Moreover, by the transitivity of the induction process,
(165) IHd(WK/F, WK/E’; 1)

is equivalent to

(16.6) B md(Wi/r, Wiesp,, 1153,)-
i=1
On the other hand, there are fields F7, ..., F§ contained in L and characters vg, ..., vp, such
that ((16.5)) is equivalent to
(167) @IDd(WK/F,WK/Fj,I/Fj>
j=1

and such that, by definition,

(16.8) ANE'/F p) = HA(VFj,¢Fj/F)A(ﬂ/F7 Vr).

Jj=1

Since the representations (16.6) and ([16.7)) are equivalent, the induction assumption, applied

to K;/F, shows that ((16.4) is equal to the right side of ((16.8). This is a contradiction.




CHAPTER 17
A simplification

We shall use the symbol €2 to denote an orbit in the set of quasi-characters of C'x under
the action of (K/F) or, what is the same, under the action of W, on Cx by means of
inner automorphisms. If y is a quasi-character of Ck, its orbit will be denoted Q(xx). If p
is a representation of Wy r, the restriction of p to C is the direct sum of one-dimensional
representations. Let S(p) be the collection of quasi-characters to which these one-dimensional
representations correspond.

Suppose

p = Ind(Wi/p, Wic/p, Xp).
Let Wg/r be the disjoint union

i=1
Define the function ¢; by
pi(ww;) = XE(TK/Ew) w € Wk/p.

{¢1,...,om} is a basis for the space of functions of which p acts. If a € Ck then
wwja = w(w;aw; ' w;
and wjawj_l belongs to C'x which, of course, lies in Wg /. Thus
pla)p; = xp(Tr/e(wiaw; ")) p; = X% /(a)e:
if o; is the image of w; in &(K/F). Thus
S(p) = Qxx/p)-

Suppose Ey, ..., E., Ei, ... E! lie between F and K, xg, is a quasi-character of E;, and
Xz, is a quasi-character of E; Let

pi = Ind(Wk)p, Wik/E,, XE:)
and let
/)3' = Ind(WK/F> WK/E; ) XE;.)-
Suppose p; acts on V; and pg acts on Vj’ . The direct sum of the representations p; acts on

V:évi
1=1

193
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and the direct sum of the representations p); acts on

V' = @ V.
j=1
Let

Vo= P W
{i ] xymen}

= @ v

{i XK/EQEQ}

Any isomorphism of V' with V'’ which commutes with the action of Wx/r takes Vo to V().
If Xx/B: € QxK) there is a o in (K/F) such that xx = X%/, Then

pi = Ind(Wx/p, Wi/Es, X5,)
and
A(XE,-, T/JEi/F))‘(Ei/Fa @Z)F) = A(XUEiv ¢E5/F))\(E3/Fa @/)F)-
We conclude that Theorem 2.1 is a consequence of the following lemma.

Lemma 17.1. Suppose xk is a quasi-character of Cx. Suppose Fy, ..., E,., Ei, ..., E. lie
between F' and K, xg, is a quasi-character of Cg,, X, 15 a quasi-character of C’E;_, and

p = @ Ind(Wx/r, Wk/E,, XE,)
i=1
s equivalent to

p = @ Ind(Wir, WK/E;: XE;)~

j=1
If Xx/B: = Xx/m; = Xx for all i and j then

H A(XEN ¢Ei/F))‘(Ei/F7 IDF)
i=1

18 equal to

j=1

Let F(xk) be the fixed field of the isotropy group of yx. Let p act on V and let p’ act

on V'. Let
Vixx) ={veV]|pla)=xk(a) forall ain Cx }.

Define V'(xk) in a similar fashion. It is clear that any isomorphism of V' with V' which
commutes with the action of W, p takes V(xx) to V'(xx). The group Wg/r(y,) leaves both
V(xk) and V'(x) invariant and its representations on these two spaces are equivalent.

Let

Ind(Wg/r, Wk/E,, XE,)
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act on V; and define V;(xx) in the obvious manner. Then
Vixr) = @ Vi(xk)-
i=1

Defining V; and V/(xk) in a similar manner, we have
V'(xx) = P Vi (xx).
j=1

It is clear that the representation of Wi p(y,) on Vi(xx) is equivalent to

Ind(Wx/rxi)» Wk /B XE,)-
Thus .
@ Ind(Wx/r(xi)s Wk/E,:» XE;)

=1

is equivalent to

ED Ind(Wik/r(yie)s Wi /p XE2)-

j=1
If F(xx) # F the assertion of the lemma follows from the induction assumption and
Lemma 16.3.






CHAPTER 18
Nilpotent groups

In this paragraph we prove Lemma 17.1 assuming that F' = F'(xx) and that G = &(K/F)
is nilpotent.

Lemma 18.1. Suppose D is a normal subgroup of G of prime order { which is contained
i the center of G. Let M be the fixed field of D. Suppose F C E C K and xg is a
quasi-character of Cg. Suppose also that F(xk/p) = F.

(a) There are fields Fy, ..., F, contained in M and quasi-characters xg,,...,Xr, Such
that Xx/r, = Xk/E and such that

Ind(Wg/r, Wk/B, XE)

18 equivalent to

@ Ind(WK/F7 WK/F“ XFZ-)-
i=1
(b) If Theorem 2.1 is valid for all Galois extensions K'/F' in P(K/F) with [K': F'] <
[K : F| then
A(xe, Ve/p)NE/F,Vr)

15 equal to
T

[T Ak Crye)AEF,pp).
i=1
We prove the lemma by induction on [K : F|. Let H be the subgroup of G corresponding
to F; let G' = HD and let F’ be the fixed field of G'. If F’ # F the induction assumption
implies that there are fields Fi, ..., F,. contained in M and quasi-characters xp,, ..., X such
that xx/r, = Xx/E for each 7 and such that

Ind(Wg/r, Wk/B, XE)

is equivalent to

@ Ind(WK/F/a WK/F” XF,L-)-

i=1
The first part of the lemma follows from the transitivity of the induction process. The second
part follows from Lemma 16.3 and the assumed validity of Theorem 2.1 for the extension
K/F'.

We suppose now that G = HD. Suppose that H contains a normal subgroup H; of G
which is different from {1} and suppose that, if K; is the fixed field of Hy, F(xk,/g) = F. If
M is the fixed field of H;D then, according to the induction assumption, there are fields
Fy, ... F,. contained in M; and quasi-characters xp,, ..., Xr. such that

XK1/F; = XK1 /E

197
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and such that
Ind(WKl/FJ Wk, E, XE)
is equivalent to
@ Ind(Wg, /r, Wk, /5, XF)-
i=1
It follows immediately that
XK/F; = XK/E
and that
Ind(Wgk/p, Wk )5, XE)
is equivalent to
@ Ind(Wg/r, Wk/r,, XF,)-
i=1
The equality of (b) is a consequence of the assumed validity of Theorem 2.1 for K /F.
We assume now that G = HD and that if H; is a normal subgroup of H different from
{1} with fixed field K the field F'(xk,/g) is not F. If w; belongs to Wi/r and w, belongs
to WK/M then
wlwgwflwgl € Ck.
Let xx = Xk/E- Since F(xg) = F
X (wiwawy wy ) = X (wawy twy twr) = X (Wi twy wiwe) = X (wy T wiwawy ).
Denote the common value of the expressions by w(wy, wy). Then w(vywq,ws) is equal to
xx (Vwywew; o wy ) = Y (wy fwiwewy Moy twy tojws).
The right side is
w(v1, wo)w(wy, wy).
In the same way w(wy, vows) is
i (w1vawow; twy toy ) = Yk (wi vy fwyvewew wy twy)
which equals
w(wy, vo)w(wy, wy).
If either wy or ws belong to C'k, we have
w(wy, we) = 1.
Thus, for each wo,
wy — w(wy, ws)
is a homomorphism of H = Wx,5/Ck into C* and, for each wy,
wy — w(wy, ws)
is a homomorphism of D = W/ /Ck into C*. If w belongs to Wg/p then
w(wwiw™ wwaw ™) = w(wy, wy).
Thus there is a normal extension K; containing F such that
WK/Kl = {w1 | w(wl,wg) =1 for all wy € WK/M }
But F(xk,/e) will be F' so that K; must be K.
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It follows immediately that H is isomorphic to a subgroup of the dual group of D. Thus
H = {1} or H is cyclic of order £. In either case H must lie in the centralizer of D so that
E/F is normal and &(E/F) is isomorphic to D. If H = {1} then xg may be extended from
Cg = Ck to a quasi-character of Wg/r. In other words, there is a quasi-character xp of Cr
such that xg = xg/r. Then

Ind(Wgk/p, Wk )5, XE)
is equivalent to
@ Iﬂd(WK/F, WK/F> MFXF)-
1reS(E/F)

Suppose H # {1}. Since Wi/ /Ck is cyclic there is a quasi-character y»; of Cys such
that xx = xx/m. If wy belongs to Wy /g let x,, be the character of Wy, or, what is the
same, of C'; defined by

Xy (W2) = w(wi, ws)
and if wy belongs to Wi/ let
Xup (1) = w(wr, wo).
Clearly
{ Xy | w1 € Wiyp } = S(K/M)
and
{sz } Wy € WK/M} = S(K/E)
If o1 is the image of w; in H and o, the image of ws in D then
X7 (wr) = xp(wywiwy wi wy) = X, (w1) xe(w:)
and
X3 (ws) = xar (wiwawy  wy ') = X, (w2) X s (w3).
Let Wi/ be the disjoint union

¢
U WK/EUi
i=1
with v; in Wk /pr. Define the function ¢; on Wi/ by
pi(wv;) =0
if w € Wgk/p and j # i and by
pi(wv;) = xp(w)
if we WK/E Then
{oil1<i<t}
is a basis for the space U on which
Ind(WK/F7 WK/E7 XE)
acts. Let ¢, 1 <14 < £ be the function W, r defined by

Yi(wawy) = xar(wa)x i (wy)

if wy belongs to Wi /g and w, belongs to Wi . Here o(v;) is the image of v; in &(K/F). It
is necessary, but easy, to verify that 1; is well-defined. The collection

{vil1<i<t}
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is a basis for the space V' on which

Ind(WK/F7 WK/M: XM)
acts. It is easily verified that the homomorphism of U with V' which sends x s (v;)¢; to v is
an isomorphism. Thus

Ind(WK/F, WK/E: XE) = Ind(WK/F, WK/M7 XM)'
This takes care of the first part of the lemma.
Whether H = {1} or not,
Il’ld(WK/F, WK/E7 1)
is equivalent to
@ Ind(WK/F7 WK/F7 #F)-
nurp€S(E/F)

If H # 1 we may apply Theorem 2.1 to E/F to see that

ME/F yp) = H Alpp, Yr).
nrp€S(E/F)

If H = {1} this equality is just the definition of the left side. In this case the second part of
the lemma asserts that

ur€S(E/F)

is equal to

H A(MFX% wF)
nr€S(E/F)
where xg = xg/p. This is a consequence of the first main lemma. If H # {1}, Theorem 2.1
applied to M/F, shows that

ANM/F,p) = H A(pr, Yr)
rrES(M/F)
and the second part of the lemma asserts that (18.1) is equal to

A(XMawM/F) H A(,MF,@DF)-

nreS(M/F)

This is a consequence of the second main lemma.

A non-trivial nilpotent group always contains a subgroup D satisfying the conditions of
the previous lemma. Lemma 17.1 is clear if K = F. If K # F and &(K/F) is nilpotent it is
a consequence of the following lemma.

Lemma 18.2. Suppose K/F' is normal and Theorem 2.1 is valid for all normal extensions
K'JF" in P(K/F) with [K' : F'| < [K : F]. Suppose F C M C K and M/F is normal.
Suppose Ey, ..., E,., B}, ..., E. lie between F' and M, xg, is a quasi-character of Cg,, XE, is
a quasi-character of C’E;,, and

EB Ind(Wxk/r, Wk/E:» XE,)

=1
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1 equivalent to

@ Ind(Wg/p, Wkyer, XE;)-

j=1
Then .
HA(XEiawEi/F))\(Ei/Fa Vr)
i=1
18 equal to

H A(XE;, Yy p)ME/F¥p).
j=1

The representation
Ind<WK/F7 WK/E“ XEZ-)
can be obtained by inflating the representation
Ind(WM/Fa WM/EN XEZ')

from Whs/p to Wg/p. A similar remark applies to the representations induced from the x B
Thus

@ Ind(Wasyr, Waryg,» XE,)
i=1
is equivalent to

EB Ilfld(VVM/F, WM/E}a XE;.)-
j=1
Applying Theorem 2.1 to the extension M /F we obtain the lemma.






CHAPTER 19

Proof of the main theorem

We shall first prove Lemma 17.1 when there is a quasi-character xp of C'r such that
XKk = Xk/r- Implicit in the statement of the following lemma as in that of Lemma 17.1,
is the assumption that Theorem 2.1 is valid for all pairs K'/F' in P(K/F) for which
[K': F'] < [K : F]. Recall that we have fixed a non-trivial abelian normal subgroup C' of
G = &(K/F) and that L is its fixed field.

Lemma 19.1. Suppose FF C E C K, xr is a quasi-character of Cr, xg 1$ a quasi-character
of Cg, and Xx/g = Xk/r- There are fields Iy, ..., F, contained in L and quasi-characters
Xr, 1 <i<r, such that Xx/r, = XK/F)

Ind(Wgk/p, Wk )5, XE)

1s equivalent to

@Ind(WK/F, Wk/Fs XF,)
i=1
and
A(XE, Ye/P)NE/F, ¢F)

15 equal to
T

H A(XFN wFi/F))‘(Fi/F7 ¢F)-
=1

We prove the lemma by induction on [K : F|. Let E be the fixed field of H and let F’ be
the fixed field of HC. If F' # F then, by induction, there are fields Fi, ..., F, lying between
F’ and L and quasi-characters xp, ..., xg such that XK/F;, = Xk/F and

Ind(Wg/p, Wk /5, XE)

is equivalent to

@ Ind(WK/F/, WK/FZ" XFZ)

i=1
In this case the lemma follows from the transitivity of the induction process, the assumed
validity of Theorem 2.1 for K/F" and Lemma 16.3.

We suppose henceforth that G = HC. There is a character 0p in S(K/FE) such that
Xe = OpXp/r. Op may be regarded as a character of H. If H N C = {1} we may define a
character 0 of G by setting
if hisin H and cis in C. 0 may be regarded as a character of Cr and 0 = 0. Replacing
Xr by 0pxr we suppose that xg = xg/r. Then in the notation of Lemma 15.1, we may take

{(F,....F}Y={F,|peT}

203
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and if F; = F),,
XF, = W XF,/F-
The assertions of the lemma are consequences of Lemmas 15.1 and 15.3.
We suppose now not only that G = HC but also that H N C # {1}. Let S be the set
of characters in S(K/L) whose restriction to H N C agrees with the restriction of 0g. S is

invariant under the action of H on S(K/L). If v belongs to S, let ¢, be the function on
Wk /r defined by

pu(wv) = xp(w)xL/rv)v(v)
if wis in Wg/ g and v is in Wg/r. v is a character of C' and may therefore be regarded as a
character of Wi, or of Cp. It is easy to verify that ¢, is well-defined. If
p=Ind(Wgk/p, Wk/E, XE)
then

{ov|vesS}
is a basis for the space of functions on which p acts. If w belongs to Wx /g

pw)py = xe(w)ey
with v/ = 17 where ¢ is the image of w in &(K/F). If v belongs to Wi,y

p(v)py = xr/p(V)V(V)Py.
Thus if R is an orbit in S under the action of H, the space
Vi = Z Ce.,
VER
is invariant under W, r and p is the direct sum of its restrictions to the spaces Vg.

If 1o belongs to R let H, be the isotropy group of u, let G, = H,C, and let F), be the
fixed field of G,. Extend p to a character i of G, by setting

1 (he) = Op(h)u(c)
if his in H, and cis in C. p/, which is easily seen to be well-defined, may be regarded as a
character of Wx/p, of CF,. Let Wi, be the disjoint union

U WK/FHwi

i=1
with w; in Wg/g and let o; be the image of w; in &(K/F). Let ¢; be the function of Wx/p
defined by

pi(ww;) w € Wkr,, j#1
pi(ww;) = 1 (w)XE,/F(w) w € Wg/F,.
The collection
o l1<i<s)
is a basis for the space V), on which the representation
o, =IndWk/r, Wk/p,, W XE,/F)
acts. Let
;= XE(wz‘)%'-
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If w belongs to Wx/p,
ou(w); = p7 (w)xr/r(w)Y;.
If w belongs to Wi,g and wjw = vw; with v in Wi/, then
ou(w); = xp(w)y;.
Thus the isomorphism of V,, with Vi which takes 1); to ¢,~ commutes with the action of
Wip. If T is a set of representatives for the orbits in .S

o~ Do,

peT
If K is the fixed field of H N C then K;/F is normal and p is the inflation to Wi of
(19.1) Ind(Wg, /p, Wk, /B, XE)

and o, is the inflation of
Ind(Wx,/p, Wk /5, K XE,F)-
Thus the representation ((19.1)) is equivalent to

@ Ind(WKl/F7 WKl/F}_m M/XFH/F)

neT
Applying Theorem 2.1 to K;/F we see that

A(xe, Ye/p)NE/F,Yr)
is equal to
H(M/XF#/Fa @DF#/F)A(FM/F, ¢F)-
peT
If there is a quasi-character x r such that xx = xx/r, Lemma 17.1 follows from Lemma 18.2
and the lemma just proved. To complete the proof of Theorem 2.1 we have to prove
Lemma 17.1 when F' = F(xx), G is not nilpotent, and there is no quasi-character xr of Cp

such that xx = Xxx/r. In this case none of the fields Fy, ..., E,, E},..., E} is equal to F and
Theorem 2.1 may be applied to K/FE; and K/FEj.

Lemma 19.2. Suppose A and B lie between F and K. Suppose xa and xp are quasi-
characters of Cy and Cp respectively. There are fields Ay, ..., Ay lying between A and K,
fields By, ..., B,, lying between B and K, elements oy,...,0, in G, and quasi-characters
XAys- s XAms XBys- -y XBy, Such that B; = A7, xp, = XZ’ and such that the tensor product
Ind(Wg/p, Wiya, x4) @ Ind(Wx/r, Wi/B, XB)

18 equivalent to

@ Ind(Wg/p, Wk, X4;)

i=1

and to

@Ind(WK/F, Wk/B:, XB,)-

=1
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Let

p=IndWgk/p, Wk/a, x4)
o =Ind(Wg,p, Wk/B, XB)-
Let o be the restriction of o to W4 and § the restriction of p to Wi,p. By Lemma 2.3
p®@o~IndWg/r, Wkja, xa ® )
and
p®o~IndWg/r, Wk/p, X5 @ ).
Let Wi/ r be the disjoint union

U WK/AwiWK/B-
i=1

If U; is the space of functions in U, the space on which p acts, which are zero outside of the
double coset Wi aw;Wg,p then U; is invariant under 8. Define the field B; by demanding
that

Wk, = Wk/p N w;IWK/sz’-
If 0; is the image of w; in (K /F) let Xz, be the restriction of x to Wgyp,. If U] is the
space of functions on which

Ind(WK/B, WK/BN XlBl)

acts, the map of U; to U/ which sends ¢ to the function ¢’ defined by

¢'(w) = p(ww)
if w is in Wi/p is an isomorphism which commutes with the action of Wy, . Thus

B~ EB Ind(Wxk,5, Wk/B;: Xp,)

i=1
and, if xp, = XBi/BXIBp

XB ® 8~ @ Ind(Wg/, Wk/B,» XB,)-
i=1
Similar considerations apply if the roles of A and B are interchanged. The double coset
decomposition becomes

U WK/Bwi_le/A

i=1
and

Wija, = Wiya N wiWK/Bwi_l = le‘VVK/BﬂHi_1
Thus B; = A7". It is also clear that x5, = X7 .
To complete the proof of Lemma 17.1 we use Brauer’s theorem in the following form.

There are fields Fi, ..., F, lying between F' and K such that &(K/Fy) is nilpotent for each
k, characters xp, of Cp, /Nk,p, Ck, and integers my, ..., m, such that

1~ @mk Ind(WK/F7 WK/Fk7XFk)

k=1
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Since we are assuming that G is not nilpotent none of the Fj are equal to F' and we may
apply Theorem 2.1 to each of the extensions K/Fj.

We shall apply the previous lemma with A = E;, B = Fj and with A = E}, B = Fj.
m will be denoted by m(ik) or m/(j¢). A, will be denoted by Ej, or E, ke and Bg will be
denoted by Fj, or F;M. Observe that

(19'2> A(XEikeawEike/F))‘(EiM/Fv wF)
is equal to

(19.3) A(XFikevwFiké/F))‘(Ekf/Fv V)
and that

(19.4) A(XE;W ¢E;.M/F))\(E;'kz/F, Vr)
is equal to

(19.5) Ay, UF PN E e/ FF).

XE, may be regarded as a one-dimensional representation of Wy /g, and as such is equivalent
to

@ @ mp IIld(WK/EL, WK/Eikga XEikZ)'
k=1 (=1
Therefore
n  m(ik)
1= Z Z mk zk@
k=1 (=1
and
is equal to

H H {A(XEM,wEiu/F)A(EW/EmwEi/F)}mk~
k=1 (=
Multiplying both of these expressions by A(E;/F,vr), we see that

,_.

is equal to
n m(ik)

(19.7) T T {AEw VB p) A Eie/ Fypp) ™
k=1 ¢=1

The same argument establishes that

(19.8) A(XE;,¢E;/F))\(E§/F, V)
is equal to
n m (jk "
(19.9) H H {A(XE;M,¢E;.M/F))\(E;'u/F,?/JF)} )
k=1 =1

We are trying to show that the product over i of the expressions (19.6) is equal to the
product over j of the expressions ((19.8). It will be enough to show that the product of the
expressions (|19.7)) is equal to the product of the expressions ((19.9)).
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The representations

r  m(ik)
@ @ Ind(WK/Fm WK/ Fie: XFie)
i=1 =1
and
s m (jk)
@ @ Ind( WK/Fk,WK/F gt XF) M)
j=1 (=1
are equivalent. Therefore
r m(ik) s m'(jk)
2D WFue: Bil= 3 [Fjy: Bl
i=1 (=1 j=1 =1
Denote the common value of these expressions by N (k). Moreover
r m(ik)
T I Arue: Yy )N Fire/ Frotm )
=1 (=1
is equal to
s m'(jk)
H H AXF, Vr, PN E e/ B0 7).
j=1 (=1

Multiplying both of these expressions by
A(Fy/F1pp)N®)

we see that
r m(ik)
(19.10) H H A XFikZ7wFikg/F))\(Ek£/F7 wF)
i=1 (=1
is equal to
s m'(jk)
(19.11) H H A(XFquawF;M/F))\(FJ{M/FawF)-
j=1 (=1

Because of the equality of ( and ([19.3)) the product over i of the expressions ([19.7)) is
equal to the product over /<; of of the m;th powers of the expressions ((19.10). The product

over j of the expressions ((19.9) is equal to the product over k of the myth powers of the
expressions ((19.11f). Lemma 17.1, and with it Theorem 2.1, is now completely proved.



CHAPTER 20

Artin L-functions

Suppose w is an equivalence class of representations of the Weil group of the non-
archimedean local field F. Let K be a Galois extension of F' and let o be a representation
of Wi/ in the class w. Suppose o acts on V. Let V? be the subspace of V fixed by every
element of W /p- Since Wy /p 18 a normal subgroup of Wi/ the space V0 is invariant under

Wi/ and on V° we get a representation ¢°. Since Wy, P TI_(/IF(U%) the class of 0% depends

only on w. ¢° breaks up into the direct sum of 1-dimensional representations corresponding
to unramified generalized characters g, ..., u,. of Cr. We set

T

1
Lsw) =l =S

i=1

This we take as the local function. It is clear that when w is one-dimensional, the present
definition agrees with that of the introduction and that of w = w; ® wy. Then

L(s,w) = L(s,wy) ® L(s,ws).
Suppose ' C E C K, p is a representation of Wy /g, and
o =Ind(Wgp, Wk, p).
We have to show that if # is the class of p then
L(s,w) = L(s,0).
Let p act on W. Then V is the space of functions f on Wi /r with values in W which satisfy
f(uv) = p(u) f(v)

for w in Wg/p and v in Wi /p. If f lies in V and u lies in WIO(/E then

p(u)f(v) = f(w) = flvv™w) = f(v)
because v~! lies in Wj. /P Thus f takes values in WP. In other words, we may as well assume
that W = WP, Indeed we may as well go further and assume that W = W° has dimension
one.

Let Ng/pmp = ew{: where € is a unit and choose wy in Wy/p so that 7x/pwy = 7p.
Then w! = ugvy with ug in W?(/F and vy in Wg/p such that 7x,pvg = mg. Clearly, V°
consists of the functions f with values in W which satisfy f(uw) = f(w) for u in W}, s and
fluw) = p(tg/pu) f(w) if p is associated to the generalized character p of Cp. Take as basis
of VY the functions ¢y, ..., @, 1 defined by

pi(uvur) = plTic )6

209
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where z is a non-zero vector in W, u belongs to WIO(/F, v belongs to Wi g, 0 < j < f, and

67 is Kronecker’s delta. The matrix of o(wp) with respect to this basis is

O oo, (T EVo)
1 0 :
A=| 1
0 1 0
and
L(s,w) = ! - 1 = Ls0)
det(I — Alrpls) 1= p(mg)|mr|’

since |7p|f = |7g|.
For archimedean fields we proceed in a different manner. If we write w, as we may, as a
sum of irreducible representations the components are unique up to order. If w = @;_, w;,

we will have to have .
L(s,w) = HL(s,wi).
i=1

Thus it is a matter of defining L(s,w) for irreducible w. If w is one-dimensional this was
done in the introduction. If w is not one-dimensional then F' must be R. Let o be a
representation of W g in the class w. Wg/r is an extension of the group of order 2 by C*.
Let Wer = C* UwoC*. If o acts on V' there is a non-zero vector z in V' and a generalized
character p of C* such that o(a)z = pu(a)z for all @ in C*. Then the space spanned by
{#,0(wo)x} is invariant and therefore all of V. Since V' is not one-dimensional o (wp)x is not
a multiple of z. Notice that o(a)o(wo)r = o(wo)o(wy  awe)r = u(@)o(we)z. If
ZMzZ"

pz) = 2" —a
2™

with m +n > 0, mn = 0 we set

m4+n

L(s,w) = 2(2m) (47475 )F(s+r+m . ”)

The initial choice of u is of course not uniquely determined. However if j is one choice
the only other choice is the character a — pug(@). Thus the resulting local L-function is
independent of the choice.

The only point to be checked is that the local L-function behaves properly under induction.
We have to verify that if p is a representation of C* = W¢/c in the class 6 and

0= Ind(WC/Ra Wec, p)

is in the class w then L(s,w) = L(s,0). We may as well assume that p is irreducible and
therefore one-dimensional. Let it correspond to the generalized character v. If o is irreducible
we could choose the generalized character p above to be v and the equality of the two
L-functions becomes a matter of definition. If ¢ is irreducible it breaks up into the sum of
two one-dimensional representatives. It follows easily that v(a) = v(a@) for all a. Thus v is of
the form v(a) = |a|” and

L(s,0) = 2(2m) "t (s + 7).
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If yur = p is the generalized character x — [z|" of R* then v = uc/r and, as we saw
in chapter 10, the representation ¢ is equivalent to the direct sum of the one-dimensional
representations corresponding to p and to p' where p/(z) = sgnzu(x). Thus

L(s,w) = 4 w=beenp (S50 L) mdersnp (ST H 1Y L
) 2 2

The required result is thus a consequence of the familiar duplication formula
2P () (2 4 1/2) = 7V/%T(22).

If F' is a global field and w is an equivalence class of representations of the Weil group of
F', we define as in the introduction, the global L-function to be

L(s,w) = H L(s,wy).
P

I repeat that the product is taken over all primes, including those at infinity. It is not difficult
to see that the product converges in a half-plane Res > c¢. One need only verify it for w
irreducible. Choose a Galois extension K of F' so that there is a representation o of Wy /p
in the class w. The restriction of o to C'x is equivalent to the direct sum of 1-dimensional

representations corresponding to generalized characters u™, ..., u( of Ck. For each i and j
there is a ¢ in &(K/F) such that p(a) = p'(o(a)). Then |p; " p;(a)| = )ui (a_la(a))’ =1
because a~'o(a) belongs to the compact group of ¢ idele classes of norm 1. Let |1/(a)| = |a|".

Let v be the generalized character a — |a|” of Cp. Replacing o by v,' ® o we replace
L(s,wy) by L(s — r,w,) and p® by [p@|1u®. Thus we may as well suppose that all p®
are ordinary characters. Since Ck is of finite index in Wy, the eigenvalues of o(w) will all
have absolute 1 for any w in Wy, and at any non-archimedean prime the local L-function

will be of the form ,

H 1
i1 1— Oéi|7TFp‘s
with s < dimw and |o;] =1, 1 <@ < s. The required result follows from the well-known fact

that
H :
b 1 — |7TFP|S

converges from Res > 1. This product is taken only over the non-archimedean primes.






CHAPTER 21

Proof of the functional equation

Choose a non-trivial character ¢ of Ap/F. Before we can write down the factor appearing
in the functional equation of the global L-function we have to verify that €(s,w,, ¥ ) =1
for all but a finite number of 7.

Let w be realized as a representation o of Wy, r and let the restriction of o to Cx be
equivalent to the direct sum of 1-dimensional representations corresponding to the generalized
characters p™, ..., u. All but finitely many primes p will satisfy the following conditions.

(i) p is non-archimedean.
(ii) n(¢r) = 1.
(iii) p does not ramify in K.
(iv) m(ug)) = 0 for all °B dividing p and all s.
Choose one such p and let P divide p. Corresponding to the map K/F — Ky /F, is a
map @y : VVKWFp — Wk/Fp. wy is the class of o, = 0 0 ¢,. The kernel of o, contains Uky-
Since Ky/F, is unramified the quotient of Wqu /F, by U Ky 18 abelian and oy, is the direct

sum of one-dimensional representations. Let them correspond to the generalized characters

1/,51), .. (r) of CF,. Since Ty /Fy takes U Ky Onto U, each of these characters is unramified.

Thus
e(s wp,wpp HA(a; QVéZ ,¢Fp> = 1.

If ¢ is another non-trivial character of Ar/F thereis a §in F* such that ¢/.(z) = ¥ r(B).
According to Lemma 5.1

€(s,w,vp,) = ozSF;%(ﬁ) det wy(B)e(s, w, ¥, ).
Since

[T e, (8) 2 detw,(8) = 1812 detw(B) = 1

the function

€(s,w) = H €(s, Wy, V)
b

is indeed independent of Y.
We can infer from Tate’s thesis not only that L(s,w) is meromorphic in the whole complex
plane if w is one-dimensional but also that it satisfies the functional equation

L(s,w) = €e(s,w)L(1 — s,w)
if @ is contragredient to w. As is well-known, Lemma 2.2 then implies that L(s,w) is
meromorphic in the whole complex plane for any w. In any case, Theorem B is true for

one-dimensional w and, granting this, we have to establish it in general.
First we need a lemma.

213
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Lemma 21.1. Suppose F' is a global field, K is a Galois extension of F', E is a field lying
between F' and K, x is a generalized character of C'y and

o =Ind(Wgk/p, Wk/E, X)-

If w is the class of o and, for each prime q of E, x4 is the restriction of x to Cg, then for
each prime p of F

S wp7wFP H{ €\s Xq’qu/Fp> (Eq/meFp)}'
alp

Let B be a prime of K dividing p. The first step is to find a set of representatives for
the double cosets Wk pwWiky/F,- Since Cx € Wi/ is a normal subgroup of Wy, we can
factor out C'x and merely find a set of representatives for the double cosets

S(K/E)o®(Ky/F,).
Let B, ..., B, be the primes of K dividing p and let B; divide q; in £. &(K/F) is the
disjoint union
U 06(Ky/Fp)
i=1
where 0;() = B;. If 0; and o; belong to the same double coset q; = q;. Conversely, if
q; = q; there is a p in &(K/E) such that p(P;) =*B,. Then po;(P) = 0;(P) and
po; € O'j@(Km/Fp).
Thus we may write (K /F) as the disjoint union
U 8(£/E)r6(Ky/F)
TES

so that if ¢ divides q in £ the collection {T(q) | TeES } is the collection of distinct primes
in £ dividing p.

For each 7 in S choose a representative w(7) in Wy p. For each 7 in S the restriction of
o to Wi, /r, leaves invariant the space of functions f on the double coset Wy, Eu)(T)I/VKB /Fp
which satisfy f(vw) = x(7x/e(v)) f(w) for all v in Wk g. The representation of W, /p, on
this space is equivalent to

Ind(WKm/Fp7 WK(B/E ’Xq"->
if B =771(F) and
Xy (a) = x(7(a)).

6(87 Wy wFp> = H 6(87 XLIT’ ¢E;T/Fp)p(EZ|—T/Fp7 wFp)

TES

Thus

which is of course equal to

H 6(57 Xq» ¢Eq/Fp)p<Eq/FP7 wFp)

TES

E/F HHPE/meFp

a qlp

We set
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The preceding discussion together with Lemma 5.1 shows that it does not depend on p.
However that does not really matter since we are about to show that for any choice of ¥ it
is 1. Observe first of all that the previous lemma implies immediately that if w is the class of

o =Ind(Wg/r, Wk/E, X)
then
e(s,w) = e(s,x)p(E/F).
Given an arbitrary class w realizable as a representation of Wx/r we can find fields
Ey, ... E,

lying between F' and K, generalized characters xpg,, ..., Xg,, and integers my, ..., m, such
that

@ mi Ind(Wi/r, Wk/B,, XE;)
i=1
is in the class w. Then

w) = [ [{e(s, xe)™ p(E:/ )™}
i=1
On the other hand

= H L(sa XEi)mi
=1

and
HL o XE
Since
L(s, xz;) = €(s,xz,)L(1 = 8,xg,)
we have

because w contains

@ m; Ind(WK/F, WkE,, X;;,l)
i=1
Consequently

T
H 6(8 » X E; )mz
i=1
depends only on w and not on the particular way it is written as a sum of induced represen-
tations. Thus

Hp(Ez'/F)mz

also depends only on w. We call it H(w). It is clear that to prove Theorem B we have to
show that H(w) =1 for all w or, what is the same, that p(E/F) =1 for all £ and F.
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Suppose F' C E C E’. Denote the primes of F' by p, those of E by g, and those of E’ by

q’. Then
p(E'/F) =[] r(Ey/FvoR,)-
poqlp
Apply Lemma 4.5 to see that the right side equals

H H H{P(Ecly/qu VY, 5, P(Eq) F, ¢Fp>[E;;Eq}}‘
Poalp d'lg
Since

this may be written as
[E":E]

HHp(EC,I'/Eq7¢Fq/Fp) HHP(E'C'/FF”I/}FP)

a qlq pooglp
which is of course

(20.1) p(E'/E)p(E/F)FF.

Suppose E/F is an abelian extension and w is the class of the representation of Wg/p
induced from the trivial representation of Cp = Wg/g. Then H(w) = p(E/F). On the
other hand, w is the direct sum of [E : F| one-dimensional representations; so H(w) =
p(F/F)EFl = 1. Tt follows immediately not only that p(E/F) = 1 if E/F is abelian but
also that p(E/F) =1 if E can be obtained from F by a succession of abelian extensions. In
particular if F C F C L and L/F is nilpotent, p(E/F) = 1.

Observe that together with Lemma 2.2 and the transitivity of induction imply that
if w is the class of

0= Ind(WK/F7 Wk E, p)
and @ is the class of p then

H(w) = H(0)p(E/F)"™".
To complete the proof we will show that H(w; ® wy) = H (wy)™«1 for all w; and wy. Taking
wy = 1 we find H(w;) = 1. It is enough to prove the equality when w; and ws are both
realizable as representations of W/ p and there is a field £ lying between £ and K with
&(K/E) nilpotent and a generalized character yg such that ws is the class of

Ind(WK/F7 WK/Ev XE)-
Then H(wy) = p(E/F). If p is a representation in the restriction of w; to Wg/p then, by
Lemma 2.3, w; ® wy is the class of

Ind(Wgk/r, Wi/, p ® XE).
Let 6 be the class of p @ xg. H(0) is of the form
H p(Ei/E)™
i=1

where £ C E; C K and is therefore 1. Thus
H(w ® wy) = H(O)p(E/F)Im™0 = p(E/F)dimer,
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as required.






Appendix

There is clearly not much to be said about the functions €(s,w, ¥ r) when F' is archimedean.
However for non-archimedean F' their properties are more obscure. In this appendix we shall
describe and prove some properties which were not needed in the proofs of the main theorems
and so found no place in the main body of the paper but which will be used elsewhere.

The first step is to define the Artin conductor of w. We follow a well-trodden path. If
K is a finite Galois extension of the local field F' then Wy /p contains Uy as a subgroup of
finite index and is therefore compact. It is, in fact, a maximal compact subgroup of W p.
Choose that Haar measure dw on Wy,r which assigns the measure 1 to WIO(/F. If fisa
locally constant function on Wy, and u is a non-negative real number set

—1
Fy=3 [ dwp [ {0) = fw) du.
Wi/ r Wi/r

~

Since Wy is an open subgroup of Wk, r it is meaningful to restrict dw to it. f(u) is
bounded, continuous from the left, and 0 for u sufficiently large. Since W} P = Wy s for

-~

1 <u <0 we have f(u) = J?(O) for such u. The integral

/ ]?(u) du
-1
is well-defined.

There are some simple lemmas to be verified.

Lemma 22.1. Suppose ' C K C L and L/F is also a Galois extension. Define g on Wir
by g(w) = f(TL/F,K/F(w))- Then g(u) = f(u) for all u.
This is immediate because by Lemma 6.16, 71,/ k/r maps Wi‘/F onto W}Q/F for every w.

When we want to make the roles of K and F' explicit we write f(u) = fK/ r(u).

Lemma 22.2. Suppose F C E C K and g is a function on Wk g satisfying g(wzw™"') = g(z)
for all z and w in Wi/p. Regard Wk ,g as a subgroup of Wi r and set

fw)y=" Y g(z"'wz).

2EWk/E\Wk/F

If Ng/pmp is a unit times W{;E/F and ‘B%E/F is the different of E/F

/ J/C\K/F(u) du = fE/F/ 9x/e(u) du+ fr/rdp/rg(l).
—1 -1

219
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Let dwg/r be the normalized Haar measure on Wy, r and let dwg,r be the normalized
Haar measure on Wg,g. On Wk

Suppose at first that g(1) = 0. Denote also by g the function on Wy, which equals the
given g on Wy, but is 0 outside of Wy,g. Then

Fryr(u) = [Wir : Wieslg e (u).
Since W}é/F NWk/ep = W;)(/E if v =Yg/r(u),

() = ~ Wiy s Wigel [ gl duge
K/F
[WIO{/F : WI%/F} /
= — g(w) dwg g
[WIO</F : WIO(/E] we /

K/E

1 [WIO(/F : WI%/F]/g\ /
o TIK/E
[WIO(/F : WIO{/E] [WIO(/E : WK/E]

(v).

Recall that
[WK/F : WK/E]

fe/F = :
/ [WIO</F : WIO(/E]

Moreover 0 0 0 0 0
[WK/F : WI%/F] B [WK/F : WI%/FUK] [Ug : Ug N WI%/F]

[WIO{/E : WIU(/E] [WIO(/E : WIU{/EU?(] (U : Ug N WIU(/E]
and Up N Wi p = Ug "Wy . By Lemma 6.11 the first term in this product is equal to
[G° : G
[HO: Hv]
if ¢ = 6(K/F) and H = 6(K/E). But
[G°: G"] = Yl/p(w)

and
[H® - H'] = ¢k p(v)
while
w/K/F(U) = w;{/E(U)ij/F(u)
Thus

/1 ]/C\K/F(U) du = fE/F /1 Q\K/E<¢E/F(U))¢/E/F(U) du

:fE/F/ EK/E(U) dv.

1

To complete the proof of the lemma, we have to show that if g(w) = 1 so that gx/p(u) =0
then

/ J/C\K/F(U) du = fE/F5E/F-
-1
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In this case a.H Qo o
fK/F(u) = [G : H] - [éo H]O] [[HO Hv]]
if v =g p(u). After some simple rearranging this becomes
%g HP] (G*: 1]~ [H": 1]} = —{g HH (61— — (a1 - 1)}

The factor

G:H] [G:G"] ,
G e V)

and, from paragraph IV.2 of [12],

o0

/loo([G“ 1] — 1)@0’K/F(u) du = / ([Go: 1] = 1) dz = dg

-1

while - -
/_1 ([ 1] — 1) o(ur) dus = /_1 ([ 1] — D)l (v) do = S5/
Thus . e
/_1 ]?K/F(u) du = [[H': 1]] (0x/F — O0x/E) = fE/F0E)F
because

Suppose w is an equivalence class of representations of the Weil group of F' and o is
a representation of Wy p in the class of w. Let f, be the character of o. It follows from
Lemma 22.1 that the value of -
/ fa(u) du
~1

depends only on w and not on o. We call it the order of w and denote it by m(w). Since f,(u)
is clearly non-negative for all v and vanishes identically if and only if W}, s 1s contained in
the kernel of o, the order m(w) is always non-negative and equals zero if and only if the
kernel of each realization o of w contains Wy, P

Lemma 22.3.
(a) If w = wy ® wy then m(w) = m(wy) + m(ws).
(b) If
W = Ind(WK/F, WK/Ea I/)
then

m(w) = fE/Fm(V) = fE/F5E/F dim v.
(¢) m(w) is a non-negative integer.

The first property is immediate. The second is a consequence of Lemma 22.2. To verify
the third we merely have to show that m(w) is integral. If w = p @ v and the assertion is
true for any two of y, ¥ and w it is true for the third. This observation, together with part
(b) and Lemma 2.2, shows that it is enough to verify (c¢) when w is the one-dimensional class
corresponding to a generalized character xp of Cr. To do this we show that m(w) = m(xr).
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~

If f(a) = xr(a) for a in Cp = Wep then f(u) = f(m) for m —1 < u < m and
Flom) = (08071 [ {1 xela)} da
Ug'

The right side is 1 if m < m(xr) and 0 if m > m(xr). Thus

m(w) = /:L(XF)l du = m(xr).

The function w — m(w) is characterized by (a) and (b) together with the fact that
m(w) = m(xr) if w is the class of yp.

Lemma 22.4. If w is an equivalence class of representations of the Weil group of the
non-archimedean local field F' and ¥g is a non-trivial additive character of F', set m'(w) =
m(w) + n(yp)dimw. There is a non-zero complex constant a(w) such that, as a function of
S,

€(s,w,Vp) = a(w)|7rF\m'(“)s

If w= pu ® v and the lemma is true for any two of u, v, and w, it is true for the third.
Applying Lemma 2.2 we see that it is enough to verify it when w contains a representation

Ind(WK/F7 WK/Ea XE)-

Then
(0. 0e) = & (3 . g ) oE/F. ).
Clearly
A (QE;X& @DE/F) = Oéi;i%(WS(XE)ME/FW?:(W))A(XE, ¢E/F)-
But

&E(WE(XEH&E/FWg(wF)) = ap (NE/F<7TE (xB)+d5/F n(wp)))
and the argument on the right is the product of a unit and

7Tj;E/F(T’L(XE)+51~:/F)+”(1/1F) dimw _ W;l/(w) '

The lemma follows.
The next lemma is rather technical and to prove it we will have to use the notations and
results of paragraphs 8 and 9.

Lemma 22.5. Let w be an equivalence class of representations of the Weil group of the
non-archimedean local field F' and my a positive integer. There is a positive integer mo such
that if xp and pi, ..., u, with r = dimw, are generalized characters of Cp and m(xr) = mo,

m(u;) <mq, 1 <1< r, while
H i = detw
i=1

then for any non-trivial additive character Vg

r

6(87XF ® g, wF 1_[‘5 S /’L’LXF7wF

=1
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Choose, as a start, mg > 2my + 1. If up is a generalized character of Cr and m(up) < my
while m(xr) = mg then m(upxr) = m(xr) = m. Let n = n(y¥r) and choose 7 so that
Opy = PRpT". If B = B(xr) we may choose B(upxr) = . Appealing to Lemmas 8.1 and 9.4
we see that

€(s, prxr, ) = A (a;_é/iFXF, ¢F>
(o) (2) a0

[T cto- i) = o (73) (%) dew(%) (A vn))

If w= pu & v then

(s, xr @w,Vp) = €(s, Xr @ 1, Yp)e(s, xr @ v, ¢p)

and all three terms are different from zero. Thus if the lemma is true for two of u, v and w
it is true for the third. Using Lemma 2.2 once again, we see that it is enough to prove the
lemma when there is an intermediate field £ and a generalized character pp of Cg such that
w is the class of

In particular

Ind(Wg/r, Wk, IiE).
Then xr ® w is the class of
Ind(WK/Fa WkE, MEXE/F)
and
€(s,Xr @w,Yp) = A (OZSEWEXE/F, wE/F> p(E/F,YF).

There are two simple lemmas which we need before we can proceed further and we digress
to prove them.

Lemma 22.6. Let E be a separable extension of F'. If m is sufficiently large
Yp/p(m —1)+1=meg/p — Op/p

if eg/r s the index of ramification of F' in E.

Suppose F' C E' C K where K/F is Galois and the assertion is true for K/F and K/E.
Subtracting 1 from both sides of the equation, applying ¥k,r, and then adding 1, we obtain
the equivalent equation

VYrp(m —1) + 1 =Yg/p(meg/p —dgp — 1) + L.
By assumption, the left side equals

mek/rFr — 5K/F
and the right side equals
(meE/F - 5E/F)€K/E - 5K/E-
Since ex/r = ex/pep/r and dx/p = 0k/p + ex/E0E/F these two expressions are equal and we
have only to prove the lemma for Galois extensions.
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Suppose F' C K C L and L/F and K/F are Galois. Suppose also that the lemma is true
for L/K and K/F. Then
Yrp(m—1)+1= ¢L/F(¢K/F(m — 1)) +1
=Y p(meg/p — 6gp — 1) +1
= (meK/F - 5K/F)€L/K - 5L/K
=mer/r — 5L/F
as before. Thus, if we use induction, we need only verify the lemma directly for a Galois
extension K /F of prime degree.
We apply Lemma 6.3. If K/F is unramified, ex/r = 1 and dg/p = 0 while Vi p(m —
1) = m — 1; so the relation follows. If K/F is ramified there is an integer ¢ such that
Sx/r = ([K : F]—1)(t + 1) while ¢g/p(m — 1)+ 1= [K : Flm — ([K : F] = 1)(t + 1) for
m —1 > t. Since ex/r = [K : F] the relation follows again.
If n = n(¢yr) then
n' =n(Yp/r) =negp + 0p/r.
Thus if m is sufficiently large and m’ = ¢g/p(m — 1) + 1
m' +n' = (m+n)eg/r
and if Opy = P2 then Oy = P2+, We define

Er() = Pgp(z;7,7)
as in paragraph 8.

Lemma 22.7. If my is a given positive integer then for m sufficiently large
PE/F(:I:) =z (mod PL).

As in paragraph 8, let d be the integral part of %, d' the integral part of m?/, and let
m=2d+e, m =2d +¢€. Py (r) depends only on the residue of 2 modulo B4 and is only

determined modulo B%. Recall that if
Pgip(y) = Ngjp(1+y) — 1

Py (@ TEp/F
VE/F <—E/2( )y> = Yr (—P; (y)>.

To show that P p(z) =z (mod P*) when m is sufficiently large, we have to show that

Vr (M) = tg/F (%)

for y in ‘Bgl_ml. To do this we show that
Pgrp(y) = Se/r(y)  (mod PB7)

when m is sufficiently large and y is in mg/*ml.

To put it another way, we have to show that if K/F is any Galois extension the assertion
is true for all intermediate fields FE. For this we use induction on [K : F| together with
Lemma 3.3. There are three facts to verify:

for y in PLT then
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(i) If E/F is a Galois extension of prime degree then
Pgp(y) = Se/r(y)  (mod PBy)

when m is sufficiently large and y is in ‘,]3%1/_’”1.

(ii) Suppose FF C E C K and K/F is Galois. Let G = &(K/F) and let E be the fixed
field of H. Suppose H # {1} and G = HC where HNC = {1} and C' is a non-trivial
abelian normal subgroup of G which is contained in every other non-trivial normal
subgroup. If the induction assumption is valid

Pgir(y) = Se/r(y)  (mod PF)

when m is sufficiently large and y is in m’g’*ml.

(iii) Suppose F' C E C E' C K and m" = ¢/ /p(m — 1) + 1. If, for any choice of my,
Pr/r(y) = Sp/r(y)  (mod PF)

when m is sufficiently large and y is in ‘,Bg,_ml and, for any choice of m/,

Pye(y) = Spye(y)  (mod BE)
when m, or m/, is sufficiently large and y is in mg:l_mll then, for any choice of m/,
Ppp(y) = Seryr(y)  (mod Bi)

if m is sufficiently large and y is in mg;/_mll

We first verify (i) for F/F unramified. By paragraph V.2 of [12]
Pg/r(y) = Ng/r(1+y) — 1= Sp/r(y)  (mod By)

if y belongs to ‘BdEI“I. In this case m = m’ and we take m > 2m, so that m’ —my > d' + €.
If E/F is ramified and of degree ¢ we again choose m sufficiently large so that m’ > 2my. If
m >t
2(m' —my) + (L= 1)(t+1) < m + (0 —1)(t+1)
14 - l
so that by Chapter V of [12],
Pr/r(y) = Sp/r(y) + Ngyr(y)  (mod PE)

if y belongs to m’g'—ml. t of course has its usual meaning. Since Ng,p(y) belongs to P
all we have to do is arrange that m’ — m; > m. Since
m —my=LIm—({—1)(t+1)—my

and ¢ > 2, this can certainly be done by choosing m sufficiently large.

To verify the second fact, let L be the fixed field of C. We can assume that the required
assertion is true for the extension K/L. Let £ = p(m —1) +1 and ¢’ = g p(m — 1) + 1.
If m is sufficiently large and Hj is the inertial group of H

{=[Hy:1lm— ([Hy:1] —1)

=m

and
0'=[Ho:1m' — ([Hy:1] —1).
Thus
PN EF =P§
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and if ¢; = [Hy : 1]my then
mi{ 2 NE = mm —my
If m and therefore ¢ is sufficiently large
Pr/p(y) = Niyo(1+y) = 1= Sk/i(y)  (mod P7)
if y belongs to ‘Bi; . Thus if y belongs to ‘Bm -
Pgir(y) = Pi/r(y) = Skye(y) = Spyr(y)  (mod PF).
To verify the third fact we choose, once m/) is given, m; so that
Spr ) p—m) —
SE’/E(mE/E /e 1) = *E

If m is sufficiently large
m” = mleE’/E —d0pE

and if y belongs to ‘Bg:lfml
Seye(y) € By ™.

Taking it even larger if necessary, we have
Pgp(y) = Peip(Pee(y))
:%w@ME ))
= Sp/r (S )
= Spyr(y)  (mod Pg).
Returning to the proof of Lemma 22.5, we choose
8" = B(xe/r) = Pgr(B).
If m(xr) and therefore m(xg,r) is sufficiently large,

s—3 s—3 (7 Y
A<04E MEXE/F,wE/F) = Qg (E)NE (E>A<XE/F7¢E/F)'
Both 8 and ' are units and therefore

() - () o (0 () -

If m(xr) is sufficiently large

|
5
“w
I
N =
N
™|
~_

=5 (mod F5**)
and pug(f') = pe(B). In paragraph 5 we saw that

detw(%) = lp <%> detig/p <%>7

if g/ is the representation of Wy, r induced from the trivial representation of Wy, r. We
are reduced to showing that

if m(xr) is sufficiently large. Of course r = [E : F].
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What we do is show that for each Galois extension K/F the relation is true for all
fields E lying between K and F. For this we use induction on [K : F]|. Let G = &(K/F)
and let C' be a non-trivial abelian normal subgroup of G. Let L be the fixed field of C. We
saw in Chapter 13 that there are fields Fi, ..., F; lying between F' and L and generalized
characters py, ..., us of Cpy,...,Cr, respectively such that

LE/F ™ GB Ind(Wee/r, Wi, i)

=1

Then
XF ® Lp/F = @ Ind(Wi/p, Wik /E,» 14X F,/F)

and by Theorem 2.1, the Main Theorem the right side of (| is equal to

H A(wiXr/r, Vryr)p(Fi [ FLF).

i=1
We just saw that if m(xp) is sufficiently large, this is equal to

s

H fi (%) [T A r. 05 )p(F /P r)

i=1

Since
S

Y IFi: F]=[E:F]
i=1
we see upon applying the induction assumption to L/F that this equals

Hﬂz( )detbp/p(ﬁ> {A(xp, vr)}"

We complete the proof of (22.1]) by appealing to Chapter 5 to see that

det tp/p = H pidet vy, p.

i=1
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