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Introduction

In this paper I want to consider not just the L-functions introduced by Artin [1] but
the more general functions introduced by Weil [15]. To define these one needs the notion
of a Weil group as described in [3]. This notion will be explained in the first paragraph.
For now a rough idea will suffice. If E is a global field, that is an algebraic number field
of finite degree over the rationals or a function field over a finite field, CE will be the idèle
class group of E. If E is a local field, that is the completion of a global field at some place
[16], archimedean or non-archimedean, CE will be the multiplicative group of E. If K/E is a
finite Galois extension the Weil group WK/E is an extension of G(K/E), the Galois group of
K/E, by CK . It is a locally compact topological group.

If E ⊆ E ′ ⊆ K and K/E is finite and Galois, WK/E′ may be regarded as a subgroup of
WK/E. It is closed and of finite index. If E ⊆ K ⊆ L there is a continuous map of WL/E onto
WK/E. Thus any representation of WK/E may be regarded as a representation of WL/E. In
particular the representations ρ1 ofWK1/E and ρ2 ofWK2/E will be called equivalent if there is
a Galois extension L/E containing K1/E and K2/E such that ρ1 and ρ2 determine equivalent
representations of WL/E. This allows us to refer to equivalence classes of representations of
the Weil group of E without mentioning any particular extension field K.

In this paper a representation of WK/E is understood to be a continuous representation
ρ in the group of invertible linear transformations of a finite-dimensional complex vector
space which is such that ρ(w) is diagonalizable, that is semisimple, for all w in WK/E. Any
one-dimensional representation of WK/E can be obtained by inflating a one-dimensional repre-
sentation of WE/E = CE. Thus equivalence classes of one-dimensional representations of the
Weil group of E correspond to quasi-characters of CE, that is, to continuous homomorphisms
of CE into C×.

Suppose E is a local field. There is a standard way of associating to each equivalence class
ω of one-dimensional representations a meromorphic function L(s, ω). Suppose ω corresponds
to the quasi-character χE. If E is non-archimedean and ϖE is a generator of the prime ideal
PE of OE, the ring of integers in E, we set

L(s, ω) =
1

1− χE(ϖE)|ϖE|s

if χE is unramified. Otherwise we set L(s, ω) = 1. If E = R and

χE(x) = (sgn x)m|x|r

with m equal to 0 or 1 we set

L(s, ω) = π− 1
2
(s+r+m)Γ

(
s+ r +m

2

)
.

If E = C and z ∈ E then, for us, |z| will be the square of the ordinary absolute value. If

χE(z) = |z|rzmzn

v
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where m and n are integers such that m+ n ⩾ 0, mn = 0, then

L(s, ω) = 2(2π)−(s+r+m+n)Γ(s+ r +m+ n)

It is not difficult to verify, and we shall do so later, that it is possible, in just one
way, to define L(s, ω) for all equivalence classes so that it has the given form when ω is
one-dimensional, so that

L(s, ω1 ⊕ ω2) = L(s, ω1)L(s, ω2)

so that if E ′ is a separable extension of E and ω is the equivalence class of the representation
of the Weil group of E induced from a representation of the Weil group of E ′ in the class Θ
then L(s, ω) = L(s,Θ).

Now take E to be a global field and ω an equivalence class of representations of the Weil
group of E. It will be seen later how, for each place v, ω determines an equivalence class ωv
of representations of the Weil group of the corresponding local field Ev. The product∏

v

L(s, ωv)

which is taken over all places, including the archimedean ones, will converge if the real
part of s is sufficiently large. The function it defines can be continued to a function L(s, ω)
meromorphic in the whole complex plane. This is the Artin L-function associated to ω. It
is fairly well-known that if ω̃ is the class contragredient to ω there is a functional equation
connecting L(s, ω) and L(1− s, ω̃).

The factor appearing in the functional equation can be described in terms of the local
data. To see how this is done we consider separable extensions E of the fixed local field F . If
ΨF is a non-trivial additive character of F let ψE/F be the non-trivial additive character of
E defined by

ψE/F (x) = ψF (SE/Fx)

where SE/Fx is the trace of x. We want to associate to every quasi-character χE of CE and
every non-trivial additive character ψE of E a non-zero complex number ∆(χE, ψE). If E is
non-archimedean, if Pm

E is the conductor of χE, and if P−n
E is the largest ideal on which ψE

is trivial choose any γ with OEγ = Pm+n
E and set

∆(χE, ψE) = χE(γ)

∫
UE
ψE

(
α
γ

)
χ−1
E (α) dα∣∣∣∣∫UE

ψE

(
α
γ

)
χ−1
E (α) dα

∣∣∣∣ .
The right side does not depend on γ. If E = R,

χE(x) = (sgn x)m|x|r

with m equal to 0 or 1, and ψE(x) = e2πiux then

∆(χE, ψE) = (i sgnu)m|u|r.
If E = C, ψC(z) = e4πiRe(wz), and

χC(z) = |z|rzmzn

with m+ n ⩾ 0, mn = 0 then

∆(χC, ψC) = im+nχC(w).

The bulk of this paper is taken up with a proof of the following theorem.
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Theorem A. Suppose F is a given local field and ψF a given non-trivial additive character
of F . It is possible in exactly one way to assign to each separable extension E of F a complex
number λ(E/F, ψF ) and to each equivalence class ω of representations of the Weil group of
E a complex number ϵ(ω,ΨE/F ) such that

(i) If ω corresponds to the quasi-character χE then

ϵ(ω, ψE/F ) = ∆(χE, ψE/F ).

(ii)
ϵ(ω1 ⊕ ω2, ψE/F ) = ϵ(ω1, ψE/F )ϵ(ω2, ψE/F ).

(iii) If ω is the equivalence class of the representation of the Weil group of F induced
from a representation of the Weil group of E in the class θ then

ϵ(ω, ψF ) = λ(E/F, ψF )
dim θϵ(θ, ψE/F ).

αsF will denote the quasi-character x→ |x|sF of CF as well as the corresponding equivalence
class of representations. Set

ϵ(s, ω, ψF ) = ϵ

(
α
s− 1

2
F ⊗ ω, ψF

)
.

The left side will be the product of a non-zero constant and an exponential function.
Now take F to be a global field and ω to be an equivalence class of representations of the
Weil group of F . Let A be the adèle group of F and let ψF be a non-trivial character of
A/F . For each place v let ψv be the restriction of ψF to Fv. ψv is non-trivial for each v and
almost all the functions ϵ(s, ωv, ψv) are identically 1 so that we can form the product∏

v

ϵ(s, ωv, ψv).

Its value will be independent of ψF and will be written ϵ(s, ω).

Theorem B. The functional equation of the L-function associated to ω is

L(s, ω) = ϵ(s, ω)L(1− s, ω̃).

This theorem is a rather easy consequence of the first theorem together with the functional
equations of the Hecke L-functions.

For archimedean fields the first theorem says very little. For non-archimedean fields it can
be reformulated as a collection of identities for Gaussian sums. Four of these identities which
we formulate as our four main lemmas are basic. All the others can be deduced from them
by simple group-theoretic arguments. Unfortunately the only way at present that I can prove
the four basic identities is by long and involved, although rather elementary, computations.
However Theorem A promises to be of such importance for the theory of automorphic forms
and group representations that we can hope that eventually a more conceptual proof of it
will be found. The first and the second, which is the most difficult, of the four main lemmas
are due to Dwork [6]. I am extremely grateful to him not only for sending me a copy of the
dissertation of Lakkis [9] in which a proof of these two lemmas is given, but also for the
interest he has shown in this paper.





CHAPTER 1

Weil groups

The Weil groups have many properties, most of which will be used at some point in the
paper. It is impossible to describe all of them without some prolixity. To reduce the prolixity
to a minimum I shall introduce these groups in the language of categories.

Consider the collection of sequences

S : C G G
λ1 µ

of topological groups where λ is a homeomorphism of C with the kernel of µ and µ induces a
homeomorphism of G/λC with G. Suppose

S1 : C1 G1 G1
λ1 µ2

is another such sequence. Two continuous homomorphisms φ and ψ from G to G1 which take
C into C1 will be called equivalent if there is a c in C1 such that ψ(g) = cφ(g)c−1 for all g in
G. S will be the category whose objects are the sequences S and HomS0(S, S1) will be the
collection of these equivalence classes. S will be the category whose objects are the sequences
S for which C is locally compact and abelian and G is finite; if S and S1 belong to S

HomS(S, S1) = HomS0(S, S1).

Let P1 be the functor from S to the category of locally compact abelian groups which takes
S to C and let P2 be the functor from S to the category of finite groups which takes S to
G. We have to introduce one more category S1,0. The objects of S1 will be the sequences
on S for which Gc, the commutator subgroup of G, is closed. Moreover the elements of
HomS1(S, S1) will be the equivalence classes in HomS(S, S1) all of whose members determine
homeomorphisms of G with a closed subgroup fo finite index in G1.

If S is in S1 let V (S) be the topological group G/Gc. If Φ ∈ HomS1(S, S1) let φ be a
homeomorphism in the class Φ and let G = φ(G). Composing the map G1/G

c
1 → G/G

c
given

by the transfer with the map G/G
c → G/Gc determined by the inverse of φ we obtain a map

Φv : V (S1) → V (S) which depends only on Φ. The map S → V (S) becomes a contravariant
functor from S1 to the category of locally compact abelian groups. If S is the sequence

C G G

the transfer from G to C determines a homomorphism τ from G/Gc to the group of G-invariant
elements in C. τ will sometimes be regarded as a map from G to this subgroup.

The category E will consist of all pairs K/F where F is a global or local field and K is a
finite Galois extension of F . Hom(K/F,L/E) will be a certain collection of isomorphisms of
K with a subfield of L under which F corresponds to a subfield of E. If the fields are of the
same type, that is all global or all local, we demand that E be finite and separable over the
image of F . If F is global and E is local we demand that E be finite and separable over the
closure of the image of F . I want to turn the map which associates to each K/F the group
CK into a contravariant functor which I will denote by C∗. If φ : K/F → L/E and F and E

1



2 1. WEIL GROUPS

are of the same type let K1 be the image of K in L and let φC∗ be the composition of NL/K1

with the inverse of φ. If F is global and E is local let K1 be the closure in L of the image
of K. As usual CK1 may be considered a subgroup of the group of idèles of K. φC∗ is the
composition of NL/K1 with the projection of the group of idèles onto CK .

If K is given let EK be the subcategory of E whose objects are the extensions with the
larger field equal to K and whose maps are equal to the identity on K. Let C∗ be the functor
on EK which takes K/F to CF . If F is given let EF have as objects the extensions with the
smaller field equal to F . Its maps are to equal the identity on F .

A Weil group is a contravariant functor W from E to S with the following properties:

(i) P1 ◦W is C∗.
(ii) P2 ◦W is the functor G : L/F → G(L/F ).
(iii) If φ ∈ G(L/F ) ⊆ Hom(L/F, L/F ) and g is any element of WL/F , the middle group

of the sequence W (L/F ), whose image in G(L/F ) is φ then the map h→ ghg−1 is
in the class φw.

(iv) The restriction of W to EK takes values in S1. Moreover, if K/F belongs to EK

τ : WK/F/W
c
K/F → CF

is a homeomorphism. Finally, if φ : K/F → K/E is the identity on K and Φ = φw
then the diagram

WK/F/W
c
K/F WK/E/W

c
K/E

CF CE

Φv

τ τ

φC∗

is commutative and if ψ : F/F → K/F is the imbedding, ψW is τ .

Since the functorial properties of the Weil group are not all discussed by Artin and Tate,
we should review their construction of the Weil group pointing out, when necessary, how
the functorial properties arise. There is associated to each K/F a fundamental class αK/F
in H2

(
G(K/F ), CK

)
. The group W (K/F ) is any extension of G(K/F ) by CK associated to

this element. We have to show, at least, that if φ : K/F → L/E, the diagram

1 CL WL/E G(L/E) 1

1 CK WK/F G(K/F ) 1

φC∗ φG

can be completed to a commutative diagram by inserting φ̂ : WL/E → WK/F . The map φC∗

commutes with the action of G(L/E) on CL and CK so that φ̂ exists if and only if φC∗(αL/E)
is the restriction φ∗

G(αK/F ) of φK/F to G(L/E). If this is so, the collection of equivalence

classes to which φ̂ may belong is a principal homogeneous space of H1
(
G(L/E), CK

)
. In

particular, if this group is trivial, as it is when φG is an injection, the class of φ̂ is uniquely
determined.

An examination of the definition of the fundamental class shows that it is canonical. In
other words, if φ is an isomorphism of K and L and of F and E, then φ∗

G(αK/F ) = φ−1αL/E =
φC∗(αL/E). If K = L and φ is the identity on K, the relation φ∗

G(αK/F ) = αL/E = φC∗(αL/E)
is one of the basic properties of the fundamental class. Thus in these two cases φ̂ exists and
its class is unique. Now take K to be global and L local. Suppose at first that K is contained
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in L, that its closure is L, and that F = K ∩ E. Then, by the very definition of αK/F ,
φ∗
G(αK/F ) = φC∗(αL/E). More generally, if K1 is the image of K in L, and F1 the image of F

in E, we can write φ as φ1φ2φ3 where φ3 : K/F → K1/F1, φ2 : K1/F1 → K1/K1 ∩ E, and
φ1 : K1/K1 ∩ E → L/E. φ̂3 and φ̂2 exist. If the closure of K1 is L then φ̂1 and therefore
φ̂ = φ̂3φ̂2φ̂1 also exist. The class of φ̂ is uniquely determined.

Artin and Tate show that W c
K/F is a closed subgroup of WK/F and that τ is a homeo-

morphism of WK/F/W
c
K/F and CF . Granted this, it is easy to see that the restriction of W

to ξK takes values in S1. Suppose we have the collection of fields in the diagram with L
and K normal over F and L and K ′ normal over F ′. Let α, β, and ν be the imbeddings
α : L/F → L/K, β : L/F ′ → L/K ′, ν : L/F → L/F ′.

L

K ′

K

F ′

F

We have shown the existence of α̂, β̂, and ν̂. It is clear that ν̂β̂(WL/K′) is contained in
α̂(WL/K). Thus we have a natural map

π : ν̂β̂(WL/K′)/ν̂β̂(W c
L/K′) → α̂(WL/K)/α̂(W

c
L/K).

Let us verify that the diagram

(A)

WL/K/W
c
L/K′ ν̂β̂(WL/K′)/ν̂β̂(WC

L/K′) α̂(WL/K)/α̂(W
c
K/K) WL/K/W

c
L/K

Ck′ Ck

τ

π

τ

is commutative. To see this let WL/K′ be the disjoint union
r⋃
i=1

CKhi.

Then we can choose h′i, g
′
j, 1 ⩽ i ⩽ r, 1 ⩽ j ⩽ s so that WL/K is the disjoint union

r⋃
i=1

s⋃
j=1

CKg
′
jh

′
i

and ν̂β̂(h′i) = α̂(hi). Using these coset representatives to compute the transfer one immediately
verifies the assertion. We should also observe that the transitivity of the transfer implies the
commutativity of the diagram
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WK/F/W
c
K/F WK/F ′/W c

K/F ′

CF CF ′

Φv

τ

φC∗

if Φ is the class of an imbedding φ̂ where φ is an imbedding K/F → K/F ′.
We have still not defined φW for all φ. However we have defined it when φ is an

isomorphism of the two larger fields or when the second large field is the closure of the
first. Moreover the definition is such that the third condition and all parts of the fourth
condition except the last are satisfied. The last condition of (iv) can be made a definition
without violating (i) and (ii). What we do now is show that there is one and only one way
of extending the definition of φW to all φ without violating conditions (i) or (ii) and the
functorial property.

Suppose F ⊆ K ⊆ L, K/F and L/F are Galois, and ψ is the imbedding L/F → L/K.
It is observed in Artin and Tate that there is one and only class of maps {θ} which make the
following diagram commutative

1 WL/K/W
c
L/K ψ̂WL/K/ψ̂W

c
L/K WL/F/ψ̂W

c
L/K WL/F/ψ̂WL/K 1

1 CK WK/F G(K/F ) 1

τ θ
.

The homomorphism on the right is that deduced from

WL/F/WL/K = G(L/F )/G(L/K) ≃ G(K/F ).

Let φ, µ, and ν be imbeddings φ : K/F → L/F , µ : K/K → L/K, ν : K/F → K/K.

Then ψ ◦ φ = µ ◦ ν, so that ν̂ ◦ µ̂ = φ̂ ◦ ψ̂. Moreover ν̂ ◦ µ̂ is the composition of the map

τ : WL/K → CK and the imbedding of CK in WK/F . Thus the kernel of φ̂ contains ψ̂W c
L/K so

that φ̂ ◦ ψ̂ restricted to WL/K/W
c
L/K must be τ and the only possible choice for φ̂ is, apart

from equivalence, θ. To see that this choice does not violate the second condition observe

that the restriction of τ to CL will be NL/K and that ψ̂ is the identity on CL.
Denote the map θ : WL/F → WK/F by θL/K and the map τ : WK/F → CK by τK/F .

It is clear that τK/F ◦ θL/K is the transfer from WL/F/W
c
L/F to ψ̂WL/K/ψ̂W

c
L/K followed

by the transfer from ψ̂WL/K/ψ̂W
c
L/K to ψ̂CL = CF . By the transitivity of the transfer

τK/F ◦ θL/K = τL/F . It follows immediately that if F ⊆ K ⊆ L ⊆ L′ and all extensions are
Galois the map θL′/K and θL/KθL′/L are in the same class.

Suppose that φ is an imbedding K/F → K ′/F ′ and choose L so that K ′ ⊆ L and L/F
is Galois. Let ψ : K ′/F ′ → L/F ′, µ : K/F → L/F , ν : L/F → L/F ′ be imbeddings. Then

ψ ◦φ = ν ◦µ so that µ̂ ◦ ν̂ = φ̂ ◦ ψ̂. If α : L/F → L/K, β : L/F ′ → L/K ′ are the imbeddings

then the kernel of ψ̂ is ν̂β̂W c
L/K′ which is contained in α̂W c

L/K the kernel of µ̂. Thus there is

only one way to define φ̂ so that µ̂ ◦ ν̂ = φ̂ ◦ ψ̂. The diagram
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WL/K′/W c
L/K′ WL/F ′/β̂W c

L/K′ WK′/F ′

WL/F/ν̂β̂W
c
L/K′ WL/F/α̂W

c
L/K WK/F

β̂ ψ̂

ν̂ φ̂

µ̂

will be commutative. Since ψ̂ ◦ β̂ = τL/K′ and µ̂ ◦ α̂ = τK/F diagram (A) shows that φ̂ has
the required effect on CK .

To define φW in general, we observe that every φ is the composition of isomorphisms,
imbeddings of fields of the same type, and a map K/F → K ′/F ′ where K is global, K ′ is
local, K ′ is the closure of K, and F = F ′ ∩K. Of course the identity

(φ ◦ ψ)W = ψWφW

must be verified. I omit the verification which is easy enough. The uniqueness of the Weil
groups in the sense of Artin and Tate implies that the functor W is unique up to isomorphism.

The sequence

S(n,C) : GL(n,C) GL(n,C) 1id

belongs to S1. If S : C → G→ G belongs to S1 then

HomS0

(
S, S(n,C)

)
is the set of equivalence classes of n-dimensional complex representations of G. Let Ωn(S) be
the set of all Φ in HomS0

(
S, S(n,C)

)
such that, for each φ ∈ Φ, φ(g) is semi-simple for all g

in G. Ωn(S) is a contravariant functor of S and so is Ω(S) =
⋃∞
n=1Ωn(S). On the category

S1, it can be turned into a covariant functor. If ψ : S → S1, if Φ ∈ Ω(S), and if φ ∈ Φ, let
ψ associate to Φ the matrix representations corresponding to the induced representation
Ind
(
G1, ψ(G), φ ◦ ψ−1

)
. It follows from the transitivity of the induction process that Ω is a

covariant functor of S1.
To be complete a further observation must be made.

Lemma 1.1. Suppose H is a subgroup of finite index in G and ρ is a finite-dimensional
complex representation of H such that ρ(L) is semi-simple for all h in H. If

σ = Ind(G,H, ρ)

then σ(g) is semi-simple for all g.

H contains a subgroup H1 which is normal and of finite index in G, namely, the group of
elements acting trivially on H\G. To show that a non-singular matrix is semi-simple, one
has only to show that some power of it is semi-simple. Since σn(g) = σ(gn) and gn belongs
to H1 for some n, we need only show that σ(g) is semi-simple for g in H1. In that case σ(g)
is equivalent to

⊕r
i=1 ρ(gigg

−1
i ) if G is the disjoint union

r⋃
i=1

Hgi.

Suppose L/F and K/F belong to EF and φ ∈ HomEF (L/F,K/F ). Since the maps of
the class φW all take WK/F onto WL/F the associated map Ω

(
W (L/F )

)
→ Ω

(
W (K/F )

)
is injective. Moreover it is independent of φ. If L1/F and L2/F belong to EF there is
an extension K/F and maps φ1 ∈ HomEF (L1/F,K/F ), φ2 ∈ HomEF (L2/F,K/F ). ω1 in
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Ω
(
W (L1/F )

)
and ω2 in Ω

(
W (L2/F )

)
have the same image in Ω

(
W (K/F )

)
for one such K

if and only if they have the same image for all such K. If this is so we say that ω1 and ω2

are equivalent. The collection of equivalence classes will be denoted by Ω(F ). Its members
are referred to as equivalence classes of representations of the Weil group of F .

Let F be the category whose objects are local and global fields. If F and E are of the
same type HomF(F,E) consists of all isomorphisms of F with a subfield of E over which E
is separable. If F is global and E is local HomF(F,E) consists of all isomorphisms of F with
a subfield of E over whose closure E is separable. Ω(F ) is clearly a covariant functor on F .
Let Fgℓ, and Floc be the subcategories consisting of the global and local fields respectively.
Suppose F and E are of the same type and φ ∈ HomF(F,E). If ω ∈ Ω(E) choose K so that
ω belongs to Ω

(
W (K/E)

)
. We may assume that there is an L/F and an isomorphism ψ

from L onto K which agrees with φ on F . Then ψW : WK/E → WL/F is an injection. Let θ
be the equivalence class of the representation

σ = Ind
(
WL/F , ψW (WK/E), ρ ◦ ψ−1

W

)
with ρ in ω. I claim that θ is independent of K and depends only on ω and φ. To see this it
is enough to show that if L ⊆ L′, L′/F is Galois, ψ′ is an isomorphism from L′ to K ′ which
agrees with ψ on L, and ρ′ is a representation of WK′/F in ω, the class of

σ′ = Ind
(
WL′/F , ψ

′
W (WK′/E), ρ

′ ◦ (ψ′
w)

−1
)

is also Θ. Suppose µ is a map fromWK′/E toWK/E associated to the imbeddingK/E → K ′/E
and ν is a map from WL′/F to WL/F associated to the imbedding L/F → L′/F . We may
suppose that ψW ◦µ = ν ◦ψ′

W . The kernel of µ is W c
K′/K if, for simplicity of notation, WK′/K

is regarded as a subgroup of WK′/E and that of ν is W c
L′/L. Moreover ψ′

W (W c
K′/K) = W c

L′/L.

Take ρ′ = ρ ◦ µ. Then σ acts on the space V of functions f on WK/F satisfying f(vw) ≡
ρ
(
ψ−1
w (h)

)
f(w) for v in ψw(WK/E). Let V

′ be the analogous space on which σ′ acts. Then

V ′ = { f ◦ ν | f ∈ V }.
The assertion follows. Thus Ω(F ) is a contravariant functor on Fgℓ and Floc.

After this laborious and clumsy introduction we can set to work and prove the two
theorems. The first step is to reformulate Theorem A.



CHAPTER 2

The main theorem

It will be convenient in this paragraph and at various later times to regard WK/E as a
subgroup of WK/F if F ⊆ E ⊆ K. If F ⊆ E ⊆ L ⊆ K we shall also occasionally take WL/E

to be WK/E/W
c
K/L.

If K/F is finite and Galois, P(K/F ) will be the set of extensions E ′/E with F ⊆ E ⊆
E ′ ⊆ K and P0(K/F ) will be the set of extensions in P(K/F ) with the lower field equal to
F .

Theorem 2.1. Suppose K is a Galois extension of the local field F and ψF is a given
non-trivial additive character of F . There is exactly one function λ(E/F, ψF ) defined on
P0(K/F ) with the following two properties

(i) λ(F/F, ψF ) = 1.
(ii) If E1, . . . , Er, E

′
1, . . . , E

′
s are fields lying between F and K, if χEi

, 1 ⩽ i ⩽ r, is a
quasi-character of CEi

, if χE′
j
, 1 ⩽ j ⩽ s, is a quasi-character of CE′

j
, and if

r⊕
i=1

Ind(Wk/F ,WK/Ei
, χEi

)

is equivalent to
s⊕
j=1

Ind(WK/F ,WK/E′
j
, χE′

j
)

then
r∏
i=1

∆(χEi
, ψEi/F )λ(Ei/F, ψF )

is equal to
s∏
j=1

∆(χE′
j
, ψE′

j/F
)λ(E ′

j/F, ψF ).

A function satisfying the conditions of this theorem will be called a λ-function. It is
clear that the function λ(E/F, ψF ) of Theorem A when restricted to P0(K/F ) becomes a
λ-function. Thus the uniqueness in this theorem implies at least part of the uniqueness of
Theorem A. To show how this theorem implies all of Theorem A we have to anticipate some
simple results which will be proved in paragraph 4.

First of all a λ-function can never take on the value 0. Moreover, if F ⊆ K ⊆ L the
λ-function on P0(K/F ) is just the restriction to P0(K/F ) of the λ-function on P0(L/F ).
Thus λ(E/F, ψF ) is defined independently of K. Finally if E ⊆ E ′ ⊆ E ′′

λ(E ′′/E, ψE) = λ(E ′′/E ′, ψE′/E)λ(E
′/E, ψE)

[E′′:E′].

7



8 2. THE MAIN THEOREM

We also have to use a form of Brauer’s theorem [4]. If G is a finite group there are
nilpotent subgroups N1, . . . , Nm, one-dimensional representations χ1, . . . , χm of N1, . . . , Nm

respectively, and integers n1, . . . , nm such that the trivial representation of G is equivalent to
m⊕
i=1

ni Ind(G,Ni, χi).

The meaning of this when some of the ni are negative is clear.

Lemma 2.2. Suppose F is a global or local field and ρ is a representation of WK/F . There are
intermediate fields E1, . . . , Em such that G(K/Ei) is nilpotent for 1 ⩽ i ⩽ m, one-dimensional
representations χEi

of WK/Ei
, and integers n1, . . . , nm such that ρ is equivalent to

m⊕
i=1

ni Ind(WK/F ,WK/Ei
, χEi

).

Theorem 2.1 and Lemma 2.2 together imply the uniqueness of Theorem A. Before proving
the lemma we must establish a simple and well-known fact.

Lemma 2.3. Suppose H is a subgroup of finite index in the group G. Suppose τ is a
representation of G, σ a representation of H, and ρ the restriction of τ to H. Then

τ ⊗ Ind(G,H, σ) ≃ Ind(G,H, ρ⊗ σ).

Let τ act on V and σ on W . Then Ind(G,H, σ) acts on X, the space of all functions f
on G with values in W satisfying

f(hg) = σ(h)f(g)

while Ind(G,H, ρ ⊗ σ) acts on Y , the space of all functions f on G with values in V ⊗W
satisfying

f(hg) =
(
ρ(h)⊗ σ(h)

)
f(g).

Clearly, V ⊗X and Y have the same dimension. The map of V ⊗X to Y which sends v ⊗ f
to the function

f ′(g) = τ(g)v ⊗ f(g)

is G-invariant. If it were not an isomorphism there would be a basis v1, . . . , vn of V and
functions f1, . . . , fn which are not all zero such that

n∑
i=1

τ(g)vi ⊗ fi(g) ≡ 0.

This is clearly impossible.
To prove Lemma 2.2 we take the group G of Brauer’s theorem to be G(K/F ). Let Fi

be the fixed field of Ni and let ρi be the tensor product of χi, which we may regard as a
representation of WK/Fi

and the restriction of ρ to WK/Fi
. Then

ρ ≃ ρ⊗ 1 ≃
m⊕
i=1

ni Ind(WK/Fi
, ρi).

This together with the transitivity of the induction process shows that in proving the lemma
we may suppose that G(K/F ) is nilpotent.

We prove the lemma, with this extra condition, by induction on [K : F ]. We use the
symbol ω to denote an orbit in the set of quasi-characters of CK under the action of G(K/F ).
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The restriction of ρ to CK is the direct sum of one-dimensional representations. If ρ acts
on V let Vω be the space spanned by the vectors transforming under CK according to a
quasi-character in ω. V is the direct sum of the spaces Vω which are each invariant under
WK/F . For our purposes we may suppose that V = Vω for some ω. Choose χK in this ω and
let V0 be the space of vectors transforming under CK according to χK . Let E be the fixed
field of the isotropy group of χK . V0 is invariant under WK/E. Let σ be the representation of
WK/E in V0. It is well-known that

ρ ≃ Ind(WK/F ,WK/E, σ).

To see this one has only to verify that the space X on which the representation on the right
acts and V have the same dimension and that the map

f →
∑

WK/E\WK/F

ρ(g−1)f(g)

of X into V which is clearly WK/F -invariant has no kernel. It is easy enough to do this.
If E ̸= F the assertion of the lemma follows by induction. If E = F choose L containing

F so that K/L is cyclic of prime degree and L/F is Galois. Then ρ(WK/L) is an abelian group
and W c

K/L is contained in the kernel of ρ. Thus ρ may be regarded as a representation of
WL/F . The assertion now follows from the induction assumption and the concluding remarks
of the previous paragraph.

Now take a local field E and a representation ρ of WK/E. Choose intermediate fields
E1, . . . , Em, one-dimensional representations χEi

of WK/Ei
, and integers n1, . . . , nm so that

ρ ≃
m⊕
i=1

ni Ind(WK/E,WK/Ei
, χEi

).

If ω is the class of ρ set

ϵ(ω, ψE) =
m∏
i=1

{
∆(χEi

,ΨEi/E)λ(Ei/E,ΨE)
}ni .

Theorem 2.1 shows that the right side is independent of the way in which ρ is written as a
sum of induced representations. The first and second conditions of Theorem A are clearly
satisfied. If ρ is the representation above and σ the representation

Ind(WK/F ,WK/E, ρ)

then

σ ≃
m⊕
i=1

ni Ind(WK/F ,WK/Ei
, χEi

).

Thus if ω′ is the class of σ

ϵ(ω′, ψF ) =
m∏
i=1

{
∆(χEi

, ψEi/F )λ(Ei/F, ψF )
}ni

while

ϵ(ω, ψE/F ) =
m∏
i=1

{
∆(χEi

, ψEi/F )λ(Ei/E, ψE/F )
}ni .
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The third property follows from the relations

dimω =
m∑
i=1

ni[Ei : E]

and
λ(Ei/F, ψF ) = λ(Ei/E, ψE/F )λ(E/F, ψF )

[Ei:E]



CHAPTER 3

The lemmas of induction

In this paragraph we prove two simple but very useful lemmas.

Lemma 3.1. Suppose K is a Galois extension of the local field F . Suppose the subset A of
P(K/F ) has the following four properties.

(i) For all E, with F ⊆ E ⊆ K, E/E ∈ A.
(ii) If E ′′/E ′ and E ′/E belong to A so does E ′′/E.
(iii) If L/E belongs to P(K/F ) and L/E is cyclic of prime degree then L/E belongs to A.
(iv) Suppose that L/E in P(K/F ) is a Galois extension. Let G = G(L/E). Suppose

G = H · C where H ̸= {1}, H ∩ C = {1}, and C is a non-trivial abelian normal
subgroup of G which is contained in every non-trivial normal subgroup of G. If E ′ is
the fixed field of H and if every E ′′/E in P0(L/E) for which [E ′′ : E] < [E ′ : E ′] is
in A so is E ′/E. Then A is all of P(K/F ).

It is convenient to prove another lemma first.

Lemma 3.2. Suppose K is a Galois extension of the local field F and F ⊊ E ⊆ K. Suppose
that the only normal subfield of K containing E is K itself and that there are no fields between
F and E. Let G = G(K/F ) and let E be the fixed field of H. Let C be a minimal non-trivial
abelian normal subgroup of G. Then G = HC, H ∩ C = {1} and C is contained in every
non-trivial normal subgroup of G. In particular if H = {1}, G = C is abelian of prime order.

H is contained in no subgroup besides itself and G contains no normal subgroup but
{1}. Thus if H is normal it is {1} and G has no proper subgroups and is consequently cyclic
of prime order. Suppose H is not normal. Since G is solvable it does contain a minimal
non-trivial abelian normal subgroup C. Since C is not contained in H, H ⊊ HC and G = HC.
Since H ∩ C is a normal subgroup of G it is {1}. If D is a non-trivial normal subgroup of G
which does not contain C then D ∩ C = {1} and D is contained in the centralizer Z of C.
Then DC is also and Z must meet H non-trivially. But Z ∩H is a normal subgroup of G.
This is a contradiction and the lemma is proved.

The first lemma is certainly true if [K : F ] = 1. Suppose [K : F ] > 1 and the lemma is
valid for all pairs [K ′ : F ′] with [K ′ : F ′] < [K : F ]. If the Galois extension L/E belongs to
P(K/F ) then A ∩ P(L/E) satisfies the condition of the lemma with K replaced by L and F
by E. Thus, by induction, if [L : E] < [K : F ], P(L/E) ⊆ A. In particular if E ′/E is not
in G then E = F and the only normal subfield of K containing E ′ is K itself. If A is not
P(K/F ) then amongst all extensions which are not in G choose one E/F for which [E : F ]
is minimal. Because of (ii) there are no fields between F and E. Lemma 3.2, together with
(iii) and (iv), show that E/F is in A. This is a contradiction.

There is a variant of Lemma 3.1 which we shall have occasion to use.

Lemma 3.3. Suppose K is a Galois extension of the local field F . Suppose the subset A of
P0(K/F ) has the following properties.

11
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(i) F/F ∈ A.
(ii) If L/F is normal and L ⊊ K then P0(L/F ) ⊆ A.
(iii) If F ⊂ E ⊆ E ′ ⊆ K and E/F belong to G then E ′/F belongs to A.
(iv) If L/F in P0(K/F ) is cyclic of prime degree then L/F ∈ A.
(v) Suppose that L/F in P0(K/F ) is Galois and G = G(L/F ). Suppose G = HC where

H ̸= {1}, H ∩ C = {1}, and C is a non-trivial abelian normal subgroup of G which
is contained in every non-trivial normal subgroup. If E is the fixed field of H and if
every E ′/F in P0(L/F ) for which [E ′ : F ] < [E : F ] is in A so is E/F .

Then A is P0(K/F ).

Again if A is not P0(K/F ) there is an E/F not in A for which [E : F ] is minimal.
Certainly [E : F ] > 1. By (ii) and (iii), E is contained in no proper normal subfield of K
and there are no fields between E and F . Lemma 3.2 together with (iv) and (v) lead to the
contradiction that E/F is in A.



CHAPTER 4

The lemma of uniqueness

Suppose K/F is a finite Galois extension of the local field F and ψF is a non-trivial
additive character of F . A function E/F → λ(E/F, ψF ) on P0(K/F ) will be called a weak
λ-function if the following two conditions are satisfied.

(i) λ(F/F,ΨF ) = 1.
(ii) If E1, . . . , Er, E

′
1, . . . , E

′
s are fields lying between F and K, if µi, 1 ⩽ i ⩽ r, is a

one-dimensional representation of G(K/Ei), if νj, 1 ⩽ j ⩽ s, is a one-dimensional
representation of G(K/E ′

j), and if

r⊕
i=1

Ind
(
G(K/F ),G(K/Ei), µi

)
is equivalent to

s⊕
j=1

Ind
(
G(K/F ),G(K/Ej), νj

)
then

r∏
i=1

∆(χEi
, ψEi/F )λ(Ei/F, ψF )

is equal to
s∏
j=1

∆(χE′
j
ψE′

j/F
)λ(E ′

j/F, ψF )

if χEi
is the character of CEi

corresponding to µi and χE′
j
is the character of CE′

j

corresponding to νj.

Supposing that a weak λ-function is given on P0(K/F ), we shall establish some of its
properties.

Lemma 4.1.

(i) If L/F in P0(K/F ) is normal the restriction of λ(·, ψF ) to P0(L/F ) is a weak
λ-function.

(ii) If E/F belongs to P0(K/F ) and λ(E/F, ψF ) ̸= 0 the function on P0(K/E) defined
by

λ(E ′/E, ψE/F ) = λ(E ′/F, ψF )λ(E/F, ψF )
−[E′:E]

is a weak λ-function.

Any one-dimensional representation µ of G(L/E) may be inflated to a one-dimensional
representation, again called µ, of G(K/E) and

Ind
(
G(K/F ),G(K/E), µ

)
13
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is just the inflation to G(K/F ) of

Ind
(
G(L/F ),G(L/E), µ

)
.

The first part of the lemma follows immediately from this observation.
As for the second part, the relation

λ(E/E, ψE/F ) = 1

is clear. If fields Ei, 1 ⩽ i ⩽ r, E ′
j , 1 ⩽ j ⩽ s, lying between E and K and representations µi

and νj are given as prescribed and if
r⊕
i=1

Ind
(
G(K/E),G(K/Ei), µi

)
= ρ

is equivalent to
s⊕
j=1

Ind
(
G(K/E),G(K/E ′

j), νj

)
= σ

then
r⊕
i=1

Ind
(
G(K/F ),G(K/Ei), µi

)
is equivalent to

s⊕
j=1

Ind
(
G(K/F ),G(K/E ′

j), νj

)
so that

(A)
r∏
i=1

∆(χEi
, ψEi/F )λ(E1/F, ψF )

is equal to

(B)
s∏
j=1

∆(χE′
j
, ψE′

j/F
)λ(E ′

j/F, ψF ).

Since ρ and σ have the same dimension
r∑
i=1

[Ei : E] =
s∑
j=1

[E ′
j : E]

so that
r∏
i=1

λ(E/F,ΨF )
[Ei:E] =

s∏
j=1

λ(E/F, ψF )
[E′

j :F ].

Dividing (A) by the left side of this equation and (B) by the right and observing that the
results are equal we obtain the relation needed to prove the lemma.

If K/F is abelian S(K/F ) will be the set of characters of CF which are 1 on NK/FCK .

Lemma 4.2. If K/F is abelian

λ(K/F,ΨF ) =
∏

µF∈S(K/F )

∆(µF , ψF ).
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µF determines a one-dimensional representation of G(K/F ) which we also denote by µF .
The lemma is an immediate consequence of the equivalence of

Ind
(
G(K/F ),G(K/K), 1

)
and ⊕

µF∈S(K/F )

Ind
(
G(K/F ),G(K/F ), µF

)
.

Lemma 4.3. Suppose K/F is normal and G = G(K/F ). Suppose G = HC where H ∩ C =
{1} and C is a non-trivial abelian normal subgroup. Let E be the fixed field of H and L that
of C. Let T be a set of representatives of the orbits of S(K/L) under the action of G. If
µ ∈ T let Bµ be the isotropy group of µ and let Bµ = G(K/Lµ). Then [Lµ : F ] < [E : F ] and

λ(E/F, ψF ) =
∏
µ∈T

∆(µ′, ψLµ/F )λ(Lµ/F, ψF ).

Here G(K/Lµ) = G(K/L) ·
(
G(K/Lµ) ∩G(K/E)

)
and µ′ is the character of CLµ associated

to the character of G(K/Lµ) : g → µ(g1) if

g = g1g2, g1 ∈ G(K/L), g2 ∈ G(K/Lµ) ∩G(K/E),

We may as well denote the given character of G(K/Lµ) by µ
′ also. To prove the lemma

we show that
Ind
(
G(K/F ),G(K/E), 1

)
= σ

is equivalent to ⊕
µ∈T

Ind
(
G(K/F ),G(K/Lµ), µ

′).
Since T has at least two elements it will follow that

[E : F ] = dim Ind
(
G(K/F ),G(K/E), 1

)
is greater than

[Lµ : F ] = dim Ind
(
G(K/F ),G(K/Lµ), µ

′).
The representation σ acts on the space of functions on H\G. If ν ∈ S(K/L), that is, is a

character of C, let ψν(hc) = ν(c) if h ∈ H, c ∈ C. The set{
ψν
∣∣ ν ∈ S(K/L)

}
is a basis for the functions on H\G. If µ ∈ T let Sµ be its orbit; then

Vµ =
∑
ν∈Sµ

Cψν

is invariant and irreducible under G. Moreover, if g belongs to G(K/Lµ)

σ(g)ψµ = µ′(g)ψµ.

Since
dimVµ =

[
G(K/F ) : G(K/Lµ)

]
the Frobenius reciprocity theorem implies that the restriction of σ to Vµ is equivalent to

Ind
(
G(K/F ),G(K/Lµ), µ

′).
Lemma 4.2 is of course a special case of Lemma 4.3.
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Lemma 4.4. λ(E/F,ΨF ) is different from 0 for all E/F in P0(K/F ).

The lemma is clear if [K : F ] = 1. We prove it by induction on [K : F ]. Let G be
the set of E/F in P0(K/F ) for which λ(E/F, ψF ) ̸= 0. We may apply Lemma 3.3. The
first condition of that lemma is clearly satisfied. The second follows from the induction
assumption and the first part of Lemma 4.1; the third from the induction assumption and the
second part of Lemma 4.1. The fourth and fifth follow from Lemmas 4.2 and 4.3 respectively.
We of course use the fact that ∆(χE,ΨE), which is basically a Gaussian sum when E is
non-archimedean, is never zero.

For every E ′/E in P(K/F ) we can define λ(E ′/E, ψE/F ) to be

λ(E ′/F, ψF )λ(E/F, ψF )
−[E′:E].

Lemma 4.5. If E ′′/E ′ and E ′/E belong to P(K/F ) then

λ(E ′′/E, ψE/F ) = λ(E ′′/E ′, ψE′/F )λ(E
′/E, ψE/F )

[E′′:E′].

Indeed
λ(E ′′/E, ψE/F ) = λ(E ′′/F, ψF )λ(E/F, ψF )

−[E′′:E]

which equals{
λ(E ′′/F, ψF )λ(E

′/F, ψF )
−[E′′:E′]

}{
λ(E ′/F, ψF )

[E′′:E′]λ(E/F, ψF )
−[E′′:E]

}
and this in turn equals

λ(E ′′/E ′, ψE′/F )λ(E
′/E, ψE/F )

[E′′:E′].

Lemma 4.6. If λ1(·,ΨF ) and λ2(·,ΨF ) are two weak λ-functions on P0(K/F ) then

λ1(E
′/E, ψE/F ) = λ2(E

′/E, ψE/F )

for all E ′/E in P(K/F ).

We apply Lemma 3.1 to the collection G of all pairs E ′/E in P(K/F ) for which the
equality is valid. The first condition of that lemma is clearly satisfied. The second is a
consequence of the previous lemma. The third and fourth are consequences of Lemmas 4.2
and 4.3 respectively.

Since a λ-function is also a weak λ-function the uniqueness of Theorem 2.1 is now proved.



CHAPTER 5

A property of λ-functions

It follows immediately from the definition that if ψ′
E(x) = ψE(βx) then

∆(χE, ψ
′
E) = χE(β)∆(χE, ψE).

Associated to any equivalence class ω of representations of the Weil group of the field F is a
one-dimensional representation or, what is the same, a quasi-character of CF . It is denoted
detω and is obtained by taking the determinant of any representation in ω. Suppose ρ is in
the class ω and ρ is a representation of WK/F . To find the value of the quasi-character detω

at β choose w in WK/F so that τK/Fw = β. Then calculate det
(
ρ(w)

)
which equals detω(β).

If F ⊆ E ⊆ K the map τ = τK/F can be effected in two stages. We first transfer
WK/F/W

c
K/F into WK/E/W

c
K/E; then we transfer WK/E/W

c
K/E into CK . If WK/F is the

disjoint union
r⋃
i=1

WK/Ewi

and if wiw = ui(w)wj(i) then the transfer of w in WK/E/W
c
K/E is the coset to which

w′ =
∏r

i=1 ui(w) belongs.
Suppose σ is a representation of WK/E and

ρ = Ind(WK/F ,WK/E, σ).

ρ acts on a certain space V of functions on WK/F and if Vi is the collection of functions in V
which vanish outside of WK/Ewi then

V =
r⊕
i=1

Vi.

We decompose the matrix of ρ(w) into corresponding blocks ρji(w). ρji(w) is 0 unless j = j(i)
when ρji(w) = σ

(
ui, (w)

)
. This makes it clear that if ιE/F is the representation of WK/F

induced from the trivial representation of WK/E

det
(
ρ(w)

)
= det

(
ιE/F (w)

)dimσ
det
(
σ(w′)

)
or, if θ is the class of σ,

detω(β) =
{
det ιE/F (β)

}dim θ{
det θ(β)

}
.

Lemma 5.1. Suppose F is a local field and E/F → λ(E/F, ψF ) and ω → ϵ(ω, ψE/F ) satisfy
the conditions of Theorem A for the character ψF . Let ψ′

F (x) = ψF (βx) with β in CF . If
E/F → λ(E/F, ψ′

F ) and ω → ϵ(ω, ψ′
E/F ) satisfy the conditions of Theorem A for ψ′

F then

λ(E/F, ψ′
F ) = det ιE/F (β)λ(E/F, ψF )

and
ϵ(ω, ψ′

E/F ) = detω(β)ϵ(ω, ψE/F ).

17



18 5. A PROPERTY OF λ-FUNCTIONS

Because of the uniqueness all one has to do is verify that the expressions on the right
satisfy the conditions of the theorem for the character ψ′

F . This can now be done immediately.



CHAPTER 6

A filtration of the Weil group

In this paragraph I want to reformulate various facts found in Serre’s book [12] as
assertions about a filtration of the Weil group. Although some of the lemmas to follow will
be used to prove the four main lemmas, the introduction of the filtration itself is not really
necessary. It serves merely to unite in a form which is easily remembered the separate lemmas
of which we will actually be in need.

Let K be a finite Galois extension of the non-archimedean local field F and let G =
G(K/F ). Let OF be the ring of integers in F and let pF be the maximal ideal of OF . If
i ⩾ −1 is an integer let Gi be the subgroup of G consisting of those elements which act
trivially on OF/p

i+1
F . If u ⩾ −1 is a real number and i is the smallest integer greater than or

equal to u set Gu = Gi. Finally if u ⩾ −1 set

φK/F (u) =

∫ u

0

1

[G0 : Gt]
dt.

The integrand is not defined at −1 but that is of no consequence. φK/F is clearly a piecewise
linear, continuous, and increasing map of [−1,∞) onto itself. The inverse function1 ψK/F
will have the same properties.

We take from Serre’s book the following lemma.

Lemma 6.1. If F ⊆ L ⊆ K and L/F is normal then φK/F = φL/F ◦ φK/L and ψK/F =
ψK/L ◦ ψL/F .

The circle denotes composition not multiplication. This lemma allows us to define φE/F
and ψE/F for any finite separable extension E/F by choosing a Galois extension L of F which
contains E and setting

φE/F = φL/F ◦ ψL/E
ψE/F = φL/E ◦ ψL/F

because if L′ is another such extension we can choose a Galois extension K containing both
L and L′ and

φL/F ◦ ψL/E = φL/F ◦ φK/L ◦ ψK/L ◦ ψL/E = φK/F ◦ ψK/E = φL′/F ◦ ψL′/E

φL/E ◦ ψL/F = φL/E ◦ φK/L ◦ ψK/L ◦ ψL/F = φK/E ◦ ψK/F = φL′/E ◦ ψL′/F .

Of course ψE/F is the inverse of φE/F .

Lemma 6.2. If E ⊆ E ′ ⊆ E ′′ and E ′′/E is finite and separable, φE′′/E = φE′/E ◦φE′′/E′ and
ψE′′/E = ψE′′/E′ ◦ ψE′/E.

1In this chapter ψK/F does not appear as an additive character. None the less, there is a regrettable

conflict of notation.

19
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Each of these relations can be obtained from the other by taking inverses; we verify the
second

ψE′′/E′ ◦ ψE′/E = φL/E′′ ◦ ψL/E′ ◦ φL/E′ ◦ ψL/E = φL/E′′ ◦ ψL/E = ψE′′/E.

It will be necessary for us to know the values of these functions in a few special cases.

Lemma 6.3.

(i) If K/F is Galois and unramified ψK/F (u) ≡ u.
(ii) If K/F is cyclic of prime degree ℓ and if G = Gt while Gt+1 = {1} where t is a

non-negative integer then

ψK/F (u) = u u ⩽ t

= t+ ℓ(u− t) u ⩾ t.

These assertions follow immediately from the definitions.

Lemma 6.4. Suppose K/F is Galois and G = G(K/F ) is a product HC where H ̸= {1},
H ∩ C = {1}, and C is a non-trivial abelian normal subgroup of G which is contained in
every non-trivial normal subgroup.

(i) If K/F is tamely ramified so that G1 = {1} then G0 = C is a cyclic group of prime
order ℓ and [G : G0] = [H : 1] divides ℓ− 1. If E is the fixed field of H, ψE/F (u) = u
for u ⩽ 0 and ψE/F (u) = ℓu for u ⩾ 0.

(ii) If K/F is wildly ramified there is an integer t ⩾ 1 such that C = G1 = · · · = Gt

while Gt+1 = {1}. [G0 : G1] divides [G1 : 1]− 1 and every element of C has order p
or 1. If E is the fixed field of H and L that of C

ψL/F (u) = u u ⩽ 0

= [G0 : G1]u u ⩾ 0

while

ψE/F (u) = u u ⩽
t

[G0 : G1]

=
t

[G0 : G1]
+ [G1 : 1]

(
u− t

[G0 : G1]

)
u ⩾

t

[G0 : G1]

We observed in the third paragraph that C must be its own centralizer. G0 cannot be {1}.
Thus C ⊆ G0. In case (i) G0 is abelian and thus G0 = C. In both cases if ℓ is a prime dividing
the order of C the set of elements in C of order ℓ or 1 is a non-trivial normal subgroup of G
and thus C itself. In case (i) C is cyclic and thus of prime order ℓ. Moreover, H which is
isomorphic to G/G0 is abelian and, if h ∈ H, { c ∈ C | hc = ch } is a normal subgroup of G
and hence {1} or C. If h ̸= 1 it must be 1. Consequently each orbit of H in C − {1} has
[H : 1] elements and [H : 1] divides ℓ− 1.

In case (ii) G1 is a non-trivial normal subgroup and hence contains C. G1 and C are both
p-groups. The centralizer of G1 in C is not trivial. As a normal subgroup of G it contains C.
Therefore it is C and G1 is contained in C which is its own centralizer. Since each G1, i ⩾ 1,
is a normal subgroup of G, it is either C or {1}. Thus there is an integer t ⩾ 1 such that
G1 = Gt = C while Gt+1 = {1}. If i ⩾ 0 is an integer let U i

K be the group of units of OK

which are congruent to 1 modulo pi+1
K ; let U

(−1)
K = CK , and if U ⩾ −1 is any real number let

i be the smallest integer greater than or equal to u and set Uu
K = U i

K . If θt is the map of
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Gt/Gt+1 into ptK/p
t+1
K and θ0 the map of G0/G1 into U0

K/U
1
K introduced in Serre then, for g

in G0 and h in C,
θt(ghg

−1) = θ0(g)
tΘt(h).

If h ̸= 1, ghg−1 = h if and only if θ0(g)
t = 1 and then g belongs to the centralizer of C, that

is to G1. Again C − {1} is broken up into orbits, each with [G0 : G1] elements and [G0 : G1]
divides [Gi : 1]− 1. Observe that t must be prime to [G0 : G1].

It follows immediately from the definitions that Hu = H ∩Gu. In case (i) H0 will be {1}
and φK/E(u) will be identically u. Thus ψE/F = ψK/F and, from the definition, ψK/F (u) = u
if u ⩽ 0 while ψK/F (u) = [G0 : 1]u if u ⩾ 0. In case (ii), φK/E(u) = u if u ⩽ 0 and

φK/E(u) =
u

[H0 : 1]
=

u

[G0 : G1]

if u ⩾ 0 while ψK/F (u) = u if u ⩽ 0 and

ψK/F (u) = [G0 : G1]u 0 ⩽ u ⩽
t

[G0 : G1]

= t+ [G0 : 1]

(
u− t

[G0 : G1]

)
t

[G0 : G1]
⩽ u.

The lemma follows.

Lemma 6.5. For every separable extension E ′/E the function ψE′/E is convex, and if u is
an integer so is ψE′/E(u).

All we have to do is prove that the assertion is true for all E ′/E in P(K/F ) if F is an
arbitrary non-archimedean local field and K an arbitrary Galois extension of it. To do this
we just combine the previous three lemmas with Lemma 3.1. We are going to use the same
method to prove the following lemma.

Lemma 6.6. For every separable extension E ′/E and any u ⩾ −1

NE′/E(U
ψE′/E(u)

E′ ) ⊆ Uu
E.

We have to verify that the set G of all E ′/E in P(K/F ) for which the assertion is true
satisfies the conditions of Lemma 3.1. There is no problem with the first two.

Lemma 6.7. E ′/E belongs to G if and only if for every integer n ⩾ −1

NE′/E(U
ψE′/E(n)

E′ ) ⊆ Un
E

and
NE′/E(U

ψE′/E(n)+1

E′ ) ⊆ Un+1
E .

If E ′/E belongs to G choose ϵ > 0 so that ψE′/E(n + ϵ) = ψE′/E(n) + 1. The smallest
integer greater than or equal to n+ ϵ is at least n+ 1 so

NE′/E(U
ψE′/E(n)+1

E′ ) ⊆ Un+ϵ
E ⊆ Un+1

E .

Conversely suppose the conditions of the lemma are satisfied and n < u < n + 1. Since
ψE′/E(n) is an integer the smallest integer greater than or equal to ψE′/E(u) is at least
ψE′/E(n) + 1. Thus

NE′/E(U
ψE′/E(u)

E′ ) ⊆ NE′/E(U
ψE′/E(n)+1

E′ ) ⊆ Un+1
E = Uu

E.
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Lemma 6.8. If L/E is Galois then, for every integer n ⩾ −1,

NL/E(U
ψL/E(n)

L ) ⊆ Un
E

and
NL/E(U

ψL/E(n)+1

L ) ⊆ Un+1
E .

The assertion is clear if n = −1. A proof for the case n ⩾ 0 and L/E totally ramified is
given in Serre’s book. Since that proof works equally well for all L/E we take the lemma as
proved.

Lemma 6.9. Suppose K/F is Galois and G = G(K/F ). Suppose G = HC where H ≠ {1},
H ∩ C = {1}, and C is a non-trivial abelian normal subgroup of G which is contained in
every non-trivial normal subgroup of G. If E is the fixed field of H

NE/F (U
ψE/F (u)

E ) ⊆ Uu
F

for all u ⩾ −1.

Let L be the fixed field of C. If K/F is tamely ramified K/E and L/F are unramified so
that ψE/F = ψK/L and U v

E = CE ∩ U v
K , U

v
F = CF ∩ U v

L for every v ⩾ −1. If α belongs to CE,
then delete NK/Lα = NE/Fα. Since K/L is Galois

NE/F (U
ψE/F (u)

E ) ⊆ CF ∩NK/L(U
ψK/L(u)

L ) ⊆ CF ∩ Uu
L = Uu

F .

If K/F is not tamely ramified

pnE = E ∩ p[G0:G1]n−m
k

if n ⩾ 1 and 0 ⩽ m < [G0 : G1]. Thus

U v
E = GE ∩ U v

K

if −1 ⩽ v ⩽ 0 and
U v
E = CE ∩ U [G0:G1]v

K

if v ⩾ 0 or, more briefly,

U v
E = CE ∩ UψK/E(v)

K

for all v ⩾ −1. In the same way we find

U v
F = CF ∩ UψL/F (v)

L

for all v ⩾ −1. Since K/L is normal

NE/F (U
ψE/F (u)

E ) ⊆ CF ∩NK/L(U
ψK/F (u)

K ) ⊆ CF ∩ UψL/F (u)

L = Uu
F .

Lemma 6.6 now follows immediately.

Lemma 6.10.

(a) Suppose K/F is Galois and G = G(K/F ). Suppose t ⩾ −1 is an integer such
that G = Gt ̸= Gt+1. Then ψK/F (u) = u for u ⩽ t. Moreover NK/F defines an
isomorphism of CK/U

t
K with CF/U

t
F and if −1 ⩽ u ⩽ t the inverse image of Uu

F/U
t
F

is Uu
K/U

t
K. However the map of CK/U

t+1
K into CF/U

t+1
F defined by the norm is not

surjective.
(b) Suppose K/F is Galois and G = G(K/F ). Suppose s ⩾ −1 is an integer and

G = Gs. If F ⊆ E ⊆ K, ψE/F (u) = u for u ⩽ s and NE/F defines an isomorphism
of CE/U

s
E and CF/U

s
F . If −1 ⩽ u ⩽ s the inverse image of Uu

F/U
s
F is Uu

E/U
s
E.
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If t = −1 the assertions of part (a) are clear. If t ⩾ 0, K/F is totally ramified. The relation
ψK/F (u) = u for u ⩽ t is an immediate consequence of the definition. Since the extension
is totally ramified NK/F defines an isomorphism of U−1

K /U0
K and U−1

F /U0
F . It follows from

Proposition V.9 of Serre’s book that if 0 ⩽ n < t the associated map Un
K/U

n+1
K → Un

F/U
n+1
F

is an isomorphism but that the map U t
K/U

t+1
K → U t

F/U
t+1
F has a non-trivial cokernel. The

first part of the lemma is an immediate consequence of these facts.
To prove part (b) we first observe that there is a t ⩾ s such that G = Gt ̸= Gt+1. It

then follows from part (a) that the map NK/F determines an isomorphism of CK/U
s
K and

CF/U
s
F under which Uu

K/U
s
K and Uu

F/U
s
F correspond if −1 ⩽ u ⩽ s. Let E be the fixed field

of H. We have Hs = H ∩ Gs = H, so that NK/E determines an isomorphism of CK/U
s
K

and CE/U
s
E under which Uu

K/U
s
K and Uu

E/U
s
E correspond if −1 ⩽ u ⩽ s. Moreover if u ⩽ s,

ψK/F (u) = ψK/E(u) = u so that ψE/F (u) = u. Part (b) follows from these observations and
the relation NK/F = NE/FNK/E.

If E is any non-archimedean local field and u > −1

Uu
E =

⋂
v<u

U v
E.

If α belongs to CE set
vE(α) = sup{u | α ∈ Uu

E }.
Then vE(1) = ∞, but vE(α) is finite if α ̸= 1 and α belongs to U

vE(α)
E .

If F ⊆ L ⊆ K, τK/F,L/F will be any of the maps WK/F → WL/F associated to the
imbedding L/F → K/F . We abbreviate τK/F,F/F to τK/F . If w belongs to WK/F , σ(w) is the
image of w in G(K/F ), and E is the fixed field of σ(w), we set

vK/F (w) = φE/F

(
vE
(
τK/E(w)

))
.

Note that we regard WK/E as a subgroup of WK/F . If v ⩾ −1 let

W v
K/F =

{
w
∣∣ vK/F (w) ⩾ v

}
.

We shall show that W v
K/F is a normal subgroup of WK/F . These groups provide a filtration

of the Weil group, some of whose properties are established in the following lemmas.

Lemma 6.11. If σ ∈ G(K/F ) and t = sup{u | σ ∈ Gu }, set vK/F (σ) = φK/F (t). Then

vK/F (σ) = max
{
vK/F (w)

∣∣ σ(w) = σ
}
.

If σ = 1 both sides are infinite and the assertion is clear. If σ ̸= 1 let E be the
fixed field of σ. If σ(w) = σ, w belongs to WK/E and vK/F (w) = φE/F

(
vK/E(w)

)
. Also

vK/F (σ) = φE/F
(
vK/E(σ)

)
. Consequently it is sufficient to prove the lemma when F = E.

The set
S =

{
τK/F (w)

∣∣ σ(w) = σ
}

is a coset of NK/F (CK) in CF and CF is generated by NK/F (CK) together with any element

of S. Moreover s = max
{
vF (β)

∣∣ β ∈ S
}
is the largest integer such that S ∩U s

F is not empty.
Since G = Gt ̸= Gt+1 the preceding lemma shows that s = t = φK/F (t).

Lemma 6.12.

(a) For all w and w1 in WK/F , vK/F (w) = vK/F (w
−1) and vK/F (w1ww

−1
1 ) = vK/F (w).
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(b) If F ⊆ E ⊆ K and w belong to WK/E then

vK/F (w) = φE/F
(
vK/E(w)

)
.

(c) For all w in WK/F , τK/F (w) ⊂ U
vK/F (w)

F .

The first two assertions follow immediately from the definitions and the basic properties
of the Weil group. I prove only the third. Let me first observe that if F ⊆ E ⊆ K and
w ⊂ WK/E, then

τK/F (w) = NE/F

(
τK/E(w)

)
.

To see this, choose a set of representatives w1, . . . , wr for the cosets of CK in WK/E and then
a set of representatives v1, . . . , vs for the cosets of WK/E in WK/F . Let wiw = aiwj(i) with ai
in CK ; then

τK/E(w) =
r∏
i=1

ai.

However vjwiw = vjaiv
−1
j vjwj(i) so that

τK/F (w) =
s∏
j=1

r∏
i=1

vjaiv
−1
j =

s∏
j=1

vjτK/E(w)v
−1
j = NE/F

(
τK/E(w)

)
.

In particular, if E is the fixed field of σ(w), τK/E(w) is contained U
ψE/F (vK/F (w))
E and τK/F (w)

is contained in

NE/F

(
U
ψE/F (vK/F (w))
E

)
⊆ U

vK/F (w)

F .

Lemma 6.13. If u and v belong to WK/F then

vK/F (uv) ⩾ min
{
vK/F (u), vK/F (v)

}
.

Let σ = σ(u) and let τ = σ(v). Because of the second assertion of the previous lemma we
may assume that σ and τ generate G(K/F ). Let E be the fixed field of στ . If

t = min
{
ψK/F

(
vK/F (σ)

)
, ψK/F

(
vK/F (τ)

)}
and G = G(K/F ) then G = Gt ̸= Gt+1. According to Lemma 6.11, if

s = min
{
vK/F (u), vK/F (v)

}
,

then t ⩾ ψK/F (s) which, by Lemma 6.10, is therefore equal to s. Since

τK/F (uv) = τK/F (u)τK/F (v),

τK/F (uv) lies in U
s
F . On the other hand

τK/F (uv) = NE/F

(
τK/E(uv)

)
so that, by Lemma 6.10 again, τK/E(uv) belongs to U

s
E and

vK/F (uv) ⩾ φE/F (s) = s.

Thus the setsW x
K/F , x ⩾ −1, give a filtration ofWK/F by a collection of normal subgroups.

The next sequence of lemmas show that the filtration is quite analogous to the upper filtration
of the Galois groups.

Lemma 6.14. For each x ⩾ −1 the map τK/F,L/F takes Gx
K/F into Gx

L/F .
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If w belongs to WK/F let w = τK/F,L/F (w). We must show that

vL/F (w) ⩾ vK/F (w).

Let σ = σ(w) and let σ = σ(w). If E is the fixed field of σ then E = E ∩ L is the fixed field
of σ. Since

vL/F (w) = φE/F

(
vL/E(w)

)
and

vK/F (w) = φE/F

(
vK/E(w)

)
we may suppose E = F . Since τK/F (w) = τL/F (w), Lemma 6.12 implies that τL/F (w) lies in

U
vK/F (w)

F . Thus
vL/F (w) = vF

(
τL/F (w)

)
⩾ vK/F (w).

Of course WF/F is CF and, if v ⩾ −1, W v
F/F = U v

F .

Lemma 6.15. For each v ⩾ −1, τK/F maps W v
K/F onto U v

F .

Since v1 ⩽ v2 implies W v2
K/F ⊆ W v1

K/F it is enough to prove the lemma when v = n is

an integer. The lemma is clear if [K : F ] = 1; so we proceed by induction on [K : F ]. If
[K : F ] > 1, choose an intermediate normal extension L so that [L : F ] = ℓ is a prime. Let
G = G(L/F ). Lemma 6.12 implies that

W
ψL/F (v)

K/L = WK/L ∩W v
K/F .

There is an integer t ⩾ −1 such that G = Gt and Gt+1 = {1}. It is shown in Chapter V of
Serre’s book that if n > t

NL/F (U
ψL/F (n)

L ) = Un
F .

By induction

τK/L(W
ψL/F (n)

K/L ) = U
ψL/F (n)

L .

Since τK/F (w) = NL/F

(
τK/L(w)

)
if w is in WK/L,

τK/F (W
n
K/F ) = Un

F

if n > t. Suppose σ generates G. Then VL/F (σ) = t. By Herbrand’s theorem there is a σ in
G(K/F ) with vK/F (σ) = t whose restriction to L is σ. By Lemma 6.11 there is a w in WK/F

such that σ = σ(w) and vK/F (w) = t. Then τK/F (w) lies in U
t
F but not in NL/F (CL). From

Serre’s book again

[U t
F : NL/FU

ψL/F (t)

F ] = ℓ

so that U t
F is generated by τK/F (w) and NL/F (U

ψL/F (t)

L ) and hence is contained in the image
of W t

K/F . To complete the proof of the lemma we have only to observe that Lemma 6.10
implies that

Un
F = U t

FNL/F (U
ψL/F (n)

L )

if n ⩽ t.

Lemma 6.16. Suppose F ⊆ L ⊆ K and L/F and K/F are Galois. Then, for each v ⩾ −1,
τK/F,L/F maps W v

K/F onto W v
L/F .
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If [L : F ] = 1 this is just the previous lemma so we proceed by induction on [L : F ]. We
have to show that if w belongs to WL/F there is a w in WK/F such that w = τK/F,L/F (w)

and vK/F (w) ⩾ vL/F (w). Let σ = σ(w) and let E be the fixed field of σ. If E ̸= F
then, by the induction assumption, there is a w in WK/E such that τK/E,L/E(w) = w and

vK/E(w) ⩾ vL/E(w). By Lemma 6.12, vK/F (w) ⩾ vL/F (w). Moreover, we may assume that
τK/E,L/E is the restriction to WK/E of τK/F,L/F .

Suppose E = F . Then vL/F (w) = vF
(
τL/F (w)

)
. Choose w1 in WK/F so that τK/F (w1) =

τL/F (w) and vK/F (w1) ⩾ vF
(
τL/F (w)

)
. Let w1 = τK/F,L/F (w1) and set u = w−1

1 w. Certainly
vL/F (u) ⩾ vL/F (w). Moreover, τL/F (u) = 1. Let F ⊆ L1 ⊆ L where L1/F is cyclic of prime
order. If u does not belong to WL/L1 the group CF is generated by NL1/F (CL1) and τL/F (u),
which is impossible since τL/F (u) = 1. Thus u belongs to WL/L1 and, as observed, there is a
u in WK/L1 such that τK/F,L/F (u) = τK/L1,L/L1(u) = u. Then τK/F,L/F (uw1) = w.



CHAPTER 7

Consequences of Stickelberger’s result

Davenport and Hasse [5] have shown that Stickelberger’s arithmetic characterization of
Gaussian sums over a finite field can be used to establish identities between these Gaussian
sums. After reviewing Stickelberger’s result we shall prove the identities of Davenport and
Hasse together with some more complicated identities. However for the proof of Stickelberger’s
result itself, I refer to Davenport and Hasse.

If Z = e
2πi
p and α belongs to GF (p) the meaning of Zα is clear. If κ is any finite field

and S is the absolute trace of κ let ψ0
κ be the character of κ defined by ψ0

κ(α) = ZS(α). If
χκ is any character of κ∗ and ψκ is any non-trivial additive character of κ we will take the
Gaussian sum τ(χκ, ψκ) to be

−
∑
α∈κ∗

χ−1
κ (α)ψκ(α).

We abbreviate τ(χκ, ψ
0
κ) to τ(χκ).

Let kn be the field obtained by adjoining the nth roots of unity to the rational numbers.
If ϖ = Z − 1 then in kp the ideal (p) equals (ϖp−1). If q = pf and κ has q elements then in
kq−1 the ideal (p) is a product pp′ · · · where the residue fields of p, p′, . . . are isomorphic to κ.
In kp(q−1)

(p) = (PP′ · · · )p−1

with P = (p, ϖ), P′ = (p′, ϖ), and so on. The residue fields of P,P′, . . . are also isomorphic
to κ. Choose one of these prime ideals, say P. Once an isomorphism of the residue field with
κ is chosen the map of the (q− 1)th roots of unity to the residue field defines an isomorphism
of κ∗ and the group of (q− 1)th roots of unity. Then χκ can be regarded as a character of the
latter group. Choose α = α(χκ,P) with 0 ⩽ α < q − 1 so that χκ(ζ) = ζα for all (q − 1)th
roots of unity. Write!

α = α0 + α1p+ · · ·+ αf−1p
f−1 0 ⩽ αi < p.

Not all of the αi can be equal to p− 1. Set

σ(α) = α0 + α1 + · · ·+ αf−1

γ(α) = α0!α1! · · · αf−1!

The following lemma is Stickelberger’s arithmetical characterization of τ(χκ).

Lemma 7.1.

(a) τ(χκ) lies in kp(q−1) and is an algebraic integer.
(b) If χκ = 1 then τ(χκ) = 1 but if χκ ̸= 1 the absolute value of τ(χκ) and all its

conjugates is
√
q.

(c) Every prime divisor of τ(χκ) in kp(q−1) is a divisor of p.
(d) If β is a non-zero element of the prime field then the automorphism Z → Zβ of

kp(q−1) over kq−1 sends τ(χκ) to χκ(β)τ(χκ).

27
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(e) If P is a prime divisor of p in kp(q−1) and α = α(χκ, p) the multiplicative congruence

τ(χκ) ≡
ϖσ(α)

γ(α)
(mod∗ P)

is valid.
(f ) Suppose ℓ is a prime dividing q − 1 and χκ = χ′

κχ
′′
κ where the order of χ′

κ is a power
of ℓ and that of χ′′

κ is prime to ℓ. If ℓa is the exact power of ℓ dividing q − 1 and
λ = ζ0 − 1 where ζ0 is a primitive ℓath root of unity then

τ(χκ) ≡ τ(χ′′
κ) (mod λ).

Before stating the identities for Gaussian sums which are implied by this lemma, I shall
prove a few elementary lemmas.

Lemma 7.2. Suppose 0 ⩽ α < pf − 1 and

α = α0 + α1p+ · · ·+ αf−1p
f−1 0 ⩽ αi < p.

Suppose also that 0 ⩽ j0 < j1 < · · · < jr = f and set

βs = αjs + αjs+1p+ · · ·+ αjs+1−1p
js+1−js−1.

If σ =
∑r−1

s=0 βs and γ =
∏r−1

s=0 βs! then

ϖσ

γ
=
ϖσ(α)

γ(α)
(mod∗ P).

First of all, I remark once and for all that if n ⩾ 1, 0 < u ⩽ pn − 1, and v = u (mod pn)
then v ≡ u (mod∗ p). Thus if 0 ⩽ u ⩽ pn − 1 and v ⩾ 0

(u+ vpn)! = (vpn)!
u∏

w=1

(w + vpn) ≡ u! (vpn)! (mod∗ p).

Also if v ⩾ 0
pn∏
w=1

(vpn + w) ≡ (v + 1)pn! (mod∗ p)

and, by induction,
(vpn)! ≡ v! (pn!)v (mod∗ p).

In particular p(n+1)! ≡ p! (pn!)p ≡ (−p)(pn!)p. Apply induction to obtain

pn! ≡ (−p)
pn−1
p−1 (mod∗ p).

From the relations

p =

p−1∏
i=1

(1− Zi) = (−ϖ)p−1

p−1∏
i=1

Zi − 1

Z − 1

and
Zi − 1

Z − 1
= 1 + Z + · · ·+ Zi−1 ≡ i (mod∗ p).

We conclude that
p = (p− 1)! (−ϖ)p−1 ≡ −ϖp−1 (mod∗ p).
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The lemma itself is clear if r = f so we proceed by induction downward from f . Suppose
r < f , js+2−js = t > 1, and the lemma is valid for the sequence j0, j1, . . . , js+1−1, js+1, . . . , jr.
To prove it for the given sequence we have only to show that if

x = αjs + αjs+1p+ · · ·+ αjs+1−2p
t−2

and y = αjs+1−1 then

ϖx+y

x! y!
≡ ϖx+ypt−1

(x+ ypt−1)!
(mod∗ p).

But

ϖy(pt−1−1) ≡ (−p)y
pt−1−1

p−1 (mod∗ p)

and

(x+ ypt−1)! = x! y! (pt−1!)y ≡ x! y! (−p)
yt−1−1

p−1 (mod∗ p).

Lemma 7.3. Suppose β0, . . . , βr−1 and γ0, . . . , γr−1 are non-negative integers all of which
are less than or equal to q − 1. Suppose that q = pf is a prime power and

r−1∑
i=0

(βi + γi)q
i < 2(qr − 1).

Suppose also that δi, 0 ⩽ i ⩽ r − 1, are given such that 0 ⩽ δi ⩽ q − 1,
r−1∑
i=0

δiq
i < qr − 1

and
r−1∑
i=0

(βi + γi)q
i =

r−1∑
i=0

δiq
i (mod qr − 1).

(a) If
∑r−1

i=0 (βi + γi)q
i < qr−1 and if ν is the number of k, 1 ⩽ k ⩽ r, for which∑k−1

i=0 (βi + γi) ⩾ qk then

r−1∑
i=0

(βi + γi − δi) = ν(q − 1).

(b) If
∑r−1

i=0 (βi + γi)q
i ⩾ qr − 1 and if ν is the number of k, 1 ⩽ k ⩽ r, for which

1 ̸=
∑k−1

i=0 (βi + γi)q
i ⩾ qk then

r−1∑
i=0

(βi + γi − δi) = ν(q − 1).

Observe immediately that if 1 ⩽ k ⩽ r, then 0 ⩽ βk−1 + γk−1 ⩽ 2(q − 1) and

k−1∑
i=0

(βi + γi)q
i ⩽ 2(q − 1)

k−1∑
i=0

qi = 2(qk − 1).

If r = 1 then β0 + γ0 = δ0 + ϵ(q − 1) with ϵ equal to 0 or 1. If ϵ = 0 we are in case (a) and
ν = 0 while β0 + γ0 − δ0 = 0. If ϵ = 1 we are in case (b); here ν = 1 and β0 + γ0 − δ0 = q − 1.
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Suppose then that r ⩾ 2 and that if β′
0, . . . , β

′
r−1, γ

′
0, . . . , γ

′
r−2, δ

′
0, . . . , δ

′
r−2, and ν

′ are given
as in the lemma (with r replaced by r − 1) then

r−2∑
i=0

(β′
i + γ′i − δ′i) = ν ′(q − 1).

We establish part (a) first. In this case

r−1∑
i=0

(βi + γi)q
i =

r−1∑
i=0

δiq
i

and
r−2∑
i=0

(βi + γi)q
i =

r−2∑
i=0

δiq
i + ϵqr−1

with ϵ = δr−1 − βr−1 − γr−1. If ϵ were negative the left side of the equation would be negative;
if ϵ were greater than 1 the left side would be greater than 2(qr−1 − 1). Since neither of these
possibilities occur ϵ is 0 or 1.

Suppose first that ϵ = 0. If
∑r−2

i=0 δiq
i < qr−1 − 1 choose β′

i = βi, γ
′
i = γi, 0 ⩽ i ⩽ r − 2.

Then δ′i = δi, 0 ⩽ i ⩽ r − 2, and ν ′ = ν. The assertion of the lemma follows in this case. If∑r−2
1=0 δiq

i = qr−1 − 1 then δi = q − 1, 0 ⩽ i ⩽ r− 2. Then β0 + γ0 ≡ q − 1 (mod q) and, as a
consequence, β0 + γ0 = q − 1. We show by induction that βi + γi = q − 1, 0 ⩽ i ⩽ r − 2. If
this is so for i < j then

r−2∑
i=j

(βi + γi)q
i =

r−2∑
i=j

(q − 1)qi.

Hence βj + γj ≡ q − 1 (mod q) and βj + γj = q − 1. It follows immediately that ν = 0 and∑r−1
i=0 (βi + γi − δi) = 0.
Now suppose that ϵ = 1. If

r−2∑
i=0

(βi + γi)q
i = 2(qr−1 − 1)

then βi = γi = q− 1, 0 ⩽ i ⩽ r− 2, δ0 = q− 2, and δi = q− 1, 1 ⩽ i ⩽ r− 2. Thus ν = r− 1
and

r−1∑
i=0

(βi + γi − δi) = 1 + (r − 1)(q − 1)− 1 = (r − 1)(q − 1).

Suppose then that
r−2∑
i=0

(βi + γi)q
i < 2(qr−1 − 1).

From the relation
r−2∑
i=0

(βi + γi)q
i =

r−2∑
i=0

δiq
i + 1 + (qr−1 − 1).
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We conclude that
∑r−2

i=0 δiq
i < qr−1 − 1. Then for some m, with 0 ⩽ m ⩽ r − 2, δm < q − 1.

We choose the minimal value for m.
r−2∑
i=0

(βi + γi)q
i = (δm + 1)qm +

r−2∑
i=m+1

δiq
i + (qr−1 − 1).

Thus if β′
i = βi, γ

′
i = γi, 0 ⩽ i ⩽ r − 2, then δ′i = 0, i < m, δ′m = δm + 1, and δ′i = δi,

m < i ⩽ r− 2. Arguing by congruences as before we see that βi+ γi = q− 1 for i < m. Thus
k−1∑
i=0

(βi + γi)q
i = qk − 1

for k ⩽ m. However βm + γm ≠ q − 1 and thus βm + γm + 1 is prime to q. Moreover if
r − 1 ⩾ k > m

1 +
k−1∑
i=1

(βi + γi)q
i ≡ (βm + γm + 1)qm (mod qm+1).

Thus it is greater than or equal to qk if and only if it is greater than or equal to qk + 1. It
follows that ν ′ = ν +m and that

r−2∑
i=0

(βi + γi − δi) = −m(q − 1) +
r−2∑
i=0

(β′
i + γ′i − δ′i) = ν(q − 1) + 1.

Since βr−1 + γr−1 − δr−1 = −1 the assertion of the lemma follows.
Now let us treat part (b). In this case

r−1∑
i=0

(βi + γi)q
i =

r−1∑
i=0

δiq
i + (qr − 1)

and

1 +
r−2∑
i=0

(βi + γi)q
i =

r−2∑
i=0

δiq
i + ϵqr−1

with ϵ = δr−1 − βr−1 − γr−1 + q. Again ϵ is 0 or 1. If βi = γi = q − 1 for 0 ⩽ i ⩽ r − 2 then
ϵ = 1 and δi = q − 1 for 0 ⩽ i ⩽ r − 2. Also ν = r and

r−1∑
i=0

(βi + γi − δi) = (r − 1)(q − 1) + βr−1 + γr−1 − δr−1 = r(q − 1).

Having taken care of this case, we suppose that
r−2∑
i=0

(βi + γi)q
i < 2(qr−1 − 1).

First take ϵ = 0. If δ0 = 0 then 1 + β0 + γ0 ≡ 0 (mod q) and β0 + γ0 = q − 1. Thus one of
them is less than q − 1. By symmetry we may suppose it is β0. Let β′

0 = β0 + 1, β′
i = βi,

1 ⩽ i ⩽ r − 2, and γ′i = γi, 0 ⩽ i ⩽ r − 2. Since δ0 = 0

r−2∑
i=0

δiq
i ⩽ qr−1 − q < qr−1 − 1
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and δ′i = δi, 0 ⩽ i ⩽ r − 1. Also ν = ν ′ + 1 so that

r−1∑
i=0

(βi + γi − δi) =
r−2∑
i=0

(β′
i + γ′i − δ′i)− 1 + q = ν(q − 1)

as required. If δ0 > 0 take β′
i = βi and γ

′
i = γi, 0 ⩽ i ⩽ r − 2. Then δ′0 = δ0 − 1, δ′i = δi,

1 ⩽ i ⩽ r − 2. Also if k ⩽ r − 1
k−1∑
i=0

(βi + γi)q
i ≡ δ0 − 1 ̸= −1 (mod q)

and the left-hand side is greater than or equal to qk if and only if it is greater than or equal
to qk − 1. It follows that ν = ν ′ + 1. Consequently

r−1∑
i=0

(βi + γi − δi) =
r−2∑
i=0

(β′
i + γ′i − δ′i)− 1 + q = ν(q − 1).

If ϵ = 1 take γ′i = γi and β
′
i = βi, 0 ⩽ i ⩽ r − 2. Then δ′i = δi, 0 ⩽ i ⩽ r − 2, and ν = ν ′ + 1

so that
r−1∑
1=0

(βi + γi − δi) = ν ′(q − 1) + (βr−1 + γr−1 − δr−1) = ν(q − 1).

Lemma 7.4. Suppose βi and γi are two periodic sequences of integers with period r. That is
βi+r = βi and γi+r = γi for all i in Z. Suppose 0 ⩽ βi ⩽ q − 1, 0 ⩽ γi ⩽ q − 1 for all i and
that none of the numbers

ϵk =
r−1∑
i=0

(βi+k + γi+k)q
i

is divisible by qr − 1. Let
r−1∑
i=0

(βi + γi)q
i ≡

r−1∑
i=0

δiq
i (mod qr − 1)

with 0 ⩽ δi ⩽ q − 1 and
∑r−1

i=0 δiq
i < qr − 1. If µ is the number of ϵk, 1 ⩽ k ⩽ r, which are

greater than or equal to qr − 1 then
r−1∑
i=0

(βi + γi − δi) = µ(q − 1).

Since ϵ0 ⩽ 2(qr − 1) and is not divisible by qr − 1 it is less than 2(qr − 1). Thus all we
need do is show that the µ of this lemma is equal to the ν of the preceding lemma. Observe
first of all that ϵj ⩾ qr − 1 if and only if ϵj ⩾ qr.

Suppose ϵ0 < qr. If 1 ⩽ k < r
r−1∑
i=k

(βi + γi)q
i < qr

so that
r−1∑
i=k

(βi + γi)q
i−k < qr−k.
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Thus, if ϵk ⩾ qr,

qr ⩽
r−1∑
i=r−k

(βi+k + γi+k)q
i +

r−k−1∑
i=0

(βi+k + γi+k)q
i

< qr−k
k−1∑
i=0

(βi + γi)q
i + qr−k

and
k−1∑
i=0

(βi + γi)q
i ⩾ qk.

Conversely if 1 ⩽ k < r and
k−1∑
i=0

(βi + γi)q
i ⩾ qk,

then
r−1∑
i=0

(βi+k + γi+k)q
i ⩾

r−1∑
i=r−k

(βi+k + γi+k)q
i

= qr−k
k−1∑
i=0

(βi + γi)q
i ⩾ qr.

Thus µ = ν in this case.
Now suppose ϵ0 ⩾ qr. If 1 ⩽ k < r

r−1∑
i=k

(βi + γi)q
i ⩾ qr −

k−1∑
i=0

(βi + γi)q
i ⩾ qr − 2(qk − 1).

If
k−1∑
i=0

(βi + γi)q
i ⩾ qk − 1

then
r−1∑
i=0

(βi+k + γi+k)q
i ⩾

r−1∑
i=r−k

(βi+k + γi+k)q
i +

r−k−1∑
i=0

(βi+k + γi+k)q
i

= qr−k
k−1∑
i=0

(βi + γi)q
i + q−k

r−1∑
i=k

(βi + γi)q
i

⩾ qr−k(qk − 1) + qr−k − 2 + 2q−k.
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Thus ϵk ⩾ qr − 1 and hence ϵk ⩾ qr. Conversely if ϵk ⩾ qr,

qr−k
k−1∑
i=0

(βi + γi)q
i =

r−1∑
i=r−k

(βi+k + γi+k)q
i

⩾ qr −
r−k−1∑
i=0

(βi+k + γi+k)q
i

⩾ qr − 2(qr−k − 1)

= qr − 2qr−k + 2.

Thus
k−1∑
i=0

(βi + γi)q
i ⩾ qk − 1

and again µ = ν.

Lemma 7.5. Suppose q = pf is a prime power, ℓ is a positive integer, and (ℓ, q) = 1. Let
ℓm ≡ 1 (mod q) and if x is any integer let φ(x), with 0 ⩽ φ(x) < q, be the remainder of x
upon division by q. If 0 ⩽ β < q and if ψ(x) = φ(x)!

ℓβ

β!

ℓ−1∏
k=0

ψ
(
(β − k)m

)
ψ(−km)

≡ 1 (mod∗ p).

If ℓ = ℓ1 + uq with ℓ1 > 0 and u ⩾ 0 then ℓβ ≡ ℓβ1 (mod∗ p). Moreover

ℓ−1∏
k=0

ψ
(
(β − k)m

)
ψ(−km)

=


ℓ1−1∏
k=0

ψ
(
(β − k)m

)
ψ(−km)




ℓ−1∏
k=ℓ1

ψ
(
(β − k)m

)
ψ(−km)


and

ℓ−1∏
k=ℓ1

ψ(−km) =


q−1∏
j=0

j!


u

=
ℓ−1∏
k=ℓ1

ψ
(
(β − k)m

)
.

Thus it is enough to prove the lemma with ℓ replaced by ℓ1. In other words we may suppose
that 0 < ℓ < q. The case ℓ = 1 is trivial and we exclude it from the following discussion.
Finally we suppose that 0 < m < q.

Let q − 1 = rℓ+ s with 0 < r and 0 ⩽ s < ℓ. Arrange the integers from 0 to q − 1 into
the following array.

0 1 2 ℓ− 1
ℓ ℓ+ 1 ℓ+ 2 2ℓ− 1

β − ℓ+ 1
β

(r − 1)ℓ (r − 1)ℓ+ 1 q − ℓ rℓ− 1
rℓ rℓ+ 1 rℓ+ s
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Since ℓ does not divide q, rℓ+ s = q− 1 does not lie in the last column. Also q− ℓ lies in the
column following that in which rℓ+ s lies.

We replace each number j in the above array by φ(jm). The resulting array, which is
written out below, has some special features which must be explained. The first column is
explained by the observation xℓm ≡ x (mod q). The other entries, apart from those at the
foot of each column, are explained by the observation that, when 1 ⩽ j and xℓ + j lies in
the first array, φ(x+mj) > r while 0 < φ(mj) + x < q + r so that φ(x+mj) = φ(mj) + x.
The position of q − 1 is explained by the relation m(q − ℓ) ≡ −mℓ ≡ q − 1 (mod q). The
other entries at the feet of the columns are explained by the observation that if 1 ⩽ j ⩽ ℓ− 1
then φ(jm) > r ⩾ 1 while m(q − k) = m(q − ℓ) +m(ℓ − k) ≡ φ

(
(ℓ− k)m

)
− 1 (mod q) if

1 ⩽ k ⩽ ℓ− 1.

0 m φ
(
(ℓ− 1)m

)
ℓ m+ 1 φ

(
(ℓ− 1)m

)
+ 1

φ
(
(β − ℓ+ 1)m

)
t

φ(βm)

r − 1 m+ r − 1 q − 1 φ
(
(ℓ− 2− s)m

)
− 1

r m+ r φ
(
(ℓ− 1)m

)
− 1

Suppose first of all that β < ℓ − 1. Then the numbers φ
(
(β − k)m

)
, 0 ⩽ k ⩽ ℓ − 1

constitute the first β + 1 together with the last ℓ− β − 1 numbers in the array. (The order of
the numbers in the array is the order in which they appear when the array is read as though
it were a printed page.) The numbers φ(−km), 1 ⩽ k ⩽ ℓ− 1, are the last ℓ− 1 numbers of
the array, that is, the numbers after q − 1. Cancelling in the product of the lemma the terms
in numerator and denominator corresponding to the last ℓ − β − 1 terms of the array, we
obtain

β∏
j=1

φ(jm)!(
φ(jm)− 1

)
!
=

β∏
j=1

φ(jm) ≡ mββ! (mod∗ p)

as required.
Now take β ⩾ ℓ− 1. Then the numbers β, β − 1, . . . , β − (ℓ− 1) occur as indicated in the

first array. In particular there is exactly one in each column. The numerator in the product
of the lemma is the product of the factorials of the corresponding elements of the second
array. The denominator is the product of the factorials of the elements appearing after q − 1.
As indicated t is the element lying above q − 1. Thus t is larger than any element appearing
in a column other than that of t. The product of the lemma is t! times the product of the
factorials of the other elements on the broken line divided by the factorials of the elements at
the foot of the column in which they lie. Thus it equals t! divided by the product of all the
elements below the broken line except those which lie directly below t. But t! is the product
of all numbers in the second array except those which lie below t. Thus the quotient is the
product of all numbers which lie above or on the broken line, that is,

β∏
j=1

φ(jm) ≡
β∏
j=1

jm = mββ! (mod∗ p)

as required.
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Lemma 7.6. Suppose that q = pf is a prime power, that ℓ is a positive integer dividing q− 1,
that 0 ⩽ α1 < q − 1, that (ℓ, α1) = 1, and that

α2 =
α1

ℓ
· q

ℓ − 1

q − 1
.

Then α2 is an integer and 0 ⩽ α2 < q − 1. Moreover if

α2 = γ0 + γ1q + · · ·+ γℓ−1q
ℓ−1

with 0 ⩽ γi ⩽ q − 1 for 0 ⩽ i ⩽ ℓ− 1 then
ℓ−1∑
j=0

γj = α1 +
ℓ−1∑
j=1

j · q − 1

ℓ

and

ℓα1

ℓ−1∏
j=0

γj! ≡ α1!
ℓ−1∏
j=1

(
jq − 1!

ℓ

)
(mod∗ p).

Certainly 0 ⩽ α2 < qℓ − 1; moreover

qℓ − 1

q − 1
= 1 + q + · · ·+ qℓ−1 ≡ ℓ (mod ℓ)

so that α2 is an integer. Let α1 = mℓ+ k with m ⩾ 0 and 0 ⩽ k < ℓ and for 0 ⩽ j < ℓ let

(ℓ− 1− j)k = ij + δjℓ

with δj ⩾ 0 and 0 ⩽ ij < ℓ. Clearly iℓ−1 = δℓ−1 = 0. Also (ℓ− 1)k = ℓ− k + ℓ(k − 1) so that
i0 = ℓ−k and δ0 = k−1. If j ⩾ 1 then (δj−1− δj)ℓ = k+(ij− ij−1). Since −ℓ < ij− ij−1 < ℓ
and 0 < k < ℓ the right-hand side is greater than −ℓ and less than 2ℓ so that δj−1 − δj is 0
or 1. If it is 1 then k + ij ⩾ ℓ and ij ⩾ ℓ− k. If it is 0 then ij = ij−1 − k < ℓ− k. Recalling
that i0 = ℓ− k we see that

S =
{
j
∣∣ 1 ⩽ j ⩽ ℓ− 1 and δj−1 − δj = 1

}
=
{
j
∣∣ 0 ⩽ j < ℓ and ij > ℓ− k

}
.

We shall prove that

γ0 = m+ i0
(q − 1)

ℓ
+ k − δ0

and

γj = m+ ij
(q − 1)

ℓ
+ δj−1 − δj 1 ⩽ j < ℓ.

Since (k, ℓ) = 1 the numbers ij are distinct and it will follow immediately that

ℓ−1∑
j=0

γj = (mℓ+ k) +
ℓ−1∑
j=0

j · q − 1

ℓ
= α1 +

ℓ−1∑
j=1

j · q − 1

ℓ
.

Moreover we will have

ℓ−1∏
j=0

γj! =


ℓ−1∏
j=0

(
m+ j

(q − 1)

ℓ

)
!


{
m+ i0

q − 1

ℓ
+ k − δ0

}∏
j∈S

(
m+ 1 + ij

(q − 1)

ℓ

).
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Recall that k − δ0 = 1. Dividing the first term by
ℓ−1∏
j=0

(
j · (q − 1)

ℓ

)
!

we obtain
ℓ−1∏
j=0

m∏
n=1

(
n+ j

(q − 1)

ℓ

)
.

The product of the last two terms is
ℓ−1∏
j=ℓ−k

(
m+ 1 + j

(q − 1)

ℓ

)
.

If 1 ⩽ n ⩽ m and 0 ⩽ j ⩽ ℓ − 1 then nℓ − j < α1 < q so that the product of ℓmk and the
first of these two expressions is multiplicatively congruent to

ℓ−1∏
j=0

m∏
n=1

(nℓ− j) = (mℓ)!

Moreover, if ℓ− k ⩽ j ⩽ ℓ− 1, then 0 ⩽ (m+ 1)ℓ− j ⩽ (m+ 1)ℓ− (ℓ− k) = α1 < q and the
second of these expressions upon multiplication by ℓk becomes multiplicatively congruent to

ℓ−1∏
j=ℓ−k

(
(m+ 1)ℓ− j

)
=

k∏
j=1

(mℓ+ j).

The relations together imply the second identity of the lemma.
To verify that the γj, 0 ⩽ j < ℓ, have the form asserted, we start with the relation

α2 =
qℓ − 1

q − 1
· mℓ+ k

ℓ
=

ℓ−1∑
j=0

qjm+
ℓ−1∑
j=0

qjk

ℓ
.

The second term is equal to

ℓ−1∑
j=0


 j−1∑

i=0

qi

q − 1

ℓ
k

+ k = k +
ℓ−2∑
j=0

(ℓ− 1− j)qj · q − 1

ℓ
· k.

Thus

α2 =

(
m+ (ℓ− 1)k · q − 1

ℓ
+ k

)
+

ℓ−1∑
j=1

(
m+ (ℓ− 1− j)k · q − 1

ℓ

)
qj

=

(
m+ i0 ·

q − 1

ℓ
+ k − δ0

)
+

ℓ−1∑
j=1

(
m+ ij ·

q − 1

ℓ
+ δj−1 − δj

)
.

Moreover m < q−1
ℓ

so that

0 ⩽ m+ i0 ·
q − 1

ℓ
+ k − δ0 < ℓ · q − 1

ℓ
+ 1 = q

and

0 ⩽ m+ ij ·
q − 1

ℓ
+ δj−1 − δj < ℓ · q − 1

ℓ
+ 1 = q.
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The required relations follow immediately.
Now we can state and prove the promised identities for Gaussian sums. Each of these will

amount to an assertion that a certain number in kp(q−1) is 1. To prove this we will show first
that the number is invariant under all automorphisms of kp(q−1) over k(q−1) and thus lies in
kq−1. The only prime ideals occurring in the factorization of the number, which is not a priori
an algebraic integer, into prime ideals will be divisors of p. We show that every conjugate
of the number has absolute value 1 and that it is multiplicatively congruent to 1 modulo
every divisor of p. It will follow that it is a root of unity in kq−1 and hence a (q − 1)th root
of unity if q is odd and a 2(q − 1)th root of unity if q is even. If q is odd the multiplicative
congruences imply that the number is 1. If q is even they imply that the number is ±1. To
show that it is actually 1 some supplementary discussion will be necessary.

Stickelberger’s result is directly applicable only to the normalized Gaussian sum τ(χκ).
We shall have to use the obvious relation τ(χκ,Ψκ) = χκ(β)τ(χκ) if ψκ(α) = ψ0

κ(βα). If κ is
an extension of λ and ψλ is given, we set

ψκ/λ(α) = ψλ
(
Sκ/λ(α)

)
for α in κ. If χλ is given χκ/λ is the character defined by

χκ/λ(α) = χλ
(
Nκ/λ(α)

)
.

Lemma 7.7. If κ is a finite extension of the finite field and χλ and ψλ are given then

τ(χκ/λ, ψκ/λ) =
{
τ(χλ, ψλ)

}[κ:λ]
.

Since χκ/λ(β) = χλ(β)
[κ:λ] it will be enough to show that

τ(χκ/λ) =
{
τ(χλ)

}[κ:λ]
.

Set

µ =

{
τ(χλ)

}[χ:λ]
τ(χκ/λ)

.

Let λ have q = pℓ elements and let κ have pk = qf . It follows immediately from Lemma 7.1
that the absolute value of µ and all its conjugates is 1, that it lies in kp(qf−1), that it is
invariant under all automorphisms of kp(qf−1) over kqf−1, and that its only prime factors are

divisors of p. The mapping β → Nκ/λβ sends β to β
qf−1
q−1 . Thus if α = α(χλ, p) and P divides

p

α(χκ/λ, p) =
qf − 1

q − 1
α = α + αq + · · ·+ αqf−1.

Applying Lemmas 7.1 and 7.2, we see that

τ(χλ) ≡
ϖα

α!
(mod∗ P)

and

τ(χκ/λ) ≡
ϖfα

(α!)f
(mod∗ P).

Consequently
µ ≡ 1 (mod∗ P).

Thus µ = 1 if q is odd and µ = ±1 if q is even. If χλ = 1 then χκ/λ = 1 and, from part (b) of
Lemma 7.1, µ is 1. If q = 2 then χλ = 1. Suppose then q is even and greater than 2. If χλ is
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not identically 1 choose a prime r dividing the order of χλ. Set χλ = χ′
λχ

′′
λ where the order of

χ′
λ is a power of r and the order of χ′′

λ is prime to r. The analogous decomposition of χκ/λ is
χ′
κ/λχ

′′
κ/λ. Of course χλ and χκ/λ have the same order. Define µ′ and µ′′ in the obvious way.

According to part (f) of Lemma 7.1

µ ≡ µ′′ (mod r).

Since r does not divide 2 this implies that µ = µ′′. Thus one can show by induction on the
number of primes dividing the order of χλ that µ = 1.

Lemma 7.8. Suppose λ is a finite field with q elements, κ is a finite extension of λ, and
[κ : λ] = f . Suppose ℓ is a prime and the order of q modulo ℓ is f . Let T be a set of
representatives for the orbits of the non-trivial characters of κ∗ of order ℓ under the action of
G(κ/λ) and let χλ be a character of λ∗. If ψλ is any non-trivial character of λ

χλ(ℓ
ℓ)τ(χℓλ, ψλ)

∏
µκ∈T

τ(µκ, ψκ/λ) = τ(χλ, ψλ)
∏
µκ∈T

τ(χκ/λµκ, ψκ/λ).

Since the isotropy group of each point in T is trivial

χℓλ(β)
∏
µκ∈T

µκ(β) = χλ(β)
∏
µκ∈T

χκ/λ(β)µκ(β)

and we may content ourselves with showing that

χλ(ℓ
ℓ)τ(χℓλ)

∏
µκ∈T

τ(µκ) = τ(χλ)
∏
µκ∈T

τ(χκ/λµκ).

Of course χλ(ℓ
ℓ) is the value of χλ at the element of the prime field corresponding to ℓℓ. Let µ

be the quotient of the right side by the left. The characters of κ∗ of order ℓ are the characters
µkκ, 0 ⩽ k < ℓ, defined by

α(µkκ,P) = k · q
f − 1

ℓ
.

Since the order of q modulo ℓ is f , if T =
{
µkκ
∣∣ k ∈ A

}
every non-trivial character of order

ℓ is representable as µ
η(qik)
κ with 0 ⩽ i < f and k ∈ A. η(qik) is the remainder of qik upon

division by ℓ. Thus as we already saw, T has ℓ−1
f

elements. Lemma 7.1 again shows that µ

and all its conjugates have absolute value 1 and that µ is invariant under all automorphisms
of kp(qf−1) over kqf−1.

Let α = α(χλ, p) and let β = α(χℓλ, p). Then ℓα = β + ν(q − 1) with ν ⩾ 0. If 0 ⩽ k < ℓ
let

α(µkκ,P) = k · q
f − 1

ℓ
=

f−1∑
j=0

γkj q
j

with 0 ⩽ γkj ⩽ q−1. In particular, γk0 is the residue of k · qf−1
ℓ

modulo q. Moreover if k1 ≡ qik
(modulo ℓ) then

α(µkκ,P) =

f−1∑
j=0

γk1j+iq
j.
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It is understood that if j + i ⩾ ℓ then γk1j+i = γk1j+i−ℓ. Thus if φ(x) is the remainder of x upon
division by q, {

γkj

∣∣∣ k ∈ A, 0 ⩽ j < f
}
=

φ

(
k · q

f − 1

ℓ

) ∣∣∣∣∣∣ 0 < k < ℓ

.
Certainly

α(χκ/λµ
k
κ,P) ≡ qf − 1

q − 1
α + k · q

f − 1

ℓ

(
mod (qf − 1)

)
.

Let 0 ⩽ k′ < ℓ and let ν + k ≡ k′ (mod ℓ). Since, by definition, ℓα = β + ν(q − 1)

qf − 1

q − 1
α + k

qf − 1

ℓ
≡ qf − 1

ℓ
· β

q − 1
+ k′

qf − 1

ℓ

(
mod (qf − 1)

)
.

Since 0 ⩽ β < q−1 the right side is non-negative and at most qf −2. Thus it is α(χκ/λµ
k
κ,P).

Let

α(χκ/λµ
k
κ,P) =

f−1∑
j=0

δkj q
j

with 0 ⩽ δkj ⩽ q − 1. Thus δk0 is the residue of

qf − 1

ℓ
· β

q − 1
+ k′ · q

f − 1

ℓ

modulo q. Since χκ/λ is invariant under automorphisms of κ/λ

α(χκ/λµ
k
κ,P) =

f−1∑
j=0

δk1j+iq
j

if k1 ≡ qik (mod ℓ). Since the residue of qf−1
q−1

α modulo q is α,

{α} ∪
{
δkj

∣∣∣ 0 ⩽ j < ℓ, k ∈ A
}
=

φ

(
qf − 1

ℓ
· β

q − 1
+ k

qf − 1

ℓ

) ∣∣∣∣∣∣ 0 ⩽ k < ℓ

.
Since χλ(ℓ

ℓ) ≡ ℓαℓ (mod∗ P) the number µ is multiplicatively congruent modulo P to
the quotient of

ϖαϖϵ

α!
∏

k∈A
∏ℓ−1

j=0 δ
k
j !
, ϵ =

∑
k∈A

f−1∑
j=0

δkj

by

ℓβϖβϖϵ′

β!
∏

k∈A
∏ℓ−1

j=0 γ
k
j !
, ϵ′ =

∑
k∈A

f−1∑
j−0

γkj .

Since
f−1∑
j=0

(α + γkj )q
j ≡

f−1∑
j=0

δkj q
j,
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we conclude from Lemma 7.4 that

fα+

f−1∑
j=0

(γkj − δkj ) = ρ(q − 1),

if ρ is the number of i, 0 ⩽ i < f , such that

qf − 1

q − 1
α + α(µη(q

ik)
κ ,P) ⩾ qf .

Since
qf − 1

q − 1
· α + α(µ0

κ,P) =
qf − 1

q − 1
α,

the number

(ℓ− 1)α +
∑
k∈A

f−1∑
j=0

(γkj − δkj )

is (q − 1) times the number of k, 0 ⩽ k < ℓ, such that

qf − 1

q − 1
α + k · q

f − 1

ℓ
=
qf − 1

q − 1

β

ℓ
+ (k + ν)

qf − 1

ℓ
⩾ qf .

The number of such k is ν because ν < ℓ and

qf − 1

q − 1

β

ℓ
+ (ℓ− ν + ν)

qf − 1

ℓ
⩾ 1 + qf − 1 = qf

while
qf − 1

q − 1

β

ℓ
+ (ℓ− 1)

qf − 1

ℓ
<
qf − 1

ℓ
+ (ℓ− 1)

qf − 1

ℓ
= qf − 1.

Thus ∑
k∈A

f−1∑
j=0

(γkj − δkj ) = ν(q − 1)− (ℓ− 1)α = α− β.

If ℓm ≡ 1 (mod q)

φ

(
k · q

f − 1

ℓ

)
= φ(−km)

and

φ

(
qf − 1

ℓ
· β

q − 1
+ k

qf − 1

ℓ

)
= φ

(
(β − k)m

)
.

It follows immediately from Lemma 7.5 that

ℓβα!
∏
k∈A

f−1∏
j=0

δkj ! ≡ β!
∏
k∈A

f−1∏
j=0

γkj !

Thus µ = 1 if q is odd and µ = ±1 if q is even. If χλ = 1 the number µ is clearly 1.
This time too, one can apply part (f) of Lemma 7.1 and induction on the number of primes
dividing the order of χλ to show that µ = 1 if q is even.
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Lemma 7.9. Let λ be a finite field with q elements and let κ be a finite extension of λ with
[κ : λ] = ℓ where ℓ is a prime dividing q−1. Suppose χλ is a character of λ∗ whose restriction
to the ℓth roots of unity is not trivial and χκ is a character of κ∗ such that χℓκ = χκ/λ. If T is
the set of non-trivial characters of λ∗ of order ℓ

χλ(ℓ)τ(χλ, ψλ)
∏
µλ∈T

τ(µλ, ψλ) = τ(χκ, ψκ/λ).

If σ ∈ G(κ/λ) define χσκ by χσκ(α) = χκ(α
σ−1

). Since χσκ/λ = χκ/λ, χ
σℓ
κ = χκ/λ and χσ−1

κ

is a character of order ℓ. If χσ−1
κ = 1 for some σ ̸= 1 then it is 1 for all σ and χκ(α) = 1 if

α is a (q − 1)th power, that is, if Nκ/λ(α) = 1. Consequently there is a character νλ of λ∗

such that χκ = νκ/λ. Then ν
ℓ
λ = χλ and χλ is trivial on the ℓth roots of unity, contrary to

assumption. Thus {
χσ−1
κ

∣∣ σ ̸= 1
}
=
{
µκ/λ

∣∣ µλ ∈ T
}
.

If β ∈ λ∗ and β = Nκ/λ(γ) then

χκ(β) =
∏
σ

χκ(γ
σ−1) = χκ(γ

ℓ)
∏
σ ̸=1

χσ−1
κ (γ) = χλ(β)

∏
σ ̸=1

µλ(β),

because µλ(β) = µκ/λ(γ), and it will be enough to show that

χλ(ℓ)τ(χλ)
∏
µλ∈T

τ(µλ) = τ(χκ).

Let µ be the quotient of the left side by the right. Thus µ is a number in kp(q−1) and the
only primes appearing in the factorization of µ are divisors of p. Since χκ/λ is not identically
1 neither is χκ. Thus the absolute value of µ and all its conjugates is 1. Let α = α(χλ, p)
and let β = α(χκ,P) where P divides p. Then

ℓβ ≡ α
qℓ − 1

q − 1

(
mod (qℓ − 1)

)
.

Since ℓ divides qℓ−1
q−1

we can write

β =
qℓ − 1

q − 1
· α
ℓ
− j · q

ℓ − 1

ℓ
.

Since the restriction of χλ to the ℓth roots of unity is not trivial, α · q−1
ℓ

̸≡ 0
(
mod (q − 1)

)
.

Thus ℓ does not divide α. For all i ⩾ 0

τ(χq
i

κ ) = τ(χκ).

Moreover

α(χq
i

κ ,P) ≡ αℓ − 1

q − 1

α

ℓ
− j

αℓ − 1

ℓ
+ (qi − 1)

qℓ − 1

q − 1

α

ℓ
− j(qi − 1)

qℓ − 1

ℓ

≡ qℓ − 1

q − 1

α

ℓ
+

{
qi − 1

q − 1
α− j

}
qℓ − 1

ℓ
.

Since qi−1
q−1

≡ i (mod ℓ) we choose i so that iα ≡ j (mod ℓ); then

α(χq
i

κ ,P) ≡ qℓ − 1

q − 1

α

ℓ

(
mod (qℓ − 1)

)
.
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Both sides of this congruence are non-negative and less than qℓ − 1. Thus it is an equality

and we can assume that β = qℓ−1
q−1

· α
ℓ
. The set T consists of the characters µjλ, 1 ⩽ j ⩽ ℓ− 1,

defined by

α(µjλ,P) =
j

ℓ
(q − 1).

Under the automorphism z → zm of kp(qℓ−1) over kqℓ−1 the number µ is multiplied by
χ−1
κ (m)χλ(m)

∏
µλ∈T µλ(m) which is 1 because m belongs to λ. Let

β = γ0 + γ1q + · · ·+ γℓ−1q
ℓ−1

with 0 ⩽ γi ⩽ q − 1. Then

τ(χκ) ≡
ϖϵ∏ℓ−1
j=0 γj!

(mod∗ P), ϵ =
ℓ−1∑
j=0

γj,

and

χλ(ℓ)τ(χλ)
ℓ−1∏
j=1

τ(µjλ) ≡
ℓαϖϵ′

α!
∏ℓ−1

j=1

(
j · q−1

ℓ

)
!

(mod∗ P), ϵ′ = α +
ℓ−1∑
j=0

j · q − 1

ℓ
.

Lemma 7.6 implies immediately that µ ≡ 1 (mod∗ P). Thus µ = 1 if q is odd and µ = ±1 if
q is even. If ℓ′ is a prime divisor of q − 1 different from ℓ, we write χλ as χ′

λχ
′′
λ where the

order of χ′
λ is a power of ℓ′ and the order of χ′′

λ is prime to ℓ. In a similar fashion we write χκ
as χ′

κχ
′′
κ. The pair χ′′

λ and χ′′
κ also satisfy the conditions of the lemma. The final assertion of

Lemma 7.1 shows that, if µ′′ is defined in the same way as µ, µ = µ′′. Arguing by induction
we see that it is enough to verify that µ = 1 when the order of χλ is a power of ℓ. Applying
the last part of Lemma 7.1, again we see that there is a prime q dividing ℓ such that

τ(χλ) ≡ τ(χκ) ≡ τ(µjλ) ≡ 1 (mod q).

Since χλ(ℓ) is an ℓ
ωth root of unity for some ω,

χλ(ℓ) ≡ 1 (mod q).

Thus µ ≡ 1 (mod ℓ) and µ = 1.





CHAPTER 8

A lemma of Lamprecht

Let F be a non-archimedean local field and let ψF be a non-trivial character of F .
n = n(ψF ) is the largest integer such that ψF is trivial on P−n

F . If χF is a quasi-character of
CF , m = m(χF ) is the smallest non-negative integer such that χF is trivial on Um

F . If γ in
CF is such that γOF = Pm+n

F set

∆1(χF , ψF ; γ) =

∫
UF
ψF

(
α
γ

)
χ−1
F (α) dα∣∣∣∣∫UF

ψF

(
α
γ

)
χ−1
F (α) dα

∣∣∣∣ .
Then

∆(χF , ψF ) = χF (γ)∆1(χF , ψF ; γ).

As suggested by Hasse [8], we shall, in the proofs, of the main lemmas, make extensive
use of the following lemma which is central to the paper [10] of Lamprecht.

Lemma 8.1.

(a) If m = m(χF ) = 2d with d integral and positive there is a unit β in OF such that

ψF

(
βx

γ

)
= χF (1 + x)

for all x in Pd
F . For any such β

∆1(χF , ψF ; γ) = ψF

(
β

γ

)
χ−1
F (β).

(b) If m = m(χF ) = 2d + 1 with d integral and positive there is a unit β in OF such
that, for all x in Pd+1

F ,

ψF

(
βx

γ

)
= χF (1 + x).

For any such β, ∆1(χF , ψF ; γ) is equal to

ψF

(
β

γ

)
χ−1
F (β)

∫
OF /PF

ψF

(
δβx
γ

)
χ−1
F (1 + δx) dx∣∣∣∣∫OF /PF

ψF

(
δβx
γ

)
χ−1
F (1 + δx) dx

∣∣∣∣
if δOF = Pd

F .

Let m = 2d + ϵ with ϵ = 0 in case (a) and ϵ = 1 in case (b). The function ψF

(
xy
γ

)
,

x ∈ OF , y ∈ Pd+ϵ
F can be regarded as a function on

OF/P
d
F ×Pd+ϵ

F /Pm
F .

45
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For fixed x it is a character of Pd+ϵ
F /Pm

F which is trivial if and only if x ∈ Pd
F and for fixed y

it is a character of OF/P
d
F which is trivial if and only if y ∈ Pm

F . Thus it defines a duality of
OF/P

d
F and Pd+ϵ

F /Pm
F . The existence of a β such that

χF (1 + x) = ψF

(
βx

γ

)
for x in Pd+ϵ

F follows immediately from the relation

χF (1 + x)χF (1 + y) = χF (1 + x+ y)

which is valid for x in Pd+ϵ
F . The number β must be a unit because χF (1 + x) is different

from 1 for some x in Pm−1
F .

In case (a) ∫
UF

ψF

(
α

γ

)
χ−1
F (α) dα

is equal to ∫
UF /U

d
F

ψF

(
α

γ

)
χ−1
F (α)

{∫
Pd

F

ψF

(
(α− β)x

γ

)
dx

}
dα.

The main integral is 1 or 0 according as α−β does or does not lie in Pd
F . Thus this expression

is equal to

ψF

(
β

γ

)
χ−1
F (β)[UF : Ud

F ]
−1.

The first part of the lemma follows.
In case (b) ∫

UF

ψF

(
α

γ

)
χ−1
F (α) dα

is equal to ∫
UF /U

d+1
F

ψF

(
α

γ

)
χ−1
F (α)

{∫
Pd+1

F

ψF

(
(α− β)x

γ

)
dx

}
dα.

The inner integral is 0 unless α− β lies in Pd
F when it is 1. Thus this expression is equal to

ψF

(
β

γ

)
χ−1
F (β)[UF : Ud

F ]
−1

∫
OF /PF

ψF

(
δβx

γ

)
χ−1
F (1 + δx) dx.

The second part of the lemma follows.
The number β is only determined modulo Pd

F . When applying the lemma we shall, after
choosing β, set

∆2(χF , ψF ; γ) = ψF

(
β

γ

)
χ−1
F (β)

and then define ∆3(χF , ψF ; γ), which will be 1 when m is even, by the equation,

∆1(χF , ψF ; γ) = ∆2(χF , ψF ; γ)∆3(χF , ψF ; γ).

When we need to make the relation between β and χF explicit we write β as β(χF ). To be
of any use to us this lemma must be supplemented by some other observations.
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If K is a finite Galois extension of F any quasi-character χF of CF determines a one-
dimensional representation of WK/F whose restriction to CK is a quasi-character χK/F of CK .
The character χK/F may be defined directly by

χK/F (α) = χF (NK/Fα).

More generally, if E is any finite separable extension of F we define χE/F by

χE/F (α) = χF (NE/Fα).

To apply the lemma of Lamprecht we shall need to know, in some special cases, the relation
between β(χF ) and β(χE/F ).

Suppose m is a positive integer and m = 2d + ϵ where ϵ is 0 or 1 and d is a positive
integer. Let m′ = ψE/F (m− 1) + 1 and let m′ = 2d′ + ϵ′ where ϵ′ is 0 or 1 and d′ is a positive
integer.1 Since ψE/F is convex

ψE/F

(
m− 1

2

)
⩽

1

2
ψE/F (m− 1) +

1

2
ψE/F (0) =

1

2
(m′ − 1) < d′ + ϵ′

and
d′ + ϵ′ = ψE/F (u)

with u > m−1
2

. Since the least integer greater than m−1
2

is d+ ϵ, Lemma 6.6 implies that

NE/F (U
d′+ϵ′

E ) ⩽ Uu
F ⩽ Ud+ϵ

F .

In other words, if x ∈ Pd′+ϵ′

E then

NE/F (1 + x)− 1 ∈ Pd+ϵ
F .

Lemma 6.6 also implies that
NE/F (1 + x)− 1 ∈ Pm

F

if x ∈ Pm′
E . If x ∈ Pd′+ϵ′

E and y ∈ Pm′
E then

NE/F (1 + x+ y)− 1 = NE/F (1 + x)NE/F

(
1 +

y

1 + x

)
− 1

is congruent to
NE/F (1 + x)− 1

modulo Pm
F . Thus if x ∈ Pd′+ϵ′

E and y ∈ Pd′+ϵ”
E so that xy ∈ Pm′

E , then

NE/F (1 + x+ y)− 1 ≡ NE/F (1 + x+ y + xy)− 1 (mod Pm
F ).

The right side is
NE/F (1 + x)NE/F (1 + y)− 1,

which equals{
NE/F (1 + x)− 1

}
+
{
NE/F (1 + y)− 1

}
+
{(
NE/F (1 + x)− 1

)(
NE/F (1 + y)− 1

)}
and this is congruent to {

NE/F (1 + x)− 1
}
+
{
NE/F (1 + y)− 1

}
modulo Pm

F . Thus the map

PE/F : x→ NE/F (1 + x)− 1

1We are here dealing not with an additive character, but with the function of Chapter 6!
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is a homomorphism from Pd′+ϵ′

E /Pm′
E to Pd+ϵ

F /Pm
F . If E ⊆ E ′ we can replace F by E, E by

E ′, m by m′, and m′ by ψE′/E(m
′− 1)+ 1, and define PE′/E. Since ψE′/F = ψE′/E ◦ψE/F and

NE′/F (1 + x)− 1 = NE/F

(
1 +

(
NE′/E(1 + x)− 1

))
− 1,

the relation
PE′/F = PE/F ◦ PE′/E

is valid.
If n = n(ψF ) and n

′ = n(ψE/F ), choose γF in CF so that γFOF = Pm+n
F and γE in CE so

that γEOE = Pm′+n′

E . I apologize again for the unfortunate conflict of notation. ψE/F is on
the one hand a function on {u ∈ R | u ⩾ −1 } and on the other a character of E. However,
warned one again, the reader should not be too inconvenienced by the conflict. Define

P ∗
E/F : OF/P

d
F → OE/P

d′

E

by the relation

ψF

(
xPE/F (y)

γF

)
= ψE/F

(
P ∗
E/F (x)y

γE

)
.

It will often be necessary to keep in mind the dependence of P ∗
E/F on γF and γE. Then we

shall write
P ∗
E/F (x) = P ∗

E/F (x; γE, γF ).

It is clear that
P ∗
E′/F (x; γE′ , γF ) = P ∗

E′/E

(
P ∗
E/F (x; γE, γF ); γE′ , γE

)
.

Lemma 8.2. Let K/F be abelian and let G = G(K/F ). Suppose there is an integer t such
that G = Gt while Gt+1 = {1}. Suppose m ⩾ t + 1 and m > 1 and γF is chosen. If µF
belongs to S(K/F ), the set of characters of CF/NK/FCK, then m ⩾ m(µF ) so that for some
α(µF ) in OF

µF (1 + x) = ψF

(
α(µF )x

γF

)
for all x in Pd+ϵ

F . The element γK may be taken equal to γF and if P ∗
K/F (β) = P ∗

K/F (β; γF , γF )
then

NK/F

(
P ∗
K/F (β)

)
≡
∏
µF

(
β + α(µF )

)
(mod Pd

F )

for all β in OF .

If t = −1 then n(ψF ) = n(ψK/F ) and m
′ = m so that γK may be taken equal to γF . If

t ⩾ 0 the extension is ramified. Let P
δK/F

K be the different of K/F . Then

n(ψK/F ) = [K : F ]n(ψF ) + δK/F .

By definition
ψK/F (m− 1) = t+ [K : F ](m− t− 1).

By Proposition 4 of paragraph IV.2 of Serre’s book δK/F =
(
[K : F ]− 1

)
(t+ 1). Thus

m∗ + n(ψK/F ) = [K : F ]
(
m+ n(ψF )

)
and we can again take γK = γF .
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Since m(µF ) = t+ 1 we have m ⩾ m(µF ) and

µF (1 + x+ y) = µF (1 + x)µF (1 + y)

for x and y in Pd+ϵ
F . Thus the existence of α(µF ) is assured. The last assertion of the lemma

will be proved by induction. We will need to know that if x ≡ y (mod Pd′
K) then

NK/Fx ≡ NK/Fy (mod Pd
F ).

When proving this we may suppose that xOK = Pr
K with r ⩽ d′ and that y

x
belongs to OK .

Then

NK/Fx−NK/Fy = NK/Fx

{
1−NK/F

(
1 +

y − x

x

)}
.

If r ⩾ d there is nothing to prove. Suppose r ⩽ d. If d′ − r = ψK/F (u) and s is the smallest
integer greater than or equal to u the right side belongs to Ps+r

F . Since the derivative of ψK/F
is at least one everywhere ψK/F (u+ r) ⩾ d′. But

d′ ⩾
m′ − 1

2
=

1

2
ψK/F (m− 1) +

1

2
ψK/F (0) ⩾ ψK/F

(
m− 1

2

)
.

Thus u+ r ⩾ m−1
2

and s+ r ⩾ d.
Suppose F ⊆ L ⊆ K and L/F is cyclic of prime order. Let H = G(K/L) and let

G = G(L/F ). Certainly H = Ht while Ht+1 = {1}. Since ψK/F (t) = ψK/L(t) = t, we have
ψL/F (t) = t and, by Herbrand’s theorem,

Gt = G
t
= HGt/H = G/H = G.

Moreover t+ 1 = ψL/F (t+ δ) with δ > 0 so that

Gt+1 = G
t+δ

= HGt+δ/H = H/H = {1}.
Finally, ψL/F (m− 1) + 1 ⩾ t+1 so that L/F and K/L, with m replaced by ψL/F (m− 1) + 1,
satisfy the conditions of the lemma. S(L/F ) is a subgroup of S(K/F ). If µF and νF belong
to S(K/F ) then µL/F = νL/F if and only if µF and νF belong to the same coset of S(L/F ).
Take S to be a set of representatives for these cosets; then

S(K/L) =
{
µL/F

∣∣ µF ∈ S
}
.

We take α(µFνF ) = α(µF ) + α(νF ) if µF belongs to S and νF belongs to S(L/F ). If µF
belongs to S we take α(µL/F ) to be P ∗

L/F

(
α(µF )

)
. If the lemma is valid for K/L and L/F

then

NK/F

(
P ∗
K/F (β)

)
= NL/F

(
NK/L

(
P ∗
K/L

(
P ∗
L/F (β)

)))
which is congruent modulo Pd

F to

NL/F

∏
µF∈S

(
P ∗
L/F (β) + P ∗

L/F

(
α(µF )

))
or ∏

µF∈S

{
NL/F

(
P ∗
L/F

(
β + α(µF )

))}
.
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This is congruent modulo Pd
F to∏
µF∈S

∏
νF∈S(L/F )

{
β + α(µF ) + α(νF )

}
which equals ∏

µF∈S(K/F )

{
β + α(µF )

}
.

Thus it is enough to prove the lemma when K/F is cyclic of prime order. In this case
more precise information is needed and the assertion of the lemma will follow immediately
from it.

Lemma 8.3. If K/F is unramified and m ⩾ 1 we may take P ∗
K/F (β) = β.

According to paragraph V.2 of Serre’s book

NK/F (1 + y)− 1 ≡ SK/F (y) (mod Pm
F )

if y ∈ Pd′+ϵ′

K . Thus PK/F (y) = SK/F (y) and

ψF

(
xPK/Fy

γF

)
= ψK/F

(
xy

γF

)
.

Lemma 8.4. Suppose K/F is abelian, totally ramified, and [K : F ] = ℓ is an odd prime. If
d ⩾ t+ 1 we may take P ∗

K/L(β) = β.

The relation
m′ = t+ 1 + ℓ(m− 1− t) = ℓm− (t+ 1)(ℓ− 1)

implies that m′ ≡ m (mod 2), ϵ′ = ϵ, and

d′ = ℓd+
ℓ− 1

2
(ϵ− t− 1) = d+

ℓ− 1

2
(m− t− 1).

Since
ℓ− 1

2
(m− t− 1) ⩾ m− t− 1 ⩾ d+ ϵ

we have
d′ + ϵ′ ⩾ 2(d+ ϵ) ⩾ m.

Moreover
2(d′ + ϵ′) + δK/F

ℓ
⩾
m′ + δK/F

ℓ
= m

so that by Lemma 5 of paragraph V.3 of Serre’s book

NK/F (1 + x)− 1 ≡ SK/F (x) (mod Pm
F )

if x ∈ Pd′+ϵ′

K . The lemma follows.
Let p be the characteristic of OF/PF .

Lemma 8.5. Suppose K/F is abelian, totally ramified, and [K : F ] = ℓ is an odd prime.
Suppose t+ 1 ⩽ m ⩽ 2t+ 1. Choose a non-trivial character µF in S(K/F ). We may choose
α = α(µF ) so that αOF = Pv

F , if m = t + 1 + v, so that α = NK/Fα1 for some α1 in OK,
and so that

µF (1 + x) = ψF

(
αx

γF

)
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for x in Ps
F . Here s is the least integer greater than or equal to t

2
. If ζ is a (p− 1)th root

of unity in F there is a unique integer j with 1 ⩽ j ⩽ p− 1 such that ζ − j lies in PF . Set
µζF = µjF . We may take α(µζF ) to be ζα. If β belongs to OF we can find a β1 in OK such that
β ≡ NK/Fβ1 (mod Pd

F ). Then

P ∗
K/F (β) ≡ β − β1

α

α1

(mod Pd′

K).

If

µF (1 + x) = ψF

(
αx

γF

)
for x in Ps

F then, necessarily, αOF = Pv
F . Choose δ1 in OK such that δ1OK = Pv

K and set
δ = NK/F δ1. Set α = ϵδ where ϵ is yet to be chosen. We must have

µF (1 + x) = ψF

(
ϵδx

γF

)
if x ∈ Ps

F . This equation determines the unit ϵ modulo Pr
F if r = t− s. Since any unit is a

norm modulo Pt
F we may suppose ϵ = NK/F ϵ1. Take α1 = ϵ1δ1. β1 exists for a similar reason.

The number ζ − j must lie in pOF . But K/F is wildly ramified, because 2t+ 1 ⩾ m > 1,
ℓ = p and p = SK/F (1) so that, by paragraph V.3 of Serre’s book, p belongs to Pu

F if u is the
greatest integer in

(ℓ− 1)

ℓ
(t+ 1) ⩾

t+ 1

2
.

However d+ ϵ ⩾ s so that d+ ϵ+ u ⩾ t+ 1 and, if x belongs to Pd+ϵ
F , (ζ − j)x lies in Pt+1

F .
Thus

ψF

(
α(ζ − j)x

γF

)
= µF

(
1 + (ζ − j)x

)
= 1

and

µjF (1 + x) = µjF (1 + x) = ψF

(
jαx

γF

)
= ψF

(
ζαx

γF

)
.

Since
2s+ δK/F

ℓ
⩾
t+ 1 + δK/F

ℓ
= t+ 1.

The lemmas of paragraph V.3 of Serre’s book imply that

NK/F (1 + x) ≡ 1 + SK/F (x) +NK/F (x) (mod Pt+1
F )

if x belongs to Ps
K and then

1 = µF
(
NK/F (1 + x)

)
= µF

(
1 + SK/F (x) +NK/F (x)

)
.

As we observed d+ ϵ ⩾ s. Moreover d+ ϵ ⩽ t+ 1 so that

d+ ϵ+ δK/F
ℓ

⩾ d+ ϵ

and SK/F (x) and NK/F (x) belong to Pd+ϵ
F if x belongs to Pd+ϵ

K . Thus, for such x,

ψF

(
αNK/F (x)

γF

)
= ψF

(
−αSK/F (x)

γF

)
.
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Again
2(d′ + ϵ′) + δK/F

ℓ
⩾ m

so that
NK/F (1 + x)− 1 = SK/F (x) +NK/F (x) (mod Pm

F )

if x ∈ Pd′+ϵ′

K . Moreover

d′ + ϵ′ = d+ ϵ+
ℓ− 1

2
(m− t− 1) ⩾ d+ ϵ

so that NK/F (x) and hence SK/F (x) belong to Pd+ϵ
F . Thus

βNK/Fx ≡ αNK/F

(
β1x

α1

)
(mod Pm

F ).

But β1x/α1 belongs to Pd′+ϵ′−v
K and

d′ + ϵ′ − v = d+ ϵ+
ℓ− 1

2
v − v ⩾ d+ ϵ

so that

ψF

(
βPK/F (x)

γF

)
= ψF

(
βSK/F (x) + βNK/F (x)

γF

)
which equals

ψF

βSK/F (x)− αSK/F

(
β1x
α1

)
γF

 = ψK/F

((
β − αβ1

α1

)
x

γF

)

as required.

Lemma 8.6. Suppose K/F is a wildly ramified quadratic extension, m ⩾ t + 1, and
m = t+ 1 + v. Let µF be the non-trivial character in S(K/F ). If β belongs to OF there is a
β1 in OK and a δ in U t

F such that β ≡ δNK/Fβ1 (mod Pd
F ). We can choose α = α(µF ) so

that

µF (1 + x) = ψF

(
αδx

γF

)
if x is in Ps

F and so that α = NK/Fα1 for some α1 in OK. Here s has the same meaning as
before. Thus, if r is the integral part of t+1

2
, t+ 1 = r + s. With these choices

P ∗
K/F (β) ≡ β − β1αδ

α1

(mod Pd′

K).

If β = 0 the existence of δ and β1 is clear. Otherwise we can find a β1 such that NK/Fβ1/β
is in U t

F . We choose δ accordingly. If m = t+ 1 + v and

µF (1 + x) = ψF

(
αδx

γF

)
for x in Ps

F then OFα = Pv
F . Choose η1 in OK so that OKη1 = Pv

K and set η = NK/Fη1. Set
α = ϵη where ϵ is yet to be chosen. We must have

µF (1 + x) = ψF

(
ϵηδx

γF

)



8. A LEMMA OF LAMPRECHT 53

if x ∈ Ps
F . This equation determines the unit ϵ modulo Pr

F . Since any unit is a norm modulo
Pt
F we may suppose ϵ = NK/F ϵ1. Take α1 = ϵ1η1.
Since the extension is quadratic

NK/F (1 + x) = 1 + SK/F (x) +NK/F (x).

Since
s+ δK/F

2
=
s+ t+ 1

2
⩾ s

both SK/F (x) and NK/F (x) are in Ps
F if x belongs to Ps

K and

ψF

(
αδNK/F (x)

γF

)
= ψF

(
−αδSK/F (x)

γF

)
.

We have m′ = 2m− (t+ 1) and d′ = m− s, so that d′ + ϵ′ = m− r and d′ + ϵ′ − v = s. Thus

if x belongs to Pd′+ϵ′

K

βNK/F (x) ≡ αδNK/F

(
β1x

α1

)
(mod Pm

F )

and β1x/α1 lies in Ps
K . Consequently

ψF

(
βPK/Fx

γF

)
= ψK/F

((
β − β1

αδ

α1

)
x

γF

)
as required.

Lemma 8.7. If K/F is a tamely ramified quadratic extension and m ⩾ 2 we may take
P ∗
K/F (β) = β.

Notice that t + 1 = 1 so that m ⩾ t + 1. In this case m′ = 2m − 1, d′ = m − 1, and
d′ + ϵ′ = m. If x ∈ Pd′+ϵ′

K

NK/F (1 + x) = 1 + SK/F (x) +NK/F (x)

is congruent to
1 + SK/F (x)

modulo Pm
F . The lemma follows.

To complete the proof of Lemma 8.2 we have to show that if K/F is cyclic of prime order

NK/F

(
P ∗
K/F (β)

)
≡

∏
µF∈S(K/F )

(
β + α(µF )

)
(mod Pd

F ).

We consider the cases discussed in the previous lemmas one by one. If the extension is
unramified we may take all the numbers α(µF ) to be 0. The congruences then reduce to the
identity βn = βn. The same is true if K/F is cyclic of odd order and d ⩾ t+ 1 or K/F is
quadratic and t = 0. If K/F is cyclic of odd order ℓ and t+ 1 ⩽ m ⩽ 2t+ 1 the right side
becomes

βℓ − βαℓ−1.

If β ≡ 0 (mod Pd
F ) both sides are congruent to 0 modulo Pd

F . Suppose β does not belong to
Pd
F and βOF = Pu

F . Then β1OK = Pu
K and

NK/F

(
β − β1

α

α2

)
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is congruent to

βℓ − βαℓ−1 +
ℓ−1∑
i=1

(−1)iβℓEi

(
β1α

βα1

)
modulo Pd

F . If x ∈ K then Ei(x) is the ith elementary symmetric function of x and its

conjugates. Moreover β1α/βα1 belongs to P
(ℓ−1)(v−u)
K . If ℓ− 1 ⩾ i ⩾ 1

i(ℓ− 1)(v − u) + (ℓ− 1)(t+ 1)

ℓ
⩾

(ℓ− 1)(v + t+ 1)

ℓ
− ℓu.

The right side is
(ℓ− 1)

ℓ
m− pu ⩾ d− ℓu.

The argument of paragraph V.3 of Serre’s book shows that

NK/F

(
β − β1

α

α1

)
≡ βℓ − βαℓ−1 (mod Pd

F ).

For a wildly ramified quadratic extension we use the notation of Lemma 8.6. The right
side of the congruence may be taken to be β2 + βαδ. The identity is again non-trivial only if
βOF = Pu

F with u < d. Then the left side may be taken to be

β2 − β2δSK/F

(
β1α

βα1

)
+ δ2αNK/Fβ1

which is congruent to

β2 + αβδ − β2δSK/F

(
β1α

βα1

)
modulo Pd

F . Since
v − u+ t+ 1

2
⩾
m

2
− u ⩾ d− u

we have

β2SK/F

(
β1α

βα1

)
≡ 0 (mod Pd

F ).

Suppose χF is a quasi-character of CF , m = m(χF ), and β = β(χF ). If, as sometimes
happens, m′ = m(χK/F ) we can take β(χK/F ) = P ∗

K/F (β).

Lemma 8.8. Suppose K/F is Galois and G = G(K/F ). Suppose s ⩾ 0 is an integer and
Gs = {1}. If m = m(χF ) and m > s then

m′ = ψK/F (m− 1) + 1 = m(ψK/F ).

It follows from paragraph V.6 of Serre’s book that

NK/F (U
ψK/F (v)

K ) = U v
F

if v ⩾ s. Thus χK/F is trivial on Uu
K if u > ψK/F (m − 1) but is not trivial on U i

K if
u = ψK/F (m− 1).

We can now collect together, with one or two additional comments, the previous results in
a form which will be useful in the proof of the first main lemma. We use the same notation.

Lemma 8.9. Suppose K/F is a cyclic extension of prime order ℓ, χF is a quasi-character
of CF , m(χF ) ⩾ t+ 1, m(χF ) > 1, and m(χK/F )− 1 = ψK/F

(
m(χF )− 1

)
.
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(a) If K/F is unramified we may take β(χK/F ) = β(χF ) and β(µFχF ) = β(χF ) for all
µF in S(K/F ).

(b) If ℓ is odd and d ⩾ t+ 1 we may take β(χK/F ) = β(χF ) and β(µFχF ) = β(χF ) for
all µF in S(K/F ).

(c) If ℓ is odd and t+1 ⩽ m ⩽ 2t+1 and µF is a given non-trivial character in S(K/F )
we may choose α = α(µF ) = NK/Fα1 as in Lemma 8.5 and β = β(χF ) = NK/Fβ1
for some β1 in UK. Then we may choose

β(χK/F ) = β − β1
α

α1

and
β(µζFχF ) = NK/F (β1 + ζα1).

(d) If ℓ is 2 and K/F is wildly ramified we choose α = α(µF ) as in Lemma 8.6. We
may choose β = β(χF ) in the form δNK/Fβ1 with δ in U t

F . Then we may choose

β(χK/F ) = β − β1
αδ

α1

and
β(µFχF ) = β + αδ.

(e) If ℓ is 2 and K/F is tamely ramified we may take β(χK/F ) = β(µFχF ) = β(χF ).

Only part (c) requires any further verification. It must be shown that

NK/F (β1 + ζα1) ≡ β + ζα (mod Pd
F ).

The left side is congruent to

βNK/F

(
1 +

ζα1

β1

)
.

All we need do is show that

NK/F

(
1 +

ζα1

β1

)
≡ 1 +

ζα

β
(mod Pd

F ).

The right side is

1 +NK/F

(
ζα1

β1

)
.

According to paragraph V.3 of Serre’s book the congruence will be satisfied if

v + (ℓ− 1)(t+ 1)

ℓ
⩾ d.

But t+ 1 = d+ x with x ⩾ 0 so that d+ x+ v = 2d+ ϵ and v = d+ ϵ− x. Thus

v + (ℓ− 1)(t+ 1)

ℓ
=
d+ ϵ− x+ (ℓ− 1)(d+ x)

ℓ
= d+

ϵ+ (ℓ− 2)x

ℓ
⩾ d.

The preceding discussion has now to be repeated with different hypotheses and different,
but similar, conclusions.
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Lemma 8.10. Suppose K/F is abelian and G = G(K/F ). Suppose there is a t ⩾ 0 such
that G = Gt while Gt+1 = {1}. If 2 ⩽ m ⩽ t+ 1 then m′ = ψK/F (m− 1) + 1 is just m. Let

t+ 1 = m+ v, let δ be such that δOF = P
t+1+n(ψF )
F , let ϵ1 in OK be such that ϵ1OK = Pv

K,
and let ϵ = NK/F ϵ1. We may choose γF = δ/ϵ and γK = δ/ϵ1. Let r be the greatest integer in
t+1
2

and let s = t+1− r. If µF is a non-trivial character in S(K/F ) then m(µF ) = t+1. Let

µF (1 + x) = ψF

(
β(µF )x

δ

)
for x in Ps

F . Then

β
∏
µF ̸=1

(
βϵ+ β(µF )

)
≡ NK/F

(
P ∗
K/F (β)

)
(mod Pd

F ).

The relation m′ = ψK/F (m− 1) + 1 = m is an immediate consequence of the definitions.
Since the extension is totally ramified

n(ψK/F ) = [K : F ]n+
(
[K : F ]− 1

)
(t+ 1)

if n = n(ψF ). Thus
m+ n = (t+ 1 + n)− v

and
m′ + n(ψK/F ) = [K : F ](t+ 1 + n) + (m− t− 1) = [K : F ](t+ 1 + n)− v.

Consequently γF and γK can be chosen as asserted. The results of chapter V of Serre’s book
imply that m(µF ) = t+ 1 if µF is not trivial.

We saw when proving Lemma 8.2 that if x ≡ y (mod Pd′
K) then NK/Fx ≡ NK/Fy

(mod Pd
F ) and that if F ⊆ L ⊆ K both L/F and K/L satisfy the conditions of the lemma.

For L/F , ϵ1 is replaced by NK/Lϵ1 and, for K/L, ϵ is replaced by NK/Lϵ1. Take Q
∗
L/F to be

P ∗
L/F in the special case that m = t+ 1 and ϵ1 = 1. Then

ψL/F

(
NK/L(ϵ1)xP

∗
L/F (β)

δ

)
= ψF

(
ϵPL/F (x)β

δ

)
by definition. The right side is equal to

ψL/F

(
xQ∗

L/F (ϵβ)

δ

)
.

Thus
Q∗
L/F (ϵβ) ≡ NK/L(ϵ1)P

∗
L/F (β) (mod Ps

L).

If µF belongs to S(K/F ) but not to S(L/F ) then m(µL/F ) = m(µF ) and β(µL/F ) may be

taken to be Q∗
L/F

(
β(µF )

)
. Let S ′ be a set of representatives for the cosets of S(L/F ) in

S(K/F )− S(L/F ) and suppose the lemma is true for K/L and L/F . Then

NK/F

(
P ∗
K/F (β)

)
= NL/F

(
NK/L

(
P ∗
K/L

(
P ∗
L/F (β)

)))
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is congruent to

NL/F

P ∗
L/F (β)

∏
µF∈S′

{
NK/L(ϵ1)P

∗
L/F (β) +Q∗

L/F

(
β(µF )

)}
modulo Pd

F . This in turn is congruent to

NL/F

(
P ∗
L/F (β)

) ∏
µF∈S′

NL/F

(
Q∗
L/F

(
ϵβ + β(µF )

))
.

Applying the induction hypothesis to the first part and Lemma 8.2 to the second, we see
that the whole expression is congruent to

β


∏

νF∈S(L/F )
νF ̸=1

(
ϵβ + β(νF )

)



∏
µF∈S′

νF∈S(L/F )

(
ϵβ + β(µF ) + β(νF )

)


modulo Pd
F as required.

Once again we devote a lemma to cyclic extensions of prime order.

Lemma 8.11. Suppose K/F is cyclic of prime order ℓ and 2 ⩽ m ⩽ t + 1. Choose a
non-trivial character µF in S(K/F ). There is an α1 in UK such that if α = NK/Fα1

µF (1 + x) = ψF

(
αx

δ

)
for x in Ps

F . If β belongs to OF there is a β1 in OK such that β ≡ NK/F (β1) (mod Pt
F ).

Then
P ∗
K/F (β) ≡ β

ϵ

ϵ1
− β1

α

α1

(mod Pd′

K).

Since β(µF ) is determined only modulo Ps
F and s ⩽ t we can take β(µF ) = NK/Fα1 for

some α1 in UK . The existence of β1 also follows as before. Since t+ 1 ⩾ m

2(d′ + ϵ′) + (ℓ− 1)(t+ 1)

ℓ
⩾
m+ (ℓ− 1)(t+ 1)

ℓ
⩾ m

and
NK/F (1 + x) ≡ 1 + SK/F (x) +NK/F (x) (mod Pm

F )

if x belongs to Pd′+ϵ′

K . Thus

ψF

(
ϵPK/F (x)β

δ

)
= ψK/F

(
ϵxβ

δ

)
ψF

(
NK/F (ϵ1x)β

δ

)
.

But d′ + ϵ′ + t ⩾ t+ 1 so that

NK/F (ϵ1x)β ≡ αNK/F

(
ϵ1β1
α1

· x
)

(mod Pt+1
F )

Since t+ 1 = m+ v, d′ + ϵ′ + v ⩾ s and if y = ϵ1β1
α1

· x then y which lies in Pd′+ϵ′+v
K also lies

in Ps
K . But

2s+ (t+ 1)(ℓ− 1)

ℓ
⩾ t+ 1
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so that
NK/F (1 + y) ≡ 1 + SK/F (y) +NK/F (y) (mod Pt+1

F ).

Consequently

ψF

(
−αNK/F (y)

δ

)
= ψF

(
αSK/F (y)

δ

)
.

In conclusion

ψF

(
ϵPK/F (x)β

δ

)
= ψK/F

(
ϵ1
δ

(
ϵ

ϵ1
· β − α

α1

· β1
)
x

)
as required.

Since 2 ⩽ m ⩽ t+ 1 the extension is wildly ramified, ℓ = p, and once the character µF is
chosen as in the previous lemma we can define µζF as in Lemma 8.5. The left side is congruent
to

β
(
βℓ−1ϵℓ−1 + (−1)ℓαℓ−1

)
.

If β ∈ Pd
F this is congruent to 0 and so is the right side. Suppose βOF = Pu

F with u < d.
The right side is congruent to

NK/F

(
β
ϵ

ϵ1
− β1

α

α1

)
≡ βαℓ−1NK/F

(
β

β1

α1

α

ϵ

ϵ1
− 1

)
.

Since
(ℓ− 1)(u+ v) + (ℓ− 1)(t+ 1)

ℓ
⩾
ℓ− 1

ℓ
· (t+ 1) ⩾

t+ 1

2
⩾ d

this is congruent to

(8.1) βαℓ−1

{
NK/F

(
β

β1

α1

α

ϵ

ϵ1

)
+ (−1)ℓ

}
.

Since
βNK/F (β

−1
1 ) ≡ 1 (mod Pt−u

F ).

We see that
βℓ+1NK/Fβ

−1
1 ≡ βℓ (mod Pt

F )

and that the expression (8.1) is congruent to

βℓϵℓ−1 + (−1)ℓβαℓ−1

modulo Pd
F .

Lemma 8.12. Suppose K/F is abelian and G = G(K/F ). Suppose there is an integer
t such that G = Gt while Gt+1 = {1}. Let χF be a quasi-character of CF and suppose
2 ⩽ m(χF ) ⩽ t + 1. If m(χF ) < t + 1 then m(χK/F ) = m(χF ). If m(χF ) = t + 1 then
m(µFχF ) < t+ 1 for some µF in S(K/F ) if and only if m(χK/F ) < m(χF ).

It follows immediately from Lemma 6.7 that if χF is any quasi-character of CF and E
any finite separable extension of F then

m(χE/F )− 1 ⩽ ψE/F
(
m(χF )− 1

)
.

In the particular case under consideration Lemma 6.10 shows that if m = m(χF ) ⩽ t then

NK/F : Um−1
K /U t

K → Um−1
F /U t

F
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is an isomorphism. Thus χK/F (α) will be different from 1 for some α in Um−1
K and m(χK/F )

will be at least m. If m(χF ) = t+ 1 then m(µFχF ) is less than t+ 1 for some µF in S(K/F )
if and only if χF is trivial on the image of U t

K/U
t+1
K in U t

F/U
t+1
F . This is so if and only if

m(χK/F ) ⩽ t.
We shall need the following lemma in the proof of the first main lemma.

Lemma 8.13. Suppose K/F is cyclic of prime order, χF is a quasi-character of CF with
m(χF ) ⩽ t+ 1, and m(χK/F ) = m(χF ). Choose α, α1, ϵ, ϵ1 in Lemma 8.11. We may choose
β = β(χF ) = NK/Fβ1 with β1 in UK and we may choose

β(χK/F ) = β
ϵ

ϵ1
− β1

α

α1

.

Moreover m(µζFχF ) = t+ 1 and we may take

β(µζFχF ) = NK/F (ζα1 + ϵ1β1).

Since β(χF ) is determined only modulo Pd
F and d ⩽ t the existence of β1 is clear. It is

also clear that m(µζFχF ) = t+ 1. The elements β(χF ), β(χK/F ), and β(µ
ζ
FχF ) are to satisfy

the following conditions:

(i) If x is in Pd
F

χF (1 + x) = ψF

(
ϵβ(χF )x

δ

)
.

(ii) If x is in Pd′
K

χK/F (1 + x) = ψK/F

(
ϵ1β(χK/F )x

δ

)
.

(iii) If x is in Ps
F

µζF (1 + x)χF (1 + x) = ψF

(
β(µζFχF )x

δ

)
.

We have already shown that β(χK/F ) may be taken to be

β
ϵ

ϵ1
− β1

α

α1

β(µζFχF ) must be congruent to ζα+ ϵβ modulo Pr
F

NK/F (ζα1 + ϵ1β1) = ζαNK/F

(
1 +

ϵ1β1
ζα1

)
.

Since
ν + (ℓ− 1)(t+ 1)

ℓ
⩾
ℓ− 1

ℓ
(t+ 1) ⩾ r.

The right side is congruent to

ζα

{
1 +NK/F

(
ϵ1β1
ζα1

)}
= ζα + ϵβ

modulo Pr
F .

2

2(1998) The manuscript of Chapter 8 ends here.





CHAPTER 9

A lemma of Hasse

Let λ ⊆ κ be two finite fields and let G = G(κ/λ). If x ∈ κ set

ωκ/λ(x) =
∑

xσ1xσ2

where the sum is taken over all unordered pairs of distinct elements of G. It is clear that

ωκ/λ(x+ y) = ωκ/λ(x) + ωκ/λ(y) + Sκ/λ(x)Sκ/λ(y)− Sκ/λ(xy).

One readily verifies also that if λ ⩽ η ⩽ κ then

ωκ/λ(x) = ωη/λ
(
Sκ/η(x)

)
+ Sη/λ

(
ωκ/η(x)

)
.

Suppose ψλ is a non-trivial character of λ and φλ is a nowhere vanishing function on λ
satisfying the identity

φλ(x+ y) = φλ(x)φλ(y)ψλ(xy).

Define φκ/λ on κ by

φκ/λ(x) = φλ
(
Sκ/λ(x)

)
ψλ
(
−ωκ/λ(x)

)
.

Then φκ/λ(x+ y) is equal to

φλ
(
Sκ/λ(x+ y)

)
ψλ
(
−ωκ/λ(x)− ωκ/λ(y)− Sκ/λ(x)Sκ/λ(y) + Sκ/λ(xy)

)
which is

φκ/λ(x)φκ/λ(y)ψκ/λ(xy).

If the fields have odd characteristic the following lemma is, basically, a special case of
Lemma 7.7. That lemma has been proven in a simple and direct manner by Weil [14]. We
shall use his method to prove the following lemma which in characteristic two, when it cannot
be reduced to the previous lemma, is due to Hasse [8].

Lemma 9.1. Let
σ(φλ) = −

∑
x∈λ

φλ(x)

and let
σ(φκ/λ) = −

∑
x∈κ

φκ/λ(x).

Then
σ(φκ/λ) = σ(φλ)

[κ:λ].

If
P (X) = Xm − aXm−1 + bXm−2 −+ · · ·

is any monic polynomial with coefficients in λ set m(P ) = m and

χλ(P ) = φλ(a)ψλ(−b).

61
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If the degree of the polynomial is 1, b is taken to be 0; if the degree is 0 both a and b are
taken to be 0. If

P ′(X) = Xm′ − a′Xm′−1 + b′Xm′−2 −+ · · ·
then

PP ′(X) = Xm+m′ − (a+ a′)Xm+m′−1 + (b+ b′ + aa′)Xm+m′−2 −+ · · ·
and

χλ(PP
′) = φλ(a+ a′)ψλ(−b− b′ − aa′) = χλ(P )χλ(P

′).

If t is an indeterminate we introduce the formal series

Fλ(t) =
∑

χλ(P )t
m(P ) =

∏(
1− χλ(P )t

m(P )
)−1

.

The sum is over all monic polynomials with coefficients in λ and the product is over all
irreducible polynomials of positive degree with coefficients in λ. If r ⩾ 2∑

m(P )=r

χλ(P ) = 0

so that
Fλ(t) = 1− σ(φλ)t.

If we replace λ by κ, φλ by φκ/λ, and ψλ by ψκ/λ, we can define Fκ/λ(t) in a similar way.
If k = [κ : λ] and T is the set of kth roots of unity, the problem is to show that∏

ζ∈T

Fλ(ζt) = Fκ/λ(t
k).

Suppose P is an irreducible monic polynomial with coefficients in λ and P ′ is one of its
monic irreducible factors over κ. Let m = m(P ) and let r be the greatest common divisor of
m and k. The field obtained by adjoining the roots of P to κ has degree mk

r
over λ and is

the same as the field obtained by adjoining the roots of P ′ to κ. Thus m(P ′) = m
r
and P

splits into r irreducible factors over κ. We shall show that

χκ/λ(P
′) =

{
χλ(P )

}k/r
.

Thus if P ′
1, . . . , P

′
r are the factors of P and ℓ = k

r

r∏
i=1

{
1− χκ/λ(P

′
i )t

km(P ′
i )
}
=
{
1− χλ(P )

ℓtℓm
}r

which equals ∏
ζ∈T

{
1− χλ(P )ζ

mtm
}
.

The necessary identity follows.
Let ν be the field obtained by adjoining a root x of P ′ to κ and let µ be the field obtained

by adjoining x to λ. If
P (X) = Xm − aXm−1 + bXm−2 · · ·

then
a = Sµ/λ(x)

and
b = ωµ/λ(x).
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Thus
χλ(P ) = φλ

(
Sµ/λ(x)

)
ψλ
(
−ωµ/λ(x)

)
= φµ/λ(x).

Since φν/λ(x) is equal to

φλ

(
Sκ/λ

(
Sν/κ(x)

))
ψλ

(
−ωκ/λ

(
Sν/κ(x)

)
+ Sκ/λ

(
ων/κ(x)

))
which in turn equals

φκ/λ
(
Sν/κ(x)

)
ψκ/λ

(
−ων/κ(x)

)
.

We conclude that
χκ/λ(P

′) = φν/λ(x).

Replacing κ by µ we see that φν/λ(x) equals

φµ/λ
(
Sν/µ(x)

)
ψµ/λ

(
−ων/µ(x)

)
= φµ/λ(ℓx)ψµ/λ

(
−ℓ(ℓ− 1)

2
x2
)
.

One easily shows by induction that for every integer ℓ

(9.1)
{
φµ/λ(x)

}ℓ
= φµ/λ(ℓx)Ψµ/λ

(
−ℓ(ℓ− 1)

2
x2
)
.

The relation
χκ/λ(P

′) =
{
χλ(P )

}ℓ
follows.

Taking µ = λ in the identity (9.1) we see that{
φλ(x)

}ℓ
= φλ(ℓx)ψλ

(
−ℓ(ℓ− 1)

2
x2
)

for every integer ℓ. Moreover
{
φλ(0)

}2
= φλ(0) so that φλ(0) = 1. If the characteristic p of

λ is odd take ℓ = p to see that
{
φλ(x)

}p
= 1. If the characteristic is 2, take ℓ = 4 to see that{

φλ(x)
}4

= 1. Suppose φ′
λ is another function on λ which vanishes nowhere and satisfies

φ′
λ(x+ y) = φ′

λ(x)φ
′
λ(y)ψλ(xy).

Then φ′
λφ

−1
λ is a character and for some α in λ

φ′
λ(x) ≡ φλ(x)ψλ(αx).

Of course
φλ(x)ψλ(αx) = φλ(x+ α)φ−1

λ (α).

Thus
σ(φ′

λ) = φ−1
λ (α)σ(φλ).

If a and b are two non-zero complex numbers and m is a positive integer we write a ∼m b if,

for some integer r ⩾ 0,
(
a
b

)mr

= 1.

Lemma 9.2. If α ∈ λ×, the multiplicative group of λ, let ν(α) be 1 or −1 according as α is
or is not a square in λ. Suppose ψ′

λ(x) = ψλ(αx), φλ and φ′
λ are nowhere vanishing, and

φλ(x+ y) = φλ(x)φλ(y)ψλ(xy)

while
φ′
λ(x+ y) = φ′

λ(x)φ
′
λ(y)ψ

′
λ(xy).
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Then
σ(φ′

λ) ∼p ν(α)σ(φλ).

Moreover
σ(φλ) ∼2p

∣∣σ(φλ)∣∣.
Suppose first that p is odd. By the remarks preceding the statement of the lemma it

is enough to prove the assertions for one choice of φλ and φ′
λ. For example we could take

φλ(x) = Ψλ

(
(x2)
2

)
and if α = β2 we could take φ′

λ(x) = ψλ

(
(βx)2

2

)
. In this case it is clear

that σ(φλ) = σ(φ′
λ). However if α is not a square, we take φ′

λ(x) = ψλ

(
αx2

2

)
. Then

σ(φλ) + σ(φ′
λ) = 2

∑
x∈λ

ψλ

(
x

2

)
= 0.

With this choice of φλ,

φλ(x) = ψλ

(
−x

2

2

)
so that σ(φλ) = ν(−1)σ(φλ). Moreover it is well known and easily verified that σ(φλ) ̸= 0.
Since {

σ(φλ)
}4

=
{
ν(−1)

}2∣∣σ(φλ)∣∣4 = ∣∣σ(φλ)∣∣4
we have

σ(φλ) ∼2p

∣∣σ(φλ)∣∣.
The absolute value on the right is of course the ordinary absolute value.

Suppose p is 2. Again any choice of φλ and φ′
λ will do. In this case α is necessarily a

square. Let α = β2. We can take φ′
λ(x) = φλ(βx). Then σ(φ′

λ) = σ(φλ). It is enough to
prove the second assertion for any ψλ and any φλ. Let ϕ be the prime field and let ψϕ be the
unique non-trivial additive character of ϕ. Take ψλ = ψλ/ϕ. Let φϕ(0) = 1, φϕ(1) = i. One
verifies by inspection that

φϕ(x+ y) = φϕ(x)φϕ(y)ψϕ(xy).

Take φλ = φλ/ϕ. Since

σ(φλ/ϕ) =
{
σ(φϕ)

}[λ:ϕ]
,

it is enough to verify that
σ(φϕ) ∼2

∣∣σ(φϕ)∣∣.
Since σ(φϕ) = −1 + i, this is no problem.

If a is a non-zero complex number set

A[a] =
a

|a|
.

The following lemma explains our interest in the numbers σ(φλ).

Lemma 9.3. Suppose L is a non-archimedean local field and χL is a quasi-character of CL
with m = m(χL) = 2d + 1, where d is a positive integer. Let ψL be a non-trivial additive
character of L and let n = n(ψL). Let γ be such that γOL = Pm+n

L and let β be a unit such
that

χL(1 + x) = ψL

(
βx

γ

)
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for x in Pd+1
L . Choose δ so that δOL = Pd

L and let ψλ be the character of λ = OL/PL defined
by

ψλ(x) = ψL

(
βδ2x

γ

)
.

If φλ is defined by

φλ(x) = ψL

(
βδx

γ

)
χ−1
L (1 + δx)

then
φλ(x+ y) = φλ(x)φλ(y)ψλ(xy)

and
∆3(χL, ψL, γ) = A

[
−σ(φλ)

]
.

In the statement of this lemma we have not distinguished, in the notation, between an
element of OL and its image in λ. This is convenient and not too ambiguous. It will be done
again. The only questionable part of the lemma is the relation

φλ(x+ y) = φλ(x)φλ(y)ψλ(xy).

Since
(1 + δx)(1 + δy) ≡ (1 + δx+ δy)(1 + δ2xy) (mod Pm

L )

we have

χ−1
L (1 + δx)χ−1

L (1 + δy) = χ−1
L (1 + δx+ δy)ψL

(
−βδ

2xy

γ

)
.

The required relation follows immediately.
There are a few remarks which we shall need later. It is convenient to formulate them

explicitly now. We retain the notation of the previous lemma.

Lemma 9.4. If m(µL) < m(χL) then

∆3(µLχL,ΨL; γ) ∼p ∆3(χL,ΨL; γ)

and if m(µL) ⩽ d we may take β(µLχL) = β(χL) and then

∆3(µLχL, ψL; γ) = ∆3(χL, ψL; γ).

In both cases m(µLχL) = m(χL). Moreover if x ∈ P2d
L

ψL

(
β(µLχL)x

γ

)
= µL(1 + x)χL(1 + x) = χL(1 + x)

which in turn equals

ψL

(
β(χL)x

γ

)
.

Thus
β(µLχL) ≡ β(χL) (mod PL)

and if

ψλ(x) = ψL

(
β(χL)δ

2x

γ

)
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while

ψ′
λ(x) = ψL

(
β(µLχL)δ

2x

γ

)
then ψλ = ψ′

λ. The first assertion of the lemma now follows from the previous two lemmas.
It is clear that we can take β(µLχL) = β(χL) if m(µL) ⩽ d. Let the common value of the
two numbers be β. Then

ψL

(
βδx

γ

)
µ−1
L (1 + δx)χ−1

L (1 + δx)

is equal to

ψL

(
βδx

γ

)
χ−1
L (1 + δx).

We see now that the second assertion is completely trivial.
There is a corollary of this lemma which it is convenient to observe.

Lemma 9.5. Suppose m(χL) = 2d + ϵ where d is a positive integer and ϵ is 0 or 1. If
m(µL) ⩽ d and µL is of order r then

∆(µLχL, ψL) ∼r ∆(χL, ψL).

Choose γ in the usual way so that

∆(χL, ψL) = χL(γ)∆1(χL, ψL; γ)

and
∆(µLχL, ψL) = χL(γ)µL(γ)∆1(µLχL, ψL; γ).

It is clear that
µL(γ) ∼r 1.

If we take
β(µLχL) = β(χL)

then, clearly,
∆2(µLχL, ψL; γ) ∼r ∆2(χL, ψL, γ).

To complete the proof of Lemma 9.5 we have only to appeal to Lemma 9.4.

Lemma 9.6. Suppose K is an unramified extension of L and χL is a quasi-character of CL
with

m = m(χL) = 2d+ 1

where d is a positive integer. Let ψL be a non-trivial additive character of F and let n = n(ψL).
Suppose

χL(1 + x) = ψL

(
βx

ϖm+n
L

)
for x in Pd+1

L . Take
β(χL) = β(χK/L) = β.

If

φλ(x) = ψL

(
βϖd

Lx

ϖm+n
L

)
χ−1
L (1 +ϖd

Lx)
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and if

φκ(x) = ψK/L

(
βϖd

Lx

ϖm+n
L

)
χ−1
K/L(1 +ϖd

Lx)

for x in κ = 0K/PK then φκ = φκ/λ. Moreover if [K : L] = ℓ then

∆3(χK/L, ψK/L, ϖ
m+n
L ) = (−1)ℓ−1

{
∆3(χL, ψL, ϖ

m+n
L )

}ℓ
.

Once we prove that φκ = φκ/λ this lemma will follow from Lemmas 9.1 and 9.3. If x
belongs to K let E2(x) be the second elementary symmetric function of x and its conjugates
over L. If x belongs to OK

NK/F (1 +ϖd
Lx) ≡ (1 +ϖd

LSK/Lx)
(
1 +ϖ2d

L E
2(x)

)
(mod Pm

L ).

Since
E2(x) ≡ ωκ/λ(x) (mod PF )

we have
φκ(x) = φλ(SK/Lx)ψλ

(
−ωκ/λ(x)

)
= φκ/λ(x).

Now suppose K is a ramified abelian extension of L and [K : L] = ℓ is an odd prime. Let
G = G(K/L) and suppose G = Gt while Gt+1 = {1}. Suppose

m = m(χL) = 2d+ 1

is greater than or equal to t+ 1 and

χL(1 + x) = ψL

(
βx

ϖm+n
L

)
for x in Pd+1

L . Let

d′ = ℓd−
(
ℓ− 1

2

)
t

and if x belongs to OK set

φ′
λ(x) = ψK/L

(
βϖd′

Kx

ϖm+n
L

)
χ−1
L

(
1 + SK/L(ϖ

d′

Kx) + E2(ϖd′

Kx)
)
.

Suppose also that
ϖL = NK/LϖK .

The assumptions listed, we may now state the next lemma.

Lemma 9.7. If

ϵ = SK/L

(
ϖ2d′
K

ϖ2d
L

)
then ϵ is a unit. Moreover φ′

λ is a function on λ = OL/PL +OK/PK which satisfies

φ′
λ(x+ y) = φ′

λ(x)φ
′
λ(y)ψλ(ϵxy)

if

ψλ(u) = ψL

(
βu

ϖ1+n
L

)
.
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If

φλ(x) = ψL

(
βx

ϖd+1+n
L

)
χ−1
L (1 +ϖd

Lx)

then
A
[
σ(φλ)

]ℓ
= A

[
σ(φ′

λ)
]
.

Since
d′ + (ℓ− 1)(t+ 1)

ℓ
⩾ d

the number
SK/L(ϖ

d′

Kx)

lies in Pd
L. Moreover E2(ϖd′

Kx) is a sum of traces of elements in P2d′
K . Since

2d′ + (ℓ− 1)(t+ 1)

ℓ
= 2d+

ℓ− 1

ℓ
⩾ 2d

it lies in P2d
L . If x lies in PK it lies in Pm

L and

SK/L(ϖ
d′

Kx)

lies in Pd+1
L because

d′ + 1 + (ℓ− 1)(t+ 1)

ℓ
= d+ 1 +

t(ℓ− 1)

2ℓ
⩾ d+ 1.

Thus if x belongs to PK

φ′
λ(x) = ψL

(
β

ϖm+n
L

SK/L(ϖ
d′

Kx)

)
χ−1
L

(
1 + SK/L(ϖ

d′

Kx)
)
= 1.

Since
E2
(
ϖd′

K(x+ y)
)

is equal to

E2(ϖd′

Kx) + E2(ϖd′

Ky) + SK/L(ϖ
d′

Kx)SK/L(ϖ
d′

Ky)− SK/L(ϖ
2d′

K xy),

the expression

1 + SK/L

(
ϖd′

K(x+ y)
)
+ E2

(
ϖd′

K(x+ y)
)

is congruent modulo Pm
L to the product of

1 + SK/L(ϖ
d′

Kx) + E2(ϖd′

Kx)

and
1 + SK/L(ϖ

d′

Ky) + E2(ϖd′

Ky)

and
1− SK/L(ϖ

2d′

K xy).

Thus
φ′
λ(x+ y) = φ′

λ(x)φ
′
λ(y)ψλ(ϵxy).

Since
2d′ + (ℓ− 1)(t+ 1)

ℓ
⩾ 2d
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the number ϵ is in OL. We conclude in particular that if y belongs to PK then

φ′
λ(x+ y) = φ′

λ(x).

If t = 0 let σ be a generator of G and let ϖ1−σ
K = ν. In this case 2d′ = 2dℓ and

ϖ2d′
K

ϖ2d
L

=

∏
τ∈G

ϖ1−τ
K


2d

≡ νdℓ(ℓ−1) (mod PL)

and
ϵ ≡ ℓνdℓ(ℓ−1) (mod PL)

is a unit. If t > 0
ϖ2d′

K ≡ ϖ2d−t
L ϖt

K (mod PK)

so that

ϵ ≡ SK/L

(
ϖt
K

ϖt
L

)
(mod PL).

It is shown in paragraph V.3 of Serre’s book that the right side of this congruence is a unit.
First take p odd and let

φλ(x) = ψλ

(
x2

2
+ αx

)
= ψλ

(
(x+ α)2

2

)
ψλ

(
−α2

2

)
.

Then

σ(φλ) = −ψλ

(
−α2

2

)∑
ψλ

(
(x+ α)2

2

)
= −ψλ

(
−α2

2

)∑
ψλ

(
x2

2

)
.

Making use of the calculations in the proof of Lemma 9.2 we see that

A
[
σ(φλ)

]ℓ
= νλ(−1)

ℓ−1
2 ψλ

(
−ℓα2

2

)
A

−∑
λ

ψλ

(
x2

2

)
of νλ is the non-trivial quadratic character of λ×.

Since
1 + SK/L(ϖ

d′

Kx) + E2(ϖd′

Kx)

is congruent to {
1 + SK/L(ϖ

d′

Kx)
}{

1 + E2(ϖd′

Kx)
}

modulo Pm
L the value of φ′

λ(x) is

ψλ

(
(SK/Ly)

2 + 2αSK/Ly − 2E2(y)

2

)
if

y =
ϖd′
K

ϖd
L

x.

Thus

φ′
λ(x) = ψλ

((
SK/L(y + α)2

)
− ℓα2

2

)
.
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Replacing x by

x− ϖd
L

ϖd′
K

α

and summing we find that

σ(φ′
λ) = ψλ

(
−ℓα2

2

)−
∑
x

ψλ

(
ϵx2

2

).
Collecting this information together we see that to prove the lemma when the residual

characteristic p is odd we must show that

νλ(−1)
ℓ−1
2 = νλ(ϵ).

Since νdℓ(ℓ−1) is certainly a square we have to show that

νλ(−1)
ℓ−1
2 = νλ(ℓ)

when t = 0. If the field λ is of even degree over the prime field both sides are 1. If not, an
odd power of p is congruent to 1 modulo ℓ and the relation follows from the law of quadratic
reciprocity. If t > 0 then

ϵ ≡ SK/L

(
ϖt
K

ϖt
L

)
(mod PL)

and we can appeal to paragraph V.3 for a proof that

ϵ+ up−1 ≡ 0

has a solution in λ. Thus νλ(ϵ) = νλ(−1) and we have to show that

νλ(−1)
p−3
2 = 1.

If p ≡ 1 (mod 4) then νλ(−1) = 1 and if p ≡ 3 (mod 4) the exponent is even.
Before considering the case p = 2, we remark a simple consequence of the preceding

discussion.

Lemma 9.8. If p is odd let

φλ(x) = ψλ

(
x2

2
+ αx

)
.

If t = 0 and

µ = νdℓ
(ℓ−1)

2

then

φ′
λ

(
x

µ

)
= ψλ

ℓ(x2
2

+ αx

)
and if t > 0

φ′
λ(x) = ψλ

(
ϵx2

x

)
.
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In both cases

φ′
λ(x) = ψλ

((
SK/L(y + α)2

)
− ℓα2

2

)
with

y =
ϖd′
K

ϖd
L

x.

If t = 0 then y = µx. Thus if x belongs to OL, as we may assume,

φ′
λ

(
x

µ

)
= ψλ

(
ℓ(x+ α)2 − ℓα2

2

)
= ψλ

ℓ(x2
2

+ αx

).
If t > 0 then ℓ = p is odd and

d′ℓd+ (ℓ− 1)(t+ 1)

ℓ
=

1

ℓ

{
(ℓ− 1)(t− 1)− (ℓ− 1)

2
t

}
=

1

ℓ

{
(ℓ− 1) +

(ℓ− 1)

2
t

}
⩾ 1

so that, if x ∈ OF ,
SK/L(y + α)2 ≡ ϵx2 (mod PL).

Now take p = 2 so that t is necessarily 0 and again let

µ = νdℓ
(ℓ−1)

2

so that
ϖd′
K

ϖd
L

≡ µ (mod PK).

If x is in OL and y = x
µ
then

φ′
λ

(
x

µ

)
= φ′

λ(y)

is equal to

ψL

(
ℓx

ϖd+1+n
L

)
χ−1
L

(
1 + ℓϖd

Lx+
ℓ(ℓ− 1)

2
ϖ2d
L x

2

)
.

Since

1 + ℓϖd
Lx+

ℓ(ℓ− 1)

2
ϖ2d
L x

2 ≡ (1 + ℓϖd
Lx)

(
1 +

ℓ(ℓ− 1)

2
ϖ2d
L x

2

)
modulo Pm

L we have

φ′
λ

(
x

µ

)
= φλ(ℓx)ψλ

(
−ℓ(ℓ− 1)

2
x2
)

which equals {
φλ(x)

}ℓ
.

Moreover {
φλ(x)

}2
= φλ(2x)ψλ(−x2) = ψλ(−x2).

Since the characteristic is 2 there is an α ̸= 0 such that

ψλ(x
2) = ψλ(αx).

Then the complex conjugate of φλ(x) is

φλ(x)ψλ(αx)
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and
σ(φλ) = −

∑
x

φλ(x+ α)

which equals

−
∑
x

φλ(x)φλ(α)ψλ(αx)

is equal to
φλ(α)σ(φλ).

Consequently

A
[
σ(φλ)

]ℓ
= φλ(α)

ℓ−1
2 A
[
σ(φλ)

]
.

Since {
φλ(x)

}4
= 1

we have
A
[
σ(φ′

λ)
]
= A

[
σ(φλ)

]
if ℓ ≡ 1 (mod 4) and

A
[
σ(φ′

λ)
]
= A

[
σ(φλ)

]
= φ−1

λ (α)A
[
σ(φλ)

]
if ℓ ≡ 3 (mod 4).

We have to show that
φλ(α)

ℓ−1
2 = 1

if ℓ ≡ 1 (mod 4) and that

φλ(α)
ℓ+1
2 = 1

if ℓ ≡ 3 (mod 4). These relations are clear if ℓ is congruent to 1 or 7 modulo 8. In general if
ℓ ≡ 1 (mod 4)

φλ(α)
ℓ−1
2 = ψλ

(
−(ℓ− 1)(ℓ− 3)

8
α2

)
and if ℓ ≡ 3 (mod 4)

φλ(α)
ℓ+1
2 = ψλ

(
−(ℓ+ 1)(ℓ− 1)

8
α2

)
.

Let ϕ be the prime field and let ψϕ be its non-trivial additive character. Choose α1 such
that

ψλ/ϕ(x) = ψλ(α
2
1x).

Then

ψλ(x
2) = ψλ/ϕ

(
x2

α2
1

)
= ψλ/ϕ

(
x

α1

)
= ψλ(α1x)

and α = α1. Thus
ψλ(α

2) = ψλ/ϕ(1).

The right side is +1 or –1 according as f = [λ : ϕ] is even or odd. But ℓ divides 2f − 1 so
that, by the second supplement to the law of quadratic reciprocity, f is even if ℓ is congruent
to 3 or 5 modulo 8.

There is a complement to Lemma 9.7.
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Lemma 9.9. If m(χL) ⩾ 2(t+ 1) choose β(χK/L) = β(χL) = β in OL. If t+ 1 < m(χL) <
2(t+ 1) choose β(χL) = β and

β(χK/L) = β − β1
α

α1

as in Lemma 8.9. Then m(χK/L) = 2d′ + 1 and

ψK/L

(
β(χK/L)ϖ

d′
Kx

ϖm+n
L

)
χ−1
K/L(1 +ϖd′

Kx)

is equal to

ψK/L

(
βϖd′

Kx

ϖm+n
L

)
χ−1
L

(
1 + SK/L(ϖ

d′

Kx) + E2(ϖd′

Kx)
)
.

From Lemma 8.8 we have

m(χK/L) = 1 + t+ ℓ(m− 1− t) = 2

(
ℓd− (ℓ− 1)

2
t

)
+ 1

as required. If d ⩾ t+ 1 then

d′ ⩾
(ℓ+ 1)

2
d+

(ℓ− 1)

2
(d− t) ⩾ m

because ℓ is odd. Moreover,

3d′ + (ℓ− 1)(t+ 1)

ℓ
⩾
m′ + (ℓ− 1)(t+ 1)

ℓ
= m.

Consequently

NK/L(1 +ϖd′

Kx) ≡ 1 + SK/L(ϖ
d′

Kx) + E2(ϖd′

Kx) (mod Pm
L )

and the lemma is valid if m ⩾ 2(t+ 1).
If t+ 1 < m < 2(t+ 1) we still have

3d′ + (ℓ− 1)(t+ 1)

ℓ
⩾ m

so that
NK/L(1 +ϖd′

Kx)

is congruent to
1 + SK/L(ϖ

d′

Kx) + E2(ϖd′

Kx) +NK/L(ϖ
d′

Kx)

modulo Pm
L . Since d

′ ⩾ d+ 1 this is congruent to{
1 + SK/L(ϖ

d′

Kx) + E2(ϖd′

Kx)
}{

1 +NK/L(ϖ
d′

Kx)
}

modulo Pm
L . Certainly

χL

(
1 +NK/L(ϖ

d′

Kx)
)
= ψL

(
βNK/L(ϖ

d′
Kx)

ϖm+n
L

)
.

Moreover, if m = t+ 1 + v

d′ − v = d+
ℓ− 3

2
v ⩾ d ⩾ s
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if s is the least integer greater than or equal to t
2
. Thus, just as in the proof of Lemma 8.5,

ψL

(
βNK/L(ϖ

d′
Kx)

ϖm+n
L

)
= ψL

αNK/L

(
β1
α1
ϖd′
Kx
)

ϖm+n
L


is equal to

ψL

−SK/L
(
αβ1
α1
ϖd′
Kx
)

ϖm+n
L

.
Multiplying the inverse of this with

ψK/L

((
β − αβ1

α1

)
ϖd′
Kx

ϖm+n
L

)
we obtain

ψK/L

(
βϖd′

Kx

ϖm+n
L

)
.

The lemma follows.
If m = t+ 1 we may still choose

β(χK/L) = β − β1
α

α1

as in Lemma 8.9. However the relation between φλ(x) and

φK(x) = ψK/L

(
β(χK/L)ϖ

d′
Kx

ϖm+n
L

)
χ−1
K/L(1 +ϖd′

Kx)

will be more complicated. Here x = OK/PK is the same field as λ = OL/PL. We introduce
it only for notational purposes.

Because m = t+ 1 the number t is at least 2 and

d = d′ =
t

2
.

Since
3d+ (p− 1)(t+ 1)

p
⩾ t+ 1

and
d+ (p− 1)(t+ 1)

p
⩾ d+ 1

the expression
NK/L(1 +ϖd

Kx)

is congruent to {
1 + SK/L(ϖ

d
Kx) + E2(ϖd

Kx)
}
{1 +ϖd

LNK/Lx}
modulo Pm

L and

χL

(
1 + SK/L(ϖ

d
Kx) + E2(ϖd

Kx)
)
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is equal to

ΨL

(
βSK/L(ϖ

d
Kx) + βE2(ϖd

Kx)

ϖm+n
F

)
.

According to Newton’s formulae

SK/L(ϖ
2d
K x

2)− SK/L(ϖ
d
Kx)

2 + 2E2(ϖd
Kx) = 0.

Thus

E2(ϖd
Kx) ≡ −1

2
SK/L(ϖ

2d
K x

2) (mod Pm
L ).

Observe that p is equal to ℓ and therefore, in the present circumstances, odd.
Let µL be a character in S(K/L) as in Lemma 8.9(c) and let

ψL

(
αx

ϖd+1+n
L

)
µ−1
L (1 +ϖd

Lx) = ψλ

(
ρ
x2

2
+ τx

)
with

ρ =
α

β
.

Certainly

µL

(
NK/L(1 +ϖd

Kx)
)
= 1

if x belongs to OK . Replacing x by β1
α1
x we see that

ψL

 1

ϖm+n
L

αSK/L
(
β1
α1

ϖd
Kx

)
− α

2
SK/L

(
β2
1

α2
1

ϖ2d
K x

2

)
+NK/L(β1ϖ

d
Kx)




is equal to

ψλ

(
ρ
z2

2
+ τz

)
if

z =
1

ϖd
L

SK/L
(
β1
α1

ϖd
Kx

)
− 1

2
SK/L

(
β2
1

α2
1

ϖ2d
K x

2

)
+NK/L

(
β1
α1

ϖd
Kx

)
which is congruent to

β

α
NK/Lx ≡ β

α
xp

modulo PL.
Let

φλ(x) = ψL

(
βx

ϖd+1+n
L

)
χ−1
L (1 +ϖd

Lx)

equal

ψλ

(
x2

2
+ σx

)
.
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If x belongs to OK

χ−1
L (1 +ϖd

LNK/Lx) = ψλ

(
x2p

2
+ σxp

)
ψL

(
−βNK/Lx

ϖd+1+n
L

)
.

We now put these facts together to find a suitable expression for φκ(x). We may as well
take x in OL. Then φκ(x) is the product of

ψK/L

(
βϖd′

Kx

ϖm+n
L

)
and

ψK/L

(
−β1α
α1

ϖd
Kx

ϖm+n
L

)
χ−1
L (1 +ϖd

LNK/Lx)

and

ψL

(
− β

ϖm+n
L

{
SK/L(ϖ

d
Kx)−

1

2
SK/L(ϖ

2d
K x

2)

})
.

The second of these three expressions is equal to the product of

ψλ

(
x2p

2
+ σxp

)
ψλ

(
−ρ−1x

2p

2
− ρ−1τxp

)
and

ψK/L

(
−αβ

2
1ϖ

2d
K x

2

2α2
1ϖ

m+n
L

)
= ψλ

(
−ϵρβ

2
1

2α2
1

x2

)
if

ϵ = SK/L

(
ϖ2d
K

ϖ2d
L

)
.

The product of the first and third is equal to

ψλ

(
ϵx2

2

)
.

As proven in paragraph V.3 of Serre’s book the elements of UL congruent to

1 + (ϵx+ xp)ϖt
L

modulo Pt+1
L are all norms, so that

ψλ(ρx
p) = ψλ(−ρϵx).

In particular1

ψλ

(
−ϵρβ

2
1

2α2
1

x2

)
= ψλ

(
ρ−1x

2p

2

)
.

1(1998) The manuscript of Chapter 9 ends with this formula.
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CHAPTER 11

Artin-Schreier equations

The theory of Artin-Schreier equations is central to Dwork’s proof of the second main
lemma. We first review the basic theory, which we take from Mackenzie and Whaples [11],
and then review Dwork’s rather amazing calculations. These we take from Lakkis [9].

We start with an exercise from Serre’s book [12]. Suppose F is a non-archimedean local
field and K/F is Galois. Let p be the residual characteristic. With the convention (0) = P∞

F

we let
pOF = Pe

F .

Suppose G = G(K/F ) and σ ∈ Gi with i ⩾ 1. Let

ϖσ
K = ϖK(1 + a)

with a in Pi
K . Let

φ(x) = xσ − x.

φ is an F -linear operator on K. If x = αϖj
K belongs to Pj

K then

φ(x) = xσ − x = (ασ − α)ϖjσ
K + α(ϖjσ

K −ϖK)

is congruent to

αϖj
K(ϖ

j(σ−1)
K − 1) = αϖj

K

{
(1 + a)j − 1

}
modulo Pi+j+1

K . This in turn is congruent to

(αϖj
K)(ja) = jax

modulo Pi+j+1
K .

If1

ψ(x) = xσ
p − 1

then, as an operator,

ψ = (1 + φ)p − 1 =

p∑
k=1

(
p

k

)
φk.

If x belongs to Pj
K then

φk(x) ≡ j(j + i) · · ·
(
j + (k − 1)i

)
akx (mod Pj+ki+1

K )

and ψ(x) is congruent to

pjax+ j(j + i) · · ·
(
j + (p− 1)i

)
apx

or to
pjax+ j(jp−1 − ip−1)apx

modulo Pi+j+e′+1
K if pOK = Pe′

K . We deduce the following congruences:

1We seem to be dealing with yet another use of the symbol ψ!

79
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(i) If (p− 1)i > e′ then

ψ(x) ≡ pjax (mod Pi+j+e′+1
K ).

(ii) If (p− 1)i = e′ then

ψ(x) ≡ pjax+ j(1− ip−1)apx (mod Pi+j+e′+1
K ).

(iii) If (p− 1)i < e′ then

ψ(x) ≡ j(1− ip−1)apx (mod Ppi+j+1
K ).

Observe that if (j, p) = 1 and σ belongs to Gi, with i ⩾ 1, then

φ(x) ≡ 0 (mod Pi+j+1
K )

for all x in Pj
K if and only if σ belongs to Gi+1. It follows immediately that if σ belongs to

G1 and i ⩾ 1 then
φ(x) ≡ 0 (mod Pi+j

K )

for all x in Pj
K only if σ belongs to Gi.

If σ is replaced by σP then φ is replaced by ψ. If k > e′

p−1
and Gk ≠ {1} then, for some

i ⩾ k, Gi ≠ {1} and Gi+1 = {1}. Taking (j, p) = 1 we infer from (i) that if σ belongs to Gi

but not to Gi+1 then σp is in Gi+e′ but not in Gi+e′+1. This is impossible. Thus Gk = {1} if
k > e′

p−1
. If G1 ̸= {1} then p divides e′ so that if (p− 1)i = e′ the number i is also divisible

by p. The congruence (ii) reduces to

ψ(x) ≡ j(pa+ ap) (mod Pi+j+e′+1
K ).

Thus if σ belongs to Gi its pth power σp lies in Gi+e and is therefore 1. Consequently

pa+ ap ≡ 0 (mod Ppi+1
K ).

Letting a = αϖi
K and p = βϖe

K we find that

αp + βα ≡ 0 (mod PK).

Since this congruence has only p roots the image of Θi lies in a subset of U i
K/U

i+1
K with p

elements and Gi is either {1} or cyclic of order p.
If (p − 1) < e′ and (i, p) = 1 the congruence (iii) implies that σp belongs to Gpi+1 if σ

belongs to Gi. However if (p− 1)i < e′ and p divides i it shows that σp belongs to Gpi but not
to Gpi+1 if σ belongs to Gi but not to Gi+1. Thus σ → σp defines an injection of Gi/Gi+1 into
Gpi/Gpi+1. If Gi/Gi+1 is not trivial neither is Gpi/Gpi+1 and (p− 1)pi ⩽ e′. If (p− 1)pi < e′

we can repeat the process. Thus, for some positive integer h, (p− 1)phi = e′ and Gphi is not
trivial. It is then cyclic of order p. According to Proposition IV.10 of Serre’s book those k ⩾ 1
for which Gk/Gk+1 ̸= {1} are all congruent modulo p. In particular if Gk/Gk+1 is not trivial
for some k ⩾ 1 divisible by p it is not trivial only when k is divisible by p. The preceding
discussion shows that if i is the smallest value of k ⩾ 1 for which Gk/Gk+1 is non-trivial then
any σ in Gi but not in Gi+1 generates Gi = G1. In other words:

Lemma 11.1. If G1 is not cyclic then (i, p) = 1 if i ⩾ 1 and Gi/Gi+1 ̸= {1}.

Lemma 11.2. Suppose K/L is cyclic of prime degree and G = G(K/L) is equal to GL with
t ⩾ 1 and (t, p) = 1. Then there is a ∆ in K and an a in L such that aOL = P−t

L and

∆p −∆ = a.
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We observe first of all that [K : L] must be p and that if pOK = Pe′
K then (p− 1)t < e′.

If x belongs to K the symbol O(x) will stand for an element in xOK and the symbol o(x)
will stand for an element in xPK . If

x =

p−1∑
i=0

aiϖ
i
K

with ai in F then
|x| = max

0⩽i<p
|ai||ϖi

K |.

Moreover if σ is a generator of G

xσ − 1 =

p−1∑
i=1

aiϖ
i
K(ϖ

i(σ−1)
K − 1)

and if ϖσ−1
K = (1 + aϖt

K)

|ϖi(σ−1)
K − 1| =

∣∣∣(1 + aϖt
K)

i − 1
∣∣∣ = |ϖt

K |

for 1 ⩽ i < p. Thus

|xσ − x| = |ϖt
K |
{
max
1⩽i<p

|ai||ϖi
K |
}

⩽ |ϖt
K ||x|.

There is equality if a0 = 0. In particular if

y =

p−1∑
i=1

aiϖ
i
K

then
xσ − 1 = yσ − 1

and
|yσ − x| = |ϖt

K ||y|.
If x belongs to K let

p(x) = xp − x.

Then

(11.1) p(x+ y)− p(x)− p(y) =

p−1∑
i=1

(
p

i

)
xiyp−i

Since e′ − (p− 1)t > 0 the right side is o(y) if

vK(x) ⩾ −t
and

vK(y) ⩾ −t.
We define vK(x) by the equation

|x| = |ϖK |vK(x).

To prove the lemma we construct a sequence Λ0,Λ1,Λ2, . . . and a sequence Θ0,Θ1, . . .
with the following properties:

(i) vK(Λn) = −t for all n ⩾ 0.
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(ii) If σ is a given generator of G and ζ is a given (p− 1)th root of unity

Λσn − Λn = ζ + o(1).

(iii)
p(Λσn)− p(Λn) = Θσ

n −Θn

and
|Θσ

n −Θn| = |ϖt
K ||Θn|.

(iv)
Λn+1 = Λn +Θn.

(v)
p(Λσn+1)− p(Λn+1) = o

(
p(Λσn)− p(Λn)

)
.

It will follow from (iii) and (v) that {Θn} is converging to 0. Then (iv) implies that {Λn}
has a limit ∆. (i) implies that vK(∆) = −t and (v) implies that ∆p −∆ = a belongs to F .
From (ii)

∆σ −∆ = ζ + o(1).

To construct Λ0 let α belong to U i
K and consider

ασ

ϖσt
K

− α

ϖt
K

=
ασ − α

ϖσt
K

+
α

ϖt
K

(ϖ
t(1−σ)
K − 1) = −taα + o(1)

if
ϖσ
K = ϖK(1 + aϖt

K).

We can choose α so that
−taα = ζ + o(1).

Then we set
Λ0 =

α

ϖt
K

.

We observe in passing that conditions (i) and (ii) determine Λn modulo P−t+1
K .

Suppose Λ0, . . . ,Λn have been defined. Then

p(Λσn) = p(Λn) + p
(
ζ + o(1)

)
+ o(1)

which equals
p(Λn) + p(ζ) + o(1) = p(Λn) + o(1).

Choose Θn so that
Θσ
n −Θn = p(Λσn)− p(Λn)

and
|Θσ

n −Θn| = |ϖt
K ||Θn|.

Then vK(Θn) > −t and if
Λn+1 = Λn +Θn

vK(Λn+1) = −t. Moreover

Λσn+1 − Λn+1 = Λσn − Λn + o(1) = ζ + o(1).

and
p(Λn+1) = p(Λn) + p(Θn) + x

with x = o(Θn). Then

xσ − x = o(Θσ
n −Θn) = o

(
p(Λσn)− p(Λn)

)
.
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Also
p(Θσ

n)− p(Θn) = p(Θσ
n −Θn) + o(Θσ

n −Θn).

Since vK(Θ
σ
n −Θn) is positive, the right side is

−(Θσ
n −Θn) + o(Θσ

n −Θn).

Thus
p(Λσn+1)− p(Λn+1),

which equals
p(Λσn)− p(Λn)− (Θσ

n −Θn) + o
(
p(Λσn)− p(Λn)

)
is

o
(
p(Λσn)− p(Λn)

)
.

Lemma 11.3. Suppose ∆1 belongs to K, a belongs to L, vL(a) = −t and
∆p

1 −∆1 = a+O(ϖr
K)

with r ⩾ 1. Define ∆n inductively by

∆n+1 = ∆p
n − a.

Then
∆n+1 −∆n = o(∆n −∆n−1)

if n ⩾ 2 and if r ⩾
(
e′ − (p− 1)t

)
∆n+1 −∆n = O

(
ϖ
r+(n−1)(e′−(p−1)t)
K

)
.

Moreover
lim
n→∞

∆n = ∆

exists and ∆p −∆ = a.

The last assertion is a consequence of the first. It is clear that

∆2 −∆1 = O(ϖr
K).

Suppose n ⩾ 2, and
∆n −∆n−1 = x = o(1).

Then
∆n+1 −∆n = ∆p

n −∆p
n−1 = (∆n−1 + x)p −∆n−1

is equal to 
p−1∑
k=1

(
p

k

)
∆k
n−1x

p−k

+ xp

which is o(x) because e′ − (p− 1)t > 0. If

x = O

(
ϖ
r+(n−2)(e′−(p−1)t)
K

)
and r ⩾ e′ − (p− 1)t it is

O

(
ϖ
r+(n−1)(e′−(p−1)t)
K

)
.

The lemma has a couple of corollaries which should be remarked.
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Lemma 11.4. If a is in L, vL(a) = −t, ∆p−∆ = a, and ξ is a (p− 1)th root of unity, there
is a number ∆ξ such that

∆ξ = ∆+ ξ +O(ϖ
e′−(p−1)t
K )

and
∆p
ξ −∆ξ = a.

Relation (11.1) shows that ∆ + ξ satisfies the conditions of the previous lemma with
r = e′ − (p− 1)t.

Lemma 11.5. Suppose ∆ belongs to K, b belongs to L, vL(b) = −t and
∆p −∆ = b.

Then for any u in U t+1
L the equation

Λp − Λ = bu

has a solution in K.

Take, in Lemma 11.3, a = bu and ∆1 = ∆. Lemma 11.5 shows that if S is the set of all
in L with vL(a) = −t for which the equation

∆p −∆ = a

has a solution in K then S = SU t+1
L .

Lemma 11.6. If ℓ is the integral part of t
p
the number of cosets of U t+1

L in S is

p− 1

p
[OL : PL]

1+ℓ.

Fix a generator σ of G = G(K/L). If a belongs to S, ∆p −∆ = a, and ξ is a (p− 1)th
root of unity

(ξ∆)p − ξ∆ = ξa.

By Lemma 11.4 there is a (p− 1)th root of unity ζ such that

∆σ = ∆+ ζ + o(1).

Then
(ξ∆)σ = ξ∆+ ξζ + o(1).

Thus if S ′ is the set of a in L with vL(a) = −t for which
a = ∆p −∆

with
∆σ = ∆+ 1 + o(1)

the number of cosets if U t+1
L in S is p− 1 times the number of cosets of U t+1

L in S ′.
Choose ∆0, with vK(∆0) = −t, for which ∆p

0 −∆0 = a0 is in F and

∆σ
0 = ∆0 + 1 + o(1).

If vK(∆) = −t, ∆p −∆ is in F , and

∆σ = ∆+ 1 + o(1)

then, according to an earlier remark,

∆ = ∆0 + Ω0
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with Ω0 = o(∆0).
Choose any Ω0 = o(∆0) and set Λ0 = ∆0 + Ω0. According to the relation (A)

p(Λ0) = p(∆0) + p(Ω0) + o(Ω0).

Since
Ωσ

0 − Ω0 = O(ϖt
KΩ0) = o(1)

we have

Ωσp
0 − Ωp

0 =

p−1∑
i=1

(
p

i

)
Ωp−i

0 (Ωσ
0 − Ω0)

i = o(Ωσ
0 − Ω0).

Thus
p(Λ0)

σ − p(Λ0) = Ωσ
0 − Ω0 + o(ϖt

KΩ0)

and p(Λ0) is in L only if
Ωσ

0 − Ω0 = o(ϖt
KΩ0),

that is, only if Ω0 = α0 + o(Ω0) with α0 in L. On the other hand, if

Ωσ
0 − Ω0 = o(ϖt

KΩ0)

and we construct the sequence Λ0,Λ1,Λ2, . . . as before and let

∆ = lim
n→∞

Λn

then
∆ = Λ0 + o(Ω0).

We conclude that the number of cosets in Ps
K/P

s+1
K , s > −t, containing an Ω0 such that

(∆0 + Ω0)
p − (∆0 + Ω0)

is in L is 1 if p does not divide s and is [OL : PL] if it does.
Choose ∆ so that

∆p −∆ = a

is in S ′. If Ω belongs to Ps
K , s > −t, but not to Ps+1

K and

(∆ + Ω)p −∆− Ω = b

is also in S ′ then a and b belong to the same coset of U t+1
L if and only if

b = a+ o(1).

If s > 0
p(∆ + Ω) = p(∆) + o(1)

but if s ⩽ 0,
p(∆ + Ω) = p(∆) + Ωp − Ω + o(Ω)

and
Ωp − Ω + o(Ω) = o(1)

if and only if s = 0 and
Ω = ξ + o(1)

where ξ is some (p− 1)th root of unity. The lemma follows.
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If x = {x1, . . . , xn} let Ei(x) be the ith elementary symmetric function of x1, . . . , xn and
let

Si(x) =
n∑
k=1

xik.

If Z is an indeterminate and

Q(Z) =
n∑
i=0

(−1)iEi(x)Zi =
n∏
i=1

(1− xiZ)

then
∞∑
i=1

Si(x)Zi

is clearly −Z times the logarithmic derivative of Q(Z). Thus ∞∑
i=1

Si(x)Zi

 n∑
i=0

(−1)iEi(x)Zi

 = −
n∑
i=0

(−1)iiEi(x)Zi.

This identity which we refer to as Newton’s identity is equivalent to the formulae of Newton.
It implies in particular that

(11.2)
i−1∑
j=0

(−1)jSi−j(x)Ej(x) = (−1)i+1iEi(x)

if 1 ⩽ i ⩽ n. We may divide Newton’s identity by Q(Z) and then expand the right-hand side
to obtain expressions for the Si(x) as polynomials in E1(x), . . . , En(x). The coefficients are
necessarily integers. To calculate them we suppose that x1, . . . , xn lie in a field of characteristic
zero. Let

Q(Z) = 1 + P (Z).

Then

logQ(Z) = −
∞∑
k=1

(−1)k

k

(
P (Z)

)k
.

The coefficient of Zi−1 in the derivative of the right side is

−
∑
k

∑
α1+···+αn=k

α1+2α2+···+nαn=i

i(k − 1)!

α1! · · · αn!

n∏
j=1

{
Ej(x)

}αj

.

This expression is therefore equal to −Si(x).
Suppose K/L is a ramified cyclic extension of degree p and G = G(K/L). Let G = Gt

and Gt+1 = {1}. Suppose u ⩽ t, Λ is in K, and

ΛOK = P−u
K .

We take {x1, . . . , xn} to be Λ and its conjugates under G. In this case we write

Ei(x) = Ei
K/L(Λ)

and
Si(x) = SiK/L(Λ).
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If 1 ⩽ i ⩽ p− 1 and γi is any integer less than or equal to

−iu+ (p− 1)(t+ 1)

p

we have
Ei
K/L(Λ) ≡ 0 (mod Pγi

L ).

We may take

γi ⩾ −iu
p

+
(p− 1)t

p
.

If iu+ t is not divisible by p this inequality may be supposed strict.
Suppose α1, . . . , αp are non-negative integers,

p∑
i=1

αi = k

and
p∑
i=1

iαi = ℓ.

If

γ =


p−1∑
i=1

γiαi

− uαp.

Then

(11.3)

p∏
i=1

{
Ei(Λ)

}αi

≡ O(ϖγ
K).

We have

γ ⩾ −ℓu
p

+
(p− 1)

p
kt− (p− 1)

p
αpt.

The inequality is strict if αi is non-zero for some i such that iu+ t is not divisible by p.
We record now some inequalities that γ satisfies in various special cases. They will be

needed later. We observe first of all that, if 1 ⩽ i < p, γi is non-negative and is positive
unless p divides iu+ t.

(i) If ℓ = p and k = 2 then
1 + u+ γ ⩾ 1 + t.

In this case αp = 0 and the left side is at least

1 +
2(p− 1)

p
t ⩾ 1 + t.

If p is odd the inequality is strict.
(ii) If ℓ = p and k = 2 then

γ ⩾ 0.

Moreover the inequality is strict if p is odd. This statement is of course weaker than
that of (i).
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(iii) If ℓ = p, k ⩾ 3, and p is odd, then

γ ⩾ u+
t− u

p

αp is again 0. The left side is at least

−u+ 3(p− 1)

p
t = u+

t− u

p
+

1

p

{
(3p− 4)t− (2p− 1)u

}
.

The final term is non-negative. The inequality is strict if u ̸= t. If u = t and p does
not divide u it is again strict for then αi ̸= 0 for some i < p− 1 and for such an i
the number iu+ t is not divisible by p.

(iv) If k ⩽ p then

(p− 1)u+ γ ⩾ u+
t− u

p
except when αp = k or αp = p− 1. We have to show that

(p− 2)u+ γ +
u− t

p
⩾ 0.

The left side is at least{
p− 2− ℓ

p
+

1

p

}
u+

p− 1

p

p−1∑
i=1

αi

− 1

p

t.
If αp ̸= k the coefficient of t is positive and we need only show that it is at least as
great as the negative of the coefficient of u or in other words that

(p− 1)

p−1∑
i=1

αi

+ (p− 2)p ⩾ ℓ.

This follows from the assumption that αp ⩽ p− 2.
(v) If k ⩽ p− 2 and αp = k then

(p− 1)u+ γ ⩾ u.

In this case
γ ⩾ −ku.

There are circumstances in which the estimates for γi and therefore those for γ can be
substantially improved. We will discuss them shortly.

Suppose now that K/F is a totally ramified Galois extension and G = G(K/F ) is the
direct product of two cyclic groups of order p. By Lemma 11.1 the sequence of ramification
groups is of the form

G = G−1 = G0 = G1 = · · · = Gu ̸= Gu+1 = · · · = Gt ̸= Gt+1 = {1}
with (u, p) = 1 and u ≡ t (mod p) or of the form

G = G−1 = G0 = G1 = · · · = Gt ̸= Gt+1 = {1}
with (t, p) = 1. In the second case we take u = t. In the first case let L1 be the fixed field of
Gt and in the second let L1 be any subfield of K of degree p over F . Let L2 be any subfield
of K different from L1 which is also of degree p over F . Let Gi = G(K/Li) and let

Gi = Gi
si
̸= Gi

si+1 = {1}.
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Then s1 = t and s2 = u. According to Proposition IV.4 of Serre’s book,

δK/F = (p2 − p)(u+ 1) + (p− 1)(t+ 1)

and
δK/L1 = (p− 1)(t+ 1)

and
δK/L2 = (p− 1)(u+ 1).

Thus

δL1/F =
1

p
(δK/F − δK/L1) = (p− 1)(u+ 1)

and

δL2/F =
1

p
(δK/F − δK/L2) =

(p− 1)

p

(
(p− 1)(u+ 1) + t+ 1

)
.

If G
i
= G(Li/F ) and

G
i
= G

i

ti
̸= G

i

ti+1 = {1}
then t1 = u and

t2 = u+
t− u

p
.

Lemma 11.7. Suppose ∆ belongs to K, vK(∆) = −u, and
∆p −∆ = a

belongs to L2. If Y belongs to L2 then

vL1

(
SK/L1(Y∆i)

)
⩾ (p− 1)t2 − it1 + vL2(Y )

and
vL1

(
Ei
K/L1

(Y∆)
)
⩾ (p− 1)t2 + i

(
vL2(Y )− t1

)
for 1 ⩽ i ⩽ p− 1.

We show first that if θ belongs to L1 and

θ =

p−1∑
i=0

Yi∆
i

with Yi in L2 then
vL2(Yi) ⩾ it1 + vL1(θ)

for 0 ⩽ i ⩽ p− 1. Since t1 = u and

vK(θ) = min
0⩽i⩽p−1

{
vK(Yi)− iu

}
the inequality is clear for i = 0. To prove it in general, we use induction on i. Suppose
0 < j ⩽ p− 1 and the inequality is valid for i < j.

Let
pOF = Pe

F .

Applying the exercise at the beginning of the paragraph to the extension L2/F we see that

pe ⩾ (p− 1)t2 = (p− 1)

(
u+

t− u

p

)
.
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If ξ is any (p− 1)th root of unity then, by Lemmas 11.3 and 11.4, there is a σ in G
2
such that

∆σ = ∆+ ξ +O(ϖ
p2e−(p−1)u
K ).

We may write

θσ − θ =

p−1∑
i=1

Yi(∆
iσ −∆i)

as a linear combination
p−1∑
i=0

Xi∆
i

with coefficients from L2. Since

vL2(θ
σ − θ) ⩾ vL1(θ) + t1

we may apply the induction assumption to see that

vL2(Xj−1) ⩾ (j − 1)t1 + vL1(θ
σ − θ) ⩾ jt1 + vL1(θ).

On the other hand

∆iσ −∆i = (∆ + ξ)i −∆i +O(ϖ
p2e−(p−1)u−(i−1)u
K )

so that θσ − θ is equal to
p−1∑
i=1

Yi

i−1∑
k=0

(
i

k

)
∆kξi−k + η

with
η = O(θϖ

p2e−(p−2)u
K ).

Thus if

η =

p−1∑
i=0

Zi∆
i

with the Zi in L2 we have

vK(Zj−1) ⩾ (j − 1)u+ vK(Θ) + p2e− (p− 2)u.

But
p2e− (p− 2)u+ (j − 1)u ⩾ p(p− 1)u− (p− 2)u+ (j − 1)u

which equals (
(p− 1)2 + j

)
u ⩾ pju.

Since

Xj−1 =

p−1∑
i=j

Yi

(
i

j

)
ξi−j

+ Zj−1

we have

vL2

p−1∑
i=j

Yi

(
i

j

)
ξi−j

 ⩾ ju+ vL1(θ)

for all ξ. We obtain the required estimate for vL2(Yj) by summing over ξ.
We now show that

vL1

(
SK/L1(Y∆i)

)
⩾ (p− 1)t2 − it1 + vL2(Y )
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for Y in L2 and 1 ⩽ i ⩽ p− 1. All we need do is show that for any θ in the inverse different
of L1/F

SL1/F

(
θϖ

−vL2
(Y )+it1−(p−1)t2

L1
SK/L1(Y∆i)

)
∈ OF

or that if θ is in L1 and

vL1(θ) ⩾ −(p− 1)(t1 + 1) + it1 − (p− 1)t2 − vL2(Y )

then

(11.4) SL1/F

(
θSK/L1(Y∆i)

)
= SK/L(θY∆i)

is in OF .
Let

θ =

p−1∑
j=0

Yj∆
j

with Yj in L2 for 0 ⩽ j ⩽ p− 1. Then

θY∆i =

p−1−i∑
j=0

Y Yj∆
j+i + (a+∆)

p−1∑
j=p−i

Y Yj∆
j+i−p.

Since
∆p −∆ = a

we have
Ei
K/L2

(∆) = 0

for 1 ⩽ i < p− 1 and
Ep−1
K/L2

(∆) = (−1)p.

The relations (11.2) imply that
SK/L2(∆

i) = 0

for 1 ⩽ i < p− 1 and that
SK/L2(∆

p−1) = p− 1.

Thus (11.4) is equal to

(p− 1)SL2/F (Y Yp−1−i) + SL2/F (paY Yp−i)

if i < p− 1 and to the sum of this and

SL2/F (Y Yp−1)

if i = p− 1.
We know that

vL2(Yj) ⩾ jt1 + vL1(θ)

for each j. Thus

vL2(Y Yp−1−i) ⩾ (p− 1− i)t1 − (p− 1)(t1 + 1) + it1 − (p− 1)t2

which is at least −(p− 1)(t2 + 1). So is

vL2(paY Yp−1) ⩾ (p− 1)t2 − t1 − (p− 1)(t1 + 1) + it1 + (p− i)t1 − (p− 1)t2.

If i = p− 1

vL2(Y Yp−1) ⩾ (p− 1)t1 − (p− 1)(t1 + 1) + (p− 1)t1 − (p− 1)t2
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is also at least −(p− 1)(t2 + 1). All we need do now is observe that

SL2/F (P
−(p−1)(t2+1)
L2

) ⊆ OF .

To complete the proof of the lemma we have to show that

vL1

(
Ei
K/L1

(Y∆)
)
⩾ (p− 1)t2 + i

(
vL2(Y )− t1

)
for 1 ⩽ i ⩽ p− 1. This has been done for i = 1; so we proceed by induction. Applying the
relations (11.2) we see that

(−1)i+1iEi
K/L1

(Y∆) =
i−1∑
j=0

(−1)jSi−jK/L1
(Y∆)Ej

K/L1
(Y∆).

According to the induction assumption and the first part of the lemma, with Y replaced by
Y i−j, a typical term in the sum on the right is O(ϖv

L1
) with

v = (p− 1)t2 − (i− j)t1 + (i− j)vL2(Y ) + (p− 1)t2 + j
(
vL2(Y )− t1

)
if j > 0 and

v = (p− 1)t2 − it1 + ivL2(Y )

if j = 0. The lemma follows.
We apply the second estimate with Y = 1 to improve, when Λ = ∆, L = L1, and certain

auxiliary conditions are satisfied, our estimates on the number γ appearing in (11.3).

(vi) Suppose p is odd and
ℓ = (p− 1)ν + j + 1.

If k ⩾ ν + 2 and αp ⩽ k − 2 then

jt1 + γ ⩾ pt2.

If k ⩾ ν + 2 and αp ⩽ k − 1 then

jt1 + γ ⩾ (p− 1)t2 + t1

and if k ⩾ ν + 1 and αp ⩽ k − 1

jt1 + γ ⩾ (p− 1)t2 − t1.

In the present circumstances

γi ⩾ (p− 1)t2 − it1

for 1 ⩽ i ⩽ p− 1. Thus

jt1 + γ ⩾ jt1 +

p−1∑
i=1

αi
(
(p− 1)t2 − it1

)
− αpt1

which equals

jt1 + (p− 1)kt2 − ℓt1 − (p− 1)αp(t2 − t1)

or
(p− 1)kt2 − (p− 1)νt1 − t1 − (p− 1)αp(t2 − t1).

If αp ⩽ k − 2, this is at least

2(p− 1)t2 + (p− 1)(k − 2− ν)t1 − t1
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which in turn is at least pt2 if p ⩾ 3 and k ⩾ ν + 2. If αp ⩽ k − 1

γ ⩾ (p− 1)t2 + (p− 1)(k − 1− ν)t1 − t1.

The required inequalities follow.

We shall use all these estimates for γ in the next sequence of lemmas.

Lemma 11.8. If ∆ is as in Lemma 11.7 and p is odd then

SL1/FNK/L1∆ ≡ SL2/FNK/L2∆ (mod P1+t2
F ).

The assertion of the lemma may be reformulated as

SK/L2NK/L1∆ ≡ SK/L1NK/L2∆ (mod P1+pt2
L1

).

Notice that
pt2 = t+ (p− 1)u.

Earlier we applied Newton’s identity to express SpK/L1
(∆) in terms of the elementary symmetric

functions of ∆ and its conjugates. Since

pe ⩾ (p− 1)t2

we can apply the estimates (iii) for γ to see that

SpK/L1
(∆)

is congruent to

(11.5) pNK/L1∆+
p

2

p−1∑
j=1

Ej
K/L1

(∆)Ep−j
K/L1

(∆) +
{
SK/L1(∆)

}p
.

Since
∆p −∆ = a

we have
SK/L1(∆) = SpK/L1

(∆)− SL2/F (a).

According to Lemma 11.7 the left side belongs to P
(p−1)t2−t1
L1

. In particular it belongs to PL1 .

We need to know that it belongs to P1+t2
L1

. This is clear if p > 3 or t2 > t1. To prove it in

general we first observe that all terms but the last in (11.5) are congruent to 0 modulo P1+t2
L1

.
The middle terms are taken care of by the estimates (ii) for γ. To take care of the first we
have to show that

pe− u ⩾ 1 + t2.

We know that pe ⩾ (p− 1)t2 and that if t = u the inequality is strict. We need only show
that

(p− 1)t2 − u ⩾ t2
with a strict inequality if t ̸= u. This is clear since t2 ⩾ u and t2 > u if t ̸= u. Thus

SK/L1∆ ≡ (SK/L1∆)p − SL2/F (a) (mod P1+t2
L1

).

We now need only show that

SL2/F (a) ≡ 0 (mod P1+t2
L1

).
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The left side belongs to Ppb
L1

if b is any integer less than or equal to

−u+ (p− 1)(t2 + 1)

p
.

We may take

b ⩾
−u+ (p− 1)t2

p

which is greater than or equal to 1+t2
p

except when p = 3 and t = u. In this case, which is

the one to worry about, t2 = u is prime to p and

−u+ (p− 1)(t2 + 1)

p
=
u+ 2

3

has integral part at least u+1
3
.

We apply (11.5) again to see that

SK/L1NK/L2∆ = SK/L1a = SpK/L1
(∆)− SK/L1(∆)

is congruent to

−SK/L1∆+ pNK/L1∆+
p

2

p−2∑
j=2

Ej
K/L1

(∆)Ep−j
K/L1

(∆).

We have still to consider

(11.6) SK/L2NK/L1∆.

There are some general remarks to be made first. Suppose Λ belongs to K and

vK(Λ) = −u.
If x and z also belong to K and

xΛj ∈ OK

and
z ∈ P

1+t+(p2−1)u
K

then
NK/L1

(
x(Λ + z)j+1

)
≡ NK/L1(xΛ

j+1) (mod P1+pt2
L1

).

It is enough to show that

NK/L1

(
1 +

z

Λ

)j+1

≡ 1 (mod P1+t+pu
L1

).

This follows from Lemma V.5 of Serre’s book and the relations

1 + t+ p2u ⩾ 1 + t+ pu

and
1 + t+ p2u+ (p− 1)(t+ 1)

p
= 1 + t+ pu.

According to Lemmas 11.3 and 11.4 there is for each σ ̸= 1 in G2 a (p− 1)th root of unity
ξ = ξ(σ) such that

∆σ = (∆ + ξ)p − a+O

(
ϖ

2(p2e−(p−1)u)
K

)
.
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We have
p2e− (p− 1)u ⩾ (p− 1)

{
(p− 1)u+ t

}
− (p− 1)u

which equals
(p− 1)t+ (p− 2)(p− 1)u ⩾ t+ p(p− 2)u.

If t = u the first of these inequalities is strict and if t > u the last is. Thus

p2e− (p− 1)u ⩾ 1 + t+ p(p− 2)u

and
2
(
p2e− (p− 1)u

)
⩾
{
1 + t+ (p2 − 1)u

}
+
{
1 + t+

(
(p− 1)2 − 2p

)
u
}
.

The second term is positive unless p = 3.
The expression

(∆ + ξ)p − a

is equal to

∆ + ξ +

p−1∑
i=1

(
p

i

)
ξi∆p−i.

But (
p

i

)
=
p(p− 1) · · · (p− i+ 1)

i!
≡ (−1)i+1p

i
(mod p2)

and
2p2e− (p− 1)u ⩾ 2

(
p2e− (p− 1)u

)
which is, as we have just seen, at least 1 + t+ (p2 − 1)u. Thus if p > 3

∆σ ≡ (∆ + ξ)
(
1− Z(ξ)

)
(mod P

1+t+(p2−1)u
K )

if

Z(ξ) =
p∆p−1

1 + ξ/∆

p−1∑
i=1

(−1)i

i

(
ξ

∆

)i
.

Expanding the denominator we obtain

Z(ξ) = p∆p−1

∞∑
i=1

ai

(
ξ

∆

)i
.

If i ⩾ p− 1

ai = (−1)i
p−1∑
j=1

1

j
≡ 0 (mod p).

Clearly

Z(ξ) = O(p∆p−2) = O(ϖ
p2e−(p−2)u
K ).

If p = 3,

3
(
p2e− (p− 1)u

)
⩾
{
1 + t+ (p2 − 1)u

}
+
{
2(1 + t) + (2p2 − 6p+ 1)u

}
.

The second term is at least 3u and in particular, is positive. Lemmas 11.3 and 11.4 show that

∆σ ≡
(
(∆ + ξ)3 − a

)3 − a (mod P
1+t+(p2−1)u
K ).

The right side equals
(∆ + ξ + 3ξ∆2 + 3ξ2∆)3 − a.
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Expanding the cube and ignoring all terms in P
1+t+(p2−1)u
K we obtain

∆ + ξ + 3∆3

{
ξ

∆
+
ξ2

∆2

}
+ 9∆4ξ

which we write as
(∆ + ξ)

(
1− Z(ξ)

)
with

Z(ξ) = 3∆2

∞∑
i=1

ai

(
ξ

∆

)i
+ 9∆4

∞∑
i=1

(
−ξ
∆

)i
.

Since
2
(
p2e− (p− 2)u

)
⩾ 2
(
p2e− (p− 1)u

)
+ 2u ⩾ 1 + t+ p2u

and
p2e− (p− 2)u ⩾ 1 + t+ (p− 1)2u ⩾ 1 + t+ pu

for all odd p, lemma V.5 of Serre’s book shows that

NK/L1

(
x(∆ + ξ)j+1

(
1− Z(ξ)

)j+1
)
≡
{
NK/L1

(
x(∆ + ξ)j+1

)}{
1− SK/L1Z(ξ)

}j+1

modulo P
1+t+(p−1)u
L1

if x∆j lies in OK .
The expression (11.6) is equal to

NK/L1∆+
∑
σ∈G2

σ ̸=1

NK/L1∆
σ.

The preceding remarks show that, if p > 3, this is congruent to

NK/L1∆+
∑
ξ

NK/L1(∆ + ξ)
{
1− SK/L1Z(ξ)

}
modulo P

1+t+(p−1)u
L1

. Since

2p2e+ u+ (p− 1)t

p
⩾ 2(p− 1)

(
u+

t− u

p

)
tu > t+ pu

we have
NK/L1(∆ + ξ)SK/L1(aip∆

p−1−iξi) ∈ P1+pt2
L1

if i ⩾ p and we may replace SK/L1Z(ξ) by

p−1∑
i=1

pξiSK/L1(ai∆
p−1−i)

if p > 3. Of course

NK/L1(∆ + ξ) =

p∑
i=0

ξ1−iEi
K/L1

(∆).

Putting these observations together we see that, if p > 3, (11.6) is congruent modulo
P1+pt2
L1

to the sum of
NK/L1∆+ (p− 1){SK/L1∆+NK/L1∆}
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and

−p(p− 1)

p−1∑
i=1

aiSK/L1(∆
p−1−i)E1+i

K/L1
(∆)

and
−p(p− 1)

{
pap−1SK/L1(∆) + ap−2SK/L1(∆)

}
.

Since
pSK/L1(∆) ∈ P1+pt2

L1

the last expression may be ignored as may the term in the second corresponding to i = p− 2.
Since

ap−1 =

p−1∑
j=1

1

j
≡ 0 (mod p)

and
SK/L1(∆

0) = p

and
3p2e− t2 ⩾ 1 + pt2

the sum in the second expression need only be taken from 1 to p − 3. The relation (11.2)
implies that

pSp−1−i
K/L1

(∆)E1+i
K/L1

(∆) ≡ (−1)ip(p− 1− i)Ep−1−i
K/L1

(∆)E1+i
K/L1

(∆)

modulo P1+pt2
L1

. To complete the proof of Lemma 11.8, for p > 3, we need only show that

iai−1 + (p− i)ap−i−1 ≡ (−1)i (mod p)

for p− 2 ⩾ p− i ⩾ i ⩾ 2. This amounts to showing that

i
i−1∑
j=1

1

j
+ (p− i)

p−i−1∑
j=1

1

j
≡ −1 (mod p).

We may replace the p− i in front of the second sum by −i. Making the obvious cancellations
we obtain

−i
p−i−1∑
j=i

1

j
≡ −1− i

p−i∑
j=i

1

j
.

If 1
j
occurs in the sum on the right so does 1

p−j .

The proof for p = 3 can proceed in exactly the same way provided we show that

(11.7) 9
∑{

NK/L1(∆ + ξ)
}{
SK/L1(ξ

i∆4−i)
}

lies in P1+3t2
L1

for i ⩾ 1. Since

2p2e− u ⩾ 2(p− 1)t2 − u ⩾ 3t2

and one of the inequalities is strict

9NK/L1(∆ + ξ) ∈ P1+3t2
L1

.

The expression
ξiSK/L1(∆

4−i)
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is clearly integral for i ⩾ 4. By, for example, Lemma 11.7 it is also integral if i is 2 or 3. Thus
i = 1 is the only case to cause a problem. If i = 1 we sum over ξ to see that (11.7) equals

18
{
E2
K/L1

(∆)SK/L1(∆
3) + SK/L1(∆

3)
}
.

The terms appearing in the expression in brackets have been shown to lie in OL1 .
There is one more lemma to be proved before we come to the basic fact of this paragraph.

If x is in K we set

g(x) = SL1/F

(
NK/L1∆SK/L1(x)

)
− SL2/F

(
NK/L2∆SK/L2(x)

)
and

h(x) = SL1/F

(
NK/L1(x∆)

)
− SL2/F

(
NK/L2(x∆)

)
.

In the following lemma p is supposed odd.

Lemma 11.9.

(a) Suppose x is in L2, 0 ⩽ j ⩽ p− 1, and x∆j lies in P1+t2−t1
K . If j ̸= p− 2 then

g(x∆j) ≡ 0 (mod P1+t2
F )

but if j = p− 2, there is an ω in L2 such that

ωx ≡ −xEp−1
K/L1

(∆) (mod P1+pt2
K )

and
g(x∆j) ≡ −

{
SL2/Fx− SL2/F (xω)

}
(mod P1+t2

F ).

(b) Suppose x is in L2, 0 ⩽ j ⩽ p− 1, and x∆j lies in PK. If j ̸= p− 2

h(x∆j) ≡ 0 (mod P1+t2
F )

but if j = p− 2

h(x∆j) ≡ (p− 1)

(
1−

{
Ep−1
K/L1

(∆)
}p)

NK/L1x

modulo P1+pt2
L1

.

The congruences modulo P1+t2
F are of course equivalent to congruences modulo P1+pt2

L1
.

We start with part (a). If x belongs to OL2 then

g(x) = SK/L1

(
xSK/L2(NK/L1∆)− pxa

)
.

Because of the previous lemma this is congruent to

SK/L1(xSL2/Fa− pxa) = SL2/FxSL2/Fa− pSL2/F (xa)

modulo P1+t2
F . We saw before that

SL2/Fa ∈ P1+t2
L1

.

The same argument shows that
SL2/F (xa) ∈ P1+t2

L1
.

p belongs to P
(p−1)t2
L1

. Since the integral part of

(p− 1)(t2 + 1)

p
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is at least
(p− 1)t2

p
,

so does SL2/Fx. This takes care of the case j = 0.
If 1 ⩽ j = p− 1 then g(x∆j) is equal to

SL2/F

(
xSK/L2(∆

jNK/L1∆)
)
− (p− 1)δSL2/F (xa)

where δ = 0 if j ̸= p− 1 and δ = 1 if j = p− 1. Consider

Zj = xSK/L2(∆
jNK/L1∆).

It lies in L2 and is equal to

x∆jNK/L1∆+
∑
σ∈G2

σ ̸=1

x∆σjNK/L1∆
σ.

We observe first of all that if Λ is in K, vK(Λ) = −u, x is in L2, xΛ
j lies in P1+t2−t1

K , and

z lies in P
(p−1)(pt2−t1)
K then

x(Λ + z)jNK/L1(Λ + z) ≡ xΛjNK/L1Λ (mod P1+pt2
K )

provided p is greater than 3. To establish this congruence we show that(
1 +

z

Λ

)j
NK/L1

(
1 +

z

Λ

)
≡ 1 (mod P

(p−1)t2+(p+1)t1
K ).

To show this, one has only to observe that z
Λ
and all its conjugates lie in P

(p−1)pt2−(p−2)t1
K and

that
(p− 1)pt2 − (p− 2)t1 ⩾ (p− 1)t2 +

(
(p− 1)2 − (p− 2)

)
t1

which equals
(p− 1)t2 +

(
(p− 1)(p− 2) + 1

)
t1 ⩾ (p− 1)t2 + (p+ 1)t1

if p > 3.
Suppose for now that p > 3. Since

p2e− (p− 1)u ⩾ (p− 1)(pt2 − t1).

Lemma 11.4 implies that Zj is congruent to

x∆jNK/L1∆+
∑
ξ

x(∆ + ξ)jNK/L1(∆ + ξ)

modulo P1+pt2
K

NK/L1(∆ + ξ) = ξ

1 +
1

ξ
NK/L1∆+

p−1∑
i=1

ξ−iEi
K/L1

(∆)

.
According to Lemma 11.7 this is congruent to

ξ +NK/L1∆+ ξEp−1
K/L1

(∆)

modulo Ppt2
K . Thus if x∆j belongs to P1+t2−t1

K ,

Zj ≡ x∆jNK/L1∆+
∑
ξ

x(∆ + ξ)j
(
ξ +NK/L1∆+ ξEp−1

K/L1
(∆)
)
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modulo P1+pt2
K . We expand (∆ + ξ)j and sum over ξ to obtain

(11.8) px∆jNK/L1∆

if j < p− 2. If j = p− 2 we obtain

px∆jNK/L1∆+ (p− 1)x
(
1 + Ep−1

K/L1
(∆)
)

and if j = p− 1 we obtain

px∆jNK/L1∆+ (p− 1)x
{
NK/L1∆+ (p− 1)∆ + (p− 1)∆Ep−1

K/L1
(∆)
}
.

The expression (11.8) lies in

P1+p2e−pt1
K

provided x∆j lies in PK .

p2e− pt1 ⩾ p(p− 1)t2 − pt1 ⩾ pt2.

Since
L2 ∩P1+pt2

K = P1+t2
L1

and
SL2/F (P

1+t2
L2

) ⊆ P1+t2
F ,

we have
g(x∆j) ≡ 0 (mod P1+t2

F )

if 1 ⩽ j < p− 2 and x∆j lies in P1+t2−t1
K .

Since
Ep−1
K/L1

(∆)

lies in OL1 ,
Zj = (ω − 1)x

with
ωx = Zj + x ≡ −xEp−1

K/L1
(∆) (mod P1+pt2

K )

if j = p− 2. We may take ω in L2 and then

g(x∆j) ≡ −
{
SL2/Fx− SL2/F (xω)

}
(mod P1+t2

F ).

If j = p− 1 then
g(x∆j) = SL2/F

(
Zj − (p− 1)xa

)
and

Zj − (p− 1)xa

is congruent to

(p− 1)x
{
NK/L1∆+ p∆+ (p− 1)∆Ep−1

K/L1
(∆)−∆p

}
modulo P1+pt2

K . The product {
(p− 1)x

}
{p∆}

lies in P1+pt2
K and

(p− 1)Ep−1
K/L1

(∆) ≡ −Ep−1
K/L1

(∆) (mod P1+pt2
K ).

It is easily seen that
∆p +∆Ep−1

K/L1
(∆)−NK/L1∆
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is equal to

−
p−2∑
i=1

(−1)i∆p−iEi
K/L1

(∆).

Recalling that x∆p−1 is supposed to lie in PK we appeal to Lemma 11.7 to see that the
product of this expression with x lies in P1+pt2

K . Thus

g(x∆j) ≡ 0 (mod P1+t2
F ).

If p = 3 and ξ = ξ(σ) then

∆σ = ∆+ ξ + 3ξ∆2 + 3ξ2∆+ z

with

z = O

(
ϖ

2(p2e−(p−1)u)
K

)
.

If
∆σ = ∆+ ξ + 3ξ∆2

then
∆σ = ∆σ + 3ξ2∆+ z.

If we can show that
3ξ2∆+ z = O(ϖ

(p−1)t2+pt1
K )

it will follow that

(11.9) x∆σjNK/L1∆
σ ≡ x∆j

σNK/L1∆σ (mod P1+pt2
K )

if x∆j lies in P1+t2−t1
K

3ξ2∆ = O(ϖp2e−t1
K )

and
p2e− t1 ⩾ p(p− 1)t2 − t1 ⩾ (p− 1)t2 + pt1

because (p− 1)2 ⩾ p. Moreover

2
(
p2e− (p− 1)u

)
⩾ 2
(
p(p− 1)t2 − (p− 1)t1

)
which is at least

(p− 1)t2 +
(
(2p− 1)(p− 1)− 2(p− 1)

)
t1

and
(2p− 1)(p− 1)− 2(p− 1) = (2p− 3)(p− 1) ⩾ p.

We want to replace NK/L1∆σ by

NK/L1(∆ + ξ)

in the right side of (11.9). To do this we have to show that

NK/L1

(
∆σ

∆+ ξ

)
≡ 1 (mod P

(p−1)t2+(p+1)t1
K ).

Since
∆σ

∆+ ξ
= 1 +O(ϖp2e−t1

K )

and
p2e− t1 ⩾ p(p− 1)t2 − t1,
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we have only to verify that

(11.10) p
{
p(p− 1)t2 − t1

}
⩾ (p− 1)t2 + (p+ 1)t1

and that the integral part of

(11.11)
p(p− 1)t2 − t1 + (p− 1)(t+ 1)

p

is at least
(p− 1)t2 + (p+ 1)t1

p
.

The inequality (11.10) is clear. Since t ⩾ t1 the integral part of (11.11) is at least

p(p− 1)t2 + (p− 2)t1
p

⩾
(p− 1)t2 +

(
(p− 1)2 + (p− 2)

)
t1

p

and
(p− 1)2 + (p− 2) ⩾ p+ 1.

Just as when p > 3 we may replace NK/L1(∆ + ξ) in (11.9) by

ξ +NK/L1∆+ ξEp−1
K/L1

(∆).

Thus Zj is congruent to

x∆jNK/L1∆+
∑
ξ

x(∆ + ξ + 3ξ∆2)j
(
ξ +NK/L1∆+ ξE2

K/L1
(∆)
)

modulo P1+pt2
K if p = 3, j is 1 or 2, and x∆j belongs to P1+t2−t1

K . If j = 1 this expression is
equal to

(11.12) px∆jNK/L1∆+ 2x(1 + 3∆2)
(
1 + E2

K/L1
(∆)
)

and if j = 2 it is equal to

(11.13) px∆jNK/L1∆+ 2x

{
2(1 + 3∆2)∆

(
1 + E2

K/L1
(∆)
)
+ (1 + 3∆2)2NK/L1∆

}
.

The term
px∆jNK/L1∆

can be ignored as before because it lies in P1+pt2
K . Also

3x∆j+1 = O(ϖ1+p2e+t2−2t1
K )

because x∆j lies in P1+t2−t1
K and

p2e+ t2 − 2t1 ⩾ p(p− 1)t2 − t1 ⩾ pt2.

We may also replace the factor 2 in (11.12) by 1. Thus (11.12) is congruent to

−x
(
1 + E2

K/L1
(∆)
)

modulo P1+pt2
K . At this point we may argue as we did for p > 3. To simplify (11.13), we

observe that
9∆4NK/L1∆ = O(ϖ2p2e−7t1

K )

and that
2p2e− 7t1 ⩾ 12t2 − 7t1 ⩾ 3t2.
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Moreover
3x∆2NK/L1∆ = O(ϖ1+p2e−3t1

K )

if x∆2 belongs to PK and
p2e− 3t1 ⩾ 6t2 − 3t1 ⩾ 3t2.

Thus (11.13) is congruent to

2x

{
2∆
(
1 + E2

K/L1
(∆)
)
+NK/L1∆

}
modulo P1+3t2

K . We may again argue as we did for p > 3.
We turn to the second part of the lemma. We observe first that if x belongs to L2, y

belongs to K, and
xy ∈ PK

then
h(xy) ≡ h(y)NK/L1(x) (mod P1+t2

F ).

The left side is
SL1/F (NK/L1xNK/L1y∆)− SL2/F (x

pNK/L2y∆).

Since NK/L2x = NL2/Fx lies in F this equals

{NK/L1x}h(y) + SL2/F

{
NK/L2(y∆)(NL2/Fx− xp)

}
.

The second term is the trace from L2 to F of{
NK/L2(xy∆)

}{NL2/Fx− xp

NK/L2x

}
if, as we may as well assume, x ̸= 0. All we need do is show that this expression lies in P1+t2

L2

for then its trace will lie in P1+t2
F . The first factor lies in P1−t2

L2
. The second factor is equal to

∏
σ∈G2

xσ−1

− 1.

Since p ⩾ 3 it will be sufficient to show that the image of the homomorphism

x→ φ(x) =
∏
σ∈G2

xσ−1

of CL2 into UL2 is contained in U
(p−1)t2
L2

. Let ρ be a generator of G
2
and let P (X) be the

polynomial
p−1∑
i=1

(X i − 1) =

p−1∑
i=0

X i − p

then
φ(x) = xP (ρ).

Let
Q(X) = (X − 1)p−1.

If 1 ⩽ i ⩽ p− 1 the ith coefficient of Q(X) is

(−1)p−1−i (p− 1) · · · (p− i)

i!
≡ 1 (mod p).
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Since both P (X) and Q(X) are divisible by X − 1

P (X) = Q(X) + p(X − 1)R(X)

where R(X) is a polynomial with integral coefficients. For all z in CL2 ,

zρ−1 = 1 + w

with w = O(ϖt2
L2
). Then

zp(ρ−1) = (1 + w)p ≡ 1 + wp ≡ 1 (mod Ppt2
L2

)

and
zp(ρ−1)R(ρ) ∈ Upt2

L2
.

If a ⩾ 1 and
w ∈ Pa

L2

then

(1 + w)p−1 =
1 + wp

1 + w
= 1 +

wp − w

1 + w
≡ 1 (mod Pa+t2

L2
).

One then shows easily by induction that, for all z in CL2 and all n ⩾ 1,

z(ρ−1)n ∈ Unt2
L2
.

If x lies in PK we may take y = 1. Applying Lemma 11.8 we see that

h(x) ≡ NL2/Fxh(1) ≡ 0 (mod P1+t2
F ).

If 1 ⩽ j ⩽ p− 1, x lies in L2, and x∆
j lies in PK ,

h(x∆j) ≡ Pj −Qj (mod P1+t2
F )

with
Pj = NL2/FxSL1/F (NK/L1∆

j+1)

and
Qj = NL2/FxSL2/F (NK/L2∆

j+1).

The expression Pj is congruent to

(11.14) NL2/Fx

NK/L1∆
j+1 +

∑
ξ

NK/L1(∆ + ξ)j+1
{
1− SK/L1Z(ξ)

}j+1


modulo P1+pt2

L1
. Since we are working modulo P1+pt2

L1
we need only consider

(11.15)
(
1− SK/L1Z(ξ)

)j+1

modulo Ppt2+t1
L1

. Suppose first that p > 3. Then

Z(ξ) = O(ϖ
p2e−(p−2)u
K )

and
p2e− (p− 2)u ⩾ p(p− 1)t2 − (p− 2)u ⩾ p(p− 2)t2.

Moreover the integral part of

p(p− 2)t2 + (p− 1)(t+ 1)

p
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is at least

(p− 2)t2 −
(p− 1)

p
t

and twice this is at least pt2 + t1. We replace (11.15) by

1− (j + 1)SK/L1Z(ξ).

Since

(11.16) Z(ξ) ≡ p∆p−1

p−2∑
i=1

ai

(
ξ

∆

)i
(mod p2)

and
p2 = O(ϖ2p2e

K )

while
2p2e ⩾ 2p(p− 1)t2 ⩾ p(pt2 + t1),

we may replace Z(ξ) by the right side of (11.16). By Lemma 11.7

pSK/L1(∆
p−1−i) = O(ϖpe+it2

L1
)

if 1 ⩽ i ⩽ p− 2 and
pe+ it2 ⩾ (p− 1)t2 + it2 ⩾ pt2 + t1

if i ⩾ 2. We replace Z(ξ) by
pa1ξ∆

p−2.

We may write (11.14) as

NL2/FxNK/L1∆
j+1

1 +
∑
ξ

NK/L1

(
1 +

ξ

∆

)j+1{
1− SK/L1(pa1ξ∆

p−2)
}.

When we expand

NK/L1

(
1 +

ξ

∆

)j+1

and sum over ξ we will obtain

NL2/FxNK/L1∆
j+1

1 +
∑
ξ

NK/L1

(
1 +

ξ

∆

)j+1


which we write as

NL2/Fx

NK/L1∆
j+1 =

∑
ξ

NK/L1(∆ + ξ)j+1


plus a sum of terms of the form

αpNL2/FxNK/L1∆
j+1Ei

K/L1

(
1

∆

)
SK/L1(∆

p−2)

where α is rational and lies in OF and i is at least 1. Since

Ei
K/L1

(
1

∆

)
= O(ϖt1

L1
)
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for i ⩾ 1 and
pSK/L1(∆

p−2) = O(ϖpt2
L1

),

these supplementary terms may be ignored.
Now take p = 3.2

2(1998) This is where and how the manuscript of Chapter 11 breaks off.



CHAPTER 12

The second main lemma

Suppose K is a normal extension of the local field F and G = G(K/F ) is the direct
product of two cyclic groups of prime order ℓ. Let XK be a quasi-character of CK . If σ
belongs to G define X σ

K by the relation

X σ
K(α) = XK(α

σ−1

).

Suppose that X σ
K = XK for all σ in G but that for no quasi-character XF of CF does

XK = XK/F . If F ⊆ L ⊆ K and [K : L] = ℓ then XK can be extended to a quasi-character of
WK/L because WK/L/CK is isomorphic to G(K/L) which is cyclic. If this quasi-character is
XL then XK = XK/L.

Lemma 12.1. Suppose L1 and L2 are two fields lying between F and K and

[K : L1] = [K : L2] = ℓ.

Suppose XL1 is a quasi-character of CL1, XL2 is a quasi-character of CL2, and

XK = XK/L1 = XK/L2 .

Then
∆(XL1 , ψL1/F )

∏
µF∈S(L1/F )

∆(µF , ψF )

is equal to

∆(XL2 , ψL2/F )
∏

µF∈S(L2/F )

∆(µF , ψF ).

Because of the assumption on G(K/F ) the field F must be non-archimedean. To prove
the lemma in general it is enough to prove it for a given L1 and all L2. There are three
possibilities to consider.

(i) The sequence of groups of ramification takes the form

G = G−1 ̸= G0 = · · · = Gt ̸= Gt+1 = · · · = {1}.
(ii) The sequence of groups of ramification takes the form

G = G−1 = G0 = G1 = · · · = Gu ̸= Gu+1 = · · · = Gt ̸= Gt+1 = · · · = {1}.
(iii) The sequence of groups of ramification takes the form

G = G−1 = G0 = G1 = · · · = Gt ̸= Gt+1 = · · · = {1}.
In the first two cases we take G1 = G(K/L1) to be Gt. In the third case the choice of L1 is
immaterial.

If the relation X σ
Li

= XLi
obtains for one σ different from 1 in G

i
= G(Li/F ) it obtains for

all such σ and XLi
is of the form XLi/F for some quasi-character XF of CF . Then XK = XK/F ,

107
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which is contrary to assumption. Thus the characters X σ−1
Li

with σ in G
i
are distinct. They

are clearly trivial on NK/Li
CK so{

X σ−1
Li

∣∣∣ σ ∈ G
i
}
= S(K/Li) =

{
µLi/F

∣∣ µF ∈ S(Lj/F )
}
.

Here j is 2 or 1 according as i is 1 or 2.
Let ti ⩾ −1 be that integer for which

G
i
= G

i

ti

while
G
i

ti+1 = {1}.
Then

δi = δ(Li/F ) = (ti + 1)(ℓ− 1).

In the first case L1/F is unramified and L2/F is ramified. We choose ϖL2 arbitrarily and
take ϖK = ϖL2 . Also we set

ϖL1 = ϖF = NL2/FϖL2 .

In the second and third cases K/L1 and K/L2 are ramified and K/F is totally ramified. We
choose ϖk first and set

ϖLi
= NK/Li

ϖK

and
ϖF = NK/FϖK .

Let mi = m(XLi
). The m(X σ

Li
) = mi and

m(X σ−1
Li

) ⩽ mi.

Thus m(ν) ⩽ mi if ν belongs to S(K/Li). If G
i = G(K/Li) and if

Gi
ui
= Gi

while
Gi
ui+1 = {1}

then m(ν) = ui + 1 if ν is non-trivial. Thus ui + 1 ⩽ mi. Since νXLi
is of the form X σ

Li
for

all ν in S(K/Li),
m(νXLi

) = m(XLi
).

Lemma 8.8 and 8.12 imply that1

m(XK) = ψK/Li
(mi − 1) + 1.

Thus m(XK) = mi if K/Li is unramified and

m(XK) = ℓmi − δ(K/Li)

if K/Li is ramified. If n = n(ψF ) then ni = n(ψLi/F ) is n if Li/F is unramified and is ℓn+ δi
if Li/F is ramified.

In the first case
δ(K/L2) = δ(L1/F ) = 0.

The relations

δ(K/F ) = δ(K/L1) + ℓδ(L1/F ) = δ(K/L1) = (t+ 1)(ℓ− 1)

1We are encountering once again the conflicting uses of the symbol ψ.
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and
δ(K/F ) = δ(K/L2) + δ(L2/F ) = δ2 = (t2 + 1)(ℓ− 1)

imply that t2 = t. Also

m(XK) = m2 = ℓm1 − δ(K/L1) = ℓm1 − δ2

so that
m2 + n2 = ℓ(m1 + n1).

Moreover
XL1(ϖ

m1+n1
L1

) = XK(ϖ
m1+n1
L2

)

is equal to

XL2(ϖ
m2+n2
L2

) = XL2(ϖ
m1+n1
F )

XL2

∏
σ∈G2

ϖ1−σ
L2



m1+n1

and ∏
σ∈G2

XL2(ϖ
1−σ
L2

) =
∏

µF∈S(L1/F )

µL2/F (ϖL2)

is equal to ∏
µF∈S(L1/F )

µF (ϖF ) = (−1)ℓ−1.

If
S ′
i = S(Li/F )− {1}

then ∏
S′
1

µF (ϖ
t1+1+n
F ) = (−1)n(ℓ−1)

and ∏
S′
2

µF (ϖ
t2+1+n
F ) = 1.

Thus we have to show that

(−1)m1(ℓ−1)∆1(XL1 , ψL1/Fϖ
m1+n1
F )

is equal to

∆1(XL2 , ψL2/F , ϖ
m1+n1
F )

∏
S′
2

∆1(µF , ψF , ϖ
t+1+n
F ).

In the second and third cases the relations

m(XK) = ℓm1 − δ(K/L1) = ℓm2 − δ(K/L2)

and
δ(K/F ) = δ(K/L1) + ℓδ1 = δ(K/L2) + ℓδ2

imply that m1 + δ1 = m2 + δ2 and hence that m1 + n1 = m2 + n2. Thus

XL1(ϖ
m1+n2
L1

) = XK(ϖ
m1+n1
K ) = XL2(ϖ

m2+n2
L2

).

Since ∏
S′
i

µF (ϖ
ti+1+n
F ) = 1
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we have to show that

∆1(XL1 , ψL1/F , ϖ
m1+n1
L1

)
∏
S′
1

∆1(µF , ψF , ϖ
t1+1+n
F )

is equal to

∆1(XL2 , ψL2/F , ϖ
m2+n2
L2

)
∏
S′
2

∆1(µF , ψF , ϖ
t2+1+n
F ).

Suppose X ′
F is a quasi-character of CF . According to Lemma 10.1,

∆(X ′
L1/F

, ψL1/F )
∏

µF∈S(L1/F )

∆(µF , ψF )

is equal to

(12.1)
∏

µF∈S(L1/F )

∆(µFX ′
F , ψF )

and
∆(X ′

L2/F
, ψL2/F )

∏
µF∈S(L2/F )

∆(µF , ψF )

is equal to

(12.2)
∏

µF∈S(L2/F )

∆(µFX ′
F , ψF ).

Suppose m′ = m(X ′
F ) = 2d′ + ϵ′ and d′ is greater than or equal to both 1 + t1 and 1 + t2.

Choose γ in F such that
γOF = Pm′+n

F

and then choose β = β(XF ). By Lemma 9.4 the expression (12.1) is equal to

{
∆(X ′

F , ψF )
}ℓ ∏

µF∈S(L1/F )

µF

(
γ

β

)
and (12.2) is equal to {

∆(X ′
F , ψF )

}ℓ ∏
µF∈S(L2/F )

µF

(
γ

β

).
Consequently

∆(X ′
L1/F

, ψL1/F )

 ∏
µF∈S(L1/F )

µF

(
β

γ

)
∆(µF , ψF )


is equal to

∆(X ′
L2/F

, ψL2/F )

 ∏
µF∈S(L2/F )

µF

(
β

γ

)
∆(µF , ψF )

.
Suppose that both m1 = m(XL1) and m2 = m(XL2) are at least 2 and let mi = 2di + ϵi.

Suppose that
m(X−1

Li
X ′
Li/F

) ⩽ di
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for i equal to 1 and 2. Then

mi = m(X ′
Li/F

) = ψLi/F (m
′ − 1) + 1.

If

X ′
Li/F

(1 + x) = ψLi/F

(
βix

γ

)
for x in Pdi+ϵi

Li
then, by Lemma 9.4 again,

∆(XLi
, ψLi/F ) = X−1

Li
X ′
Li/F

(
βi
γ

)
∆(X ′

Li/F
, ψLi/F ).

Thus to prove Lemma 12.1 in the present circumstances we have only to verify that

X−1
L1

X ′
L1/F

(
β1
γ

) ∏
µF∈S(L1/F )

µF

(
γ

β

)
is equal to

X−1
L2

X ′
L2/F

(
β2
γ

) ∏
µF∈S(L2/F )

µF

(
γ

β

)
.

Suppose first that ℓ is odd. Then ∏
µF∈S(Li/F )

µF

(
γ

β

)
= 1

and we need only verify that

X−1
L1

(
γ

β1

)
X ′
L2/F

(
γ

β2

)
= X−1

L2

(
γ

β2

)
X ′
L2/F

(
γ

β2

)
.

According to Lemmas 8.3 and 8.4 we may take β1 = β2 = β.
Certainly

X ′
L1/F

(
γ

β

)
= X ′

F

(
γℓ

βℓ

)
= X ′

L2/F

(
γ

β

)
.

Since CF is the product of NL1/FCL1 and NL2/FCL2 we may write γ
β
as a product

γ

β
= NL1/F δ1NL2/F δ2.

Consider
XLi

(NLj/F δj) = XK(δj)

where j is 1 or 2 according as i is 2 or 1. The right side equals

XLj
(δℓj) = XLj

(NLj/F δj)
∏

σ∈G(Lj/F )

XLj
(δ1−σj ).

The product is equal to ∏
µF∈S(Li/F )

µLj/F (δj)

which is 1 because ℓ is odd.
Before discussing the case ℓ = 2 we consider the circumstances under which, for a given

XL1 and XL2 , a quasi-character X ′
F with the properties described above exists.
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Lemma 12.2.

(a) If Li/F is unramified, x belongs to Uui+1
Li

, and

NLi/F (x) = 1

then
XLi

(x) = 1.

(b) If Li/F is ramified, K/Li is unramified, x belongs to U ti+1
Li

, and

NLi/F (x) = 1

then
XLi

(x) = 1.

(c) If Li/F and K/Li are ramified, x belongs to Uui+ti+1
Li

, and

NLi/F (x) = 1

then
XLi

(x) = 1.

Choose some non-trivial σi in G
i
= G(Li/F ). Then

µLi
= X σ−1

i −1

Li

is a non-trivial character in S(K/Li) and

m(µLi
) = ui + 1.

Since Li/F is cyclic there is a y in CLi
such that

x = yσi−1.

We shall show that y can be taken in Uui+1
Li

. Then

XLi
(x) = µLi

(y) = 1.

Suppose Li/F is unramified. If we cannot choose y in Uui+1
Li

there is a largest integer
a ⩾ −1 such that we can choose y in Ua

Li
where a is of course less than ui + 1. Choose such a

y. Then a is not −1 because we can always divide y by a power of ϖF . If a were 0 then y
could not be congruent to an element of UF modulo PF . Then yσi−1 would not be in U1

F .
Since ui + 1 > 0 in the present situation this is impossible. Let

y = 1 + ϵϖa
F .

Then ϵ cannot be congruent to an element of OF modulo PF . Thus

ϵσi − ϵ ̸≡ 0 (mod PLi
)

and
yσi−1 ≡ 1 + (ϵσi − ϵ)ϖa

F (mod Pa+1
Li

)

is not in Ua+1
Li

. This is a contradiction.
Now suppose Li/F is ramified and K/Li is unramified. Then ti + 1 ⩾ 1 and ui + 1 = 0.

We need only show that y can be taken to be a unit. Write

y = ϵϖb
Li
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where ϵ is a unit. If b is congruent to 0 modulo ℓ we can divide y by some power of ϖF to
obtain an element of UF = U0

F . To see that b must be congruent to 0 modulo ℓ we suppose
the contrary. Then

yσi−1 = ϵσi−1(ϖσi−1
Li

)b ≡ (ϖσi−1
Li

)b (mod Pti+1
Li

).

If ti = 0 the residue of ϖσi−1
Li

modulo PLi
is a non-trivial ℓth root of unity and

(ϖσi−1
Li

)b ̸≡ 1 (mod PLi
).

If ti > 0 then
ϖσi−1
Li

= 1 + αϖti
Li

where α is a unit. Thus

(ϖσi−1
Li

)b ≡ 1 + αbϖti
Li

(mod Pti+1
Li

).

The right side is not congruent to 0 modulo Pti+1
Li

.
Now suppose Li/F and K/Li are both ramified. Then ℓ = p and both ui and ti are at

least 1. Again suppose that y cannot be chosen in Uui+1
Li

and let a be the largest integer such
that y can be chosen in Ua. The argument just used shows that a ⩾ 0. Since Li/F is ramified

U
kp
Li

= Uk
FU

kp+1
Li

.

Therefore a is not divisible by p and in particular is at least 1. Let

y = 1 + ϵϖa
Li

where β is a unit. Then
yσi−1 = (1 + ϵσiϖaσi

Li
)(1 + ϵϖa

Li
)−1.

Let
ϵσi = ϵ+ ηϖti+1

Li

and
ϖσi−1
Li

= 1 + αϖti
Li

where α is a unit. Then yσi−1 is equal to{
1 + (ϵ+ ηϖti+1

Li
)(1 + αϖti

Li
)aϖa

Li

}
{1 + ϵϖa

Li
}−1

which is congruent to
1 + aαϵϖti+a

Li

modulo Pti+a+1
Li

. Therefore a ⩾ ui + 1. This is a contradiction.

Lemma 12.3. If L1/F is unramified we can choose X ′
F such that

m(X−1
L1

X ′
L1/F

) = t+ 1

and
m(X−1

L2
X ′
L2/F

) = t+ 1.

If m(XL1) > t+ 1 then m(X ′
F ) will equal m(XL1).
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By the previous lemma, we can define a quasi-character X ′
F of

NL1/FU
u1+1
L1

by setting
X ′
F (NL1/Fx) = XL1(x).

We extend X ′
F to a quasi-character, which we again denote by X ′

F , of CF . Then

m(X−1
L1

X ′
L1/F

) ⩽ u1 + 1.

However X−1
K X ′

K/F , X
−1
L1

X ′
L1/F

, and X−1
L2

X ′
L2/F

satisfy the conditions of Lemma 12.1. Therefore

m(X−1
L1

X ′
L1/F

) ⩾ u1 + 1.

Since L1/F is unramified u1 and t2 are both equal to t. Thus

m(X−1
L1

X ′
L1/F

) = t+ 1

and
m(X−1

L2
X ′
L2/F

) = ℓ(u1 + 1)− δ2 = ℓ(u1 + 1)− (ℓ− 1)(t2 + 1) = t+ 1.

The last assertion of the lemma is clear.

Lemma 12.4. If K/F is totally ramified then

m(XLi
) ⩾ ti + ui + 1.

There exists X ′
F such that

m(X−1
Li

X ′
Li/F

) = ti + ui + 1

for i equal to 1 and 2.

In the present circumstances ti and ui are both at least 1. Choose a non-trivial σi in G
i

and let

µLi
= X σ−1

i −1

Li

as before. Choose y in Uui
Li

so that
µLi

(y) ̸= 1.

Then
XLi

(yσi−1) ̸= 1.

However if
y = 1 + ϵϖui

Li

where ϵ is a unit then

yσi−1 ≡ 1 + uiαϵϖ
ti+ui
Li

(mod Pti+ui+1
Li

)

if
ϖσi−1
Li

= 1 + αϖti
Li
.

In particular
yσi−1 ∈ U ti+ui

Li

so that
m(XLi

) ⩾ ti + ui + 1.

Just as in the previous lemma, we can find a quasi-character X ′
F of CF such that

m(X−1
L1

X ′
L1/F

) = t1 + u1 + 1.
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We have seen that m1 + δ1 = m2 + δ2. The same argument shows that

m(X−1
L1

X ′
L1/F

) + δ1 = m(X−1
L2

X ′
L2/F

) + δ2.

To complete the proof of the lemma we show that

t1 + u1 + δ1 = t2 + u2 + δ2.

Since
δi = (ℓ− 1)(ti + 1)

we have only to show that

u1 + 1 + ℓ(t1 + 1) = u2 + 1 + ℓ(t2 + 1).

Multiplying the left or the right side by ℓ − 1 we obtain δ(K/F ). The equality follows
immediately.

Lemmas 12.3 and 12.4 together with the remarks which provoked them allow us to prove
Lemma 12.1 in many, but by no means all, cases. We shall not however apply these lemmas
immediately. We shall rather begin the systematic exposition of the proof of Lemma 12.1
taking up the cases to which these lemmas apply in their turn.

Suppose first that L1 is unramified over F . As before mi = m(XLi
). Then

m2 = m1 + (ℓ− 1)(m1 − t− 1) ⩾ m1

because u1 = t. Since the number m1 is at least t+ 1 and t ⩾ 0 it is at least 1. If m1 = 1
then t = 0 and m2 = 1. Once we have treated this case, as we shall immediately, we may
suppose that m2 ⩾ m1 > 1.

If m2 = 1 let
λ = OL2/PL2 = OF/PF

and let
κ = OK/PK = OL1/PL1 .

κ is an extension of λ. The restriction of XL1 to UL1 defines a character Xλ of λ∗ and the
restriction of XL2 to UK defines a character Xκ of κ∗. The restriction of XK to UK defines a
character of κ∗ which is equal to Xκ/λ and to X ℓ

κ so that

X ℓ
κ = Xκ/λ.

As σ varies over G
2
, ϖσ−1

L2
, taken modulo PL2 , varies over the ℓth roots of unity in λ and if

X σ−1−1
L2

= ν

then
Xλ(ϖ

σ−1
L2

) = ν(ϖL2).

The right side is not 1 if σ ̸= 1 because ν is then non-trivial. Thus the restriction of Xλ to
the ℓth roots of unity is not trivial. To every µF in S(L2/F ) is associated a character µλ of
λ∗ which is of order 1 if µF = 1 and of order ℓ otherwise. If ψλ is the additive character of λ
defined by

ψλ(x) = ψF

(
x

ϖ1+n
F

)
then

∆1(µF , ψF , ϖ
1+n
F ) = A

[
−τ(µλ, ψλ)

]
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if µF is not trivial. Moreover

ψL2/F

(
x

ϖ1+n
F

)
= ψλ(ℓx)

and
∆1(XL2 , ψL2/F , ϖ

1+n
F ) = A

[
−Xλ(ℓ)τ(Xλ, ψλ)

]
.

Finally
∆1(XL1 , ψL1/F , ϖ

1+n
F ) = A

[
−τ(Xκ, ψκ/λ)

]
.

Thus the required identity is a consequence of the relation

τ(Xκ, ψκ/λ) = Xλ(ℓ)τ(Xλ, ψλ)
∏
µλ ̸=1

τ(µλ, ψλ)

which we proved as Lemma 7.9.
Retaining the assumption that L1/F is unramified we now suppose that m1 > 1. There

are two possibilities.

(a) m1 ⩾ 2(t+ 1)
(b) t+ 1 ⩽ m1 < 2(t+ 1).

The second possibility occurs only when t > 0.
If mj ⩾ 2(t+ 1) choose X ′

F so that

m(X−1
Li

X ′
Li/F

) = t+ 1

for i = 1 and 2. It is clear that
m(X−1

L1
X ′
L1/F

) ⩽ d1
if mi = 2di+ ϵi. Since m2 ⩾ m1 we also have

m(X−1
L2

X ′
L2/F

) ⩽ d2.

Moreover
m′ = m(X ′

F ) = m1

so that d′ is greater than or equal to both 1 + t2 = 1 + t and 1 + t1 = 0. Lemma 12.1 for
L1/F unramified and m1 ⩾ 2(t+ 1), follows immediately if ℓ is odd. Suppose ℓ = 2.

If t = 0 we can invoke Lemmas 8.3 and 8.7 to see that if β = β(X ′
F ) we may choose

β1 = β(χL1/F ) and β2 = β(X ′
L2/F

) equal to β. If µ
(1)
F is the non-trivial element of S(L1/F )

and µ
(2)
F is the non-trivial element of S(L2/F ), we have only to show that

XL1

(
γ

β

)
X ′
L1/F

(
β

γ

)
µ
(1)
F

(
γ

β

)
is equal to

XL2

(
γ

β

)
X ′
L2/F

(
β

γ

)
µ
(2)
F

(
γ

β

)
.

Certainly

X ′
L1/F

(
β

γ

)
= X ′

L2/F

(
β

γ

)
and we need only show that if δ is in CF then

XL1(δ)µ
(1)
F (δ) = XL2(δ)µ

(2)
F (δ).
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We may write
δ = NL1/F δ1NL2/F δ2.

Then
µ
(i)
F (NL1/F δi) = 1

and, if j is 1 or 2 according as i is 2 or 1,

XLi
(NLj/F δj) = XK(δj) = XLj

(δ2j )

which equals

XLj
(NLj/F δj)µ

(i)
Lj/F

(δj) = XLj
(NLj/F δj)µ

(i)
F (NLj/F δj).

The required equality follows immediately.
If t is positive we may still choose β1 = β. If m1 − t− 1 = v then, by Lemma 8.6, we may

choose β2 in the form
β2 = β + η

with η in Pv
L2
. Since v ⩾ t+ 1

X−1
L2

(β2)X ′
L2/F

(β2) = X−1
L2

(β)X ′
L2/F

(β).

This observation made, we can proceed as before.
Some preparation is necessary before we discuss the second possibility. Suppose that t is

positive so that ℓ is equal to the residual characteristic p. The finite field λ1 = OL1/PL1 is
an extension of degree p of ϕ = OF/PF .

The map
x→ xp − x

is an additive endomorphism of ϕ with the prime field as kernel. Choose a y in ϕ which is
not in the image of this map and consider the equation

xp − x = y.

If x, in some extension field of ϕ, satisfies this equation and ϕ has q elements then xq ̸= x.
However

(xq − x)p − (xq − x) = (xp − x)q − (xp − x) = yq − y = 0.

So
xq − x = z

where z is a non-zero element of the prime field. Then

xq
2

= (x+ z)q = xq + z = x+ 2z

and in general
xq

n

= x+ nz.

Thus the lowest power n of q such that xq
n
= x is n = p and x determines an extension of

degree p. Consequently x may be chosen to lie in λ1 and then λ1 = ϕ(x).
Let Er(x) be the rth elementary symmetric function of x and its conjugates. Since

(12.3) xp − x+ (−1)pNλ1/ϕx = 0

we have

(12.4) Er(x) = 0

if 1 ⩽ r < p− i,

(12.5) Ep−1(x) = (−1)p
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and, of course,

(12.6) Ep(x) = Nλ1/ϕx.

If λ is a non-zero element of the prime field we can replace y by λy. Then x is to be replaced
by λx. Also we can replace x by x+ λ without changing y.

Let R(L1) be the set of (qp− 1)th roots of unity in L1. Choose a γ in R(L1) whose image
in λ1 is x. If we are dealing with fields of power series, γ will also satisfy the equations
(12.3), (12.4), (12.5) and (12.6). Let us see how these equations are to be modified for fields
of characteristic zero. F and L1 are then extensions of the p-adic field Qp. Let F

0 and L0
1

be the maximal unramified extensions of Qp contained in F and L1 respectively. R(L1) is a
subset of L0

1 and p generates the ideal PF 0 and the ideal PL0
1
. Thus

γp − γ + (−1)pNL1/Fγ ≡ 0 (mod p)

and
Er(γ) ≡ 0 (mod p)

if 1 ⩽ r < p− 1 while
Ep−1(γ) ≡ (−1)p (mod p).

Let
Sr(γ) =

∑
σ∈G(L1/F )

γrσ.

The following relations are special cases of Newton’s formulae.

S1(γ)− E1(γ) = 0

S2(γ)− E1(γ)S1(γ) + 2E2(γ) = 0

S3(γ)− E1(γ)S2(γ) + E2(γ)S1(γ)− 3E3(γ) = 0

...

Sp−1(γ)− E1(γ)Sp−2(γ) + · · ·+ (−1)p−1(p− 1)Ep−1(γ) = 0

Sp(γ)− E1(γ)Sp−1(γ) + · · ·+ (−1)ppEp(γ) = 0.

We infer that
Sr(γ) ≡ 0 (mod p)

if 1 ⩽ r < p− 1 and that

Sp−1(γ) ≡ (−1)p(p− 1)Ep−1(γ) (mod p).

Combining the first of these congruences with Newton’s formulae we obtain

Sr(γ) ≡ r(−1)r+1Er(γ) (mod p2)

if 1 ⩽ r ⩽ p− 1. If p is odd

Sp(γ)− pEp(γ) ≡ E1(γ)Sp−1(γ)− Ep−1(γ)S1(γ) (mod p2).

The right side is equal to

E1(γ)
(
Sp−1(γ)− Ep−1(γ)

)
≡ 0 (mod p2).

If p is even

S2(γ) + 2E2(γ) =
{
E1(γ)

}2
.
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Since
E1(γ) ≡ 1 (mod 2)

we have
S2(γ) + 2E2(γ) ≡ 1 (mod 4).

If σ ̸= 1 belongs to G(L1/F ) there is a (p− 1)th root of unity ζ such that

γσ − γ ≡ ζ (mod p).

By a suitable choice of y the root ζ can be made to equal, for a given σ, any chosen (p− 1)th
root of unity.

The above relations are of course also valid when F is a field of power series.
Choose a non-trivial character µF in S(L2/F ) and choose α so that

µF (1 + x) = ψF

(
αx

ϖt+1+n
F

)
if x is in Ps

F . Here s is the least integer greater than or equal to t+1
2
. If ζ is a (p− 1)th root

of unity we define µζF to be µjF if j is the unique integer such that

ζ ≡ j (mod p).

As we observed in the proof of Lemma 8.5,

µζF (1 + x) = ψF

(
αζx

ϖ1+t+n
F

)
if x is in Ps

F .
Let mi = 2di + ϵi as usual. If β1 in L1 is such that

XL1(1 + x) = ψL1/F

(
αβ1x

ϖm1+n1
F

)
for x in Pd1+ϵ1

L1
then, if σ ̸= 1 belongs to G

1
= G(L1/F ) and x belongs to Pd1+ϵ1

L1
,

ψL1/F

(
α(βσ1 − β1)x

ϖm1+n2
F

)
= X σ−1

L1
(1 + x)

is equal to

ψL1/F

(
αζσx

ϖ1+t+n
F

)
if ζσ is such that

X σ−1
L1

= µζσF .

Thus if
v = m1 − 1− t

we have
βσ1 − β1 ≡ ζσϖ

v
F (mod Pd1

L1
).

It is clear that
ζστ ≡ ζτσ + ζσ (mod PL1).

Suppose
γσ − γ ≡ ξσ (mod p)
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where ξσ is also a (p− 1)th root of unity. Then

ξστ ≡ ξτσ + ξσ (mod PL1).

We observed that we could arrange that

ξσ = ζσ

for one non-trivial σ. Once we do this, the equality will hold for all σ. Then γpσ − γp ≡ ξσ
(mod p) and

(β1 − γpϖv
F )

σ ≡ β1 − γpϖv
F (mod Pd1

L1
)

for all σ because, as we observed in the proof of Lemma 8.5, p belongs to Pr
L1

if r+ s = t+ 1
and

2(r + v) ⩾ t+ 2v = 2m1 − 2− 2t+ t,

which is at least
(m1 − 1) + (m1 − 1− t) ⩾ m1 − 1

so that r + v ⩾ d1. Since L1/F is unramified there is therefore a β in F such that

β1 − γpϖv
F ≡ β (mod Pd1

L1
).

We may suppose that
β1 = β + γpϖv

F .

β is a unit unless v = 0. If v = 0 then, by replacing γ by a root of unity congruent to γ + 1
modulo PL1 if necessary, we can still arrange that β is a unit. β is congruent to a norm
NL2/Fβ

′ modulo Pt
F . Since d1 ⩽ t we2

2(1998) At the moment this is all that could be found of Chapter 12.



CHAPTER 13

The third main lemma

SupposeK/F is Galois and G = G(K/F ). Suppose G = HC when H ̸= {1}, H∩C = {1},
and C is a non-trivial abelian normal subgroup of G which is contained in every non-trivial
normal subgroup of G.

Lemma 13.1. Let E be the fixed field of H and let XF be a quasi-character of CF . If
m = m(XF ) then

m(XE/F ) = ψE/F (m− 1) + 1.

Set
m′ = m(XE/F )− 1.

Observe that m′ − 1 is the greatest lower bound of all real numbers v > −1 such that XE/F

is trivial on U v
E and that m− 1 is the greatest lower bound of all real numbers u such that

XF is trivial on Uu
F . Since

NE/F (U
ψE/F (u)

E ) ⊆ Uu
F

we see immediately that
m′ − 1 ⩽ ψE/F (m− 1).

To prove the lemma we need only show that

NE/F (U
ψE/F (m−1)

E ) ⊇ Um−1
F .

We show this with m− 1 replaced by any u ⩾ −1.
By Lemma 6.15, τK/F maps W u

K/F onto Uu
F . The projection of W u

K/F on G is a normal

subgroup of G. Thus it is either {1} or a subgroup containing C. If it is {1} then

W u
K/F = W u

K/F ∩ CK = U
ψK/F (u)

K

and
Uu
F = NK/F (U

ψK/F (u)

K ) = NE/F (NK/EU
ψK/F (u)

K )

which, by Lemma 6.6, is contained in

NE/F (U
ψE/F (u)

E ).

Suppose the projection is not {1}. If L is the fixed field of C the group W u
K/F contains,

(13.1)
{
wvw−1v−1

∣∣∣ w ∈ WK/F , v ∈ W u
K/F ∩WK/L

}
.

Since C is generated by {
σρσ−1ρ−1

∣∣ σ ∈ G, ρ ∈ C
}

121
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the group generated by the set (13.1) contains a set of representatives for the cosets of CK in
WK/L. This group clearly lies in the kernel of τK/F . Thus every element of W u

K/F is congruent
modulo the kernel of τK/F in W u

K/F to an element of

W u
K/F ∩WK/E = W

ψE/F (u)

K/E

and
Uu
F = τK/F (W

u
K/F ) = τK/F (W

ψE/F (u)

K/E ),

which is
NE/F

(
τK/E(W

ψE/F (u)

K/E )
)

and this set is contained in
NE/F (U

ψE/F (u)

E ).

Suppose F1 is non-archimedean, K1/F1 is Galois, and F1 ⊆ E1 ⊆ K1. Let µ1 be a
character of G(K1/E1). We may also regard µ1 as a character of CE1 . Let σ be an element
of G(K1/F1) and define the character of µσ1 of G(K1/E

σ
1 ) by

µσ1 (ρ) = µ1(σρσ
−1)

for ρ ∈ G(K1/E
σ
1 ) or, what amounts to the same

µσ1 (α) = µ1(α
σ−1

)

for α ∈ CEσ
1
. Since

ψEσ
1 /F1(α) = ψE1/F1(α

σ−1

)

the next lemma is a congruence of the definitions.

Lemma 13.2.
∆(µσ1 , ψEσ

1 /F1) = ∆(µ1, ψE1/F1).

We return to the extension K/L and the group G. Let T be a set of representatives for
the orbits under G of the non-trivial characters in S(K/L). If µ ∈ T , let Gµ be the isotropy
group of µ and let Fµ be the fixed field of Gµ. Let Hµ = H ∩Gµ. Since C is contained in
Gµ we have Gµ = Hµ · C. Then µ may also be regarded as a character of C. Let µ′ be the
character of Gµ defined by

µ′(hc) = µ(c)

if h ∈ Hµ and c ∈ C. Eventually we must show that

(13.2) ∆(XE/F , ψE/F )
∏
µ∈T

∆(µ′, ψFµ/F )

is equal to

(13.3) ∆(XF , ψF )
∏
µ∈T

∆(µ′XFµ/F , ψFµ/F )

if XF is a quasi-character of CF . At the moment we content ourselves with a special case.
The next lemma will be referred to as the Third Main Lemma.

Lemma 13.3. If K/F is tamely ramified the expressions (13.2) and (13.3) are equal.
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As we observed in Lemma 6.4 the extension L/F will be unramified and ℓ = [C : 1] will be
a prime. Choose a generator ϖF of PF . Since Fµ/F is unramified we may choose ϖFµ = ϖF .
Choose ϖE so that NE/FϖE = ϖF . Certainly

δL/F = δK/E = 0

while
δK/L = ℓ− 1.

Since
δK/F = δK/L + ℓδL/F = δK/E + δE/F

we conclude that
δE/F = ℓ− 1.

Clearly ∑
µ

[Fµ : F ] =
∑
µ

[H : Hµ] =
∑
µ

[G : Gµ]

is just the number of non-trivial characters in S(K/L), that is ℓ− 1. Moreover m(µ′) = 1.
Let Eµ be the fixed field of Hµ. Then

NEµ/Fµ(ϖE) = NE/F (ϖE) = ϖF .

Thus, as an element of CFµ , ϖF lies in the image ofWK/Eµ under τK/Fµ and hence µ′(ϖF ) = 1.
Also

n(ψE/F ) = ℓn(ψF ) + δE/F = ℓn+ (ℓ− 1)

while
n(ψFµ/F ) = n.

If m = m(XF ) = 0 then
m(XE/F ) = m(XFµ/F ) = 0

and
XE/F (ϖ

ℓn+ℓ−1
E ) = XF (ϖ

ℓn+ℓ−1
F ) = XF (ϖ

n
F )
∏
µ

XFµ/F (ϖ
1+n
F )

so that the lemma amounts to the equality∏
µ

∆1(µ, ψFµ/F , ϖ
1+n
F ) =

∏
µ

∆1(µ, ψFµ/F , ϖ
1+n
F ).

If m > 0 then, by Lemma 6.4,

m(XE/F ) = ℓm− (ℓ− 1)

and
m(XE/F ) + n(ψE/F ) = ℓ(m+ n).

Since K/E is unramified

m(XK/F ) = m(XE/F ) = ℓm− (ℓ− 1).

However
XK/F = (µ′XFµ/F )K/Fµ

so that
ψK/Fµ

(
m(µ′XFµ/F )− 1

)
⩾ m(XK/F )− 1 = ℓ(m− 1)

or
m(µ′XFµ/F )− 1 ⩾ φK/Fµ

(
ℓ(m− 1)

)
= m− 1.
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Consequently
m(µ′XFµ/F ) ⩾ m.

Since it is clearly less than or equal to m it is equal to m. Because

XE/F (ϖ
m+n
F ) = XF (ϖ

ℓ(m+n)
F ) = XF (ϖ

m+n
F )

∏
µ

XFµ/F (ϖ
m+n
F )

we have to show that

∆1(XE/F , ψE/F , ϖ
m+n
F )

∏
∆1(µ

′, ψFµ/F , ϖ
m+n
F )

is equal to

∆1(XF , ψF , ϖ
m+n
F )

∏
∆1(µ

′XFµ/F , ψFµ/F , ϖ
m+n
F ).

Let ϕ be the field OF/PF , let λ = OL/PL, let q be the number of elements in ϕ, and let

f = [λ : ϕ] = [L : F ].

Let θ be the homomorphism of C into λ∗ introduced in Chapter IV of Serre’s book. Thus

θ(c) = ϖc−1
E (mod PF )

so that if h ∈ H
θ(h−1ch) ≡ (ϖh−1c−h−1

E ) ≡ (ϖc−1
E )h ≡ θ(c)h.

Let h0 be that element of H such that

αh0 = αq

if α ∈ λ and let c0 be a generator of C. Then θ(c0) has order ℓ and, since the centralizer of
C in H is {1},

θ(h−r0 chr0) = θ(c0)
qr

is θ(c0) if and only if f divides r. On the other hand, it is θ(c0) if and only if ℓ divides qr − 1.
Thus the order of q modulo ℓ is f . We also observe that both C and its dual group are cyclic
of prime order so that any element of H which fixed an element of T would act trivially on
the dual group and therefore on C itself. It follows that Fµ = L for all µ in T .

Suppose first that m = 1. Let ψϕ be the character

ψϕ(x) = ψF

(
x

ϖ1+n
F

)
on ϕ. Since OE/PE is naturally isomorphic to OF/PF and the map x → NE/Fx gives the
map x→ xℓ of ϕ into itself while the map x→ SE/Fx induces the map x→ ℓx the required
identity reduces to the equality of

Xϕ(ℓ
ℓ)τ(X ℓ

ϕ, ψϕ)
∏
µ∈T

τ(µλ, ψλ/ϕ)

and
τ(Xϕ, ψϕ)

∏
µ∈T

τ(µλXλ/ϕ, ψλ/ϕ).

This equality has been proved in Lemma 7.8.
Now let m be greater than 1. Since Fµ = 1 for all µ we are trying to show that

∆1(XE/F , ψE/F , ϖ
m+n
F )

∏
∆1(µ, ψL/F , ϖ

m+n
F )
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is equal to

∆1(XF , ψF , ϖ
m+n
F )

∏
∆1(µXL/F , ψL/F , ϖ

m+n
F ).

Since the action of H on C is not trivial ℓ cannot be 2. If µ lies in T and µ−1 lies in the
orbit of ν then

∆1(ν, ψL/F , ϖ
m+n
F ) = ∆1(µ

−1, ψL/F , ϖ
m+n
F )

is µ(−1) times the complex conjugate of

∆1(µ, ψL/F , ϖ
m+n
F ).

Since the order of µ is ℓ, µ(−1) = 1 and, if µ ≠ ν, the product of the two terms corresponding
to µ and ν is 1. If

µ−1 = µq
r

with 0 ⩽ r < f lies in the orbit of µ, then ℓ divides qr + 1. Thus ℓ divides q2r − 1 and 2r = f .
By Lemma 7.1 ∣∣τ(µλ, ψλ/ϕ)∣∣ =√qf = qr

and
τ(µλ, ψλ/ϕ) = −∆1(µ, ψL/F , ϖ

1+n
F )qr

if ψλ/ϕ has the same meaning as before and µλ is the character of λ∗ induced by µ. Since

δ = ∆1(µ, ψL/F , ϖ
1+n
F )

is its own complex conjugate, it is ±1. If α ∈ ϕ then

µ−1(α) = µ(αq
r

) = µ(α).

Since u(α) is an ℓth root of unity it is 1. Thus

τ(µλ, ψλ/ϕ) = τ(µλ).

However it follows from Lemma 7.1 that

τ(µλ) ≡ 1 (mod η)

where η is a number in kp(qf−1) which is not a unit and whose only prime divisors are divisors
of ℓ. Thus

−δqr = τ(µλ) ≡ 1 (mod ℓ)

and δ = 1. We are reduced to showing that

∆1(XE/F , ψE/F , ϖ
m+n
F )

is equal to

∆1(XF , ψF , ϖ
m+n
F )

∏
∆1(µXL/F , ψL/F , ϖ

m+n
F )

Let β = β(XF ). By repeated applications of Lemma 8.9 we see that we may take

β(XL/F ) = β(XK/F ) = β(µXL/F ) = β.

If β(XE/F ) is chosen we could also take

β(XK/F ) = β(XE/F ).

Thus if
m′ = m(XE/F ) = m(XK/F ) = 2d′ + ϵ′

we have
β ≡ β(XE/F ) (mod Pd′

K).
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Since both sides of the congruence lie in E

β ≡ β(XE/F ) (mod Pd′

E)

and we may take
β(XE/F ) = β.

Then

∆2(XE/F , ψE/F , ϖ
m+n
F ) = ψF

(
ℓβ

ϖm+n
F

)
X−1
F (βℓ)

while
∆2(XF , ψF , ϖ

m+n
F )

∏
µ∈T

∆2(µXF , ψL/F , ϖ
m+n
F )

is equal to

ψF

(
ℓβ

ϖm+n
F

)
X−1
F (βℓ).

To complete the proof of the lemma we have to show that

(13.4) ∆3(XF , ψF , ϖ
m+n
F )

∏
µ∈T

∆3(µXF , ψL/F , ϖ
m+n
F )

is equal to
∆3(XE/F , ψE/F , ϖ

m+n
F )

when one, and hence both, of m and m′ is odd.
As remarked in Lemma 9.4

∆3(µXL/F , ψL/F , ϖ
m+n
F ) = ∆3(XL/F , ψL/F , ϖ

m+n
F ).

According to Lemma 9.6, the right side is equal to

ϵ∆3(XF , ψF , ϖ
m+n
F )[L:F ]

where ϵ is 1 if f = [L : F ] is odd and −1 if it is even. Thus (13.4) is equal to

ϵ
ℓ−1
f
{
∆3(XF , ψF , ϖ

m+n
F )

}
.

As before
ϕ = OF/PF = OE/PE.

Let φϕ be the function on ϕ defined by

φϕ(x) = ψF

(
βx

ϖd+1+n
F

)
X−1
F (1 +ϖd

Fx)

if m = 2d+ 1. Then m′ = 2ℓd+ 1 so that d′ = ℓd. Let φ′
ϕ be the function on ϕ defined by

φ′
ϕ(x) = ψE/F

(
βx

ϖd+1+n
F

)
X−1
E/F (1 +ϖd

Fx).

Because of Lemma 9.3, to complete the proof of the lemma we have only to show that

ϵ
ℓ−1
f A
[
σ(φϕ)

ℓ
]
= A

[
σ(φ′

ϕ)
]
.
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Since d′ ⩾ m and
3d′ + ℓ− 1

ℓ
⩾ m

we have
NK/L(1 +ϖd

Fx) ≡ 1 +ϖd
FSK/Lx+ϖ2d

F E
2
K/L(x) (mod Pm

L )

if E2
K/L(x) is the second elementary symmetric function of x and its conjugates over L. Thus

NE/F (1 +ϖd
Fx) ≡ 1 +ϖd

FSE/Fx+ϖ2d
F E

2
E/F (x) (mod Pm

F ).

This in turn is congruent to

(1 +ϖd
FSE/Fx)

(
1 +ϖ2d

F E
2
K/F (x)

)
.

Thus
φ′
ϕ(x) = φϕ(ℓx)ψϕ

(
−E2

λ/ϕ(x)
)

if

ψϕ(x) = φF

(
βx

ϖ1+n
F

)
or

φ′
ϕ(x) = φϕ(ℓx)ψϕ

(
−ℓ(ℓ− 1)

2
x2
)

=
{
φϕ(x)

}ℓ
.

Suppose first that p is odd and let

φϕ(x) = ψϕ

(
x2 − 2αx

2

)
so that

φ′
ϕ(x) = ψϕ

(
ℓx2 − 2ℓαx

2

)
= ψϕ

(
ℓ(x− α)2

2

)
ψϕ

(
−ℓα2

2

)
.

Referring to the observations in paragraph 9 we see that we must show that

ϵ
ℓ−1
f νϕ(−1)

ℓ−1
2 ψϕ

(
−ℓα2

2

)
= νϕ(ℓ)ψϕ

(
−ℓα2

2

)
or

ϵ
ℓ−1
f = νϕ(−1)

ℓ−1
2 νϕ(ℓ)

if νϕ is the quadratic character of ϕ×. Let q be the number of elements in ϕ. If q is an even
power of p the right side is 1 and if q is an odd power of p the right side is, by the law of
quadratic reciprocity, ω(p) if ω is the quadratic character of the field with ℓ elements. Thus
in all cases the right side is ω(q). If f is odd then qf is a quadratic residue of ℓ if and only if
q is. Since

qf − 1 ≡ 0 (mod ℓ),

q is a quadratic residue and both sides of the equation are 1. If f is odd the left side is

(−1)
ℓ−1
f . Since f is the order of q modulo ℓ, this is ω(q).

Now suppose that p = 2. If
ψϕ(−x2) = ψϕ(αx)

then, by the remarks in the proof of Lemma 9.7, we have to show that

ϵ
ℓ−1
f φϕ(α)

ℓ−1
2 = 1
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if ℓ ≡ 1 (mod 4) and that

ϵ
ℓ−1
f φϕ(α)

ℓ+1
2 = 1

if ℓ ≡ 3 (mod 4). We also saw in paragraph 9 that{
φϕ(α)

}2
= ψϕ(α

2)

was +1 or −1 according as q is or is not an even power of p. By the second supplement to
the law of quadratic reciprocity

φϕ(α)
ℓ−1
2 = ω(q)

if ℓ ≡ 1 (mod 4) and

φϕ(α)
ℓ+1
2 = ω(q)

if ℓ ≡ 3 (mod 4). We have just seen that

ϵ
ℓ−1
f = ω(q).

The lemma is proved.



CHAPTER 14

The fourth main lemma

In the previous paragraph we said that we would eventually have to show that

(14.1) ∆(χE/F , ψE/F )
∏
µ∈T

∆(µ′, ψFµ/F )

is equal to

(14.2) ∆(χF , ψF )
∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ).

However we verified that the two expressions are equal only when K/F is tamely ramified. In
this paragraph we shall show that they are equal if Theorem 2.1 is valid for all pairs K ′/F ′

in P(K/F ) for which [K ′ : F ′] < [K : F ].

Lemma 14.1. Suppose K/F is wildly ramified and Theorem 2.1 is valid for all pairs K ′/F ′

in P(K/F ) for which [K ′ : F ′] < [K : F ]. If χF is any quasi-character of CF the expressions
(14.1) and (14.2) are equal.

If a and b are two non-zero complex numbers and m is a positive integer we again write
a ∼m b if, for some non-negative integer r, a

b
is an mrth root of unity. Define the non-zero

complex number ρ by demanding that

∆(χE/F , ψE/F )
∏
µ∈T

∆(µ′, ψFµ/F )

be equal to

ρ∆(χF , ψF )
∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ).

We have to show that ρ = 1. Lemma 14.1 will be an easy consequence of the following four
lemmas.

Lemma 14.2. If m(χF ) is 0 or 1 then ρ = 1 and in all cases p ∼2p 1.

Lemma 14.3. If [G : G1] is a power of 2 then ρ ∼p 1.

Lemma 14.4. If the induction assumption is valid, if F ⊆ F ′ ⊆ L, if F ′/F is normal, and
if [F ′ : F ] = ℓ is a prime then p ∼ℓ 1.

Lemma 14.5. Suppose H = H1H2 where H2 is a cyclic normal subgroup of H, [H2 : 1] is a
power of a prime ℓ, and [H1 : 1] is prime to ℓ. If the induction assumption is valid ρ ∼ℓ 1.

Grant these four lemmas for a moment and observe that if m and n are relatively prime
then ρ ∼m 1 and ρ ∼n 1 imply that ρ = 1. If ℓ is a prime which divides [G : G0] there is
a field F ′ containing F and contained in L so that F ′/F is normal and [F ′ : F ] = ℓ. Thus
Lemma 14.1 follows from Lemma 14.4 unless [G : G0] is a prime power. Lemma 14.1 follows
from Lemmas 14.2 and 14.4 unless [G : G0] is a power of 2 or p. Suppose [G : G0] is a power

129
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of 2 or p. Then ρ ∼[G:G0] 1 except perhaps when [G : G0] = 1. If ℓ is a prime which does not
divide [G : G0] but does divide [G0 : G1] let H2 be the ℓ-Sylow subgroup of G0/G1. H2 is a
normal subgroup of G/G1 which we may identify with H and H/H2 has order prime to H2.
Thus, by a well-known theorem of Schur [7], H = H1H2 where H1 ∩H2 = {1} and H1 has
order prime to H2. It follows from Lemma 14.5 that ρ = 1 unless [G : G0] = 1 or [G : G1]
is a power of 2 or p. If [G : G0] = 1 and ℓ is a prime dividing [G0 : G1], there is a field F ′

with F ⊆ F ′ ⊆ L such that F ′/F is normal and [F ′ : F ] = ℓ. Thus if [G : G0] = 1 it follows
from Lemma 14.4 that ρ = 1 unless [G : G1] is a power of 2. However if [G : G1] is a power
of 2 there certainly is an F ′ in L with [F ′ : F ] = 2. It follows from Lemmas 14.3 and 14.4
that ρ = 1 in this case unless p = 2. If [G : G1] is a power of p then G0 = G1 and G/G1 is
abelian. By assumption the abelian p-group G/G1 acts on the p-group C = G1 faithfully and
irreducibly. This is impossible.

We prove Lemma 14.2 first. Let t ⩾ 1 be such that C = Gt while Gt+1 = {1}. Let θt be
the homomorphism of Gt into Pt

K/P
t+1
K and θ0 the homomorphism of G0/G1 into U0

K/U
1
K

introduced in Serre’s book. If σ ∈ G0 and γ ∈ Gt then

θt(σγσ
−1γ−1) =

(
θt0(σ)− 1

)
θt(γ).

If σ is not in G1 then θt0(σ) is not 1 and γ → σγσ−1γ−1 is a one-to-one map of C onto itself.
Thus, if σ ∈ G0,

µ(σγσ−1) = µ(γ)

implies µ = 1 or σ ∈ G1. Consequently if µ ̸= 1, Gµ ∩ G0 = G1, and L/Fµ is unramified.
Since µ = µ′

L/Fµ
,

m(µ′) = m(µ) = t+ 1.

Observe also that t must be relatively prime to [G0 : G1]. In particular if t is even, [G0 : G1]
is odd.

The relations

δK/L =
(
[Gt : 1]− 1

)
(t+ 1)

δL/F = [G0 : G1]− 1

δK/E = [G0 : G1]− 1

and
δK/F = δK/L + [G1 : 1]δL/F = δK/E + [G0 : G1]δE/F

obtained from Proposition 4 of Chapter IV of Serre’s book, imply that

δE/F =
(
[G1 : 1]− 1

)( t

[G0 : G1]
+ 1

)
.

If n = n(ψF ) then
n(ψFµ/F ) = [G0 : G1]n+ [G0 : G1]− 1

and

n′ = n(ψE/F ) = [G1 : 1]n+
(
[G1 : 1]− 1

)( t

[G0 : G1]
+ 1

)
.

Choose a generator ϖK of PK and a generator ϖE of PE. Then set ϖL = NK/LϖK and
ϖF = NE/FϖE. There is a unit δ in K such that

ϖ1+n
F

ϖ1+n′

E

= δ
ϖt
K

ϖt
L

.
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Taking the norm from K to L of both sides we see that if q = [G1 : 1] and k = [G0 : G1] then

ϖ
t(q−1)
L

ϖ
t
(q−1)

k
F

= NK/Lδ.

Let m = m(χF ). If m − 1 is equal to t
[G0:G1]

then [G0 : G1] divides t and [G0 : G1] is 1.

Suppose that

m <
t

[G0 : G1]
+ 1.

Then

m(χFµ/F ) < ψFµ/F

(
t

[G0 : G1]

)
+ 1.

However ψFµ/F = φL/Fµ ◦ ψL/F = ψL/F so that

ψFµ/F (u) = [G0 : G1]u

if u ⩾ 0. Thus m(χFµ/F ) < t+ 1 and m(µ′χFµ/F ) = t+ 1. Moreover, by Lemmas 13.1 and
6.4, m′ = m(χE/F ) = m. Choose a generator ϖFµ of PFµ . Then

NFµ/F (ϖ
t
Fµ
) = γµϖ

t
[Fµ:F ]

k
F

where γµ is a unit. The order of ϖ1+n
F ϖt

Fµ
in Fµ is 1 + t+ n(ψFµ/F ). Observing that∑

µ

[Fµ : F ] = q − 1

we see that
∆1(χE/F , ψE/F ′ϖm′+n′

E )
∏
µ∈T

∆1(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
)

is equal to

p

∏
µ

χF (γµ)

{∆1(χF , ψF , ϖ
m+n
F )

}∏
µ

∆1(µ
′χFµ/F , ψFµ/F , ϖ

1+n
F ϖt

Fµ
)

.
It is now clear that ρ = 1 if m = 0.

If

m ⩾
t

[G0 : G1]
+ 1

so that in particular m ⩾ 2, then

m′ = m(χE/F ) = [G1 : 1]m−
(
[G1 : 1]− 1

)( t

[G0 : G1]
+ 1

)
is also greater than or equal to 2 and

m′ + n′ = [G1 : 1](m+ n).

Since m′ ⩾ 2 and K/E is tamely ramified

m(χK/F ) = ψK/E
(
m(χE/F )− 1

)
+ 1 = ψK/F (m− 1) + 1.

Since
m(χFµ/F ) ⩽ ψFµ/F (m− 1) + 1
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and

ψFµ/F (m− 1) + 1 ⩾ ψFµ/F

(
t

k

)
+ 1 = t+ 1

we have
m(µ′χFµ/F ) ⩽ ψFµ(m− 1) + 1.

However
χK/F = (µ′χFµ/F )K/Fµ

so that
ψK/Fµ

(
ψFµ/F (m− 1)

)
+ 1 = ψK/F (m− 1) + 1 = m(χK/F )

is at most
ψK/F

(
m(µ′χFµ/F )− 1

)
+ 1.

Thus
m(µ′χFµ/F ) = ψFµ/F (m− 1) + 1.

Consequently
m(µ′χFµ/F ) + n(ψFµ/F ) = [G0 : G1](m+ n).

Since the range of each µ′ lies in the group of qth roots of unity

∆1(χE/F , ψE/F , ϖ
m+n
F )

∏
µ

∆1(µ
′, ψFµ/F , ϖ

n+1
F ϖt

Fµ
)

is equal to

σ∆1(χF , ψF , ϖ
m+n
F )

∏
µ

∆1(µ
′χFµ/F , ψFµ/F , ϖ

m+n
F )

with σ ∼p ρ.
The next step in the proof of the lemma is to establish a simple identity. As usual let r

be the integral part of t+1
2

and let r + s = t+ 1. Choose β(µ′) so that

ψFµ/F

(
β(µ′)x

ϖ1+n
F ϖt

Fµ

)
= µ′(1 + x)

for x in Ps
Fµ
. There is a unit αµ in L such that αµϖ

t
Fµ

= ϖt
L. Then

ψL/F

(
αµβ(µ

′)x

ϖ1+n
F ϖt

L

)
= µ(1 + x)

for x in Ps
L. We take β(µ) = αµβ(µ

′). If σ ∈ G a possible choice for β(µσ) is

β(µ)σ
ϖt
L

ϖσt
L

.

Let ϕ = OF/PF = OE/PE and let ψϕ be the additive character of ϕ defined by

ψϕ(x) = ψF

(
x

ϖ1+n
F

)
.

There is a unique α in ϕ such that

ψϕ(αx) = ψϕ(x
q).
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Finally let

ω1 = SE/F

(
ϖ1+n
F

ϖ1+n′

E

)
.

I want to show that

(14.3)
∏
µ

γµ =
ωq1
αq

∏
µ

NFµ/Fβ(µ
′)

in ϕ.
Let λ = OL/PL = OK/PK . If

ω = SK/L

(
ϖt
K

ϖt
L

)
then ω1 = δω in λ. We need the following lemma.

Lemma 14.6. Suppose K ′/F ′ is an abelian extension and G′ = G(K ′/F ′). Suppose there
is a t ⩾ 1 such that G′ = G′

t and G
′
t+1 = {1}. Let ϖK′ be a generator of P′

K, let ϖF ′ =
NK′/F ′(ϖK′), and let

ω = SK′/F ′

(
ϖt
K′

ϖt
F ′

)
.

Also let q = [K ′ : F ′]. There are numbers a, . . . , f in OF ′ such that for all x in OF ′

NK′/F ′(1 + xϖt
K′)

is congruent to
1 + (xq + axq/p + · · ·+ fxp + ωx)ϖt

F ′

modulo Pt+1
F ′ .

Suppose F ′ ⊆ L′ ⊆ K ′ and the lemma is true for K ′/L′ and L′/F ′. The lemma for K ′/F ′

follows from the relations
[K ′ : F ′] = [K ′ : L′][L′ : F ′]

and
NK′/F ′(1 + xϖt

K′) = NL′/F ′
(
NK′/L′(1 + xϖt

K′)
)

and

SK′/F ′

(
ϖt
K′

ϖt
F ′

)
≡ SL′/F ′

(
ϖt
L′

ϖt
F ′

)
SK′/L′

(
ϖt
K′

ϖt
L′

)
.

The lemma for extensions of prime order is proved in Serre’s book.
Suppose then

NK/L(1 + xϖt
K) ≡ 1 + (xq + · · ·+ϖx)ϖt

L (mod Pt+1
L )

for x in OL. Since

ψλ/ϕ(αx) = ψϕ
(
αSλ/ϕ(x)

)
= ψϕ

((
Sλ/ϕ(x)

)q)
which in turn equals

ψϕ(Sλ/ϕx
q) = ψλ/ϕ(x

q)

we conclude that

ψλ/ϕ
(
y(xq + · · ·+ ωx)

)
= ψλ/ϕ

(
(αy1/q + · · ·+ ωy)x

)
.
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Also
(αy1/q + · · ·+ ωy)q = αqy + · · ·+ ωqyq

is a polynomial Q(y) in y.
For each ν in S(K/L), we choose β1(ν) so that

ψL/F

(
β1(ν)x

ϖ1+n
F ϖt

L

)
= ν(1 + x)

for x in Ps
L. Since k

p = k in λ

ψλ/ϕ
(
kβ1(ν)(x

q + · · ·+ ωx)
)
= ψλ/ϕ

(
β1(ν)

[
(kx)q + · · ·+ ωkx

])
if x is in OF . The left side is also equal to

ψL/F

(
β1(ν)PK/L(xϖ

t
K)

ϖ1+n
F ϖt

L

)
= 1.

Thus Q
(
kβ1(ν)

)
= 0. Since β1(ν1) = β2(ν2) (mod PL) implies ν1 = ν2 we have found all the

roots of Q(y) = 0. Thus

αq

ωq
≡
∏
ν ̸=1

kβ1(ν) ≡
∏
ν ̸=1

β1(ν) (mod PL).

Let Mµ be a set of representatives for the cosets of Gµ in G. Then∏
µ∈T

NFµ/Fβ(µ
′) =

∏
µ∈T

∏
σ∈Mµ

β(µ′)σ

is congruent to ∏
ν ̸=1

β1(ν)


∏
µ∈T

∏
σ∈Mµ

ασµ
ϖt
L

ϖσt
L


−1

modulo PL. To verify the identity (14.3) we have to show that∏
µ

∏
σ∈Mµ

ασµ
ϖt
L

ϖσt
L


∏

µ

γµ

 ≡ δq (mod PK).

Since

γµ =

 ∏
σ∈Mµ

ϖσt
L

ασµ

ϖ−t [Fµ:F ]

k
F

the congruence reduces to

ϖ
t(q−1)
L

ϖ
t
(q−1)

k
F

≡ δq (mod PK)

which is valid because the left side is NK/Lδ and

NK/Lδ ≡ δq (mod PK).

If m = 1 then m(χFµ/F ) ⩽ 1 and we can take β(µ′χFµ/F ) = β(µ′). Then

∆2(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
)
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is equal to

χF

(
NFµ/F

(
β(µ′)

))
∆2(µ

′χFµ/F , ψFµ/F , ϖ
1+n
F ϖt

Fµ
).

Lemma 9.4 implies that

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
) = ∆3(µ

′χFµ/F , ψFµ/F , ϖ
1+n
F ϖt

Fµ
).

If x belongs to OE then

ψE/F

(
x

ϖ1+n′

E

)
= ψϕ(ω1x).

If χϕ is the character of ϕ∗ determined by χF then

∆1(χF , ψF , ϖ
1+n
F ) = A

[
−τ(χϕ, ψϕ)

]
and

∆1(χE/F , ψE/F , ϖ
1+n′

E ) = χϕ(ω
q
1)A
[
−τ(χqϕ, ψϕ)

]
.

The right side of this expression is equal to

χϕ(ω
q
1α

−q)A
[
−τ(χϕ, ψϕ)

]
.

The identity (14.3) now shows that ρ = 1 when m = 1.
Suppose that

1 < m <
t

[G0 : G1]
+ 1.

Let β be a given choice of β(χF ). Then

β(χE/F ) ≡ P ∗
E/F (β,ϖ

m′+n′

E , ϖm+n
F ) (mod Pd′

E)

if m′ = 2d′ + ϵ′. On the other hand

ψL/F (m− 1) + 1 + n(ψL/F ) = [G0 : G1](m− 1) + 1 + [G : G0]n+ [G0 : G1]− 1

which equals [G0 : G1](m+ n) and Lemmas 8.3, 8.4, and 8.7 imply that

P ∗
L/F (β,ϖ

m+n
F , ϖm+n

F ) ≡ β (mod Pd1
L )

if
ψL/F (m− 1) + 1 = 2d1 + ϵ1.

If
ψK/F (m− 1) + 1 = 2d′1 + ϵ′1

then
P ∗
K/E

(
β(χE/F ), ϖ

m′+n′

E , ϖm′+n′

E

)
≡ β(χE/F ) (mod P

d′1
K ).

Thus
β(χE/F ) ≡ P ∗

K/F (β,ϖ
m′+n′

E , ϖm+n
F ) (mod P

d′1
K ).

Let
v = t+ 1−

(
ψL/F (m− 1) + 1

)
= t− [G0 : G1](m− 1).

If

γ =
ϖt−v
L

ϖm−1
F

and

γ′ =
ϖm′+n′

E ϖv
K

ϖ1+n
F ϖt

L
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then
P ∗
K/F (β,ϖ

m′+n′

E , ϖm+n
F ) ≡ P ∗

K/L(β,ϖ
m′+n′

E , ϖm+n
F ) (mod P

d′1
K )

is congruent to
γ′P ∗

K/L(γβ,ϖ
1+n
F ϖt

Lϖ
−v
K , ϖ1+n

F ϖt−v
L )

modulo P
d′1
K .

It is clear that

∆2(χE/F , ψE/F , ϖ
m′+n′

E ) ∼p χ
−1
F

(
NE/F

(
β(χE/F )

))
and that

∆2(µ
′, ψFµ/F , ϖ

n+1
F ϖt

Fµ
) ∼p 1.

If we choose

β(µ′χFµ/F ) = β(µ′) + β
ϖt
Fµ

ϖm−1
F

then

∆2(µ
′χFµ/F , ψFµ/F , ϖ

n+1
F ϖt

Fµ
) ∼p χ

−1
F

NFµ/F

(
β(µ′) + β

ϖt
Fµ

ϖm−1
F

).
Moreover

∆2(χF , ψF , ϖ
m+n
F ) ∼p χ

−1
F (β).

Let
∆2(χE/F , ψE/F , ϖ

m′+n′

E )
∏
µ

∆2(µ
′, ψFµ/F , ϖ

n+1
F ϖt

Fµ
)

equal

τ∆2(χF , ψF , ϖ
m+n
F )

∏
µ

∆2(µ
′χFµ/F , ψFµ/F , ϖ

n+1
F ϖt

Fµ
)


∏

µ

χF (γµ)

.
Since

χF (u) ∼p 1

if u ∈ U1
F , all we need do to show that τ ∼p 1 is prove that

β
∏
µ

NFµ/F

(
β(µ′) + β

ϖt
Fµ

ϖm−1
F

)
is congruent to

NE/F

(
β(χE/F )

)∏
µ

γµ

modulo PF .
As before we choose β(µ) = αµβ(µ

′). If ν = µσ a possible choice for β(ν) is

ασµβ(µ
′)σ

ϖt
L

ϖσt
L

.

We can also choose

β(µχL/F ) = αµβ(µ
′) + β

ϖt
L

ϖm−1
F

= αµ

(
β(µ′) + β

ϖt
Fµ

ϖm−1
F

)
.
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Then a possible choice for β(µσχL/F ) is

ασµ

{
β(µ′) + β

ϖt
Fµ

ϖm−1
F

}σ
ϖt
L

ϖσt
L

= ασµβ(µ
′)σ

ϖt
L

ϖσt
L

+ β
ϖt
L

ϖm−1
F

.

We apply Lemma 8.10 with F replaced by L,

δ = ϖ1+n
F ϖt

L

and ϵ1 = ϖv
K . It implies that

NK/L

(
β(χE/F )

γ′

)
is congruent to

γβ
∏
µ∈T

∏
σ∈Mµ

ασµ
(
β(µ′) + β

ϖt
Fµ

ϖm−1
F

)σ
ϖt
L

ϖσt
L


modulo PL. The last expression is equal to

γβ

∏
µ∈T

NFµ/F

(
β(µ′) + β

ϖt
Fµ

ϖt
F

)
∏
µ∈T

∏
σ∈Mµ

ασµ
ϖt
L

ϖσt
L


and we have to show that

γNK/L(γ
′)

∏
µ

γµ


∏
µ∈T

∏
σ∈Mµ

ασµ
ϖt
L

ϖσt
L


is congruent to 1 modulo PL. First of all,

NK/L(γ
′) = ϖ

m′+n′−q(1+n)
F ϖ−qt+v

L = γ−1ϖ
(q−1)t

k
F

ϖ
(q−1)t
L

.

Since

γµ =

 ∏
σ∈Mµ

ασµ
ϖσt
L


−1

ϖ
−t [Fµ:F ]

k
F ,

the required relation follows.
Define η by setting

η∆3(χE/F , ψE/F , ϖ
m′+n′

E )
∏
µ∈T

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
)

equal to

∆3(χF , ψF , ϖ
m+n
F )

∏
µ∈T

∆3(µ
′χFµ/F , ψFµ/F , ϖ

1+n
F ϖt

Fµ
).

We now know that η ∼p ρ. We shall show that η ∼p 1. This will prove not only the assertion
of Lemma 14.2 but also that of Lemma 14.3, provided of course that

m− 1 <
t

[G0 : G1]
.

Lemmas 9.2 and 9.3 imply directly that η ∼p 1 if p is 2.
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Suppose p is odd. Lemma 9.4 implies that

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
) ∼p ∆3(µ

′χFµ/F , ψFµ/F , ϖ
1+n
F ϖt

Fµ
).

Since m′ = m all we need do is show that

∆3(χE/F , ψE/F , ϖ
m′+n′

E ) ∼p ∆3(χF , ψF , ϖ
m+n
F )

when m is odd. Let ϕ = OF/PF = OE/PE. Let β
′ = β(χE/F ) and let β = β(χF ). If ψ

′
ϕ is

the character of ϕ defined by

ψ′
ϕ(x) = ψF

(
βx

ϖn+1
F

)
and ψ′′

ϕ is the character of ϕ defined by

ψ′′
ϕ(x) = ψE/F

(
β′x

ϖn′+1
E

)
and if ψ′′

ϕ(x) = ψ′
ϕ(δx) then, by Lemmas 9.2 and 9.3, all we have to do is show that δ is a

square in ϕ. If

ω1 = SE/F

(
ϖn+1
F

ϖn′+1
E

)
then δ = ω1

β′

β
in ϕ. To show that δ is a square we show that δq is a square.

δq ≡ NE/Fα ≡ β1−qNE/F (β
′)

β
ωq1.

We saw that

NE/F (β
′)

β
=

∏
µ

γµ


−1∏

µ

NFµ/F

(
β(µ′) + β

ϖt
Fµ

ϖm−1
F

)
in ϕ. But

β
ϖt
Fµ

ϖm−1
F

≡ 0 (mod PL)

because t > [G0 : G1](m− 1). We also saw that∏
µ

γµ


−1∏

µ

NFµ/Fβ(µ
′)

 =
αq

ϖq
1

in ϕ. Since β1−q is clearly a square, we need only check that α is a square. The character

x→ ψϕ(x
q − αx)

is identically 1, so that the kernel of the map

x→ xq − αx

is non-trivial. Thus α = xq−1 for some x in ϕ.
Now suppose that

m− 1 ⩾
t

[G0 : G1]
.
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We have to show that the complex number σ defined at the beginning of the proof satisfies
σ ∼2p 1. To prove Lemma 14.3 we will have to show that σ ∼p 1 if [G : G1] is a power of 2.

Given β = β(χF ) we may choose β(χL/F ) = β(χFµ/F ) = β. Moreover

β(χE/F ) ≡ P ∗
E/F (β,ϖ

m+n
F , ϖm+n

F ) (mod Pd′

E)

if m′ = m(χE/F ) = 2d′ + ϵ′. By Lemmas 8.3, 8.4, and 8.7

P ∗
K/F (β,ϖ

m+n
F , ϖm+n

F ) ≡ P ∗
K/E

(
β(χE/F ), ϖ

m+n
F , ϖm+n

F

)
≡ β(χE/F )

modulo P
d′1
K if

ψK/F (m− 1) + 1 = 2d′1 + ϵ′1.

Thus
β(χE/F ) ≡ P ∗

K/L(β,ϖ
m+n
F , ϖm+n

F ) (mod P
d′1
K ).

If
ψFµ/F (m− 1) + 1 = 2dµ + ϵµ

and

ψFµ/F

(
α(µ′)x

ϖm+n
F

)
= µ′(1 + x)

for x in P
dµ+ϵµ
Fµ

, we may take

β(µ′χFµ/F ) = β + α(µ′).

If
ψL/F (m− 1) + 1 = 2d1 + ϵ1

then

µ(1 + x) = ψL/F

(
α(µ′)x

ϖm+n
F

)
for x in Pd1+ϵ1

L . If ν = µσ then

ν(1 + x) = ψL/F

(
α(µ′)σx

ϖm+n
F

)
for x in Pd1+ϵ1

L . Lemma 8.2 implies that

NE/F

(
β(χE/F )

)
= NK/L

(
β(χE/F )

)
is congruent to

β
∏
µ∈T

∏
σ∈Mµ

(
β + α(µ′)σ

)
modulo PL. The last expression is equal to

β
∏
µ∈T

NFµ/F

(
β + α(µ′)

)
.

Moreover
∆2(χF , ψF , ϖ

m+n
F ) ∼p χ

−1
F (β)

∆2(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
) ∼p 1

∆2(χE/F , ψE/F , ϖ
m+n
F ) ∼p χ

−1
F

(
NE/F

(
β(χE/F )

))
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∆2(µ
′χFµ/F , ψFµ/F , ϖ

m+n
F ) ∼p χ

−1
F

(
NFµ/F

(
β + α(µ′)

))
.

Define τ by demanding that

∆3(χE/F , ψE/F , ϖ
m+n
F )

∏
µ

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
)

be equal to

τ∆3(χF , ψF , ϖ
m+n
F )

∏
µ

∆3(µ
′, χFµ/F , ψFµ/F , ϖ

m+n
F ).

Since χF (u) ∼p 1 if u ∈ U1
F , the preceding discussion shows that σ ∼p τ . Lemmas 9.2 and

9.3 show that τ ∼2p 1. Lemma 14.2 is now completely proved. To prove Lemma 14.3 we have
to show that τ ∼p 1 if [G : G1] is a power of 2. We may suppose that p is odd.

There are a number of possibilities.

(i.a) t is even and m is odd. [G0 : G1] must be odd and hence 1, for we are now assuming
that [G : G1] is a power of 2. Since

m(χFµ/F ) = [G0 : G1](m− 1) + 1

and

m(χE/F ) = [G1 : 1](m− 1)−
(
[G1 : 1]− 1

)
t

[G0 : G1]
+ 1,

both m(χFµ/F ) and m(χE/F ) are odd.
(i.b) t is even and m is even. Again [G0 : G1] is 1. This time both m(χFµ/F ) and m(χE/F )

are even.
(ii.a) t is odd and m is odd. Then m(χFµ/F ) is odd. If

[G1 : 1]− 1

[G0 : G1]

is even, m(χE/F ) is odd. Otherwise it is even.
(ii.b) t is odd and m is even. If [G0 : G1] is odd, that is 1, then m(χFµ/F ) is odd and

m(χE/F ) is even. If [G0 : G1] is even, then m(χFµ/F ) is odd and m(χE/F ) is even or
odd according as

[G1 : 1]− 1

[G0 : G1]
is even or odd.

If t is odd then clearly ∏
µ

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
) ∼p 1.

We are going to show that this is also true if t is even. Then L/F , and hence Fµ/F , is
unramified. Let ϕµ = OFµ/PFµ . If

ψϕµ(x) = ψFµ/F

(
β(µ′)x

ϖ1+n
F

)
and if φϕµ is a nowhere vanishing function on ϕµ satisfying

φϕµ(x+ y) = φϕµ(x)φϕµ(y)ψϕµ(xy)
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then
∆3(µ

′, ψFµ/F , ϖ
1+n
F ϖt

Fµ
) ∼p A

[
−σ(φϕµ)

]
.

If α belongs to ϕ∗
µ let νϕµ(α) equal +1 or −1 according as α is or is not a square in ϕµ. If

ϕ = OF/PF then
νϕµ(α) = νϕ

(
Nϕµ/ϕ(α)

)
.

If

ψϕ(x) = ψF

(
x

ϖ1+n
F

)
then, according to paragraph 9,

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
) ∼p νϕ

(
NFµ/F

(
β(µ′)

)){
A
[
−σ(φϕ)

]}[Fµ:F ]

if φϕ is any nowhere vanishing function on ϕ satisfying

φϕ(x+ y) = φϕ(x)φϕ(x)ψϕ(xy).

Thus if a is the number of µ in T∏
µ

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
)

is equal to

η(−1)aνϕ

∏
µ

NFµ/F

(
β(µ′)

)A[σ(φϕ)q−1
]

where η ∼p 1 and q = [G1 : 1].
We saw in paragraph 9 that

A
[
σ(φϕ)

2
]
∼p νϕ(−1)A

[∣∣σ(φϕ)∣∣2] = νϕ(−1).

Since t is even G0 = G1 and G/G1 = G/G0 is abelian. If σ ∈ G{
µ ∈ S(K/L)

∣∣ µ = µσ
}

is a subgroup of S(K/L) invariant under G. It is necessarily either S(K/L) or {1}. If σ
is not in G1, it is not S(K/L). Thus Gµ, the isotropy group of µ, is G1 for all µ in T and
Fµ = L. Moreover ∏

µ

NFµ/F

(
β(µ′)

)
=
∏
µ

∏
σ∈G/G1

β(µ′)σ.

We may regard C = G1 as a vector space over the field with p elements. If σ ∈ G/G1 and
the order of σ divides p− 1, then all the eigenvalues of the linear transformation c→ σcσ−1

lie in the prime field. Since the linear transformation also has order dividing p − 1, it is
diagonalizable. Since G/G1 is abelian and acts irreducibly on C, the linear transformation is a
multiple of the identity. In particular if σ0 is the unique element of order 2 then σ0cσ

−1
0 = c−1

for all c. As a consequence µσ0 = µ−1 and

β(µ′)σ0 ≡ −β(µ′) (mod PL)



142 14. THE FOURTH MAIN LEMMA

if we choose, as we may since Fµ/F is unramified, ϖFµ = ϖF . If D is the group {1, σ0} and
M is a set of representatives for the cosets of D in G/G1 then∏

µ∈T

∏
σ∈G/G1

β(µ′)σ = γγσ0

if
γ =

∏
µ∈T

∏
σ∈M

β(µ′)σ.

Clearly

γγσ0 = (−1)
q−1
2 γ2 (mod PL).

If χ is the non-trivial character of D and

v : G/G0 → D

is the transfer then
γσ = χ

(
v(σ)

)a
γ

for all σ in G/G0. νϕ(γ
2) = 1 if and only if χ

(
v(σ)

)a
is 1 for all σ. If σ is a generator of

G/G0 then

v(σ) = σ
[G:G0]

2 = σ0
so that νϕ(γ

2) = (−1)a. Putting all these facts together we see that∏
µ

∆3(µ
′, ψFµ/F , ϖ

1+n
F ϖt

Fµ
) ∼p 1.

Observe that if we had taken ϖFµ to be δµϖF then NFµ/Fβ(µ
′) would have to be multiplied

by
{NFµ/F δµ}t

which is a square modulo PF because t is even. Thus the result is valid for all choices of ϖFµ .
Eventually we will have to discuss the various possibilities separately. There are however

a number of comments we should make first. If m is odd and m(χFµ/F ) is odd then

∆3(µ
′χFµ/F , ψFµ/F , ϖ

m+n
F ) ∼p νϕµ

(
β + α(µ′)

)
A
[
−σ(φϕµ)

]
if

ψϕµ(x) = ψFµ/F

(
x

ϖ1+n
F

)
.

Observe that, because m is odd, we may take the number δ in Lemma 9.3 to be ϖ
m−1

2
F . Of

course φϕµ is any function on ϕµ which vanishes nowhere and satisfies

φϕµ(x+ y) = φϕµ(x)φϕµ(y)ψϕµ(xy).

Applying Lemma 9.1 we see that

A
[
−σ(φϕµ)

]
∼p −νϕ

(
k

[Fµ:F ]

k

)
A

[
σ(φϕ)

[Fµ:F ]

k

]
if k = [G0 : G1], if

ψϕ(x) = ψF

(
x

ϖ1+n
F

)
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and if φϕ bears the usual relation to ψϕ. We use, of course, the relation

kSϕµ/ϕ(x) = SFµ/F (x).

Observe also that
νϕµ
(
β + α(µ′)

)
= νϕ

(
Nϕµ/ϕ

(
β + α(µ′)

))
.

If m is odd
∆3(χF , ψF , ϖ

m+n
F ) ∼p −νϕ(β)A

[
σ(φϕ)

]
.

If both m and m′ = m(χE/F ) are odd and if β′ = β(χE/F ) then

∆3(χE/F , ψE/F , ϖ
m+n
F ) ∼p −νϕ(β′)A

[
σ(φ′

ϕ)
]

if φ′
ϕ bears the usual relation to the character

ψ′
ϕ(x) = ψE/F

 x

ϖ1+n
F ϖ

(q−1)t
k

E

.
There is a unit ϵ in OK such that ϖE = ϵϖq

K . If σ ∈ C then

ϖσ−1
E = ϵσ−1ϖ

(σ−1)q
K ≡ 1 (mod PK)

because t ⩾ 1. Thus the multiplicative congruence

ϖq
E ≡ NE/FϖE = ϖF (mod∗ PE)

is satisfied and
1

ϖ
(q−1)t

k
E

≡ ϖ1+n
F

ϖ1+n′

E

(mod∗ PE).

If

ω1 = S

(
ϖ1+n
F

ϖ1+n′

E

)
as before, then

ψ′
ϕ(x) = ψF

(
ω1x

ϖ1+n
F

)
.

Since
νϕ(β

′) = νϕ(β
′)q = νϕ(NE/Fβ

′)

we have
∆3(χE/F , ψE/F , ϖ

m+n
F ) ∼p −νϕ(NE/Fβ

′)νϕ(ω1)A
[
σ(φϕ)

]
.

Define η by demanding that

∆3(χE/F , ψE/F , ϖ
m+n
F )

be equal to

η∆3(χF , ψF , ϖ
m+n
F )

∏
µ

∆3(µ
′χFµ/F , ψFµ/F , ϖ

m+n
F ).

We have to show that η ∼p 1. If both t and m are even this is clear. If t is even and m is
odd, we are to show that

νϕ(NE/Fβ
′)νϕ(ω1) ∼p (−1)aνϕ(−1)

q−1
2k νϕ(k)

q−1
k νϕ(β)

∏
µ

νϕ

(
Nϕµ/ϕ

(
β + α(µ′)

))
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if a is the number of elements in T . Since t is even k is 1. As before

β
∏
µ

Nϕµ/ϕ

(
β + α(µ′)

)
= β

∏
µ

∏
σ∈G/G1

(
β + α(µ′)σ

)
is congruent to NE/Fβ

′ modulo PK . All we need do is show that

νϕ(ω1) = (−1)aνϕ(−1)
q−1
2 .

Since t is even each γµ is a square in ϕ. Applying the identity (14.3) we see that

νϕ(ω1) = νϕ(ω
q
1) = νϕ(α)ν

−1
ϕ

∏
µ

NFµ/Fβ(µ
′)

.
We have seen that α is a square in ϕ so that νϕ(α) = 1. We also saw that

νϕ

∏
µ

NFµ/Fβ(µ
′)

 = (−1)aνϕ(−1)
q−1
2

when t is even. The required relation follows.
We suppose henceforth that t is odd. The discussion will be fairly complicated. Suppose

first that m is also odd. Then
[G0 : G1](m− 1) ̸= t

and

m− 1 >
t

[G0 : G1]
so that

β + α(µ′) ≡ β (mod PL)

and ∏
µ

∆3(µ
′χFµ/F , ψFµ/F , ϖ

m+n
F ) ∼p (−1)aνϕ

(
k

q−1
k

)
νϕ

(
β

q−1
k

)
A
[
σ(φϕ)

] q−1
k .

Thus if q−1
k

is odd we have to show that

(14.4) (−1)a+1νϕ(k)νϕ(−1)
q−1
2k

+ 1
2 ∼p 1

and if q−1
k

is even we have to show that

(14.5) νϕ(ω1) ∼p (−1)aνϕ(−1)
q−1
2k .

Now suppose m is even. If [G0 : G1] is 1 there is nothing to prove. If k = [G0 : G1] is even
then

m− 1 >
t

[G0 : G1]
and

β + α(µ′) ≡ β (mod PL).

If

ψ′
ϕµ(x) = ψFµ/F

βϖk(m−1)
Fµ

x

ϖm+n
F


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and φ′
ϕµ

is a function on ϕµ which vanishes nowhere and satisfies

φ′
ϕµ(x+ y) = φ′

ϕµ(x)φ
′
ϕµ(y)ψ

′
ϕµ(xy)

then
∆3(µ

′χFµ/F , ψFµ/F , ϖ
m+n
F ) ∼p A

[
−σ(φ′

ϕµ)
]
.

If
ϵµϖ

m−1
F = ϖ

k(m−1)
Fµ

then ϵµ is a unit and
ψϕµ(x) = ψϕµ/ϕ(kβϵµx)

if, as before,

ψϕ(x) = ψF

(
x

ϖ1+n
F

)
.

By Lemma 9.1, A
[
−σ(φϕµ)

]
is equal to

−νϕ
(
k

[Fµ:F ]

k

)
νϕ

(
β

[Fµ:F ]

k

)
νϕ(Nϕµ/ϕϵµ)A

[
σ(φϕ)

] [Fµ:F ]

k .

If q−1
k

is even we have to show that

(14.6) (−1)aνϕ

∏
µ

Nϕµ/ϕϵµ

νϕ(−1)
q−1
2k ∼p 1

If q−1
k

is odd then m′ = m(χE/F ) is odd. If

ψ′′
ϕ(x) = ψE/F

(
β′ϖ

m′−1
E x

ϖm+n
F

)
and φ′′

ϕ bears the usual relation to ψ′′
ϕ then

∆3(χE/F , ψE/F , ϖ
m+n
F ) ∼p A

[
−σ(φ′′

ϕ)
]
.

Now νϕ(β
′) = νϕ(β

′)q and
(β′)q ≡ NE/Fβ

′

which in turn is congruent to

β
∏
µ∈T

∏
σ∈Mµ

(
β + α(µ′)σ

)
≡ βq

modulo PK . Let

ϵ1ϖ
m+n
F = ϖ

q(m+n)
E

and, as before,

ω1 = SE/F

(
ϖ1+n
F

ϖ1+n′

E

)
then

A
[
−σ(φ′′

ϕ)
]
∼p νϕ(ω1)νϕ(ϵ1)νϕ(β)A

[
−σ(φϕ)

]
.

We saw that
ϖq
E ≡ ϖF (mod∗ PE)
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so that
ϵ1 ≡ 1 (mod PE).

Thus we have to show that

(14.7) νϕ(ω1) ∼p (−1)a+1νϕ(k)νϕ(−1)
q−1
2k

− 1
2νϕ

∏
µ

Nϕµ/ϕϵµ

.
The four identities (14.4), (14.5), (14.6), and (14.7) look rather innocuous. However to

prove them is not an entirely trivial matter. We first consider the case that G/G1 is abelian.
If σ0 ∈ G/G1 is of order 2, the argument used before shows that σ0cσ

−1
0 = c−1 for all c in C.

Since the representation of G/G1 on C is faithful, G/G1 has only one element of order 2 and
is therefore cyclic. In this case Fµ = L for all µ and a = q−1

[G:G1]
. We may choose ϖFµ = ϖL. If

NL/FϖL = γϖ
[G:G0]
F

then γµ = γt and ∏
µ

γµ = γat.

If [G0 : G1] = 1 we may choose ϖL = ϖF so that γ = 1. The argument used before shows
that

νϕ

∏
µ∈T

∏
σ∈G/G1

β(µ′)σ

 = (−1)aνϕ(−1)
q−1
2 .

The identity (14.3) shows that

νϕ(ω1) = (−1)aνϕ(−1)
q−1
2k .

The identity (14.5) which is the only one of concern here becomes

νϕ(−1)
q−1
2 = νϕ(−1)

q−1
2k

which is clear because k = [G0 : G1] = 1.
Now take [G : G0] = 1. We may choose ϖE = NK/EϖK so that ϖF = NL/FϖL and γ is

again 1. It is perhaps worth pointing out these special choices are not inconsistent with any
choices yet made in this paragraph. This is necessary because the arguments appearing in
the functions ∆2 must be the same as those appearing in the functions ∆3. We previously
defined

δ =
ϖ1+n
F

ϖ1+n′

E

· ϖ
t
L

ϖt
K

and showed that

NK/Lδ =
ϖ
t(q−1)
L

ϖ
t(q−1)

k
F

.

Observe that
ϖk
L

ϖF

=
∏

σ∈G/G1

ϖ1−σ
L ≡

∏
θ0(σ)

−1 ≡ −1 (mod PL)

because {
θ0(σ)

∣∣ σ ∈ G/G1

}
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is just the set of kth roots of unity in ϕ and k is a power of 2. It is not 1 because

[G0 : G1] = [G : G1] > 1.

Since
δq ≡ NK/Lδ (mod PK)

we have
νϕ(δ) = νϕ(−1)

q−1
k .

If as before

ψL/F

(
β1(ν)x

ϖ1+n
F ϖt

L

)
= ν(1 + x)

for x in Ps
L and ν in S(K/L) then, as we saw when proving the identity (14.3),

ωq1 ≡ δqαq

∏
ν ̸=1

β1(ν)

 (mod PL).

Thus
νϕ(ω1) = νϕ(−1)

q−1
k

∏
ν ̸=1

νϕ
(
β1(ν)

)
.

We can choose q−1
p−1

elements νi in S(K/L) so that every non-trivial element of S(K/L) is of

the form νji , 0 < j < p. Then

∏
ν ̸=1

νϕ
(
β1(ν)

)
= νϕ


q−1
p−1∏
i=1

p−1∏
j=1

jβ(νi)

 = νϕ(−1)
q−1
p−1

because
νϕ
(
β(νi)

)p−1
= 1.

When m is even

νϕ(ϵµ) = νϕ

(
ϖk
L

ϖF

)
= νϕ(−1).

Since a = q−1
k

the identities (14.4), (14.5), (14.6) and (14.7) become

(14.4′) νϕ(k)νϕ(−1)
q−1
2k

+ 1
2 = 1

(14.5′) νϕ(−1)
q−1
p−1 = νϕ(−1)

q−1
2k

(14.6′) νϕ(−1)
q−1
2k = 1

(14.7′) νϕ(−1)
q−1
k νϕ(−1)

q−1
p−1 = νϕ(k)νϕ(−1)

q−1
2k

+ 1
2νϕ(−1)

q−1
k .

If p ≡ 1 (mod 4), the identities (14.5′) and (14.6′) are clearly valid. Moreover for (14.5′) and
(14.6′) the number q−1

k
is even. Since k is a positive power of 2, q is an even power of p if

p ≡ 3 (mod 4). If q = p2f then

q − 1

p− 1
= 1 + p+ · · ·+ p2f−1 ≡ 0 (mod 4)
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and the left side of (14.5′) is 1. If q−1
2k

is even (14.5′) and (14.6′) are now clear. If it is odd, 4

divides k because 8 divides q − 1. But
{
θ0(σ)

∣∣ σ ∈ G0/G1

}
is the set of kth roots of unity

in OL/PL = ϕ so −1 is a square in ϕ, νϕ(−1) = 1, and the relations are valid in this case
too. The relations (14.4′) and (14.7′) are obvious if the degree of ϕ over the prime field ϕ0 is
even. Since ϕ× contains the kth roots of unity and k is a power of 2, the degree can be odd
only if k divides p− 1. Since

q − 1

k
=
q − 1

p− 1
· p− 1

k

and q−1
k

is now odd p−1
k

must also be odd and by quadratic reciprocity

νϕ(k) = νϕ0(k) = νϕ0(−1)νϕ0

(
p− 1

k

)
= νϕ0(−1)νϕ0(−1)

p−1
2k

− 1
2

because

p ≡ 1

(
mod

p− 1

k

)
.

If p ≡ 1 (mod 4) the two relations are now clear. If p ≡ 3 (mod 4) and q = pf

q − 1

p− 1
= 1 + p+ · · ·+ pf−1

must be odd. It is therefore congruent to 1 modulo 4. (14.4′) becomes

νϕ0(−1)νϕ0(−1)
p−1
k = 1

and (14.7′) becomes
νϕ0(−1) = νϕ0(−1).

There is no question that both these relations are valid.
We have still to treat the case that G/G1 is abelian while neither [G : G0] nor [G0 : G1] is

1. Then

NFµ/Fβ(µ
′) ≡

 ∏
σ∈G/G0

β(µ′)


k

(mod PFµ)

is a square in ϕ and the identity (14.3) implies that

νϕ(ω1) = νϕ(γ
a)

CF/NL/FCL is cyclic of order [G : G1]. It has a generator which contains an element of the
form γ1ϖF . Moreover the coset of

(γ1ϖF )
[G:G0]NL/Fϖ

−1
L = γ

[G:G0]
1 γ−1

is a generator of UF/UF ∩ NL/FCL. The order of this group is a power of 2 and p is odd
so every element of UF ∩ NL/FCL is a square. Consequently γ cannot be a square and
νϕ(γ) = −1. If m is even and F ′ is the fixed field of G0 then

ϵµ =

(
ϖk
L

ϖF

)m−1

=

(
NL/F ′ϖL

ϖF

)m−1
 ∏
σ∈G0/G1

ϖ1−σ
L

m−1

which is congruent to

−
(
NL/F ′ϖL

ϖF

)m−1
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modulo PL. Since [F ′ : F ] is even

Nϕµ/ϕϵµ = NF ′/F ϵµ =

(
NL/FϖL

ϖ
[G:G0]
F

)m−1

= γm−1

and
νϕ(Nϕµ/ϕϵµ) = νϕ(γ) = −1.

Because

a =
q − 1

[G : G1]

is integral, q−1
k

is even, and we need only worry about the identities (14.5) and (14.6). They
both reduce to

νϕ(−1)
q−1
2k = 1.

To prove this we show that q−1
2k

is even if νϕ(−1) = −1. Since

k = [UF : UF ∩NL/FCL]

and this index must divide the order of ϕ∗ the number νϕ(−1) is −1 only if k = 2. Of course
p will be congruent to 3 modulo 4. Since 4 divides q − 1, q is an even power of p and q ≡ 1
(mod 8). Thus

q − 1

2k
=
q − 1

4
is even.

Now suppose that G/G1 is not abelian. Let σ → x(σ) be a given isomorphism of G0/G1

with Z/kZ and let x→ σ(x) be its inverse. Let τ → λ(τ) be that homomorphism of G/G0

into the units of Z/kZ which satisfies

x(τστ−1) = λ(τ)x(σ).

There is precisely one element of order 2 in G0/G1, namely σ
(
k
2

)
, and it lies in the center

of G/G1. Since G/G0 is cyclic, G/G1 is non-abelian only if k > 2. Choose a fixed σ0 in G
which generates G/G0 and set

µ0 = λ(σ0)

and
y0 = x(σ

[G:G0]
0 ).

We shall sometimes regard C as a vector space over the field with p elements. If σ belongs to
G/G1 let π(σ) be the linear transformation

c→ σcσ−1.

The dual space will be identified with S(K/L) and π∗ will be the representation contragredient
to π.

The relation

NFµ/Fβ(µ
′) ≡

 ∏
σ∈G/GµG0

β(µ′)σ


k
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together with the identity (14.3) implies that

νϕ(ω1) = νϕ

∏
µ

γµ

.
Moreover if m is even and F ′

µ is the fixed field of GµG0,

ϵµ =

(
ϖk
Fµ

ϖF

)m−1

=

{
NFµ/F ′

µ
ϖFµ

ϖF

}m−1
 ∏
σ∈G0/G1

ϖ1−σ
Fµ


m−1

which is congruent to {
−
NFµ/F ′

µ
ϖFµ

ϖF

}m−1

modulo PFµ . Since

{Nϕµ/ϕϵµ}t = NF ′
µ/F

{
−
NFµ/F ′

µ
ϖFµ

ϖF

}(m−1)t

which equals
(−1)t[ϕµ:ϕ]γm−1

µ

and t is odd,
νϕ(Nϕµ/ϕϵµ) = νϕ(−1)[ϕµ:ϕ]νϕ(γµ).

These relations will be used frequently and without comment.
I want to discuss the case [G : G0] = 2 and µ0 ≡ −1 (mod 4) first. Since

(−µ0)
2 = µ2

0 = λ(σ2
0) ≡ 1 (mod k)

we must have
−µ0 ≡ 1 (mod k)

or, if k > 4,

−µ0 ≡
k

2
+ 1 (mod k).

Then
µ0 ≡ −1 (mod k)

or

µ0 ≡
k

2
− 1 (mod k).

Since
µ0 − 1 ≡ 2 (mod 4)

the centralizer of σ0 in G0/G1 consists of the identity and σ
(
k
2

)
. Thus x(σ2

0) is 0 or k
2
.

Suppose µ0 ≡ −1 (mod k) and x(σ2
0) =

k
2
. If σ belongs to G0/G1 then σ0σσ

−1
0 = σ−1

and (σ0σ)
2 = σ2

0. Thus σ
(
k
2

)
is the only element of order 2 in G/G1. If σ belongs to G/G1

then σ has a non-trivial fixed point in S(K/L) if and only if π(σ) has 1 as an eigenvalue. If
σ ̸= 1 there is an integer n such that σn has order 2. Then π(σn) also has 1 as an eigenvalue.
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Thus if any non-trivial element of G/G1 has a non-trivial fixed point there is an element τ of
order 2 such that π(τ) has 1 as an eigenvalue. The usual argument shows that

π

(
σ

(
k

2

))
= −I

so that, in the case under consideration, only the identity has fixed points. Then

a =
q − 1

[G : G1]
.

In particular q−1
k

is even. We choose ϖFµ = ϖL and let

γϖ
[G:G0]
F = NL/FϖL.

Only identities (14.5) and (14.6) are to be considered. (14.5) reduces to

νϕ(γ)
at = (−1)aνϕ(−1)

q−1
2k

and (14.6) reduces to

(−1)aνϕ(−1)a[G:G0]νϕ(γ)
atνϕ(−1)

q−1
2k = 1.

Since [G : G0] is even they are equivalent. Suppose ϕ has r elements. If x ∈ λ = OL/PL then

xσ0 = xr
f
for some f . If σ belongs to G0/G1 then

θ0(σ)
µ0rf = θ0(σ0σσ

−1
0 )r

f ≡

(
ϖσ0σ
L

ϖσ0
L

)rfσ−1
o

≡ θ0(σ).

Thus
µr

f

0 ≡ 1 (mod k)

and
r ≡ −1 (mod 4)

so that νϕ(−1) = −1. Since, in the present case,

a =
q − 1

2k
the identities become

νϕ(γ)
at = 1.

The map
τL/F : WL/F → CF

determines a map of G/G1 onto CF/NL/FCL. The image of σ0 contains an element of the
form γ1ϖF where γ1 is a unit. The image of σ2

0 is 1 because the commutator subgroup
contains {

σ
(
(µ0 − 1)x

)}
=
{
σ(x)

∣∣ x ≡ 0 (mod 2)
}

and in particular contains σ2
0. Since [G : G0] = 2 the number γγ−2

1 lies in UF ∩NL/FCL. The
index of the commutator subgroup of G/G1 in G/G1 is 4 so

[UF : UF ∩NL/FCL] = 2.

Consequently γγ−2
1 and γ are both squares and νϕ(γ) = 1.
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Now suppose µ0 ≡ −1 (mod k) and x(σ2
0) = 0. Every element of the form σ0σ, σ ∈ G0/G1,

has order 2. If π(σ0σ) = −I then σ0σ lies in the center of G/G1 which is impossible. Thus
π(σ0σ) has 1 as an eigenvalue. If τ ∈ G0/G1 then

τ−1σ0στ = σ0στ
2

so there are two conjugacy classes in the set σ0G0/G1. One has σ0 as representative and the
other has σ1 = σ0σ(1).

Let V be a non-trivial subspace of S(K/L) invariant and irreducible under the action of
G0/G1. Suppose first that V is also invariant under π∗(σ0) so that V = S(K/L). Choose
v0 ̸= 0 so that π∗(σ0)v0 = v0. Let λ

′ be the field obtained by adjoining the kth roots of unity
to the prime field. Certainly λ′ ⊆ λ and, since

θ0(σ)
σ0 = θ0(σ

−1
0 σσ0),

λ′ is not contained in ϕ. Let ϕ′ = ϕ ∩ λ′. We may regard {1, σ0} as G(λ′/ϕ′). The map φ
which sends σ in G0/G1 to

(
θ−1
0 (σ), 1

)
and σσ0 to

(
θ−1
0 (σ), σ0

)
is an isomorphism of G/G1

with the semi-direct product of the kth roots of unity in λ′ and G(λ′/ϕ′). There is a unique
map, again denoted by φ, of V onto λ′ such that φ(v0) = 1 while

φ
(
π∗(τ)v

)
= φ(τ)φ(v)

for τ in G/G1. Of course the kth roots of unity act on λ′ by left multiplication. The Galois

group acts by σ0α = ασ
−1
0 . Putting the actions together we get an action of the semi-direct

product. To study the action of G/G1 on V we study the equivalent action of the semi-direct
product in λ′.

It is best to consider a more general situation. Suppose ϕ′ is a finite field with pf elements,
λ′ is an extension of ϕ′ with pℓ elements and Γ is the semi-direct product of the group of
kth roots of unity, where k divides pℓ − 1, and G(λ′/ϕ′). Γ acts on λ′ as before. Let ℓ = nf .

If 0 ⩽ j1 < n, j = (j1, n), and ρ is the automorphism x → xp
f
of λ′/ϕ′ then the number of

elements of λ′ fixed by a member of Γ of the form (α, ρji) where α is a kth root of unity is the
same as the number of elements fixed by some other member of the form (β, ρ−j). Indeed if

b
j1
j

≡ −1

(
mod

n

j

)
and b is prime to the order of (α, ρj1) we can take

(β, ρ−j) = (α, ρj1)b.

Let θ be a generator of the multiplicative group of λ′. The equation

βθmρ
j

= θm

can be solved for β if and only if θm(pjf−1) has order dividing k, that is, if and only if pℓ − 1
divides km(pjf − 1) or, if

u =
pℓ − 1

k
if and only if u divides m(pjf − 1). Let u(j) be the greatest common divisor of u and pjf − 1.
u divides m(pjf − 1) if and only if u

u(j)
divides m. The number of such m with 0 ⩽ m < pℓ− 1

is
u(j)

u
(pℓ − 1) = u(j)k.
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Once m and j are chosen α is determined. The number of non-zero x in λ′ which are fixed
by some (β, ρ−j) where j divides n but by no (β, ρ−i) where i properly divides j is∑

i|j

µ

(
j

i

)
u(i)k

if µ(·) is the Möbius function. The number of orbits formed by such x is

1

jk

∑
i|j

µ

(
j

i

)
u(i)k

so that the total number of orbits of Γ in the multiplicative group of λ′ is

a =
∑
i|n

∑
j|ni

µ(j)

ij
u(i)

which equals ∑
i|n

∏
π|ni

(
1− 1

π

)
u(i)

i
.

The product is over primes.

Lemma 14.7. If pℓ−1
k

is odd then

(−1)a+1νϕ′(k)νϕ′(−1)
pℓ−1
2k

+ 1
2 = 1.

The identity of the lemma is equivalent to

(−1)a+1νϕ′(u)νϕ′(−1)
u−1
2 = 1

because
νϕ′(k) = νϕ′(−1)νϕ′(u).

By the law of quadratic reciprocity, the left side of the identity is equal to

(−1)a+1(pf |u)
if (pf |u) is Jacobi’s symbol. If u = 1 there is only one orbit so

(−1)a+1 = 1.

Of course (pf |1) = 1 so the identity is clear in this case.
We prove it in general by induction on the number of prime factors of u. Let π0 be a

prime factor of u and let u = πx0v with v prime to π0. Let v(j) be the analogue of u(j). Then

u(j) = π
x(j)
0 v(j). Let b be the analogue of a. Then

ν = a− b =
∑
i|n

∏
π|ni

(
1− 1

π

)
v(i)

i
(π

x(i)
0 − 1).

Observe that π0 and all v(i) are odd. To prove the lemma by induction we must show that

(14.8) (−1)ν(pf |πx0 ) = 1.

Let
n = 2yn1

with n1 odd. There are two possibilities to be considered.
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(i)
π0 ≡ 1 (mod 2y+1).

Since the order of pf modulo π0 divides n, the quotient of π0 − 1 by this order is
even and pf is a quadratic residue of π0. Also if i divides n

π
x(i)
0 − 1

i
is divisible, in the 2-adic field, by 4 if 2 divides n

i
and is always divisible by 2. Thus

ν is even and (14.8) is valid.
(ii)

π0 = 1 + 2cw

with c ⩽ y and w odd. Let i ̸= n1 divide n1 and consider

(14.9)

y∑
j=0

∏
π
∣∣∣ n

2ji

(
1− 1

π

)
v(2ji)

2ji
(π

x(2ji)
0 − 1).

If x(2yi) = 0 the sum is zero. If x(2yi) ̸= 0, let z be the smallest integer for which
x(2zi) ̸= 0. If j < z then x(2ji) = 0. If j ⩾ z

p2
jif − 1 = (p2

zif − 1)

2j−z−1∑
d=0

p2
zcif

.
The residue of the sum modulo π0 is 2j−z. Thus

x(2ji) = x(2zi)

if j ⩾ z and (14.9) is equal to

1

i


∏
π|n1

i

(
1− 1

π

)
v(2yi)2y

+

y−1∑
j=z

v(2ji)

2j+1

(π
x(2yi)
0 − 1).

We write
v(2yi)

2y
+

y−1∑
j=z

v(2ji)

2j+1

as
v(2zi)

2z
+

y∑
j=z+1

v(2ji)− v(2j−1i)

2j
.

If k is replaced by pℓ−1
v

the number of elements of λ∗ fixed by some (α, ρ−2ji) but by no

(α, ρ−2j−1i) is {
v(2ji)− v(2j−1i)

}pℓ − 1

v
.

The collection of such elements is invariant under the group obtained by replacing k by pℓ−1
v

and ϕ′ by the field with pif elements. The isotropy group of each such point has a generator
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of the form (α, ρ−2ji) and, therefore, has order n
2ji

and index 2j(pℓ−1)
v

. Thus 2j(pℓ−1)
v

divides{
v(2ji)− v(2j−1i)

}pℓ − 1

v

so that 2j divides
v(2ji)− v(2j−1i).

Since n1

i
is divisible by at least one prime, the expression (14.9) is congruent, in the 2-adic

field, to

1

i


∏
π|n1

i

(
1− 1

π

)v(2
zi)

2z
(πx(2

yi) − 1)

modulo 4. Since z ⩽ c and the product is not empty this is congruent, in the 2-adic field
again, to 0 modulo 2. Thus ν is even or odd according as

y∑
j=0

 ∏
π|2y−j

(
1− 1

π

)v(2jn1)

2jn1

(π
x(2jn1)
0 − 1)

is or is not divisible by 2 in the 2-adic field. Consequently

ν ≡
y∑
j=0

 ∏
π|2y−j

(
1− 1

π

)v(2jn1)

2j
(π

x(2jn1)
0 − 1) (mod 2).

Of course x(2yn1) = x ̸= 0. Let z again be the smallest integer for x(2zn1) ̸= 0. Then
z ⩽ c and

x(2jn1) = x(2zn1)

if j ⩾ z. The sum above is equal tov(2zn1)

2z
+

y∑
j=z+1

v(2jn1)− v(2j−1n1)

2j

(πx0 − 1).

As before, this is congruent modulo 2 to

v(2zn1)

2z
(πx0 − 1).

If z < c this is even and the order of p modulo π0 divides π0−1
2

so that (p|π0) = 1. If z = c
then

πx0 − 1

2z
=

1

2c

x∑
i=1

(
x

i

)
(2cw)i ≡ x (mod 2)

so that ν ≡ x (mod 2). However the order of pf modulo π0 is divisible by 2z so that it does
not divide π0−1

2
and

(pf |πx0 ) = (−1)x.

The relation (14.8) is now easily verified.
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We return to the original problem. Since λ′ is a quadratic extension of ϕ′ and λ′ is not
contained in ϕ the degree of ϕ over ϕ′ is odd. Since V and λ′ have the same number of
elements q = pℓ. If q−1

k
is odd, the relation (14.4) follows immediately from the equality

(−1)a+1νϕ(k)νϕ(−1)
q−1
2k

+ 1
2 = (−1)a+1νϕ′(k)νϕ′(−1)

q−1
2k

+ 1
2

and the preceding lemma.
The number of µ in T with isotropy group of order 2 is u(1) and the number of µ with

trivial isotropy group is u(2)−u(1)
2

. For points of the second type [ϕµ : ϕ] = 2 and for points of
the first type [ϕµ : ϕ] = 1. Since, as we verified earlier,

νϕ(ω1) = νϕ

∏
µ

γµ


and

νϕ(Nϕµ/ϕϵµ) = νϕ(−1)[ϕµ:ϕ]νϕ(γµ)

the identity (14.7) reduces to
u(1) ≡ 1 (mod 2)

which is true because u(1) divides u = pℓ−1
k

which, when (14.7) is under consideration, is odd
by assumption.

The identity (14.5) may be formulated as

νϕ

∏
µ

γµ

 = (−1)aνϕ(−1)
q−1
2k

and (14.6) as

νϕ

∏
µ

γµ

νϕ(−1)
∑

µ[ϕµ:ϕ] = (−1)aνϕ(−1)
q−1
2k .

For these two identities q−1
k

is even. Again∑
[ϕµ : ϕ] ≡ u(1) (mod 2).

But

u(2) = u =
pℓ − 1

k
=
q − 1

k
and

2a = u(1) + u(2)

so u(1) is even. It will be enough to verify (14.5).
We may choose T so that if µ is in T then its isotropy group is trivial or contains one of

σ0 or σ1. If σ0 lies in the isotropy group of µ and ν in the orbit of µ corresponds to θm in λ′

then,
α2θmρ = θm

for some kth root of unity α. This is possible if and only if pℓ − 1 divides km
2
(pf − 1) or 2u

divides m(pf − 1). This is the same as requiring that 2u
u(1)

divide m(pf−1)
u(1)

. The number u is
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even. We have already observed that if r is the number of elements in ϕ so that xσ0 = xr for
x in ϕ then

µ0r ≡ 1 (mod k)

and in particular
µ0r ≡ 1 (mod 4).

Since [ϕ : ϕ′] is odd and µ0 ≡ −1 (mod 4) the highest power of 2 dividing pf − 1 is 2. Thus
2u
u(1)

and pf−1
u(1)

are relatively prime so that 2u
u(1)

divides m(pf−1)
u(1)

if and only if 2u
u(1)

divides m.

There are u(1)k
2

such m with 0 ⩽ m < pℓ − 1. The corresponding characters ν fall into u(1)
2

orbits. Thus there are u(1)
2

elements in T whose isotropy group contains σ0 and u(1)
2

whose
isotropy group contains σ1. Let L0 be the fixed field of σ0 and L1 the fixed field of σ1. Let
ϖL0 and ϖL1 generate PL0 and PL1 respectively and let

NL0/FϖL0 = γ0ϖF

NL1/FϖL1 = γ1ϖF

NL/FϖL = γϖ2
F .

We have to show that

νϕ

(
γ

u(1)
2

0 γ
u(1)
2

1 γ
u(2)−u(1)

2

)
= (−1)aνϕ(−1)

q−1
2k .

First we prove a lemma, special cases of which we have already seen.

Lemma 14.8. Suppose L/F is normal but non-abelian and [L : F ] is a power of 2. Suppose
H = G(L/F ) and the first ramification group H1 is {1} but [H : H0] > 1 and [H0 : H1] > 1.
Let ϖL generate the prime ideal of OL, let ϖF generate the prime ideal of OF , and let

NL/FϖL = γϖ
[H:H0]
F .

Then γ is a square in UF .

The hypotheses imply that the residue field has odd characteristic. Let A be the fixed
field of H0 and L′ be the fixed field of the commutator subgroup of H. Then A ⊆ L′ and if

ϖL′ = NL/L′ϖL

then
NL′/FϖL′ = γϖ

[A:F ]
F .

Of course [A : F ] = [H : H0]. Since H is nilpotent but not abelian L′ cannot be a cyclic
extension. If γ is not a square in UF then γ−1 generates UF/UF ∩NL′/FCL. Since

ϖ
[A:F ]
F ≡ γ−1 (mod NL′/FCL′).

ϖF would then generate CF/NL′/FCL′ , which is impossible.
Returning to the problem at hand, we observe that the quotient of G/G1 by the squares

in G0/G1 is a group of order 4 in which every square is 1. The fixed field F ′ of this group is
the composite of all quadratic extensions of F . F0 = F ′ ∩ L0 and F1 = F ′ ∩ L1 are the two
different ramified quadratic extensions of F . Define

ϖF0 = NL0/F0ϖL0

and
ϖF1 = NL1/F1ϖL1 .
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Then
NF0/FϖF0 = γ0ϖF

and
NF1/FϖF1 = γ1ϖF .

We need to show that

νϕ(γ0γ1) = νϕ

(
γ0
γ1

)
= −1.

If not, γ0
γ1

is a square and thus in NF1/FCF1 . Then γ0ϖF belongs to

NF0/FCF0 ∩NF1/FCF1 = NF ′/FCF ′ .

This is impossible because F ′ contains an unramified extension.
We observed before that since

µ0 = λ(σ0) ≡ −1 (mod 4)

the number νϕ(−1) is −1. The identity (14.5) reduces to

(−1)
u(1)
2 = (−1)a(−1)

q−1
2k .

Since

a =
u(1)

2
+
u(2)

2
and

u(2) =
q − 1

k
this relation is clearly valid.

We continue to suppose that µ0 ≡ −1 (mod k) and that σ2
0 = 1, but now we suppose that

V is not invariant under π∗(σ0). Since π
∗(σ0)V ∩V and π∗(σ0)V +V are both invariant under

G/G1, the first is 0 and the second is S(K/L) so that S(K/L) is the direct sum V ⊕π∗(σ0)V .
Let V have pℓ elements so that q = p2ℓ. If λ′ is again the field generated over the prime field
by the kth roots of unity λ′ has pℓ elements. If ϕ′ = λ′ ∩ ϕ has pf elements then pℓ = p2f so
that pℓ ≡ 1 (mod 8). Also k divides pℓ − 1 so that

q − 1

k
=

(
pℓ − 1

k

)
(pℓ + 1)

is even.
If σ ∈ G0/G1 the non-zero fixed points of σ0σ are the elements of the form

v ⊕ π∗(σ0σ)v

with v ̸= 0. There are (pℓ − 1)k of them altogether and they fall into pℓ − 1 orbits. The
remaining

(p2ℓ − 1)− (pℓ − 1)k

elements fall into
1

2k

{
(p2ℓ − 1)− (pℓ − 1)k

}
orbits. Thus

a =
pℓ − 1

2
+
p2ℓ − 1

2k
.
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Since, for the same reasons as before, νϕ(−1) = −1 the identity (14.5) becomes

(14.10) νϕ

∏
µ

γµ

 = (−1)
pℓ−1

2

while (14.6) becomes

νϕ

∏
µ

γµ

νϕ(−1)
∑

[ϕµ:ϕ] = (−1)
pℓ−1

2 .

Since ∑
[ϕµ : ϕ] ≡ pℓ − 1 ≡ 0 (mod 2)

only (14.5) need be proved. (14.4) and (14.7) are not to be considered because q−1
k

is even.
We proceed as before. The points in T can be chosen so that their isotropy groups are

either trivial or contain σ0 or σ1.
pℓ−1
2

will have isotropy groups containing σ0 and pℓ−1
2

will
have isotropy groups containing σ1. The argument used above shows that the left side of
(14.10) is equal to

(−1)
pℓ−1

2

as desired.
Now suppose k ⩾ 8 and

µ0 = λ(σ0) ≡
k

2
− 1 (mod k).

We are of course still supposing that [G : G0] = 2. If σ belongs to G0/G1 then

σσ0σ
−1 = σ0σ

k
2
−2

and
(σ0σ)

2 = σ2
0σ

k/2.

Thus

x
(
(σ0σ)

2
)
= x(σ2

0) +
k

2
x(σ).

Since x(σ2
0) is 0 or k

2
, we can make the sum on the right 0. Replacing σ0 by σ0σ if necessary,

we suppose that σ2
0 = 1. Then (σ0σ)

2 = 1 if and only if

k

2
x(σ) ≡ 0 (mod k)

which is so if and only if σ0σ is conjugate to σ.
Take V in S(K/L) as before. If V is invariant under π∗(σ0) and λ

′ with pℓ elements and
ϕ′ with pf elements have the same meaning as before, then

pf =
k

2
− 1 + wk

for some integer w so that

q − 1 = p2f − 1 = k · k
4
− k + 2wk

(
k

2
− 1

)
+ (wk)2

and
q − 1

k
≡ k

4
− 1 (mod 2)
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is odd. Thus the identities (14.5) and (14.6) are not to be considered. The identities (14.4)
and (14.7) follow from Lemma 14.7 exactly as above.

Suppose then S(K/L) is the direct sum V ⊕ π∗(σ0)V . If V has pℓ elements then q = p2ℓ

and
q − 1

k
=
pℓ − 1

k
(pℓ + 1)

is even because k divides pℓ − 1. The non-zero elements of S(K/L) which are fixed points of
some σ0σ with σ a square in G0/G1 are the elements

v ⊕ π∗(σ0σ)v

with v ≠ 0. There are (pℓ − 1)k
2
such elements and they fall into pℓ−1

2
orbits. The remaining

(p2ℓ − 1)− (pℓ − 1)
k

2
non-zero elements have trivial isotropy group and fall into

1

2k

{
(p2ℓ − 1)− (pℓ − 1)

k

2

}
orbits. Thus

a =
p2ℓ − 1

2k
+
pℓ − 1

4
.

Since, as before, νϕ(−1) = −1 the identity (14.5) becomes

(14.11) νϕ

∏
µ

γµ

 = (−1)
pℓ−1

4

while (14.6) becomes

νϕ

∏
µ

γµ

(−1)Σ[ϕµ:ϕ] = (−1)
pℓ−1

4 .

Again ∑
[ϕµ : ϕ] ≡ pℓ − 1

2
≡ 0 (mod 2)

so that it is enough to prove (14.11). The identities (14.4) and (14.7) need not be considered.
If λ′ and ϕ′ are defined as before and ϕ′ has pf elements, then λ′ has pℓ = p2f elements so

that
pℓ ≡ 1 (mod 8)

and pℓ−1
4

is even. We may suppose that each µ in T either has trivial isotropy group or is
fixed by σ0. Lemma 14.8 shows that those µ with trivial isotropy group contribute nothing
to the left side of (14.11). If L0 is the fixed field of σ0 and

NL0/FϖL0 = γ0ϖF

the left side of K is

νϕ(γ0)
pℓ−1

2

which is 1. The truth of the identity is now clear.
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We return to the general case so that [G : G0] may be greater than 2 and µ0 may be
congruent to 1 modulo 4. Of course [G : G0] is still even. Let

λ0 = λ

(
σ

1
2
[G:G0]

0

)
so that

λ0 = µ
1
2
[G:G0]

0 .

If [G : G0] > 2 then
λ0 ≡ 1 (mod 4).

If [G : G0] = 2 then λ0 = µ0. Since the case that [G : G0] = 2 and µ0 ≡ −1 (mod 4) is
completely settled we may suppose that λ0 ≡ 1 (mod 4). Set

τ0 = σ
1
2
[G:G0]

0 .

Any element of G/G1 which does not lie in G0/G1 and whose square is 1 is of the form
σ(x)τ0. If

σ
[G:G0]
0 = σ(y0)

then (
σ(x)τ0

)2
= σ

(
(λ0 + 1)x

)
τ 20 = σ

(
y0 + (λ0 + 1)x

)
.

Since G/G1 is not cyclic y0 is even. Since

λ0 + 1 ≡ 2 (mod 4)

there are exactly two solutions of the equation

y0 + (λ0 + 1)x ≡ 0 (mod k).

Let x0 be one of them. Then x0 +
k
2
is the other. We may suppose that k does not divide x0.

Set
ρ0 = σ(x0)τ0.

We observed before that if σ ̸= 1 belongs to G/G1 and π∗(σ) has a non-zero fixed point then

some power of σ is of order 2 and has a non-zero fixed point. Since σ
(
k
2

)
has no non-zero

fixed point this power must be ρ0 or σ
(
k
2

)
ρ0. Since σ

(
k
2

)
lies in the center of G/G1, σ must

lie in the centralizer of ρ0.
The group {

1, σ

(
k

2

)
, ρ0, σ

(
k

2

)
ρ0

}
is of order 4 and every element in it is of order 2, so it cannot be contained in the center of
G/G1. However it is a normal subgroup and its centralizer H∗ has index 2 in G/G1. G/G1

may be identified with H. Every element σ of H such that π∗(σ) has a non-zero fixed point
lies in H∗. S(K/L) is the direct sum of V and W where

V =
{
v
∣∣ π∗(ρ0)v = v

}
W =

{
w
∣∣ π∗(ρ0)w = −w

}
.
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If σ in H does not belong to H∗ then π∗(σ)V = W and π∗(σ)W = V . The number of
non-zero orbits of H in V ∪W is the same as the number a′ of non-zero orbits of H∗ in V . If
V has pℓ elements so that q = p2ℓ the number of non-zero orbits of H in V ⊕W − (V ∪W ) is

a′′ =
(pℓ − 1)2

[G : G1]
=
pℓ − 1

k
· pℓ − 1

[G : G0]
.

The action of H∗ on V must be irreducible although it is not faithful. However the action of
H∗ ∩H0 = H∗

0 is faithful.
Let F ′ be the fixed field of H∗ in L or, what is the same, of H∗C in K. Let C1 ⊆ C be

the orthogonal complement of V and let H1 be the subgroup of H which acts trivially on V .
H1C1 is a normal subgroup of H∗C and its fixed field K ′ is normal over F ′. If H ′ = H∗/H1

and C ′ = C/C1 then G′ = G(K ′/F ′) = H ′C ′. Moreover H ′ ∩ C ′ = {1} and H ′ ̸= {1}
because σ

(
k
2

)
does not lie in H1. Since the action of H ′ on C ′ is faithful and irreducible, C ′

is contained in every non-trivial normal subgroup of G′. To complete the proof of the four
identities (14.4), (14.5), (14.6), and (14.7), we use induction on [K : F ].

Let k′ be the order of H ′
0 and let ϕ′ = OF ′/PF ′ . If K/F is replaced by K ′/F ′ the identity

(14.4) becomes

(14.4′′) (−1)a
′+1νϕ′(k

′)νϕ′(−1)
pℓ−1
2k′ + 1

2 = 1.

T is to be replaced by T ′, a set of representatives for the non-zero orbits of H ′ or H∗ in V ,
which may be identified with the character group of C ′. We may suppose that T ′ is a subset
of T . Because H ′

0 ̸= {1} the identity (14.5) for the field K ′/F ′ may be written as

(14.5′′) νϕ′

∏
µ∈T ′

γ′µ

 = (−1)a
′
νϕ′(−1)

pℓ−1
2k′ .

Of course

NFµ/F ′(ϖt
Fµ
) = γ′µϖ

t[Fµ:F ′]
k′

F ′ .

Recall that t is odd. By Proposition IV.3 of Serre’s book, t has the same significance for
K ′/F ′ as it had for K/F . The identity (14.6) may be written as

(14.6′′) (−1)a
′
νϕ′

∏
µ∈T ′

γ′µ

νϕ′(−1)
∑

µ∈T ′ [ϕµ:ϕ′]νϕ′(−1)
pℓ−1
2k′ = 1.

and (14.7) as

(14.7′′) (−1)a
′+1νϕ′(k

′)νϕ′(−1)
pℓ−1
2k′ − 1

2νϕ′(−1)
∑

µ∈T ′ [ϕµ:ϕ′] = 1

Assuming (14.4′′), (14.5′′), (14.6′′), and (14.7′′) we are going to prove (14.4), (14.5), (14.6),
and (14.7).

Since H ′
0 is isomorphic to H∗

0 either k′ = k or k′ = k
2
. Suppose first that q−1

k
is odd. Then

k′ = k
2
, for if not

q − 1

k
=

(
pℓ − 1

k

)
(pℓ + 1)
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would be even. Thus H0 = G0/G1 is not contained in H∗ and F ′/F is ramified so that ϕ′ = ϕ.
Since

q − 1

k
=

(
pℓ − 1

k′

)
(pℓ + 1)

2

the number pℓ−1
k′

is odd. To prove (14.4) we have to show that

(−1)a
′′
νϕ(2)νϕ(−1)δ = 1

if

δ =
p2ℓ − 1

2k
− pℓ − 1

k
=
pℓ − 1

k

{
pℓ + 1

2
− 1

}
.

Since G0/G1 is not contained in H∗, τ0 does not commute with G0/G1 and the map λ of
G/G0 into the units of Z/kZ is faithful. Thus

λ0 ̸≡ 1 (mod k).

But
λ0 ≡ 1 (mod 4)

so that k ⩾ 8. In general if k ⩾ 4, the group of units of Z/kZ is the product of {1,−1} and{
α
∣∣ α ≡ 1 (mod 4)

}
.

If
α = 1 + 2bx

with x odd and 4 ⩽ 2b ⩽ k then
α2 = 1 + 2b+1y

with y odd. One shows easily by induction that the order of α is 2−bk so that{
α
∣∣ α ≡ 1 (mod 4)

}
is cyclic of order k

4
. This implies in the particular case under consideration that [G : G0]

divides k
4
. Write

a′′ =

(
pℓ − 1

k′

)(
pℓ − 1

2[G : G0]

)
.

a′′ is odd if and only if
2[G : G0] = k′.

We consider various cases separately. As before µ0 = λ(σ0). If ϕ has pf elements then

µ0p
f ≡ 1 (mod 8).

(i)
µ0 ≡ 1 (mod 8).

Then
νϕ(2) = νϕ(−1) = 1

and the order of µ0 in the units of Z/kZ which is equal to [G : G0] divides
k
8
. Thus

a′′ is even. The identity (14.4) follows.
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(ii)
µ0 ≡ 3 (mod 8).

Then
νϕ(2) = νϕ(−1) = −1.

Since µ0 ≡ 3 (mod 8) the numbers µ0 and λ0 are different. Thus λ0 is a square and
hence congruent to 1 modulo 8. Then k > 8 and

pℓ ≡ 1 (mod 8).

Then

δ ≡ pℓ + 1

4
− 1

2
≡ 0 (mod 2).

Since µ0 ̸= λ0, the index [G : G0] is not 2. Thus the order of µ0 is at least 4 and is
therefore the order of −µ0. Since −µ0 ≡ 5 (mod 8) its order is k

4
and

[G : G0] =
k

4
.

Consequently a′′ is odd. Again (14.4) is satisfied.
(iii)

µ0 ≡ 5 (mod 8).

Then νϕ(2) = −1 while νϕ(−1) = 1. The order of µ0 which equals [G : G0] is again
k
4
so that a′′ is odd and (14.4) is satisfied.

(iv)
µ0 ≡ 7 (mod 8).

Then νϕ(2) = 1 while νϕ(−1) = −1. Again k > 8 and

δ ≡ 0 (mod 2).

The order of µ0 is again at least 4 and therefore equal to the order of −µ0 and that
divides k

8
. Thus [G : G0] divides

k
8
and a′′ is even. (14.4) follows once more.

Since ϕ′ = ϕ all we need to prove (14.7) once (14.4) and (14.7′′) are granted is show that∑
µ∈T−T ′

[ϕµ : ϕ] ≡ 0 (mod 2).

This is clear because, for these µ, Fµ = L and ϕµ = OL/PL is of even degree over ϕ.
Finally we have to assume that q−1

k
is even and prove (14.5) and (14.6). First a lemma.

Lemma 14.9. If q−1
k

is even,

λ

(
σ

1
2
[G:G0]

0

)
≡ 1 (mod 4),

and G/G0 acts faithfully on G0/G1, then

(−1)aνϕ(−1)
q−1
2k = 1.
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Since the action is faithful, G0/G1 is not contained in H∗ and k′ = k
2
. As before λ0 ≡ 1

(mod 4) and λ0 ̸≡ 1 (mod k) together imply that k ⩾ 8 and k′ ⩾ 4. Since k′ divides pℓ − 1,

pℓ ≡ 1 (mod 4)

and pℓ+1
2

is odd. Since

q − 1

k
=

(
pℓ − 1

k′

)(
pℓ + 1

2

)
the number pℓ−1

k′
is even.

If σ belongs to H∗ and σ acts trivially on H∗
0 then

λ(σ) ≡ 1

(
mod

k

2

)
so that

λ(σ2) ≡ 1 (mod k)

and σ2 belongs to H0. Thus σ belongs to ρ0H0 ∪H0. Since ρ0 belongs to H1 the image of
σ in H ′ lies in H ′

0. Thus G′/G′
0 acts faithfully on G′

0/G
′
1. If σ belongs to H1 then σ acts

trivially on H∗
0 because the representation of H∗

0 on V is faithful. Thus H1 is contained in
ρ0H0 ∪H0 and is therefore just {ρ0, 1}. Thus

[G′ : G′
0] = [H ′ : H ′

0] = [H∗ : H∗
0H

1] =
1

2
[G : G0].

Suppose that

(14.12) (−1)aνϕ′(−1)
pℓ−1
2k′ = 1.

Since ϕ′ = ϕ and, because k′ ⩾ 4 divides pℓ − 1,

q − 1

2k
=

(
pℓ − 1

2k′

)(
pℓ + 1

2

)
≡

(
pℓ − 1

2k′

)
(mod 2),

all we need do to establish the lemma is to show that

a′′ ≡ 0 (mod 2).

As before [G : G0] divides
k
4
. If

k

4
= n[G : G0]

then

a′′ =
1

k

(pℓ − 1)2

[G : G0]
= n

(
pℓ − 1

k′

)2

is certainly even because 2k′ divides pℓ − 1.
If [G : G0] ⩾ 4 let

λ′0 = λ

(
σ

1
4
[G:G0]

0

)
.

If
λ′0 ≡ 1 (mod 4)

we may suppose that (14.12) is true by induction. If [G : G0] = 4 and

λ′0 ≡ 3 (mod 4)
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or if [G : G0] = 2 we must establish it directly.
Suppose first that [G : G0] = 2. If ϕ has pf elements then

λ0 ≡ µ0 ≡ pf ≡ 1 (mod 4)

so that νϕ(−1) = 1. It is clear that in this case

a′ =
pℓ − 1

k′
.

a′ is thus even and (14.12) is valid.
Now suppose [G : G0] = 4 so that [G′ : G′

0] = 2. If σ′
0 generates G′ modulo G′

0 then λ′0 is
the image of σ′

0 in the group of units of Z/k′Z. We have already studied the case that λ′0 ≡ 3
(mod 4) intensively. Let

x : σ′ → x(σ′)

be the map of G′
0/G

′
1 onto Z/k′Z. If λ′0 ≡ −1 (mod k′) and x

(
(σ′

0)
2
)
= k′

2
we showed,

incidentally, that (14.12) is valid. If λ′0 ≡ −1 (mod k′), x
(
(σ′

0)
2
)
= 0, and the action of H ′

0

on S(K ′/L′) is reducible, we saw that pℓ is a square p2ℓ
′
and that the left side of (14.12) is

(−1)
pℓ

′
−1
2 .

But the field with pℓ
′
elements must contains the k′th roots of unity and k′ ≡ 0 (mod 4).

Thus
pℓ

′ − 1 ≡ 0 (mod 4)

and (14.12) is again valid. If k′ ⩾ 8,

λ′0 ≡
k′

2
− 1 (mod k′)

and the action of H ′
0 on S(K ′/L′) is reducible, the left side of (14.12) is

(−1)
pℓ

′
−1
4 .

This time
pℓ

′ − 1 ≡ 0 (mod 8).

To complete the proof of the lemma we show that in the case under consideration the
action of H ′

0 and S(K ′/L′) or, what is the same, the action of H∗
0 on V is reducible. If not

the field generated over the prime field by the k′th roots of unity has pℓ elements. Thus

pℓ ≡ 1 (mod 4).

However as we have observed repeatedly, the number of elements in ϕ is congruent to 3
modulo 4. Thus ℓ is even. Let ℓ = 2ℓ′. Either pℓ

′ − 1 or pℓ
′
+ 1 is congruent to 2 modulo 4. If

pℓ
′
+ 1 ≡ 2 (mod 4) then k′ divides pℓ

′ − 1 because

pℓ − 1

k′
=

(
pℓ

′ − 1

k′

)
(pℓ

′
+ 1)

is even. Since k′ cannot divide pℓ
′ − 1 we have

pℓ
′ ≡ 3 (mod 4)
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and ℓ′ is odd. Indeed it is 1 but that does not matter. Since k divides pℓ− 1, the kth roots of
unity are contained in the field with pℓ elements. Adjoining them to ϕ = OF/PF we obtain a
quadratic extension because 4 does not divide ℓ. Therefore if σ belongs to G0/G1,

θ0(σ) = θ0(σ)
σ−2
0 = θ0(σ)

λ(σ2
0)

so that
λ(σ2

0) ≡ 1 (mod k).

This contradicts the assumption that G/G0 acts faithfully on G0/G1.
Returning to the proof of (14.5), we suppose first that H0 is not contained in H∗ so

that the action of G/G0 on G0/G1 is faithful. Because of Lemma 14.9 the identity (14.5) is
equivalent to

νϕ

∏
µ∈T

NFµ/Fγµ

 = 1.

If µ belongs to T but not to T ′, then Fµ = L and, by Lemma 14.8,

νϕ(NFµ/Fγµ) = 1.

If µ belongs to T ′ then Gµ is contained in H∗C so that Fµ contains F ′. Moreover we do not
change Fµ if we replace K/F by K ′/F ′. Let ϖF ′ generate PF ′ and take ϖF = NF ′/FϖF ′ . If
E ′ is the fixed-field of H∗ we may suppose that

ϖF ′ = NE′/F ′ϖE′

and that
ϖE = NE′/EϖE′ .

Then
ϖF = NE/FϖE

as required. Let

NFµ/F , ϖ
t
Fµ

= γ′µϖ
t[Fµ:F ′]

k′ .

Then
γµ = NF ′/Fγ

′
µ.

Since F ′/F is ramified γµ is a square in UF and (14.5) is proved. To prove (14.6) we have to
show that

νϕ(−1)
∑

µ∈T [ϕµ:ϕ] = νϕ′(−1)
∑

µ∈T ′ [ϕµ:ϕ′] = 1.

But pℓ−1
k′

is even and this follows from the simultaneous validity of (14.5′′) and (14.6′′).

We have yet to treat the case that q−1
k

is even and H0 is contained in H∗. Then F ′/F is

unramified and k′ = k. Suppose first of all that pℓ−1
k

is also even. Then

q − 1

2k
=

(
pℓ − 1

k

)(
pℓ + 1

2

)
is even. H0 is contained in H∗ and H is generated by σ0 and H0. Consequently σ0 is not
contained in H∗ and

σ0ρ0σ
−1
0 = σ

(
k

2

)
ρ0.
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Since ρ0 = σ(x0)τ0,

(µ0 − 1)x0 ≡
k

2
(mod k)

if µ0 = λ(σ0). If

y0 = x(σ
[G:G0]
0 )

and m is the greatest common divisor of y0 and k then by the definition of x0 the greatest
common divisor of x0 and k is m

2
. Therefore k

m
is the greatest common divisor of µ0 − 1 and

k. In particular m < k. The order of σ0 in H is

k

m
[G : G0].

Therefore [G : G0] divides
k
2m

[G : G0] and H
∗ contains a cyclic subgroup of order

k

2m
[G : G0].

If σ is the element of order 2 in this subgroup, then σ belongs to H0 and π∗(σ) does not have
1 as an eigenvalue. Thus no non-zero element of V is fixed by any element of this cyclic
subgroup and

pℓ − 1 ≡ 0

(
mod

k

2m
[G : G0]

)
.

In particular [G : G0] divides p
ℓ − 1 and

a′′ =

(
pℓ − 1

k

)(
pℓ − 1

[G : G0]

)
is even. As before νϕ(γµ) = 1 if µ belongs to T and Fµ = L. If Fµ ̸= L then µ belongs to T ′

and Gµ lies in H∗C so that Fµ contains F ′. In the present situation F ′/F is unramified and
we may take ϖF ′ = ϖF . If

NFµ/F ′ϖt
Fµ

= γ′µϖ
t[Fµ:F ′]

k
F

then

NFµ/Fϖ
t
Fµ

= (NF ′/Fγ
′
µ)ϖ

t[Fµ:F ]

k
F .

The identity (14.5) reduces to

νϕ

∏
µ∈T ′

NF ′/Fγ
′
µ

 = (−1)a
′

or

νϕ′

∏
µ∈T ′

γ′µ

 = (−1)a
′
.

Since ϕ′ is a quadratic extension of ϕ, the number νϕ′(−1) is 1 and this relation is equivalent
to (14.5′′). To prove (14.6) we have to show that

νϕ(−1)
∑

µ∈T [ϕµ:ϕ] = 1.

This is clear because 2 divides each of the degrees [ϕµ : ϕ].
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Finally we have to suppose that pℓ−1
k

is odd. Since [ϕ′ : ϕ] = 2 the relation (14.4′′) amounts
to

(−1)a
′+1 = 1.

Again

(14.13) νϕ

∏
µ∈T

γµ

 = νϕ′

∏
µ∈T ′

γ′µ

.
If µ belongs to T ′ and σ ̸= 1 belongs to Gµ then some power of σ will equal ρ0. Since

pℓ − 1

k
=
∑
µ∈T ′

[Fµ : F ′]

k

is odd and
[Fµ : F ′]

k
is a power of 2, there is at least one µ in T ′ for which [Fµ : F ′] = k. Then Gµ must contain
an element of the form σ(z0)σ

2
0. Then

ρ0 = σ(x0)τ0 =
(
σ(z0)σ

2
0

) 1
4
[G:G0] = σ


µ 1

2
[G:G0]

0 − 1

µ2
0 − 1

z0

τ0

.

Thus µ 1
2
[G:G0]

0 − 1

µ2
0 − 1

z0 ≡ x0 (mod k).

Let
1

4
[G : G0] = 2b.

Since
µ2
0 ≡ 1 (mod 4)

and, as before, the greatest common divisor of x0 and k is m
2
if the greatest common divisor

of y0 and k is m, we infer that

µ
1
2
[G:G0]

0 − 1

µ2
0 − 1

=
b∏

j=1

µ2j+1

0 − 1

µ2j
0 − 1

=
b∏

j=1

µ2j

0 + 1

is multiplicatively congruent to
[G : G0]

4
modulo 2 and that the greatest common divisor of z0 and k is

2m

[G : G0]
.

In particular [G:G0]
2

divides m. z0 is odd if and only if

m =
1

2
[G : G0].
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If µ0 ≡ 1 (mod 4) the order of µ0 in the group of units of Z/kZ is m because, as we observed

when treating the case that pℓ−1
k

is even, the greatest common divisor of µ0 − 1 and k is k
m
.

However

µ
1
2
[G:G0]

0 ≡ λ(τ0) ≡ 1 (mod k)

and in this case m divides 1
2
[G : G0]. Thus

m =
1

2
[G : G0]

if µ0 ≡ 1 (mod 4).
We shall define a sequence of fields F (i), L(i), K(i), 1 ⩽ i ⩽ n. n is an integer to be

specified. We will have F (i) ⊆ L(i) ⊆ K(i) and K(i)/F (i) and L(i)/F (i) will be Galois. Let
G(i) = G(K(i)/F (i)) and C(i) = G(L(i)/F (i)). There will be a subgroup H(i) of G(i) such that
H(i) ̸= {1}, H(i) ∩ C(i) = {1}, and G(i) = H(i)C(i). C(i) will be a non-trivial abelian normal
subgroup of G(i) which is contained in every other non-trivial normal subgroup. H(n) will be

abelian but H(i) will be non-abelian if i < n. Moreover k(i) = [H
(i)
0 : 1] will be at least 4 for

all i and k(i) will equal 2k(i+1) if i < n. If x is an isomorphism of H
(i)
0 with Z/k(i)Z and σ

belongs to H(i) let
x(στσ−1) = λ(i)(σ)x(τ).

Then λ(i)(σ) will be congruent to 1 modulo 8 if i < n. If q(i) is the number of elements in
C(i) then

q(i) − 1

k(i)

will be odd.
F ′ and K ′ have already been defined. L′ is just the fixed field of C ′.

q′ − 1

k′
=
pℓ − 1

k
is odd. If σ′ in H ′ is the image of σ in H∗C then

λ′(σ′) ≡ λ(σ) (mod k).

Since σ is a square modulo H0

λ′(σ′) ≡ 1 (mod k).

If F (i), L(i), and K(i) have been defined and H(i) is not abelian we can define F (i+1),
L(i+1), K(i+1) by the process we used to pass from F , L, K to F ′, L′, K ′. We have seen that
if

q(i) − 1

k(i)

is odd then
q(i+1) − 1

k(i+1)

is also odd and that
k(i) = 2k(i+1).

We have also seen that k(i) ⩾ 8 if H(i) is not abelian. If H(i) is abelian we take n = i.
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When we pass from the ith stage to the (i+1)th we break up T (i), the analogue of T , into

T (i+1) and a complementary set U (i). We may think of T (i) as lying in T . If σ
(i)
0 generates

H(i) modulo H
(i)
0 then

λ′(σ
(i)
0 ) ≡ 1 (mod 8).

We saw that this implies that U (i) has an even number of elements. If µ belongs to U (i) then
Fµ is equal to L(i). Thus we may suppose that

νϕ′

 ∏
µ∈U(i)

γ′µ

 = 1.

Moreover L(i)/F (i) is non-abelian and therefore L(i)/F (i) is not totally ramified. Thus µ is
not in U (i) if [Fµ : F ′] = k.

Since L(n)/F (n) is abelian the isotropy group in H(n) of any µ in T (n) is trivial so that
Fµ = L(n) for such µ. Since∑

µ∈T ′

[Fµ : F ′]

k
≡
∑
µ∈T (n)

[L(n) : F ′]

k
(mod 2).

There are an odd number of elements in T (n) and

[L(n) : F ′] = k.

Choose z0 so that σ(z0)σ
2
0 lies in G(L/L(n)). It then fixes each µ in T (n).

Since L(n)/F ′ must be totally ramified there is a δ in UF such that

NL(n)/FϖL(n) = δϖ2
F .

The right side of (14.13) is equal to νϕ(δ). L
(n) is contained in L. Choose w0 in WL/F so

that τL/F (w0) = ϖF . We may suppose that σ0 has been chosen to be σ(w0). Let L0 be the
fixed field of H0. Choose u0 in WL/L0 so that σ(u0) = σ(z0) and so that τL/L0(u0) is a unit.
Clearly z0 is even if and only if τL/L0(u0) or

NL0/F

(
τL/L0(u0)

)
= τL/F (u0)

is a square. Since σ(z0)σ
2
0 lies in G(L/L(n)),

u0w
2
0

lies in WL/L(n) . We may take

ϖL(n) = τL/L(n)(u0w
2
0).

Then
NL(n)/F (ϖL(n)) = τL/F (u0w

2
0) = τL/Fϖ

2
F

and δ = τL/F (u0) is a square if and only if z0 is even.

Since (−1)a
′+1 = 1 the relation (14.5) amounts to

(1)a
′′−1νϕ(−1)

q−1
2k = (−1)z0 .

(14.6) is equivalent to (14.5) because each [ϕµ : ϕ] = 2[ϕµ : ϕ′] is even. Recall that

a′′ =

(
pℓ − 1

k

)(
pℓ − 1

[G : G0]

)
≡ pℓ − 1

[G : G0]
(mod 2)
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and that
q − 1

2k
=

(
pℓ − 1

k

)(
pℓ + 1

2

)
≡ pℓ + 1

2
(mod 2).

If
µ0 ≡ 1 (mod 4)

then νϕ(−1) = 1 and, as we observed earlier, z0 is odd. We have to show that a′′ is even.
We showed before that H∗ has to contain a cyclic subgroup of order k

2m
[G : G0] and that

k
2m

[G : G0] has to divide pℓ− 1. But k
m

is the greatest common divisor of µ0 − 1 and k. Since

4 divides µ0 − 1 and k, it divides k
m

and 2[G : G0] divides p
ℓ − 1. Thus a′′ is even.

If
µ0 ≡ 3 (mod 4)

then νϕ(−1) = −1. Moreover k > 2 so that pℓ ≡ 1 (mod 4) and

q − 1

2k
≡ pℓ + 1

2
≡ 1 (mod 2).

We have to show that a′′ is odd if

m =
1

2
[G : G0]

and even otherwise. But µ0 ≡ 3 (mod 4) so that k
m
= 2 and m = k

2
. Thus [G : G0] = 2m if

and only if [G : G0] = k. If [G : G0] = k then

a′′ ≡ pℓ − 1

k
(mod 2)

is odd. Otherwise 2[G : G0] divides k and a′′ is even.
Lemma 14.3 is now completely proved, so we turn to Lemma 14.4. In the proof of both

Lemma 14.4 and 14.5, we will combine the induction assumption with Lemma 15.1 which
is stated and proved in paragraph 15, the following paragraph. Suppose F ⊆ F ′ ⊆ L and
F ′/F is cyclic of prime degree ℓ. Let G(K/F ′) be H ′C where H ′ ⊆ H and let E ′ be the
fixed field of H ′. Then E ′/E is cyclic of prime order ℓ. If S(F ′/F ) is the set of characters of
CF/NF ′/FCF ′ then

S(E ′/E) =
{
νE/F

∣∣ νF ∈ S(F ′/F )
}
.

From Lemma 15.1 we see that for any quasi-character χF ,

Ind(WK/E,WK/E′ , χE′/E) ≃
⊕

νF∈S(F ′/F )

νE/FχE/F .

Therefore
Ind(WK/F ,WK/E′ , χE′/E) ≃

⊕
νF

Ind(WK/F ,WK/E, νE/FχE/F )

which is equivalent to⊕
νF


⊕

µ∈T

Ind(WK/F ,WK/Fµ , µ
′νFµ/FχFµ/F )

⊕ νFχF

.
If T ′ is a set of representatives for the non-trivial orbits of H ′ in S(K/L) then

Ind(WK/F ′ ,WK/E′ , χE′/F ) = σ
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is equivalent to ⊕
µ∈T ′

Ind(WK/F ′ ,WK/F ′
µ
, µ′χF ′

µ/F )

⊕ χF ′/F .

Moreover
Ind(WK/F ,WK/F ′ , σ) ≃ Ind(WK/F ,WK/E′ , χE′/E).

Applying the induction assumption to L/F we see that∏
νF

∆(νF , χF , ψF )


∏

νF

∏
µ∈T

∆(µ′νFµ/FχFµ/F , ψFµ/F )λ(F/F, ψF )


is equal to

(14.14)
{
∆(χF ′/F , ψF ′/F )λ(F

′/F, ψF )
}∏

µ∈T ′

∆(µ′χF ′
µ/F , ψF ′

µ/F )λ(F
′
µ/F, ψF )

.
The application is legitimate because the fields F ′, Fµ, and F

′
µ all lie between F and L. By

Lemma 4.5
λ(F ′

µ/F, ψF ) = λ(F ′
µ/F

′, ψF ′/F )λ(F
′/F, ψF )

[F ′
µ:F

′].

Also

λ(F ′/F, ψF )

∏
µ∈T ′

λ(F ′/F, ψF )
[F ′

µ:F
′]

 = λ(F ′/F, ψF )
[E′:F ′].

Since the fields F ′ and F ′
µ lie between F ′ and K we can apply the induction assumption to

K/F ′ to see that (14.14) is equal to the product of

λ(F ′/F, ψF )
[E′:F ′]

and
∆(χE′/F , ψE′/F )λ(E

′/F ′, ψF ′/F ).

Applying the induction assumption to K/E we see that

∆(χE′/F , ψE′/F )

is equal to  ∏
νF∈S(F ′/F )

∆(νE/FχE/F , ψE/F )

λ(E ′/E, ψE/F )
−1.

We conclude that the quotient

(14.15)
∏
νF

{
∆(νFχF , ψF )

∏
µ∈T ∆(µ′νFµ/FχFµ/F , ψFµ/F )

∆(νE/FχE/F , ψE/F )

}
is independent of χF . Taking χF to be trivial we see that it equals

(14.16)
∏
νF

{
∆(νF , ψF )

∏
µ∈T ∆(µ′νFµ/F , ψFµ/F )

∆(νE/F , ψE/F )

}
.
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It is easily seen that the complex conjugate of ∆(νF , ψF ) is

νF (−1)∆(ν−1
F , ψF ).

Thus
∆(νF , ψF )∆(ν−1

F , ψF ) = νF (−1).

If ℓ is odd the right side is 1. Since

∆(1, ψF ) = 1

and νF ̸= ν−1
F if ℓ is odd, the product∏

νF∈S(L/F )

∆(νF , ψF ) = 1.

For the same reasons ∏
νF∈S(L/F )

∆(νE/F , ψE/F ) = 1.

However, if ℓ is 2
∆(νF , ψF ) = ∆(ν−1

F , ψF )

has square ±1 and is therefore a fourth root of unity. Thus∏
ν∈S(L/F )

∆(νF , ψF ) ∼
∏

ν∈S(L/F )

∆(νE/F , ψE/F ) ∼2 1.

On the other hand, m(µ′) = t+ 1 ⩾ 2 while m(νFµ/F ) ⩽ 1. Thus Lemma 9.5 shows that

∆(µ′νFµ/F , ψFµ/F ) ∼ℓ ∆(µ′, ψFµ/F ).

Thus the expression (14.16) and therefore the expression (14.15) is equal to

η

∏
µ∈T

∆(µ′, ψFµ/F )


ℓ

where η ∼ℓ 1.
If m(χF ) is 0 or 1, Lemma 14.4 is a consequence of Lemma 14.2. We suppose therefore

that m(χF ) ⩾ 2. In this case Lemma 9.5 implies that∏
νF

∆(νFχF , ψF ) ∼ℓ ∆(χF , ψF )
ℓ

and that ∏
νF

∆(νE/FχE/F , ψE/F ) ∼ℓ ∆(χE/F , ψE/F )
ℓ.

We also saw in the beginning of the paragraph that, in all cases, m(µ′χFµ/F ) ⩾ 2. Thus

∆(µ′νFµ/FχFµ/F , ψFµ/F ) ∼ℓ ∆(µ′χFµ/F , ψFµ/F ).

Putting these facts together we see that if

σ

∆(χF , ψF )
∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )


ℓ
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is equal to ∆(χE/F , ψE/F )
∏
µ∈T

∆(µ′, ψFµ/F )


ℓ

then σ ∼ℓ 1. Since σ = ρℓ we conclude that

ρ ∼ℓ 1.

Finally we have to prove Lemma 14.5. Let F ′ be the fixed field of H1C and let L′ be the
fixed field of H2C. Let E

′ be the fixed field of H1 and let K ′ be the fixed field of H2. Let
P be a set of representatives for the orbits under G(L/F ) of the characters in S(L/L′). If
ν is one of these representatives, let HνH2C with Hν and H1 be its isotropy group and let
Fν be the fixed field of HνH2C. Applying the induction assumption and Lemma 15.1 to the
extension L/F we see that

∆(χF ′/F , ψF ′/F )ρ(F
′/F, ψF )

is equal to

(14.17)
∏
ν∈P

∆(ν ′χFν/F , ψFν/F )λ(Fν/F, ψF ).

Let
R = { ν ∈ P | Fν = F }

and let S be the complement of R in P . R consists of the elements of S(L/L′) fixed by each
element of G(L/F ). It is a subgroup of S(L/L′) and its order r must therefore be a power of
ℓ. The expression (14.17) may be written as∏

ν∈R

∆(ν ′χF , ψF )


∏
ν∈S

∆(ν ′χFν/F , ψFν/F )λ(Fν/F, ψF )

.
If F is replaced by E and F ′ by E ′ then P is replaced by{

νK′/L′
∣∣ ν = νL′ ∈ P

}
.

Also Fν is replaced by Eν , the fixed field of HνH2, and ν
′ is replaced by ν ′Eν/Fν

. Applying

the induction assumption to K/E, we see that

∆(χE′/F , ψE′/F )λ(E
′/E, ψE/F )

is equal to the product of ∏
ν∈R

∆(ν ′E/FχE/F , ψE/F )


and ∏

ν∈S

∆(ν ′Eν/Fν
χEν/Fν , ψEν/F )λ(Eν/E, ψE/F )

.
This equality will be referred to as relation (14.18).

To derive this equality we have used not only the induction assumption but also
Lemma 15.1, which implies that

Ind(WK/E,WK/E′ , χE′/F )
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is equivalent to⊕
R

Ind(WK/E,WK/E, ν
′
E/FχE/F )

⊕

⊕
S

Ind(WK/E,WK/Eν , ν
′
Eν/Fν

χEν/F )

.
Thus

Ind(WK/F ,WK/E′ , χE′/F )

will be equivalent to the direct sum of⊕
R

Ind(WK/F ,WK/E, ν
′
E/FχE/F )

and ⊕
S

Ind(WK/F ,WK/Eν , ν
′
Eν/Fν

χEν/F ).

If ν is in R we can apply Lemma 15.1 to see that

Ind(WK/F ,WK/E, ν
′
E/FχE/F )

is equivalent to ⊕
µ∈T

Ind(WK/F ,WK/Fµ , µ
′ν ′Fµ/FχFµ/F )

⊕ ν ′χF .

We can obtain
Ind(WK/F ,WK/Fν , ν

′
Eν/Fν

χEν/F )

by first inducing from WK/Eν to WK/Fν and then from WK/Fν to WK/F .
If Tν is a set of representatives for the orbits of S(K/L) under the action of G(K/Fν)

and Fν,µ is the fixed field of the isotropy group of µ in Tν then, by Lemma 15.1 again,

Ind(WK/Fν ,WK/Eν , ν
′
Eν/Fν

χEν/F )

is equivalent to ⊕
Tν

Ind(WK/Fν ,WK/Fν,µ , µ
′ν ′Fν,µ/Fν

χFν ,µ/F ).

Since [K : Fν ] < [K : F ] if ν belongs to S, we can apply the induction assumption to see that

∆(ν ′Eν/Fν
χEν/F , ψEν/F )λ(Eν/Fν , ψFν/F )

is equal to ∏
µ∈Tν

∆(µ′ν ′Fν,µ/Fν
χFν,µ/F , ψFν/F )λ(Fν,µ/Fν , ψFν/F ).

This equality will be referred to as relation (14.19).
It also follows that

Ind(WK/F ,WK/Eν , ν
′
Eν/Fν

χEν/F )

is equivalent to ⊕
µ∈Tν

Ind(WK/F ,WK/Fν,µ , µ
′ν ′Fν,µ/Fν

χFν,µ/F ).

The fields Fν and Fν,µ all lie between F and L. Thus we have expressed

(14.20) Ind(WK/F ,WK/E′ , χE′/F )
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as a direct sum of terms of the form

(14.21) Ind(WK/F ,WK/M , χM)

where M lies between F and L. Moreover such a representation is in fact a representation of
WK/F obtained by inflating a representation of WL/F , namely, by inflating

Ind(WL/F ,WL/M , χM).

Thus any other expression of (14.20) as a sum of representations of the form (14.21) will lead,
by an application of the induction assumption to L/F , to an identity between the numbers
∆(χM , ψM/F ).

To obtain another such expression, we observe that the representation (14.20) can be
obtained by first inducing from WK/E′ to WK/F ′ and then from WK/F ′ to WK/F . If T

′ is a
set of representatives for the orbits of non-trivial characters in S(K/L) under the action of
G(K/F ′) and F ′

µ is the fixed field of the isotropy group in G(K/F ′) of µ in T ′ then

Ind(WK/F ′ ,WK/E′ , χE′/F )

is equivalent to ⊕
µ∈T ′

Ind(WK/F ′ ,WK/F ′
µ
, µ′χF ′

µ/F )

⊕ χF ′/F .

Thus (14.20) is equivalent to the direct sum of

Ind(WK/F ,WK/F ′ , χF ′/F )

and ⊕
µ∈T ′

Ind(WK/F ,WK/F ′
µ
, µ′χF ′

µ/F ).

We shall describe the resultant identity in a moment. We first apply the induction assumption
to the extension K/F ′ to see that

∆(χE′/F , ψE′/F )λ(E
′/F ′, ψF ′/F )

is equal to

∆(χF ′/F , ψF ′/F )
∏
µ∈T ′

∆(µ′χF ′
µ/F , ψF ′

µ/F )λ(F
′
µ/F

′, ψF ′/F ).

This equality will be relation (14.22).
The two expressions for the representation (14.20) lead to the conclusion that the product

of

(14.23)
∏
ν∈R

∆(ν ′χF , ψF )

and

(14.24)
∏
ν∈R

∏
µ∈T

∆(µ′ν ′Fµ/FχFµ/F , ψFµ/F )λ(Fµ/F, ψF )

and

(14.25)
∏
ν∈S

∏
µ∈Tν

∆(µ′ν ′Fν,µ/Fν
χFν,µ/F , ψFν,µ/F )λ(Fν,µ/F, ψF )

is equal to the product of
∆(χF ′/F , ψF ′/F )λ(F

′/F, ψF )
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and ∏
µ∈T ′

∆(µ′χF ′
µ/F , ψF ′

µ/F )λ(F
′
µ/F, ψF ).

Applying relation (14.22) and Lemma 4.5 we see that the second of these two products is
equal to

∆(χE′/F , ψE′/F )λ(E
′/F ′, ψF ′/F )λ(F

′/F, ψF )
[E′:F ′].

According to the relation (14.18) this expression is the product of∏
ν∈R

∆(ν ′E/FχE/F , ψE/F )


∏
ν∈S

∆(ν ′E/FχE/F , ψE/F )


and ∏

ν∈S

λ(Eν/E, ψE/F )

and

(14.26) λ(E ′/E, ψE/F )
−1λ(E ′/F ′, ψF ′/F )λ(F

′/F, ψF )
[E′:F ′].

Equating this final product to the product of (14.23), (14.24), and (14.25) and then
making certain cancellations by means of (14.19), we see that the product of (14.23) and
(14.24) and ∏

ν∈S

∏
µ∈Tν

λ−1(Fν,µ/Fν , ψFν/F )λ(Fν,µ/F, ψF )

is equal to the product of ∏
ν∈R

∆(ν ′E/FχE/F , ψE/F )

and ∏
ν∈S

λ−1(Eν/Fν , ψFν/F )λ(Eν/E, ψE/F )

and the expression (14.26).
In particular, the expression∏

ν∈R

{
∆(ν ′χF , ψF )

∏
µ∈T ∆(µ′ν ′Fµ/F

χFµ/F , ψFµ/F )

∆(ν ′E/FχE/F , ψE/F )

}
is independent of χF . Taking χF to be trivial we see that∏

ν∈R

{
∆(ν ′χF , ψF )

∏
µ∈T ∆(µ′ν ′Fµ/F

χFµ/F , ψFµ/F )

∆(ν ′E/FχE/F , ψE/F )
∏

µ∈T ∆(µ′ν ′Fµ/F
, ψFµ/F )

}
is equal to ∏

ν∈R

∆(ν ′, ψF )

∆(ν ′E/F , ψE/F )
.

The set
R′ =

{
ν ′
∣∣ ν ∈ R

}
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is a group of characters of CF or of H. Regarded as characters of H the elements of R′ are
just those characters which are trivial on H1. As a group R′ is cyclic and its order is a power
of ℓ. The argument used in the proof of Lemma 14.4 shows that∏

ν∈R

∆(ν ′, ψF ) ∼ℓ 1

and ∏
ν∈R

∆(ν ′E/F , ψE/F ) ∼ℓ 1.

If m(χF ) is 0 or 1, Lemma 14.5 is a consequence of Lemma 14.2. We may as well suppose
therefore that m(χF ) > 1. If ν belongs to R then ν ′ is 1 on NL/FCL. Therefore m(ν ′), as
well as m(ν ′Fµ/F

) and m(ν ′E/F ) is at most 1. We saw in the beginning of this paragraph that

m(χE/F ) would also be at least 2. We also saw that m(µ′χFµ/F ) would be either t + 1 or
ψFµ/F (m− 1) + 1. In any case it is at least 2. Also m(µ′) = t+ 1 is at least 2. Lemma 9.5
therefore implies the following relations:

∆(ν ′χF , ψF ) ∼ℓ ∆(χF , ψF )

∆(ν ′E/FχE/F , ψE/F ) ∼ℓ ∆(χE/F , ψE/F )

∆(µ′ν ′Fµ/FχFµ/F , ψFµ/F ) ∼ℓ ∆(µ′χFµ/F , ψFµ/F )

∆(µ′ν ′Fµ/F , ψFµ/F ) ∼ℓ ∆(µ′, ψFµ/F ).

We conclude finally that{
∆(χF , ψF )

∏
µ∈T ∆(µ′χFµ/F , ψFµ/F )

∆(χE/F , ψE/F )
∏

µ∈T ∆(µ′, ψFµ/F )

}r

∼ℓ 1

if r is the number of elements in R. The lemma follows.





CHAPTER 15

Another lemma

Suppose K/F is normal and G = G(K/F ). Suppose H is a subgroup of G and C is an
abelian normal subgroup of G. Let E be the fixed field of H and L that of C. If µ is a
character of C and h belongs to H, define µh by

µh(c) = µ(hch−1).

The set of characters of C may be identified with S(K/L). If α belongs to CL

µh(α) = µ
(
h(α)

)
.

The set of elements in S(K/L) which are trivial on H ∩ C is invariant under H. Let T be a
set of representatives for the orbits of H in this set. If µ ∈ T let Hµ be the isotropy group of
µ, let Gµ = HµC and let Fµ be the fixed field of Gµ. Define a character µ′ of Gµ by

µ′(hc) = µ(c)

if h ∈ Hµ and c ∈ C. µ′ may be regarded as a character of CFµ .

Lemma 15.1. If χF is a quasi-character of CF , then

ρ = Ind(WK/F ,WK/E, χE/F )

is equivalent to ⊕
µ∈T

Ind(WK/F ,WK/Fµ , µ
′χFµ/F ).

Let G′ = HC and let F ′ be the fixed field of G′. F ′ is contained in E and in the fields Fµ.
Because of the transitivity of the induction process, it is enough to show that

Ind(WK/F ′ ,WK/E, χE/F )

is equivalent to ⊕
µ∈T

Ind(WK/F ′ ,WK/Fµ , µ
′χFµ/F ).

If
χ′
F ′ = χF ′/F

then
χE/F = χ′

E/F ′

and
χFµ/F = χ′

Fµ/F ′ .

Consequently we may suppose, with no loss of generality, that F ′ is F .
If K ′ is the fixed field of H ∩C and ν ∈ S(K ′/L), let φν be the function on WK/F defined

by
φν(hc) = χF

(
τK/F (hc)

)
ν
(
τK/L(c)

)
181
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for h in WK/E, c in WK/L. ρ acts on the space of all functions φ on WK/F satisfying

φ(hg) = χF
(
τK/F (h)

)
φ(g)

for all h in WK/E and all g in WK/F . The set{
φν
∣∣ ν ∈ S(K ′/L)

}
is a basis for this space. Clearly

ρ(c)φν = χF
(
τK/F (c)

)
ν
(
τK/L(c)

)
φν

if c belongs to WK/L and

ρ(h)φν = χF
(
τK/F (h)

)
φν′ ,

with ν ′ = νh
−1
, if h belongs to WK/E. Thus if R is an orbit of H in S(K ′/L)⊕

ν∈R

Cφν = V

is an invariant subspace.
Let µ be the element common to T and R and consider

σ = Ind(WK/F ,WK/Fµ , µ
′χFµ/F ).

If WK/F is the disjoint union
r⋃
i=1

WK/Fµhi

and if φi(w) = 0 unless
w ∈ WK/Fµhi

while
φi(whi) = µ′χFµ/F

(
τK/Fµ(w)

)
for w in WK/Fµ , then

{φi | 1 ⩽ i ⩽ r }
is a basis for the space U on which σ acts. If νi = µhi and if λ is the map from U to V which
sends φi to χ

−1
F

(
τK/F (hi)

)
φνi then, as one verifies easily,

λσ(w) = ρ(w)λ

for all w in WK/F . The lemma follows.
The lemma has a corollary.

Lemma 15.2. If Theorem 2.1 is valid for K/F then

∆(χE/F , ψE/F )
∏
µ∈T

∆(µ′, ψFµ/F )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ).



15. ANOTHER LEMMA 183

If Theorem 2.1 is valid
∆(χE/F , ψE/F )λ(E/F, ψF )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

Taking χF = 1, we see that

λ(E/F, ψF ) =
∏
µ∈T

∆(µ′, ψFµ/F )λ(Fµ/F, ψF ).

Substituting this into the first equality and cancelling the non-zero factor∏
µ∈T

λ(Fµ/F, ψF )

we obtain the lemma.
To define the λ-function we shall need the following lemma.

Lemma 15.3. Suppose Theorem 2.1 is valid for all Galois extensions K1/F1 with F ⊆ F1 ⊆
K1 ⊆ K and [K1 : F1] < [K : F ]. Then

∆(χE/F , ψE/F )
∏
µ∈T

∆(µ′, ψFµ/F )

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F ).

The conclusion of this lemma is the same as that of the previous one. There is however a
critical difference in the assumptions.

Let F ′ be the fixed field of HC. If

ψ′
F ′ = ψF ′/F

then for all separable extensions E ′ of F ′

ψ′
E′/F ′ = ψE′/F .

If [K : F ′] < [K : F ] the relation of the lemma is a consequence of the induction assumption
and the previous lemma. We thus suppose that F = F ′ and G = HC.

Suppose in addition that there is a subgroup C1 of C, which is neither C nor {1}, whose
normalizer contains H. C1 is then a normal subgroup of G. Let F1 be the fixed field of HC1

and L1 the fixed field of C1. Lemma 15.1 applies to the extension K/F1. Thus there are
fields A1, . . . , Ar lying between F1 and L1 and quasi-characters χA1 , . . . , χAr such that

Ind(WK/F1 ,WK/E, χE/F )

is equivalent to
r⊕
i=1

Ind(WK/F1 ,WK/Ai
, χAi

).

The induction assumption then implies that

(15.1) ∆(χE/F , ψE/F )λ(E/F1, ψF1/F )
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is equal to

(15.2)
r∏
i=1

∆(χAi
, ψAi/F )λ(Ai/F1, ψF1/F ).

Inducing the first of these two representations from WK/F1 to WK/F , we obtain

Ind(WK/F ,WK/E, ψE/F ).

Thus

(15.3)
⊕
µ∈T

Ind(WK/F ,WK/Fµ , µ
′χFµ/F )

is equivalent to

(15.4)
r⊕
i=1

Ind(WK/F ,WK/Ai
, χAi

).

We recall that there exist surjective homomorphisms

τK/F,L1/F : WK/F → WL1/F

τK/Ai,L1/Ai
: WK/Ai

→ WL1/Ai

τK/Fµ,L1/Fµ : WK/Fµ → WL1/Fµ

whose kernels are all equal to the commutator subgroup W c
K/L1

of WK/L1 . Moreover the
diagrams

WK/Ai
WL1/Ai

WK/F WL1/F

and

WK/Fµ WL1/Fµ

WK/F WL1/F

may be supposed commutative. Since W c
K/L1

lies in the kernel of χAi
and µ′χFµ/F the

equivalence of (15.3) and (15.4) amounts to the equivalence of⊕
µ∈T

Ind(WL1/F ,WL1/Fµ , µ
′χFµ/F )

and
r⊕
i=1

Ind(WL1/F ,WL1/Ai
, χAi

).

The induction assumption applied to the extension L1/F implies that
r∏
i=1

∆(χAi
, ψAi/F )λ(Ai/F, ψF )
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is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

It also implies that

λ(Ai/F, ψF ) = λ(Ai/F1, ψF1/F )λ(F1/F, ψF )
[Ai:F1].

Since ∑
i

[Ai : F1] = [E : F1]

we infer from the equality of (15.1) and (15.2) that

∆(χE/F , ψE/F )λ(E/F1, ψF1/F )λ(F1/F, ψF )
[E:F1]

is equal to ∏
µ∈T

∆(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

Taking χF = 1 to find the value of

λ(E/F1, ψF1/F )λ(F1/F, ψF )
[E:F1]

and then substituting the result into the equation and cancelling the common factors, we
obtain the assertion of the lemma.

Now suppose that H contains a normal subgroup H1 ̸= {1} which lies in the centralizer
of C. H1 is a normal subgroup of G if, as we are assuming, G = HC. K1, the fixed field of
H1, contains E and all the fields Fµ. Lemma 15.1 together with the argument just applied to
L1 shows that

Ind(WK1/F ,WK1/E, χE)

is equivalent to ⊕
µ∈T

Ind(WK1/F ,WK1/Fµ , µ
′χFµ/F ).

In this case the assertion of the lemma follows from the induction assumption applied to
K1/F .

We have finally to suppose that G = HC, C contains no proper subgroup invariant
under H, and H contains no normal subgroup lying in the centralizer of C. In particular
H ∩C = {1}. If Z is the centralizer of C then Z = (Z∩H)C and Z∩H is a normal subgroup
of H. Consequently Z = C. If D is a normal subgroup of G and D does not contain C then

D ∩ C = {1}.
This implies that D is contained in Z. Thus D is contained in C and D = {1}. If H ̸= {1}
the assertion of the lemma is that of the third and fourth main lemmas. If H = {1} then
G = C and C is cyclic of prime order so that the assertion is that of the first main lemma.





CHAPTER 16

Definition of the λ-functions

In this and the next three paragraphs, we take a fixed Galois extension K/F , assume
that Theorem 2.1 is valid for all Galois extensions K ′/F ′ with F ⊆ F ′ ⊆ K ′ ⊆ K and
[K ′ : F ′] < [K : F ], and prove that it is valid for K/F itself. The first step is to define and
establish some simple properties of the function which will serve as the λ-function.

Lemma 16.1. Suppose
E/F ′ → λ(E/F ′, ψF ′)

is a weak λ-function on P0(K
′/F ′). If σ ∈ G(K ′/F ′) let

Eσ =
{
σ−1(α)

∣∣ α ∈ E
}
.

Then
λ(Eσ/F ′, ψF ′) = λ(E/F ′, ψF ′).

If µ is a character of G(K/E) let µσ be the character of G(K/Eσ) defined by

µσ(ρ) = µ(σρσ−1).

According to Lemma 13.2,
∆(µσ, ψEσ/F ′) = ∆(µ, ψE/F ′).

The representation
Ind
(
G(K ′/F ′),G(K ′/E), µ

)
acts on the space U of functions φ on G(K ′/F ′) satisfying

φ(ρτ) = µ(ρ)φ(τ)

for all τ in G(K ′/F ′) and all ρ in G(K ′/E). The map φ→ ψ with

ψ(τ) = φ(στ)

is a G(K ′/F ′) isomorphism of U with the space on which

Ind
(
G(K ′/F ′),G(K ′/Eσ), µσ

)
acts. Thus the two representations are equivalent.

If
r⊕
i=1

Ind
(
G(K ′/F ′),G(K ′/Ei), µi

)
is equivalent to

s⊕
j=1

Ind
(
G(K ′/F ′),G(K ′/Fj), νj

)
then

r⊕
i=1

Ind
(
G(K ′/F ′),G(K ′/Eσ

i ), µ
σ
i

)
187
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is equivalent to
s⊕
j=1

Ind
(
G(K ′/F ′),G(K ′/F σ

j ), ν
σ
j

)
and, with the conventions of the fourth paragraph,

r∏
i=1

(χEσ
i
, ψEσ

i /F
′)λ(Eσ

i /F
′, ψF ′)

is equal to
s∏
j=1

∆(χFσ
j
, ψFσ

j /F
′)λ(F σ

j /F
′, ψF ′).

Since
∆(χFσ

j
, ψFσ

j /F
′) = ∆(χFj

, ψFj/F ′)

and
∆(χEσ

i
, ψEσ

i /F
′) = ∆(χEi

, ψEi/F ′),

we conclude that
r∏
i=1

∆(χEi
, ψEi/F ′)λ(Eσ

i /F
′, ψF ′)

is equal to
s∏
j=1

∆(χFj
, ψFj/F ′)λ(F σ

j /F
′, ψF ′).

In other words
E/F ′ → λ(Eσ/F ′, ψF ′)

is a weak λ-function on P0(K
′/F ′). Lemma 16.1 follows from the uniqueness of such functions.

We return to the problem of defining a λ-function on P0(K/F ). Choose a non-trivial
abelian normal subgroup C of G = G(K/F ) and let L be the fixed field of C. If E is any
field lying between F and K let H be the corresponding subgroup of G. Choose the set T
of characters and the fields Fµ as in the previous paragraph. Since Fµ ⊆ L the numbers
λ(Fµ/F, ψF ) are defined.

Lemma 16.2. Suppose F ⊆ E ⊆ K1 ⊊ K with K1/F normal so that λ(E/F, ψF ) is defined.
Then

λ(E/F, ψF ) =
∏
µ∈T

∆(µ′, ψFµ/F )λ(Fµ/F, ψF ).

Let K1 be the fixed field of H1. If H1 ∩ C ̸= {1} we may enlarge K1 and replace H1 by
H1 ∩ C. Thus we may suppose that either H1 is contained in C or H1 ∩ C = {1}. In either
case H1 is contained in the centralizer of C. We saw in the previous paragraph that under
these circumstances

Ind(WK1/F ,WK1/E, 1) ≃
⊕
µ∈T

Ind(WK1/F ,WK1/Fµ , µ
′).

Consequently

λ(E/F, ψF ) =
∏
µ∈T

∆(µ′, ψFµ/F )λ(Fµ/F, ψF ).
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In general, we define

λ(E/F, ψF ) =
∏
µ∈T

∆(µ′, ψFµ/F )λ(Fµ/F, ψF )

if E/F is in P0(K/F ). T is, of course, not always uniquely determined. We may replace any
µ in T by µσ with σ in H. Then Hµ and Gµ are replaced by σ−1Hµσ and σ−1Gµσ while Fµ
is replaced by F σ

µ and µ′ is replaced by (µ′)σ. Since

∆(µ′, ψFµ/F )λ(Fµ/F, ψF ) = ∆
(
(µ′)σ, ψFσ

µ /F

)
λ(F σ

µ /F, ψF )

the number λ(E/F, ψF ) does not depend on T . A priori, it may depend on C but that is
unimportant since C is fixed and, the uniqueness having been proved, we are interested only
in the existence of a λ-function.

We shall need only one property of the function just defined.

Lemma 16.3. If F ⊆ E ⊆ E ′ ⊆ K then

λ(E ′/F, ψF ) = λ(E ′/E, ψE/F )λ(E/F, ψF )
[E′:E].

If E = F then
λ(E ′/E, ψE/F ) = λ(E ′/F, ψF )

and if E ̸= F
λ(E ′/E, ψE/F )

is the value of the λ-function of P(K/E), which is defined by assumption, at E ′/E. Since

λ(F/F, ψF ) = 1

the assertion is clear if E = F . It is also clear if E = E ′.

Let E be the fixed field of H as before and let F ′ be the fixed field of HC. We suppose
that H ̸= G. Lemma 4.5 and the induction assumption imply that

λ(Fµ/F, ψF ) = λ(Fµ/F
′, ψF ′/F )λ(F

′/F, ψF )
[Fµ:F ′].

The relation
[E : F ′] =

∑
[Fµ : F ′]

implies that
λ(E/F, ψF ) = λ(E/F ′, ψF ′/F )λ(F

′/F, ψF )
[E:F ′].

There is a similar formula for λ(E ′/F, ψF ). If F
′ ≠ F , the induction assumption implies that

λ(E ′/E, ψE/F )λ(E/F
′, ψF ′/F )

[E′:E] = λ(E ′/F ′, ψF ′/F ).

Since
[E ′ : F ′] = [E ′ : E][E : F ′]

the assertion of the lemma is proved simply by multiplying both sides of this equation by

λ(F ′/F, ψF )
[E′:F ′].

Now suppose that G = HC and H ∩ C = {1}. Let E ′ be the fixed field of H ′ and let F ′

be the fixed field of H ′C = G′. Each character of H ′ may be identified with a character of
CE′/NK/E′CK and each character of G′ may be identified with a character of CF ′/NK/F ′CK .
Any character χE′ of H ′ may be extended to a character χF ′ of G′ by setting

χF ′(ρσ) = χE′(ρ)
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if ρ ∈ H ′ and σ ∈ C. Then
χE′ = χE′/F ′ .

It follows from Lemma 15.1 that there are fields of Fi(E
′), 1 ⩽ i ⩽ m(E ′), lying between F ′

and L and characters µFi(E′) such that

Ind(WK/F ′ ,WK/E′ , χE′)

is equivalent to
m(E′)⊕
i=1

Ind(WK/F ′ ,WK/Fi(E′), µFi(E′)χFi(E′)/F ′).

If E ̸= E ′ so that F ̸= F ′, the induction assumption implies that

∆(χE′ , ψE′/F )λ(E
′/F ′, ψF ′/F )

is equal to
m(E′)∏
i=1

∆(µFi(E′)χFi(E′)/F ′ , ψFi(E′)/F )λ
(
Fi(E)/F

′, ψF ′/F

)
.

We have seen that the lemma is valid for any pair E ′, E for which HC ̸= G. In particular,
it is valid for the pair E ′, F ′ and the pairs Fi(E

′), F ′. Multiplying the equality just obtained
by

λ(F ′/F, ψF )
[E′:F ′]

we see that

(16.1) ∆(χE′ , ψE′/F )λ(E
′/F, ψF )

is equal to

(16.2)

m(E′)∏
i=1

∆(µFi(E′)χFi(E′)/F ′ , ψFi(E′)/F )λ
(
Fi(E

′)/F, ψF
)
.

If F ′ = F the equality of (16.1) and (16.2), for a suitable choice of the fields Fi(E
′), results

from Lemma 15.1, Lemma 15.3, and the definition of

λ(E ′/F, ψF ).

In any case the equality is valid for all fields lying between E and K.
Suppose E1, . . . , Er, E

′
1, . . . , E

′
s are such fields, χEi

is a character of CEi
/NK/Ei

CK , χE′
j
is

a character of CE′
j
/NK/E′

j
CK , and

r⊕
i=1

Ind(WK/E,WK/Ei
, χEi

)

is equivalent to
s⊕
j=1

Ind(WK/E,WK/E′
j
, χE′

j
).

Then

(16.3)
r∑
i=1

[Ei : E] =
s∑
j=1

[E ′
j : E]
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and, by the transitivity of the induction process,

r⊕
i=1

m(Ei)⊕
k=1

Ind(WK/F ,WK/Fk(Ei), µFk(Ei)χFk(Ei)/Fi
)

is equivalent to
s⊕
j=1

m(E′
j)⊕

ℓ=1

Ind(WK/F ,WK/Fℓ(E
′
j)
, µFℓ(E

′
j)
χFℓ(E

′
j)/F

′
j
).

If Ei is the fixed field of Hi and E
′
j the fixed field of H ′

j then Fi and F
′
j are the fixed fields of

HiC and H ′
jC. This equivalence and the induction assumption for L/F imply that

r∏
i=1

m(Ei)∏
k=1

∆(µFk(Ei)χFk(Ei)/Fi
, ψFk(Ei)/F )λ

(
Fk(Ei)/F, ψF

)
is equal to

s∏
j=1

m(E′
j)∏

ℓ=1

∆(µFℓ(E
′
j)
χFℓ(E

′
j)/F

′
j
, ψFℓ(E

′
j)/F

)λ
(
Fℓ(E

′
j)/F, ψF

)
.

This equality, the equality of (16.1) and (16.2), and the relation (16.3) imply that
r∏
i=1

∆(χEi
, ψEi/F )λ(Ei/F, ψF )λ(E/F, ψF )

−[Ei:E]

is equal to
s∏
j=1

∆(χE′
j
, ψE′

j/F
)λ(E ′

j/F, ψF )λ(E/F, ψF )
−[E′

j :E].

Consequently
E ′ → λ(E ′/F, ψF )λ(E/F, ψF )

−[E′:E]

is a weak λ-function on P0(K/E). The lemma of uniqueness implies that

λ(E ′/F, ψF )λ(E/F, ψF )
−[E′:E] = λ(E ′/E, ψE/F ).

This is, of course, the assertion of the lemma.
At this point, we have proved the lemma when various supplementary conditions are

satisfied. Before proving it, in general, we make an observation. Suppose

F ⊆ E ⊆ E ′ ⊆ E ′′ ⊆ K

and the assertion of the lemma is valid for E ′′/E ′ and E ′/E. Then

λ(E ′′/F, ψF ) = λ(E ′′/E ′, ψE′/F )λ(E
′/F, ψF )

[E′′:E′]

and
λ(E ′/F, ψF ) = λ(E ′/E, ψE/F )λ(E/F, ψF )

[E′:E].

Moreover, by induction,

λ(E ′′/E, ψE/F ) = λ(E ′′/E ′, ψE′/F )λ(E
′/E, ψE/F )

[E′′:E′].

The assertion for E ′′/E is obtained by substituting the second relation in the first and
simplifying according to the third.
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If the lemma is false in general, choose amongst all the extensions in P(K/F ) for which it
is false one E ′/E for which [E ′ : E] is a minimum. Let E be the fixed field of H and E ′ that
of H ′. According to the previous discussion G = HC, H ∩ C ̸= {1}, and there are no fields
lying between E and E ′. If H ′ ∩ C = H ∩ C, which is a normal subgroup of G, the fields F ,
E, and E ′ are contained in the fixed field of H ∩ C and the assertion is a consequence of the
induction assumption. Thus H ′ is a proper subgroup of H ′(H ∩ C). Because there are no
intermediate fields H = H ′(H ∩ C).

As we have seen there are fields E1, . . . , Er lying between E and the fixed field K1 of
H ∩ C and characters µE1 , . . . , µEr such that

Ind(WK/E,WK/E′ , 1)

is equivalent to
r⊕
i=1

Ind(WK/E,WK/Ei
, µEi

).

Then

λ(E ′/E, ψE/F ) =
r∏
i=1

∆(µEi
, ψEi/E)λ(Ei/E, ψE/F ).

By the induction assumption, applied to K1/F ,

λ(Ei/E, ψE/F )λ(E/F, ψF )
[Ei:E] = λ(Ei/F, ψF ).

Thus
λ(E ′/E, ψE/F )λ(E/F, ψF )

[E′:E]

is equal to

(16.4)
r∏
i=1

∆(µEi
, ψEi/E)λ(Ei/F, ψF ).

Moreover, by the transitivity of the induction process,

(16.5) Ind(WK/F ,WK/E′ , 1)

is equivalent to

(16.6)
r⊕
i=1

Ind(WK/F ,WK/Ei
, µEi

).

On the other hand, there are fields F1, . . . , Fs contained in L and characters νF1 , . . . , νFs such
that (16.5) is equivalent to

(16.7)
s⊕
j=1

Ind(WK/F ,WK/Fj
, νFj

)

and such that, by definition,

(16.8) λ(E ′/F, ψF ) =
s∏
j=1

∆(νFj
, ψFj/F )λ(Fj/F, ψF ).

Since the representations (16.6) and (16.7) are equivalent, the induction assumption, applied
to K1/F , shows that (16.4) is equal to the right side of (16.8). This is a contradiction.
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A simplification

We shall use the symbol Ω to denote an orbit in the set of quasi-characters of CK under
the action of G(K/F ) or, what is the same, under the action of WK/F on CK by means of
inner automorphisms. If χK is a quasi-character of CK , its orbit will be denoted Ω(χK). If ρ
is a representation of WK/F , the restriction of ρ to CK is the direct sum of one-dimensional
representations. Let S(ρ) be the collection of quasi-characters to which these one-dimensional
representations correspond.

Suppose
ρ = Ind(WK/F ,WK/E, χE).

Let WK/F be the disjoint union
m⋃
i=1

WK/Ewi.

Define the function φi by

φi(wwj) = 0 w ∈ WK/E, j ̸= i

φi(wwi) = χE(τK/Ew) w ∈ WK/E.

{φ1, . . . , φm} is a basis for the space of functions of which ρ acts. If a ∈ CK then

wwja = w(wjaw
−1
j )wj

and wjaw
−1
j belongs to CK which, of course, lies in WK/E. Thus

ρ(a)φi = χE
(
τK/E(wiaw

−1
i )
)
φi = χσiK/E(a)φi

if σi is the image of wi in G(K/F ). Thus

S(ρ) = Ω(χK/E).

Suppose E1, . . . , Er, E
′
1, . . . , E

′
s lie between F and K, χEi

is a quasi-character of Ei, and
χE′

j
is a quasi-character of E ′

j. Let

ρi = Ind(WK/F ,WK/Ei
, χEi

)

and let
ρ′j = Ind(WK/F ,WK/E′

j
, χE′

j
).

Suppose ρi acts on Vi and ρ
′
j acts on V

′
j . The direct sum of the representations ρi acts on

V =
r⊕
i=1

Vi

193
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and the direct sum of the representations ρ′j acts on

V ′ =
s⊕
j=1

V ′
j .

Let

VΩ =
⊕

{ i | χK/Ei
∈Ω}

Vi

V ′
Ω =

⊕
{
i

∣∣∣∣ χK/E′
j
∈Ω

}V ′
j .

Any isomorphism of V with V ′ which commutes with the action of WK/F takes VΩ to V ′
Ω.

If χK/Ei
∈ Ω(χK) there is a σ in G(K/F ) such that χK = χσK/Ei

. Then

ρi ≃ Ind(WK/F ,WK/Eσ
i
, χσEi

)

and
∆(χEi

, ψEi/F )λ(Ei/F, ψF ) = ∆(χσEi
, ψEσ

i /F
)λ(Eσ

i /F, ψF ).

We conclude that Theorem 2.1 is a consequence of the following lemma.

Lemma 17.1. Suppose χK is a quasi-character of CK. Suppose E1, . . . , Er, E
′
1, . . . , E

′
s lie

between F and K, χEi
is a quasi-character of CEi

, χE′
j
is a quasi-character of CE′

j
, and

ρ =
r⊕
i=1

Ind(WK/F ,WK/Ei
, χEi

)

is equivalent to

ρ′ =
s⊕
j=1

Ind(WK/F ,WK/E′
j
, χE′

j
).

If χK/Ei
= χK/E′

j
= χK for all i and j then

r∏
i=1

∆(χEi
, ψEi/F )λ(Ei/F, ψF )

is equal to
s∏
j=1

∆(χE′
j
, ψE′

j/F
), λ(E ′

j/F, ψF ).

Let F (χK) be the fixed field of the isotropy group of χK . Let ρ act on V and let ρ′ act
on V ′. Let

V (χK) =
{
v ∈ V

∣∣ ρ(a)v = χK(a)v for all a in CK
}
.

Define V ′(χK) in a similar fashion. It is clear that any isomorphism of V with V ′ which
commutes with the action of WK/F takes V (χK) to V

′(χK). The group WK/F (χK) leaves both
V (χK) and V

′(χK) invariant and its representations on these two spaces are equivalent.
Let

Ind(WK/F ,WK/Ei
, χEi

)
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act on Vi and define Vi(χK) in the obvious manner. Then

V (χK) =
r⊕
i=1

Vi(χK).

Defining V ′
j and V ′

j (χK) in a similar manner, we have

V ′(χK) =
s⊕
j=1

V ′
j (χK).

It is clear that the representation of WK/F (χK) on Vi(χK) is equivalent to

Ind(WK/F (χK),WK/Ei
, χEi

).

Thus
r⊕
i=1

Ind(WK/F (χK),WK/Ei
, χEi

)

is equivalent to
s⊕
j=1

Ind(WK/F (χK),WK/E′
j
, χE′

j
).

If F (χK) ̸= F the assertion of the lemma follows from the induction assumption and
Lemma 16.3.





CHAPTER 18

Nilpotent groups

In this paragraph we prove Lemma 17.1 assuming that F = F (χK) and that G = G(K/F )
is nilpotent.

Lemma 18.1. Suppose D is a normal subgroup of G of prime order ℓ which is contained
in the center of G. Let M be the fixed field of D. Suppose F ⊆ E ⊆ K and χE is a
quasi-character of CE. Suppose also that F (χK/E) = F .

(a) There are fields F1, . . . , Fr contained in M and quasi-characters χF1 , . . . , χFr such
that χK/Fi

= χK/E and such that

Ind(WK/F ,WK/E, χE)

is equivalent to
r⊕
i=1

Ind(WK/F ,WK/Fi
, χFi

).

(b) If Theorem 2.1 is valid for all Galois extensions K ′/F ′ in P(K/F ) with [K ′ : F ′] <
[K : F ] then

∆(χE, ψE/F )λ(E/F, ψF )

is equal to
r∏
i=1

∆(χFi
, ψFi/F )λ(Fi/F, ψF ).

We prove the lemma by induction on [K : F ]. Let H be the subgroup of G corresponding
to E; let G′ = HD and let F ′ be the fixed field of G′. If F ′ ≠ F the induction assumption
implies that there are fields F1, . . . , Fr contained in M and quasi-characters χF1 , . . . , χFr such
that χK/Fi

= χK/E for each i and such that

Ind(WK/F ,WK/E, χE)

is equivalent to
r⊕
i=1

Ind(WK/F ′ ,WK/Fi
, χFi

).

The first part of the lemma follows from the transitivity of the induction process. The second
part follows from Lemma 16.3 and the assumed validity of Theorem 2.1 for the extension
K/F ′.

We suppose now that G = HD. Suppose that H contains a normal subgroup H1 of G
which is different from {1} and suppose that, if K1 is the fixed field of H1, F (χK1/E) = F . If
M1 is the fixed field of H1D then, according to the induction assumption, there are fields
F1, . . . , Fr contained in M1 and quasi-characters χF1 , . . . , χFr such that

χK1/Fi
= χK1/E

197
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and such that
Ind(WK1/F ,WK1/E, χE)

is equivalent to
r⊕
i=1

Ind(WK1/F ,WK1/Fi
, χFi

).

It follows immediately that
χK/Fi

= χK/E
and that

Ind(WK/F ,WK/E, χE)

is equivalent to
r⊕
i=1

Ind(WK/F ,WK/Fi
, χFi

).

The equality of (b) is a consequence of the assumed validity of Theorem 2.1 for K1/F .
We assume now that G = HD and that if H1 is a normal subgroup of H different from

{1} with fixed field K1 the field F (χK1/E) is not F . If w1 belongs to WK/E and w2 belongs
to WK/M then

w1w2w
−1
1 w−1

2 ∈ CK .

Let χK = χK/E. Since F (χK) = F

χK(w1w2w
−1
1 w−1

2 ) = χK(w2w
−1
1 w−1

2 w1) = χK(w
−1
1 w−1

2 w1w2) = χK(w
−1
2 w1w2w

−1
1 ).

Denote the common value of the expressions by ω(w1, w2). Then ω(v1w1, w2) is equal to

χK(v1w1w2w
−1
1 v−1

1 w−1
2 ) = χK(w

−1
2 w1w2w

−1
1 v−1

1 w−1
2 v1w2).

The right side is
ω(v1, w2)ω(w1, w2).

In the same way ω(w1, v2w2) is

χK(w1v2w2w
−1
1 w−1

2 v−1
2 ) = χK(w

−1
1 v−1

2 w1v2w2w
−1
1 w−1

2 w1)

which equals
ω(w1, v2)ω(w1, w2).

If either w1 or w2 belong to CK , we have

ω(w1, w2) = 1.

Thus, for each w2,
w1 → ω(w1, w2)

is a homomorphism of H = WK/E/CK into C× and, for each w1,

w2 → ω(w1, w2)

is a homomorphism of D = WK/M/CK into C×. If w belongs to WK/F then

ω(ww1w
−1, ww2w

−1) = ω(w1, w2).

Thus there is a normal extension K1 containing E such that

WK/K1 =
{
w1

∣∣ ω(w1, w2) = 1 for all w1 ∈ WK/M

}
.

But F (χK1/E) will be F so that K1 must be K.
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It follows immediately that H is isomorphic to a subgroup of the dual group of D. Thus
H = {1} or H is cyclic of order ℓ. In either case H must lie in the centralizer of D so that
E/F is normal and G(E/F ) is isomorphic to D. If H = {1} then χE may be extended from
CE = CK to a quasi-character of WE/F . In other words, there is a quasi-character χF of CF
such that χE = χE/F . Then

Ind(WK/F ,WK/E, χE)

is equivalent to ⊕
µF∈S(E/F )

Ind(WK/F ,WK/F , µFχF ).

Suppose H ≠ {1}. Since WK/M/CK is cyclic there is a quasi-character χM of CM such
that χK = χK/M . If w1 belongs to WK/E let χw1 be the character of WK/M or, what is the
same, of CM defined by

χw1(w2) = ω(w1, w2)

and if w2 belongs to WK/M let
χw2(w1) = ω(w1, w2).

Clearly {
χw1

∣∣ w1 ∈ WK/E

}
= S(K/M)

and {
χw2

∣∣ w2 ∈ WK/M

}
= S(K/E).

If σ1 is the image of w1 in H and σ2 the image of w2 in D then

χσ2E (w1) = χE(w2w1w
−1
2 w−1

1 w1) = χ−1
w2
(w1)χE(w1)

and
χσ1M(w2) = χM(w1w2w

−1
1 w−1

2 w2) = χw1(w2)χM(w2).

Let WK/F be the disjoint union
ℓ⋃
i=1

WK/Evi

with vi in WK/M . Define the function φi on WK/F by

φi(wvj) = 0

if w ∈ WK/E and j ̸= i and by
φi(wvi) = χE(w)

if w ∈ WK/E. Then
{φi | 1 ⩽ i ⩽ ℓ }

is a basis for the space U on which

Ind(WK/F ,WK/E, χE)

acts. Let ψi, 1 ⩽ i ⩽ ℓ be the function WK/F defined by

ψi(w2w1) = χM(w2)χ
σ(vi)
E (w1)

if w1 belongs to WK/E and w2 belongs to WK/M . Here σ(vi) is the image of vi in G(K/F ). It
is necessary, but easy, to verify that ψi is well-defined. The collection

{ψi | 1 ⩽ i ⩽ ℓ }
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is a basis for the space V on which

Ind(WK/F ,WK/M , χM)

acts. It is easily verified that the homomorphism of U with V which sends χM (vi)φi to ψi is
an isomorphism. Thus

Ind(WK/F ,WK/E, χE) ≃ Ind(WK/F ,WK/M , χM).

This takes care of the first part of the lemma.
Whether H = {1} or not,

Ind(WK/F ,WK/E, 1)

is equivalent to ⊕
µF∈S(E/F )

Ind(WK/F ,WK/F , µF ).

If H ̸= 1 we may apply Theorem 2.1 to E/F to see that

λ(E/F, ψF ) =
∏

µF∈S(E/F )

∆(µF , ψF ).

If H = {1} this equality is just the definition of the left side. In this case the second part of
the lemma asserts that

(18.1) ∆(χE, ψE/F )
∏

µF∈S(E/F )

∆(µF , ψF )

is equal to ∏
µF∈S(E/F )

∆(µFχF , ψF )

where χE = χE/F . This is a consequence of the first main lemma. If H ̸= {1}, Theorem 2.1
applied to M/F , shows that

λ(M/F, ψF ) =
∏

µF∈S(M/F )

∆(µF , ψF )

and the second part of the lemma asserts that (18.1) is equal to

∆(χM , ψM/F )
∏

µF∈S(M/F )

∆(µF , ψF ).

This is a consequence of the second main lemma.
A non-trivial nilpotent group always contains a subgroup D satisfying the conditions of

the previous lemma. Lemma 17.1 is clear if K = F . If K ̸= F and G(K/F ) is nilpotent it is
a consequence of the following lemma.

Lemma 18.2. Suppose K/F is normal and Theorem 2.1 is valid for all normal extensions
K ′/F ′ in P(K/F ) with [K ′ : F ′] < [K : F ]. Suppose F ⊆ M ⊊ K and M/F is normal.
Suppose E1, . . . , Er, E

′
1, . . . , E

′
s lie between F and M , χEi

is a quasi-character of CEi
, χE′

j
is

a quasi-character of CE′
j
, and

r⊕
i=1

Ind(WK/F ,WK/Ei
, χEi

)
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is equivalent to
s⊕
j=1

Ind(WK/F ,WK/E′
j
, χE′

j
).

Then
r∏
i=1

∆(χEi
, ψEi/F )λ(Ei/F, ψF )

is equal to
s∏
j=1

∆(χE′
j
, ψE′

j/F
)λ(E ′

j/F, ψF ).

The representation
Ind(WK/F ,WK/Ei

, χEi
)

can be obtained by inflating the representation

Ind(WM/F ,WM/Ei
, χEi

)

from WM/F to WK/F . A similar remark applies to the representations induced from the χE′
j
.

Thus
r⊕
i=1

Ind(WM/F ,WM/Ei
, χEi

)

is equivalent to
s⊕
j=1

Ind(WM/F ,WM/E′
j
, χE′

j
).

Applying Theorem 2.1 to the extension M/F we obtain the lemma.





CHAPTER 19

Proof of the main theorem

We shall first prove Lemma 17.1 when there is a quasi-character χF of CF such that
χK = χK/F . Implicit in the statement of the following lemma as in that of Lemma 17.1,
is the assumption that Theorem 2.1 is valid for all pairs K ′/F ′ in P(K/F ) for which
[K ′ : F ′] < [K : F ]. Recall that we have fixed a non-trivial abelian normal subgroup C of
G = G(K/F ) and that L is its fixed field.

Lemma 19.1. Suppose F ⊆ E ⊆ K, χF is a quasi-character of CF , χE is a quasi-character
of CE, and χK/E = χK/F . There are fields F1, . . . , Fr contained in L and quasi-characters
χFi

, 1 ⩽ i ⩽ r, such that χK/Fi
= χK/F ,

Ind(WK/F ,WK/E, χE)

is equivalent to
r⊕
i=1

Ind(WK/F ,WK/Fi
, χFi

)

and
∆(χE, ψE/F )λ(E/F, ψF )

is equal to
r∏
i=1

∆(χFi
, ψFi/F )λ(Fi/F, ψF ).

We prove the lemma by induction on [K : F ]. Let E be the fixed field of H and let F ′ be
the fixed field of HC. If F ′ ̸= F then, by induction, there are fields F1, . . . , Fr lying between
F ′ and L and quasi-characters χF1 , . . . , χFr such that χK/Fi

= χK/F and

Ind(WK/F ′ ,WK/E, χE)

is equivalent to
r⊕
i=1

Ind(WK/F ′ ,WK/Fi
, χFi

).

In this case the lemma follows from the transitivity of the induction process, the assumed
validity of Theorem 2.1 for K/F ′ and Lemma 16.3.

We suppose henceforth that G = HC. There is a character θE in S(K/E) such that
χE = θEχE/F . θE may be regarded as a character of H. If H ∩ C = {1} we may define a
character θF of G by setting

θF (hc) = θE(h)

if h is in H and c is in C. θF may be regarded as a character of CF and θE = θE/F . Replacing
χF by θFχF we suppose that χE = χE/F . Then in the notation of Lemma 15.1, we may take

{F1, . . . , Fr} =
{
Fµ
∣∣ µ ∈ T

}
203
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and if Fi = Fµ,
χFi

= µ′χFµ/F .

The assertions of the lemma are consequences of Lemmas 15.1 and 15.3.
We suppose now not only that G = HC but also that H ∩ C ≠ {1}. Let S be the set

of characters in S(K/L) whose restriction to H ∩ C agrees with the restriction of θE. S is
invariant under the action of H on S(K/L). If ν belongs to S, let φν be the function on
WK/F defined by

φν(wv) = χE(w)χL/F (v)ν(v)

if w is in WK/E and v is in WK/L. ν is a character of C and may therefore be regarded as a
character of WK/L or of CL. It is easy to verify that φν is well-defined. If

ρ = Ind(WK/F ,WK/E, χE)

then
{φν | ν ∈ S }

is a basis for the space of functions on which ρ acts. If w belongs to WK/E

ρ(w)φν = χE(w)φν′

with ν ′ = νσ
−1

where σ is the image of w in G(K/F ). If v belongs to WK/L

ρ(v)φν = χL/F (v)ν(v)φν .

Thus if R is an orbit in S under the action of H, the space

VR =
∑
ν∈R

Cφν

is invariant under WK/F and ρ is the direct sum of its restrictions to the spaces VR.
If µ belongs to R let Hµ be the isotropy group of µ, let Gµ = HµC, and let Fµ be the

fixed field of Gµ. Extend µ to a character µ′ of Gµ by setting

µ′(hc) = θE(h)µ(c)

if h is in Hµ and c is in C. µ′, which is easily seen to be well-defined, may be regarded as a
character of WK/Fµ of CFµ . Let WK/F be the disjoint union

s⋃
i=1

WK/Fµwi

with wi in WK/E and let σi be the image of wi in G(K/F ). Let φi be the function of WK/F

defined by

φi(wwj) = 0 w ∈ WK/Fµ , j ̸= i

φi(wwi) = µ′(w)χFµ/F (w) w ∈ WK/Fµ .

The collection
{φi | 1 ⩽ i ⩽ s }

is a basis for the space Vµ on which the representation

σµ = Ind(WK/F ,WK/Fµ , µ
′χFµ/F )

acts. Let
ψi = χE(wi)φi.
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If w belongs to WK/L

σµ(w)ψi = µσi(w)χL/F (w)ψi.

If w belongs to WK/E and wjw = vwi with v in WK/Fµ then

σµ(w)ψi = χE(w)ψj.

Thus the isomorphism of Vµ with VR which takes ψi to φµσi commutes with the action of
WK/F . If T is a set of representatives for the orbits in S

ρ ≃
⊕
µ∈T

σµ.

If K1 is the fixed field of H ∩ C then K1/F is normal and ρ is the inflation to WK/F of

(19.1) Ind(WK1/F ,WK1/E, χE)

and σµ is the inflation of
Ind(WK1/F ,WK1/Fµ , µ

′χFµ/F ).

Thus the representation (19.1) is equivalent to⊕
µ∈T

Ind(WK1/F ,WK1/Fµ , µ
′χFµ/F ).

Applying Theorem 2.1 to K1/F we see that

∆(χE, ψE/F )λ(E/F, ψF )

is equal to ∏
µ∈T

(µ′χFµ/F , ψFµ/F )λ(Fµ/F, ψF ).

If there is a quasi-character χF such that χK = χK/F , Lemma 17.1 follows from Lemma 18.2
and the lemma just proved. To complete the proof of Theorem 2.1 we have to prove
Lemma 17.1 when F = F (χK), G is not nilpotent, and there is no quasi-character χF of CF
such that χK = χK/F . In this case none of the fields E1, . . . , Er, E

′
1, . . . , E

′
s is equal to F and

Theorem 2.1 may be applied to K/Ei and K/E
′
j.

Lemma 19.2. Suppose A and B lie between F and K. Suppose χA and χB are quasi-
characters of CA and CB respectively. There are fields A1, . . . , Am lying between A and K,
fields B1, . . . , Bm lying between B and K, elements σ1, . . . , σm in G, and quasi-characters
χA1 , . . . , χAm , χB1 , . . . , χBm such that Bi = Aσii , χBi

= χσiAi
, and such that the tensor product

Ind(WK/F ,WK/A, χA)⊗ Ind(WK/F ,WK/B, χB)

is equivalent to
m⊕
i=1

Ind(WK/F ,WK/Ai
, χAi

)

and to
m⊕
i=1

Ind(WK/F ,WK/Bi
, χBi

).
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Let

ρ = Ind(WK/F ,WK/A, χA)

σ = Ind(WK/F ,WK/B, χB).

Let α be the restriction of σ to WK/A and β the restriction of ρ to WK/B. By Lemma 2.3

ρ⊗ σ ≃ Ind(WK/F ,WK/A, χA ⊗ α)

and
ρ⊗ σ ≃ Ind(WK/F ,WK/B, χB ⊗ β).

Let WK/F be the disjoint union
m⋃
i=1

WK/AwiWK/B.

If Ui is the space of functions in U , the space on which ρ acts, which are zero outside of the
double coset WK/AwiWK/B then Ui is invariant under β. Define the field Bi by demanding
that

WK/Bi
= WK/B ∩ w−1

i WK/Awi.

If σi is the image of wi in G(K/F ) let χ′
Bi

be the restriction of χσiA to WK/Bi
. If U ′

i is the
space of functions on which

Ind(WK/B,WK/Bi
, χ′

Bi
)

acts, the map of Ui to U
′
i which sends φ to the function φ′ defined by

φ′(w) = φ(wiw)

if w is in WK/B is an isomorphism which commutes with the action of WK/B. Thus

β ≃
m⊕
i=1

Ind(WK/B,WK/Bi
, χ′

Bi
)

and, if χBi
= χBi/Bχ

′
Bi
,

χB ⊗ β ≃
m⊕
i=1

Ind(WK/B,WK/Bi
, χBi

).

Similar considerations apply if the roles of A and B are interchanged. The double coset
decomposition becomes

m⋃
i=1

WK/Bw
−1
i WK/A

and
WK/Ai

= WK/A ∩ wiWK/Bw
−1
i = wiWK/Bi

w−1
i .

Thus Bi = Aσii . It is also clear that χBi
= χσiAi

.
To complete the proof of Lemma 17.1 we use Brauer’s theorem in the following form.

There are fields F1, . . . , Fn lying between F and K such that G(K/Fk) is nilpotent for each
k, characters χFk

of CFk
/NK/Fk

CK , and integers m1, . . . ,mn such that

1 ≃
n⊕
k=1

mk Ind(WK/F ,WK/Fk
, χFk

).
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Since we are assuming that G is not nilpotent none of the Fk are equal to F and we may
apply Theorem 2.1 to each of the extensions K/Fk.

We shall apply the previous lemma with A = Ei, B = Fk and with A = E ′
j, B = Fk.

m will be denoted by m(ik) or m′(jℓ). Aℓ will be denoted by Eikℓ or E
′
jkℓ and Bℓ will be

denoted by Fikℓ or F
′
jkℓ. Observe that

(19.2) ∆(χEikℓ
, ψEikℓ/F )λ(Eikℓ/F, ψF )

is equal to

(19.3) ∆(χFikℓ
, ψFikℓ/F )λ(Fikℓ/F, ψF )

and that

(19.4) ∆(χE′
jkℓ
, ψE′

jkℓ/F
)λ(E ′

jkℓ/F, ψF )

is equal to

(19.5) ∆(χF ′
jkℓ
, ψF ′

jkℓ/F
)λ(F ′

jkℓ/F, ψF ).

χEi
may be regarded as a one-dimensional representation ofWK/Ei

and as such is equivalent
to

n⊕
k=1

m(ik)⊕
ℓ=1

mk Ind(WK/Ei
,WK/Eikℓ

, χEikℓ
).

Therefore

1 =
n∑
k=1

m(ik)∑
ℓ=1

mk[Eikℓ : Ei]

and
∆(χEi

, ψEi/F )

is equal to
n∏
k=1

m(ik)∏
ℓ=1

{
∆(χEikℓ

, ψEikℓ/F )λ(Eikℓ/Ei, ψEi/F )
}mk .

Multiplying both of these expressions by λ(Ei/F, ψF ), we see that

(19.6) ∆(χEi
, ψEi/F )λ(Ei/F, ψF )

is equal to

(19.7)
n∏
k=1

m(ik)∏
ℓ=1

{
∆(χEikℓ

, ψEikℓ/F )λ(Eikℓ/F, ψF )
}mk .

The same argument establishes that

(19.8) ∆(χE′
j
, ψE′

j/F
)λ(E ′

j/F, ψF )

is equal to

(19.9)
n∏
k=1

m′(jk)∏
ℓ=1

{
∆(χE′

jkℓ
, ψE′

jkℓ/F
)λ(E ′

jkℓ/F, ψF )
}mk

.

We are trying to show that the product over i of the expressions (19.6) is equal to the
product over j of the expressions (19.8). It will be enough to show that the product of the
expressions (19.7) is equal to the product of the expressions (19.9).
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The representations
r⊕
i=1

m(ik)⊕
ℓ=1

Ind(WK/Fk
,WK/Fikℓ

, χFikℓ
)

and
s⊕
j=1

m′(jk)⊕
ℓ=1

Ind(WK/Fk
,WK/F ′

jkℓ
, χF ′

jkℓ
)

are equivalent. Therefore

r∑
i=1

m(ik)∑
ℓ=1

[Fikℓ : Fk] =
s∑
j=1

m′(jk)∑
ℓ=1

[F ′
jkℓ : Fk].

Denote the common value of these expressions by N(k). Moreover

r∏
i=1

m(ik)∏
ℓ=1

∆(χFikℓ
, ψFikℓ/F )λ(Fikℓ/Fk, ψFk/F )

is equal to
s∏
j=1

m′(jk)∏
ℓ=1

∆(χF ′
jkℓ
, ψF ′

jkℓ/F
)λ(F ′

jkℓ/F, ψFk/F ).

Multiplying both of these expressions by

λ(Fk/F, ψF )
N(k)

we see that

(19.10)
r∏
i=1

m(ik)∏
ℓ=1

∆(χFikℓ
, ψFikℓ/F )λ(Fikℓ/F, ψF )

is equal to

(19.11)
s∏
j=1

m′(jk)∏
ℓ=1

∆(χF ′
jkℓ
, ψF ′

jkℓ/F
)λ(F ′

jkℓ/F, ψF ).

Because of the equality of (19.2) and (19.3) the product over i of the expressions (19.7) is
equal to the product over k of of the mkth powers of the expressions (19.10). The product
over j of the expressions (19.9) is equal to the product over k of the mkth powers of the
expressions (19.11). Lemma 17.1, and with it Theorem 2.1, is now completely proved.



CHAPTER 20

Artin L-functions

Suppose ω is an equivalence class of representations of the Weil group of the non-
archimedean local field F . Let K be a Galois extension of F and let σ be a representation
of WK/F in the class ω. Suppose σ acts on V . Let V 0 be the subspace of V fixed by every
element of W 0

K/F . Since W
0
K/F is a normal subgroup of WK/F the space V 0 is invariant under

WK/F and on V 0 we get a representation σ0. Since W 0
K/F = τ−1

K/F (u
0
F ) the class of σ

0 depends

only on w. σ0 breaks up into the direct sum of 1-dimensional representations corresponding
to unramified generalized characters µ1, . . . , µr of CF . We set

L(s, w) =
r∏
i=1

1

1− µi(πF )|πF |s
.

This we take as the local function. It is clear that when w is one-dimensional, the present
definition agrees with that of the introduction and that of ω = ω1 ⊕ ω2. Then

L(s, ω) = L(s, ω1)⊕ L(s, ω2).

Suppose F ⊆ E ⊆ K, ρ is a representation of WK/E, and

σ = Ind(WK/F ,WK/E, ρ).

We have to show that if θ is the class of ρ then

L(s, ω) = L(s, θ).

Let ρ act on W . Then V is the space of functions f on WK/F with values in W which satisfy

f(uv) = ρ(u)f(v)

for u in WK/E and v in WK/F . If f lies in V0 and u lies in W 0
K/E then

ρ(u)f(v) = f(uv) = f(vv−1uv) = f(v)

because v−1 lies in W 0
K/F . Thus f takes values in W 0. In other words, we may as well assume

that W = W 0. Indeed we may as well go further and assume that W = W 0 has dimension
one.

Let NE/FπE = ϵπfF where ϵ is a unit and choose w0 in WK/F so that τK/Fw0 = πF .
Then wf = u0v0 with u0 in W 0

K/F and v0 in WK/E such that τK/Ev0 = πE. Clearly, V 0

consists of the functions f with values in W which satisfy f(uw) = f(w) for u in W 0
K/F and

f(uw) = µ(τK/Eu)f(w) if ρ is associated to the generalized character µ of CE. Take as basis
of V 0 the functions φ0, . . . , φf−1 defined by

φi(uvw
j
0) = µ(τK/Ev)δ

j
ix
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210 20. ARTIN L-FUNCTIONS

where x is a non-zero vector in W , u belongs to W 0
K/F , v belongs to WK/E, 0 ⩽ j < f , and

δji is Kronecker’s delta. The matrix of σ(w0) with respect to this basis is

A =



0 µ(τK/Ev0)

1 0

1

0 1 0


and

L(s, ω) =
1

det
(
I − A|πF |s

) =
1

1− µ(πE)|πF |fs
= L(s, θ)

since |πF |f = |πE|.
For archimedean fields we proceed in a different manner. If we write ω, as we may, as a

sum of irreducible representations the components are unique up to order. If ω =
⊕r

i=1 ωi,
we will have to have

L(s, ω) =
r∏
i=1

L(s, ωi).

Thus it is a matter of defining L(s, ω) for irreducible ω. If ω is one-dimensional this was
done in the introduction. If ω is not one-dimensional then F must be R. Let σ be a
representation of WC/R in the class ω. WC/R is an extension of the group of order 2 by C×.
Let WC/R = C× ∪ w0C

×. If σ acts on V there is a non-zero vector x in V and a generalized
character µ of C× such that σ(a)x = µ(a)x for all a in C×. Then the space spanned by{
x, σ(w0)x

}
is invariant and therefore all of V . Since V is not one-dimensional σ(w0)x is not

a multiple of x. Notice that σ(a)σ(w0)x = σ(w0)σ(w
−1
0 aw0)x = µ(a)σ(w0)x. If

µ(z) = |z|r z
mzn

|z|m+n
2

with m+ n ⩾ 0, mn = 0 we set

L(s, ω) = 2(2π)−(s+r+
m+n

2 )Γ

(
s+ r +

m+ n

2

)
.

The initial choice of µ is of course not uniquely determined. However if µ0 is one choice
the only other choice is the character a → µ0(a). Thus the resulting local L-function is
independent of the choice.

The only point to be checked is that the local L-function behaves properly under induction.
We have to verify that if ρ is a representation of C× = WC/C in the class θ and

σ = Ind(WC/R,WC/C, ρ)

is in the class w then L(s, w) = L(s, θ). We may as well assume that ρ is irreducible and
therefore one-dimensional. Let it correspond to the generalized character ν. If σ is irreducible
we could choose the generalized character µ above to be ν and the equality of the two
L-functions becomes a matter of definition. If σ is irreducible it breaks up into the sum of
two one-dimensional representatives. It follows easily that ν(a) = ν(a) for all a. Thus ν is of
the form ν(a) = |a|r and

L(s, θ) = 2(2π)−(s+r)Γ(s+ r).
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If µR = µ is the generalized character x → |x|r of R× then ν = µC/R and, as we saw
in chapter 10, the representation σ is equivalent to the direct sum of the one-dimensional
representations corresponding to µ and to µ′ where µ′(x) = sgn xµ(x). Thus

L(s, ω) =

{
π− 1

2
(s+r)Γ

(
s+ r

2

)}{
π− 1

2
(s+r+1)Γ

(
s+ r + 1

2

)}
.

The required result is thus a consequence of the familiar duplication formula

22z−1Γ(z)Γ(z + 1/2) = π1/2Γ(2z).

If F is a global field and ω is an equivalence class of representations of the Weil group of
F , we define as in the introduction, the global L-function to be

L(s, ω) =
∏
p

L(s, ωp).

I repeat that the product is taken over all primes, including those at infinity. It is not difficult
to see that the product converges in a half-plane Re s > c. One need only verify it for ω
irreducible. Choose a Galois extension K of F so that there is a representation σ of WK/F

in the class ω. The restriction of σ to CK is equivalent to the direct sum of 1-dimensional
representations corresponding to generalized characters µ(1), . . . , µ(r) of CK . For each i and j

there is a σ in G(K/F ) such that µj(a) ≡ µi
(
σ(a)

)
. Then

∣∣µ−1
i µj(a)

∣∣ = ∣∣∣µi(a−1σ(a)
)∣∣∣ = 1

because a−1σ(a) belongs to the compact group of i idèle classes of norm 1. Let
∣∣µ′(a)

∣∣ = |a|r.
Let νF be the generalized character a → |a|r of CF . Replacing σ by ν−1

F ⊗ σ we replace
L(s, wp) by L(s − r, wp) and µ

(i) by |µ(i)|−1µ(i). Thus we may as well suppose that all µ(i)

are ordinary characters. Since CK is of finite index in WK/F the eigenvalues of σ(w) will all
have absolute 1 for any w in WK/F and at any non-archimedean prime the local L-function
will be of the form

s∏
i=1

1

1− αi|πFp|s

with s ⩽ dimw and |αi| = 1, 1 ⩽ i ⩽ s. The required result follows from the well-known fact
that ∏

p

1

1− |πFp|s

converges from Re s > 1. This product is taken only over the non-archimedean primes.





CHAPTER 21

Proof of the functional equation

Choose a non-trivial character ψF ofAF/F . Before we can write down the factor appearing
in the functional equation of the global L-function we have to verify that ϵ(s, ωγ, ψFγ) = 1
for all but a finite number of γ.

Let ω be realized as a representation σ of WK/F and let the restriction of σ to CK be
equivalent to the direct sum of 1-dimensional representations corresponding to the generalized
characters µ(1), . . . , µ(r). All but finitely many primes p will satisfy the following conditions.

(i) p is non-archimedean.
(ii) n(ψFp) = 1.
(iii) p does not ramify in K.

(iv) m(µ
(i)
P ) = 0 for all P dividing p and all i.

Choose one such p and let P divide p. Corresponding to the map K/F → KP/Fp is a
map φp : WKP/Fp → WK/F . ωp is the class of σp = σ ◦ φp. The kernel of σp contains UKP

.
Since KP/Fp is unramified the quotient of WKP/Fp by UKP

is abelian and σp is the direct
sum of one-dimensional representations. Let them correspond to the generalized characters

ν
(1)
p , . . . , ν

(r)
p of CFp . Since τKP/Fp takes UKP

onto UFp each of these characters is unramified.
Thus

ϵ(s, ωp, ψFp) =
r∏
i=1

∆

(
α
s− 1

2
Fp

ν
(i)
p , ψFp

)
= 1.

If ψ′
F is another non-trivial character ofAF/F there is a β in F ∗ such that ψ′

F (x) ≡ ψF (βx).
According to Lemma 5.1

ϵ(s, ω, ψFp) = α
s− 1

2
Fp

(β) detωp(β)ϵ(s, ω, ψFp).

Since ∏
p

αFp(β)
s− 1

2 detωp(β) = |β|s−
1
2 detω(β) = 1

the function
ϵ(s, ω) =

∏
p

ϵ(s, ωp, ψFp)

is indeed independent of ψF .
We can infer from Tate’s thesis not only that L(s, ω) is meromorphic in the whole complex

plane if ω is one-dimensional but also that it satisfies the functional equation

L(s, ω) = ϵ(s, ω)L(1− s, ω̃)

if ω̃ is contragredient to ω. As is well-known, Lemma 2.2 then implies that L(s, ω) is
meromorphic in the whole complex plane for any ω. In any case, Theorem B is true for
one-dimensional ω and, granting this, we have to establish it in general.

First we need a lemma.
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Lemma 21.1. Suppose F is a global field, K is a Galois extension of F , E is a field lying
between F and K, χ is a generalized character of CE and

σ = Ind(WK/F ,WK/E, χ).

If ω is the class of σ and, for each prime q of E, χq is the restriction of χ to CEq then for
each prime p of F

ϵ(s, ωp, ψFp) =
∏
q|p

{
ϵ(s, χq, ψEq/Fp)ρ(Eq/Fp, ψFp)

}
.

Let P be a prime of K dividing p. The first step is to find a set of representatives for
the double cosets WK/EwWKP/Fp . Since CK ⊆ WK/E is a normal subgroup of WK/F we can
factor out CK and merely find a set of representatives for the double cosets

G(K/E)σG(KP/Fp).

Let P1, . . . ,Pr be the primes of K dividing p and let P1 divide qi in E. G(K/F ) is the
disjoint union

r⋃
i=1

σiG(KP/Fp)

where σi(P) = Pi. If σi and σj belong to the same double coset qi = qj. Conversely, if
qi = qj there is a ρ in G(K/E) such that ρ(Pi) = Pj. Then ρσi(P) = σj(P) and

ρσi ∈ σjG(KP/Fp).

Thus we may write G(K/F ) as the disjoint union⋃
τ∈S

G(K/E)τG(KP/Fp)

so that if P divides q in E the collection
{
τ(q)

∣∣ τ ∈ S
}
is the collection of distinct primes

in E dividing p.
For each τ in S choose a representative w(τ) in WK/F . For each τ in S the restriction of

σ to WKP/Fp leaves invariant the space of functions f on the double coset WK/Ew(τ)WKP/Fp

which satisfy f(vw) = χ
(
τK/E(v)

)
f(w) for all v in WK/E. The representation of WKP/Fp on

this space is equivalent to
Ind(WKP/Fp ,WKP/E

τ
qτ
, χ′

qτ )

if Eτ = τ−1(E) and
χ′
qτ (a) = χ

(
τ(a)

)
.

Thus
ϵ(s, ωq, ψFp) =

∏
τ∈S

ϵ(s, χ′
qτ , ψEτ

qτ /Fp)ρ(E
τ
qτ/Fp, ψFp)

which is of course equal to ∏
τ∈S

ϵ(s, χq, ψEq/Fp)ρ(Eq/Fp, ψFp).

We set
ρ(E/F ) =

∏
q

∏
q|p

ρ(Eq/Fp, ψFp).
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The preceding discussion together with Lemma 5.1 shows that it does not depend on ψF .
However that does not really matter since we are about to show that for any choice of ψF it
is 1. Observe first of all that the previous lemma implies immediately that if ω is the class of

σ = Ind(WK/F ,WK/E, χ)

then
ϵ(s, ω) = ϵ(s, χ)ρ(E/F ).

Given an arbitrary class ω realizable as a representation of WK/F we can find fields

E1, . . . , Er

lying between F and K, generalized characters χE1 , . . . , χEr , and integers m1, . . . ,mr such
that

r⊕
i=1

mi Ind(WK/F ,WK/Ei
, χEi

)

is in the class ω. Then

ϵ(s, ω) =
r∏
i=1

{
ϵ(s, χEi

)miρ(Ei/F )
mi
}
.

On the other hand

L(s, ω) =
r∏
i=1

L(s, χEi
)mi

and

L(s, ω̃) =
r∏
i=1

L(s, χ−1
Ei
)mi .

Since
L(s, χEi

) = ϵ(s, χEi
)L(1− s, χ−1

Ei
)

we have

L(s, ω) =
r∏
i=1

ϵ(s, χEi
)miL(1− s, ω̃)

because ω̃ contains
r⊕
i=1

mi Ind(WK/F ,WK/Ei
, χ−1

Ei
).

Consequently
r∏
i=1

ϵ(s, χEi
)mi

depends only on ω and not on the particular way it is written as a sum of induced represen-
tations. Thus

r∏
i=1

ρ(Ei/F )
mi

also depends only on ω. We call it H(ω). It is clear that to prove Theorem B we have to
show that H(ω) = 1 for all ω or, what is the same, that ρ(E/F ) = 1 for all E and F .
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Suppose F ⊆ E ⊆ E ′. Denote the primes of F by p, those of E by q, and those of E ′ by
q′. Then

ρ(E ′/F ) =
∏
p

∏
q′|p

ρ(E ′
q′/Fp, ψFp).

Apply Lemma 4.5 to see that the right side equals∏
p

∏
q|p

∏
q′|q

{
ρ(E ′

q′/Eq, ψFq/Fp)ρ(Eq/Fp, ψFp)
[E′

q:Eq]
}
.

Since ∑
q′|q

[E ′
q′ : Eq] = [E ′ : E]

this may be written as∏
q

∏
q′|q

ρ(E ′
q′/Eq, ψFq/Fp)


∏

p

∏
q|p

ρ(Eq/Fp, ψFp)


[E′:E]

which is of course

(20.1) ρ(E ′/E)ρ(E/F )[E
′:E].

Suppose E/F is an abelian extension and ω is the class of the representation of WE/F

induced from the trivial representation of CE = WE/E. Then H(ω) = ρ(E/F ). On the
other hand, ω is the direct sum of [E : F ] one-dimensional representations; so H(ω) =
ρ(F/F )[E:F ] = 1. It follows immediately not only that ρ(E/F ) = 1 if E/F is abelian but
also that ρ(E/F ) = 1 if E can be obtained from F by a succession of abelian extensions. In
particular if F ⊆ E ⊆ L and L/F is nilpotent, ρ(E/F ) = 1.

Observe that (20.1) together with Lemma 2.2 and the transitivity of induction imply that
if ω is the class of

σ = Ind(WK/F ,WK/E, ρ)

and θ is the class of ρ then
H(ω) = H(θ)ρ(E/F )dim θ.

To complete the proof we will show that H(ω1 ⊗ ω2) = H(ω2)
dimω1 for all ω1 and ω2. Taking

ω2 = 1 we find H(ω1) = 1. It is enough to prove the equality when ω1 and ω2 are both
realizable as representations of WK/F and there is a field E lying between E and K with
G(K/E) nilpotent and a generalized character χE such that ω2 is the class of

Ind(WK/F ,WK/E, χE).

Then H(ω2) = ρ(E/F ). If ρ is a representation in the restriction of ω1 to WK/E then, by
Lemma 2.3, ω1 ⊗ ω2 is the class of

Ind(WK/F ,WK/E, ρ⊗ χE).

Let θ be the class of ρ⊗ χE. H(θ) is of the form
r∏
i=1

ρ(Ei/E)
mi

where E ⊆ Ei ⊆ K and is therefore 1. Thus

H(ω1 ⊗ ω2) = H(θ)ρ(E/F )dim θ = ρ(E/F )dimω1 .



21. PROOF OF THE FUNCTIONAL EQUATION 217

as required.





Appendix

There is clearly not much to be said about the functions ϵ(s, ω, ψF ) when F is archimedean.
However for non-archimedean F their properties are more obscure. In this appendix we shall
describe and prove some properties which were not needed in the proofs of the main theorems
and so found no place in the main body of the paper but which will be used elsewhere.

The first step is to define the Artin conductor of ω. We follow a well-trodden path. If
K is a finite Galois extension of the local field F then W 0

K/F contains UK as a subgroup of
finite index and is therefore compact. It is, in fact, a maximal compact subgroup of WK/F .
Choose that Haar measure dw on WK/F which assigns the measure 1 to W 0

K/F . If f is a
locally constant function on WK/F and u is a non-negative real number set

f̂(u) =


∫
Wu

K/F

dw


−1 ∫

Wu
K/F

{
f(1)− f(w)

}
dw.

Since W u
K/F is an open subgroup of WK/F it is meaningful to restrict dw to it. f̂(u) is

bounded, continuous from the left, and 0 for u sufficiently large. Since W u
K/F = W 0

K/F for

1 < u ⩽ 0 we have f̂(u) = f̂(0) for such u. The integral∫ ∞

−1

f̂(u) du

is well-defined.
There are some simple lemmas to be verified.

Lemma 22.1. Suppose F ⊆ K ⊆ L and L/F is also a Galois extension. Define g on WL/F

by g(w) = f
(
τL/F,K/F (w)

)
. Then ĝ(u) = f̂(u) for all u.

This is immediate because by Lemma 6.16, τL/F,K/F maps W u
L/F onto W u

K/F for every u.

When we want to make the roles of K and F explicit we write f̂(u) = f̂K/F (u).

Lemma 22.2. Suppose F ⊆ E ⊆ K and g is a function on WK/E satisfying g(wzw−1) = g(z)
for all z and w in WK/E. Regard WK/E as a subgroup of WK/F and set

f(w) =
∑

z∈WK/E\WK/F

g(z−1wz).

If NE/FπE is a unit times π
fE/F

F and P
δE/F

E is the different of E/F∫ ∞

−1

f̂K/F (u) du = fE/F

∫ ∞

−1

ĝK/E(u) du+ fE/F δE/Fg(1).
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Let dwK/F be the normalized Haar measure on WK/F and let dwK/E be the normalized
Haar measure on WK/E. On WK/E

dwK/E = [W 0
K/F : W 0

K/E] dwK/F .

Suppose at first that g(1) = 0. Denote also by g the function on WK/F which equals the
given g on WK/E but is 0 outside of WK/E. Then

f̂K/F (u) = [WK/F : WK/E]ĝK/F (u).

Since W u
K/F ∩WK/E = W v

K/E if v = ψE/F (u),

ĝK/F (u) = −[W 0
K/F : W u

K/F ]

∫
Wu

K/F

g(w) dwK/F

= −
[W 0

K/F : W u
K/F ]

[W 0
K/F : W 0

K/E]

∫
W v

K/E

g(w) dwK/E

=
1

[W 0
K/F : W 0

K/E]

[W 0
K/F : W u

K/F ]

[W 0
K/E : W v

K/E]
ĝK/E(v).

Recall that

fE/F =
[WK/F : WK/E]

[W 0
K/F : W 0

K/E]
.

Moreover
[W 0

K/F : W u
K/F ]

[W 0
K/E : W v

K/E]
=

[W 0
K/F : W u

K/FU
0
K ]

[W 0
K/E : W v

K/EU
0
K ]

·
[U0

K : U0
K ∩W u

K/F ]

[U0
K : U0

K ∩W v
K/E]

and U0
K ∩W u

K/F = U0
K ∩W v

K/E. By Lemma 6.11 the first term in this product is equal to

[G0 : Gu]

[H0 : Hv]

if G = G(K/F ) and H = G(K/E). But

[G0 : Gu] = ψ′
K/F (u)

and
[H0 : Hv] = ψ′

K/E(v)

while
ψ′
K/F (u) = ψ′

K/E(v)ψ
′
E/F (u).

Thus ∫ ∞

−1

f̂K/F (u) du = fE/F

∫ ∞

−1

ĝK/E
(
ψE/F (u)

)
ψ′
E/F (u) du

= fE/F

∫ ∞

−1

ĝK/E(v) dv.

To complete the proof of the lemma, we have to show that if g(w) = 1 so that ĝK/E(u) ≡ 0
then ∫ ∞

−1

f̂K/F (u) du = fE/F δE/F .
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In this case

f̂K/F (u) = [G : H]− [G : H]

[G0 : H0]

[G0 : Gu]

[H0 : Hv]

if v = ψE/F (u). After some simple rearranging this becomes

[G : H]

[Gu : 1]

{
[Gu : 1]− [Hv : 1]

}
=

[G : H]

[Gu : 1]

{(
[Gu : 1]− 1

)
−
(
[Hv : 1]− 1

)}
.

The factor
[G : H]

[Gu : 1]
=

[G : G0]

[H : 1]
ψ′
K/F (u)

and, from paragraph IV.2 of [12],∫ ∞

1

(
[Gu : 1]− 1

)
ψ′
K/F (u) du =

∫ ∞

−1

(
[Gx : 1]− 1

)
dx = δK/F

while ∫ ∞

−1

(
[Hv : 1]− 1

)
ψ′
K/F (u) du =

∫ ∞

−1

(
[Hv : 1]− 1

)
ψ′
K/E(v) dv = δK/E.

Thus ∫ ∞

−1

f̂K/F (u) du =
[G : G0]

[H : 1]
(δK/F − δK/E) = fE/F δE/F

because
δK/F = δK/E + [H0 : 1]δE/F .

Suppose ω is an equivalence class of representations of the Weil group of F and σ is
a representation of WK/F in the class of ω. Let fσ be the character of σ. It follows from
Lemma 22.1 that the value of ∫ ∞

−1

f̂σ(u) du

depends only on ω and not on σ. We call it the order of ω and denote it by m(ω). Since f̂σ(u)
is clearly non-negative for all u and vanishes identically if and only if W 0

K/F is contained in

the kernel of σ, the order m(ω) is always non-negative and equals zero if and only if the
kernel of each realization σ of ω contains W 0

K/F .

Lemma 22.3.

(a) If ω = ω1 ⊕ ω2 then m(ω) = m(ω1) +m(ω2).
(b) If

ω = Ind(WK/F ,WK/E, ν)

then
m(ω) = fE/Fm(ν) = fE/F δE/F dim ν.

(c) m(ω) is a non-negative integer.

The first property is immediate. The second is a consequence of Lemma 22.2. To verify
the third we merely have to show that m(ω) is integral. If ω = µ⊕ ν and the assertion is
true for any two of µ, ν and ω it is true for the third. This observation, together with part
(b) and Lemma 2.2, shows that it is enough to verify (c) when ω is the one-dimensional class
corresponding to a generalized character χF of CF . To do this we show that m(ω) = m(χF ).
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If f(a) = χF (a) for a in CF = WF/F then f̂(u) = f̂(m) for m− 1 < u ⩽ m and

f̂(m) = [U0
F : Um

F ]

∫
Um
F

{
1− χF (a)

}
da.

The right side is 1 if m < m(χF ) and 0 if m ⩾ m(χF ). Thus

m(ω) =

∫ m(χF )−1

−1

du = m(χF ).

The function ω → m(ω) is characterized by (a) and (b) together with the fact that
m(ω) = m(χF ) if ω is the class of χF .

Lemma 22.4. If ω is an equivalence class of representations of the Weil group of the
non-archimedean local field F and ψF is a non-trivial additive character of F , set m′(ω) =
m(ω) + n(ψF ) dimω. There is a non-zero complex constant a(ω) such that, as a function of
s,

ϵ(s, ω, ψF ) = a(ω)|πF |m
′(ω)s.

If ω = µ ⊕ ν and the lemma is true for any two of µ, ν, and ω, it is true for the third.
Applying Lemma 2.2 we see that it is enough to verify it when ω contains a representation

Ind(WK/F ,WK/E, χE).

Then

ϵ(s, ω, ψF ) = ∆

(
α
s− 1

2
E χE, ψE/F

)
ρ(E/F, ψF ).

Clearly

∆

(
α
s− 1

2
E χE, ψE/F

)
= α

s− 1
2

E (π
m(χE)+δE/F

E π
n(ψF )
F )∆(χE, ψE/F ).

But
αE(π

m(χE)+δE/F

E π
n(ψF )
F ) = αF

(
NE/F (π

m(χE)+δE/F

E π
n(ψF )
F )

)
and the argument on the right is the product of a unit and

π
fE/F (m(χE)+δE/F )+n(ψF ) dimω

F = π
m′(ω)
F .

The lemma follows.
The next lemma is rather technical and to prove it we will have to use the notations and

results of paragraphs 8 and 9.

Lemma 22.5. Let ω be an equivalence class of representations of the Weil group of the
non-archimedean local field F and m1 a positive integer. There is a positive integer m2 such
that if χF and µ1, . . . , µr with r = dimω, are generalized characters of CF and m(χF ) ⩾ m2,
m(µi) ⩽ m1, 1 ⩽ i ⩽ r, while

r∏
i=1

µi = detω

then for any non-trivial additive character ψF

ϵ(s, χF ⊗ σ, ψF ) =
r∏
i=1

ϵ(s, µiχF , ψF ).
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Choose, as a start, m2 ⩾ 2m1+1. If µF is a generalized character of CF and m(µF ) ⩽ m1

while m(χF ) ⩾ m2 then m(µFχF ) = m(χF ) = m. Let n = n(ψF ) and choose γ so that
OFγ = Pm+n

F . If β = β(χF ) we may choose β(µFχF ) = β. Appealing to Lemmas 8.1 and 9.4
we see that

ϵ(s, µFχF , ψF ) = ∆

(
α
s− 1

2
F µFχF , ψF

)
=

(
α
s− 1

2
F µF

)(
γ

β

)
∆(χF , ψF ).

In particular
r∏
i=1

ϵ(s, µiχF , ψF ) = α
r(s− 1

2)
F

(
γ

β

)
detω

(
γ

β

){
∆(χF , ψF )

}r
.

If ω = µ⊕ ν then

ϵ(s, χF ⊗ ω, ψF ) = ϵ(s, χF ⊗ µ, ψF )ϵ(s, χF ⊗ ν, ψF )

and all three terms are different from zero. Thus if the lemma is true for two of µ, ν and ω
it is true for the third. Using Lemma 2.2 once again, we see that it is enough to prove the
lemma when there is an intermediate field E and a generalized character µE of CE such that
ω is the class of

Ind(WK/F ,WK/E, µE).

Then χF ⊗ ω is the class of
Ind(WK/F ,WK/E, µEχE/F )

and

ϵ(s, χF ⊗ ω, ψF ) = ∆

(
α
s− 1

2
E µEχE/F , ψE/F

)
ρ(E/F, ψF ).

There are two simple lemmas which we need before we can proceed further and we digress
to prove them.

Lemma 22.6. Let E be a separable extension of F . If m is sufficiently large

ψE/F (m− 1) + 1 = meE/F − δE/F

if eE/F is the index of ramification of F in E.

Suppose F ⊆ E ⊆ K where K/F is Galois and the assertion is true for K/F and K/E.
Subtracting 1 from both sides of the equation, applying ψK/E, and then adding 1, we obtain
the equivalent equation

ψK/F (m− 1) + 1 = ψK/E(meE/F − δE/F − 1) + 1.

By assumption, the left side equals

meK/F − δK/F

and the right side equals
(meE/F − δE/F )eK/E − δK/E.

Since eK/F = eK/EeE/F and δK/F = δK/E + eK/EδE/F these two expressions are equal and we
have only to prove the lemma for Galois extensions.
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Suppose F ⊆ K ⊆ L and L/F and K/F are Galois. Suppose also that the lemma is true
for L/K and K/F . Then

ψL/F (m− 1) + 1 = ψL/F
(
ψK/F (m− 1)

)
+ 1

= ψL/F (meK/F − δK/F − 1) + 1

= (meK/F − δK/F )eL/K − δL/K

= meL/F − δL/F

as before. Thus, if we use induction, we need only verify the lemma directly for a Galois
extension K/F of prime degree.

We apply Lemma 6.3. If K/F is unramified, eK/F = 1 and δK/F = 0 while ψK/F (m −
1) = m − 1; so the relation follows. If K/F is ramified there is an integer t such that
δK/F =

(
[K : F ]− 1

)
(t + 1) while ψK/F (m − 1) + 1 = [K : F ]m −

(
[K : F ]− 1

)
(t + 1) for

m− 1 ⩾ t. Since eK/F = [K : F ] the relation follows again.
If n = n(ψF ) then

n′ = n(ψE/F ) = neE/F + δE/F .

Thus if m is sufficiently large and m′ = ψE/F (m− 1) + 1

m′ + n′ = (m+ n)eE/F

and if OFγ = Pm+n
F then OEγ = Pm′+n′

E . We define

P ∗
E/F (x) = P ∗

E/F (x; γ, γ)

as in paragraph 8.

Lemma 22.7. If m1 is a given positive integer then for m sufficiently large

P ∗
E/F (x) ≡ x (mod Pm1

E ).

As in paragraph 8, let d be the integral part of m
2
, d′ the integral part of m′

2
, and let

m = 2d+ ϵ, m′ = 2d′ + ϵ′. P ∗
E/F (x) depends only on the residue of x modulo Pd

F and is only

determined modulo Pd′
E . Recall that if

PE/F (y) = NE/F (1 + y)− 1

for y in Pd′+ϵ′

E then

ψE/F

(
P ∗
E/F (x)y

γ

)
= ψF

(
xPE/F (y)

γ

)
.

To show that P ∗
E/F (x) ≡ x (mod Pm1

E ) when m is sufficiently large, we have to show that

ψF

(
xPE/F (y)

γ

)
= ψE/F

(
xy

γ

)
for y in Pm′−m1

E . To do this we show that

PE/F (y) ≡ SE/F (y) (mod Pm
F )

when m is sufficiently large and y is in Pm′−m1
E .

To put it another way, we have to show that if K/F is any Galois extension the assertion
is true for all intermediate fields E. For this we use induction on [K : F ] together with
Lemma 3.3. There are three facts to verify:
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(i) If E/F is a Galois extension of prime degree then

PE/F (y) ≡ SE/F (y) (mod Pm
F )

when m is sufficiently large and y is in Pm′−m1
E .

(ii) Suppose F ⊆ E ⊆ K and K/F is Galois. Let G = G(K/F ) and let E be the fixed
field of H. Suppose H ̸= {1} and G = HC where H ∩C = {1} and C is a non-trivial
abelian normal subgroup of G which is contained in every other non-trivial normal
subgroup. If the induction assumption is valid

PE/F (y) ≡ SE/F (y) (mod Pm
F )

when m is sufficiently large and y is in Pm′−m1
E .

(iii) Suppose F ⊆ E ⊆ E ′ ⊆ K and m′′ = ψE′/F (m− 1) + 1. If, for any choice of m1,

PE/F (y) ≡ SE/F (y) (mod Pm
F )

when m is sufficiently large and y is in Pm′−m1
E and, for any choice of m′

1,

PE′/E(y) ≡ SE′/E(y) (mod Pm′

E )

when m, or m′, is sufficiently large and y is in P
m′′−m′

1

E′ then, for any choice of m′
1,

PE′/F (y) ≡ SE′/F (y) (mod Pm
F )

if m is sufficiently large and y is in P
m′′−m′

1

E′ .

We first verify (i) for E/F unramified. By paragraph V.2 of [12]

PE/F (y) = NE/F (1 + y)− 1 ≡ SE/F (y) (mod Pm
F )

if y belongs to Pd′+ϵ′

E . In this case m = m′ and we take m > 2m1 so that m′ −m1 > d′ + ϵ′.
If E/F is ramified and of degree ℓ we again choose m sufficiently large so that m′ > 2m1. If
m > t

2(m′ −m1) + (ℓ− 1)(t+ 1)

ℓ
⩾
m′ + (ℓ− 1)(t+ 1)

ℓ
= m

so that by Chapter V of [12],

PE/F (y) ≡ SE/F (y) +NE/F (y) (mod Pm
F )

if y belongs to Pm′−m1
E . t of course has its usual meaning. Since NE/F (y) belongs to Pm′−m1

F

all we have to do is arrange that m′ −m1 ⩾ m. Since

m′ −m1 = ℓm− (ℓ− 1)(t+ 1)−m1

and ℓ ⩾ 2, this can certainly be done by choosing m sufficiently large.
To verify the second fact, let L be the fixed field of C. We can assume that the required

assertion is true for the extension K/L. Let ℓ = ψL/F (m− 1) + 1 and ℓ′ = ψK/F (m− 1) + 1.
If m is sufficiently large and H0 is the inertial group of H

ℓ = [H0 : 1]m−
(
[H0 : 1]− 1

)
and

ℓ′ = [H0 : 1]m
′ −
(
[H0 : 1]− 1

)
.

Thus
Pℓ
L ∩ F = Pm

F
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and if ℓ1 = [H0 : 1]m1 then

Pℓ′−ℓ1
K ∩ E = Pm′−m1

E .

If m and therefore ℓ is sufficiently large

PK/L(y) = NK/L(1 + y)− 1 ≡ SK/L(y) (mod Pℓ
L)

if y belongs to Pℓ′−ℓ1
K . Thus if y belongs to Pm′−m1

E

PE/F (y) = PK/L(y) ≡ SK/L(y) = SE/F (y) (mod Pm
F ).

To verify the third fact we choose, once m′
1 is given, m1 so that

SE′/E(P
−δE′/E−m′

1

E′ ) = P−m1
E .

If m is sufficiently large
m′′ = m′eE′/E − δE′/E

and if y belongs to P
m′′−m′

1

E′

SE′/E(y) ∈ Pm′−m1
E .

Taking it even larger if necessary, we have

PE′/F (y) ≡ PE/F
(
PE′/E(y)

)
≡ PE/F

(
SE′/E(y)

)
≡ SE/F

(
SE′/E(y)

)
≡ SE′/F (y) (mod Pm

F ).

Returning to the proof of Lemma 22.5, we choose

β′ = β(χE/F ) = P ∗
E/F (β).

If m(χF ) and therefore m(χE/F ) is sufficiently large,

∆

(
α
s− 1

2
E µEχE/F , ψE/F

)
= α

s− 1
2

E

(
γ

β′

)
µE

(
γ

β′

)
∆(χE/F , ψE/F ).

Both β and β′ are units and therefore

α
s− 1

2
E

(
γ

β′

)
= α

r− 1
2

E

(
γ

β

)
= α

s− 1
2

F

(
NE/F

(
γ

β

))
= α

r(s− 1
2)

F

(
γ

β

)
.

If m(χF ) is sufficiently large

β′ ≡ β (mod P
m(µE)
E )

and µE(β
′) = µE(β). In paragraph 5 we saw that

detω

(
γ

β

)
= µE

(
γ

β

)
det ιE/F

(
γ

β

)
,

if ιE/F is the representation of WK/F induced from the trivial representation of WK/E. We
are reduced to showing that

(22.1) det ιE/F

(
γ

β

){
∆(χF , ψF )

}r
= ∆(χE/F , ψE/F )ρ(E/F, ψF )

if m(χF ) is sufficiently large. Of course r = [E : F ].
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What we do is show that for each Galois extension K/F the relation (22.1) is true for all
fields E lying between K and F . For this we use induction on [K : F ]. Let G = G(K/F )
and let C be a non-trivial abelian normal subgroup of G. Let L be the fixed field of C. We
saw in Chapter 13 that there are fields F1, . . . , Fs lying between F and L and generalized
characters µ1, . . . , µs of CF1 , . . . , CFs respectively such that

ιE/F ≃
s⊕
i=1

Ind(WK/F ,WK/Fi
, µi).

Then

χF ⊗ ιE/F ≃
s⊕
i=1

Ind(WK/F ,WK/Ei
, µiχFi/F )

and by Theorem 2.1, the Main Theorem, the right side of (22.1) is equal to
s∏
i=1

∆(µiχFi/F , ψFi/F )ρ(Fi/F, ψF ).

We just saw that if m(χF ) is sufficiently large, this is equal to
s∏
i=1

µi

(
γ

β

)


s∏
i=1

∆(χFi/F , ψFi/F )ρ(Fi/F, ψF )

.
Since

s∑
i=1

[Fi : F ] = [E : F ]

we see upon applying the induction assumption to L/F that this equals
s∏
i=1

µi

(
γ

β

)
det ιFi/F

(
γ

β

){∆(χF , ψF )
}r
.

We complete the proof of (22.1) by appealing to Chapter 5 to see that

det ιE/F =
s∏
i=1

µi det ιFi/F .
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