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The irreducible representations of a reductive group over a local field can be obtained from
the square-integrable representations of Levi factors of parabolic subgroups by induction
and formation of subquotients [2, 4]. Over a global field F the same process leads from
the cuspidal representations, which are analogues of square-integrable representations, to all
automorphic representations.
Suppose P is a parabolic subgroup of G with Levi factor M and σ =

⊗
σv a cuspidal

representation of M(A). Then Indσ =
⊗

v Indσv is a representation of G(A) which may not
be irreducible, and may not even have a finite composition series. As usual an irreducible
subquotient of this representation is said to be a constituent of it.

For almost all v, Indσv has exactly one constituent π◦
v containing the trivial representation

of G(Ov). If Indσv acts on Xv then π◦
v can be obtained by taking the smallest G(Fv)-

invariant subspace Vv of Xv containing nonzero vectors fixed by G(Ov) together with the
largest G(Fv)-invariant subspace Uv of Vv containing no such vectors and then letting G(Fv)
act on Vv/Uv.

Lemma 1. The constituents of Indσ are the representations π =
⊗

πv where πv is a
constituent of Indσv and πv = π◦

v for almost all v.

That any such representation is a constituent is clear. Conversely let the constituent π
act on V/U with 0 ⊆ U ⊆ V ⊆ X =

⊗
Xv. Recall that to construct the tensor product one

chooses a finite set of places S0 and for each v not in S0 a vector x◦v which is not zero and
is fixed by G(Ov). We can find a finite set of places S, containing S0, and a vector xS in
XS =

⊗
v∈S Xv which are such that x = xS ⊗

(⊗
v/∈S x

◦
v

)
lies in V but not in U .

Let VS be the smallest subspace of XS containing xS and invariant under GS =
∏

v∈S G(Fv).
There is clearly a surjective map

VS ⊗

⊗
v/∈S

Vv

 → V/U,

and if v0 /∈ S the kernel contains VS ⊗ Uv0 ⊗
(⊗

v/∈S∪{v0} Vv

)
. We obtain a surjection

VS ⊗
(⊗

v∈S Vv/Uv

)
→ V/U with a kernel of the form US ⊗

(⊗
v∈S Vv/Uv

)
, US lying in VS.

The representation of GS on VS/US is irreducible and, since Indσv has a finite composition
series, of the form

⊗
v∈S πv, πv being a constituent of Indσv. Thus π =

⊗
πv with πv = π◦

v

when v /∈ S.
The purpose of this note is to establish the following proposition.1

Proposition 2. A representation π of G(A) is an automorphic representation if and only if
π is a constituent of Indσ for some P and some σ.

Appeared in Proceedings of Symposia in Pure Mathematics Vol. 33 (1979), part 1, pp. 203–207.
1The definition of an automorphic representation is given in the paper [1] by A. Borel and H. Jacquet to

which this paper was a supplement.
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The proof that every constituent of Indσ is an automorphic representation will invoke the
theory of Eisenstein series, which has been fully developed only when the global field F has
characteristic zero [3]. One can expect however that the analogous theory for global fields of
positive characteristic will appear shortly; so there is little point in making the restriction
to characteristic zero explicit in the proposition. Besides, the proof that every automorphic
representation is a constituent of some Indσ does not involve the theory of Eisenstein series
in any serious way.

We begin by remarking some simple lemmas.

Lemma 3. Let Z be the centre of G. Then an automorphic form is Z(A)-finite.

This is verified in [1].

Lemma 4. Suppose K is a maximal compact subgroup of G(A) and φ an automorphic form
with respect to K. Let P be a parabolic subgroup of G. Choose g ∈ G(A) and let K ′ be a
maximal compact subgroup of M(A) containing the projection of gKg−1 ∩ P (A) on M(A).
Then

φP (m; g) =

∫
N(F )\N(A)

φ(nmg) dn

is an automorphic form on M(A) with respect to K ′.

It is clear that the growth conditions are hereditary and that φP (·; g) is smooth and
K ′-finite. That it transforms under admissible representations of the local Hecke algebras
of M is a consequence of theorems in [2] and [4].
We say that φ is orthogonal to cusp forms if

∫
ΩGder(A)

φ(g)ψ(g) dg = 0 whenever ψ is a

cusp form and Ω is a compact set in G(A). If P is a parabolic subgroup we write ψ ⊥ P if
φP (·; g) is orthogonal to cusp forms on M(A) for all g. We recall a simple lemma [3].

Lemma 5. If φ ⊥ P for all P then φ is zero.

We now set about proving that any automorphic representation π is a constituent of some
Indσ. We may realize π on V/U , where U , V are subspaces of the space A of automorphic
forms and V is generated by a single automorphic form φ. Totally order the conjugacy
classes of parabolic subgroups in such a way that {P} < {P ′} implies rank P ⩽ rank P ′ and
rank P < rank P ′ implies {P} < {P ′}. Given φ let {Pφ} be the minimum {P} for which
{P} < {P ′} implies φ ⊥ P ′. Amongst all the φ serving to generate π choose one for which
{P} = {Pφ} is minimal. If ψ ∈ A let ψP (g) = ψP (1, g) and consider the map ψ → ψP on V .
If U and V had the same image we could realize π as a constituent of the kernel of the map.
But this is incompatible with our choice of φ and hence if UP and VP are the images of U
and V we can realize π in the quotient VP/UP .
Let A◦

P be the space of smooth functions ψ on N(A)P (F )\G(A) satisfying the following
conditions.

(a) ψ is K-finite.
(b) For each g the function m→ ψ(m, g) = ψ(mg) is automorphic and cuspidal.

Then VP ⊆ A◦
P . Since there is no point in dragging the subscript P about, we change notation,

letting π be realized on V/U with U ⊆ V ⊆ A◦
P . We suppose that V is generated by a single

function φ.

Lemma 6. Let A be the centre of M . We may so choose φ and V that there is a character χ
of A(A) satisfying φ(ag) = χ(a)φ(g) for all g ∈ G(A) and all a ∈ A(A).
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Since P (A)\G(A)/K is finite, Lemma 3 implies that any φ in A◦
P is A(A)-finite. Choose V

and the φ generating it to be such that the dimension of the span Y of
{
ℓ(a)φ

∣∣ a ∈ A(A)
}

is minimal. Here ℓ(a) is left translation by a. If this dimension is one the lemma is valid.
Otherwise there is an a ∈ A(A) and α ∈ C such that 0 < dim

(
ℓ(a)− α

)
Y < dimY .

There are two possibilities. Either(
ℓ(a)− α

)
U =

(
ℓ(a)− α

)
V or

(
ℓ(a)− α

)
U ̸=

(
ℓ(a)− α

)
V.

In the second case we may replace φ by
(
ℓ(a)− α

)
φ, contradicting our choice. In the first

we can realize π as a subquotient of the kernel of ℓ(a)− α in V .
What we do then is to choose a lattice B in A(A) such that BA(F ) is closed and

BA(F )\A(A) is compact. Amongst all those φ and V for which Y has the minimal possible di-
mension we choose one φ for which the subgroup of B defined as

{
b ∈ B

∣∣ ℓ(b)φ = βφ, β ∈ C
}

has maximal rank. What we conclude from the previous paragraph is that this rank must be
that of B. Since φ is invariant under A(F ) and BA(F )\A(A) is compact, we conclude that
Y must now have dimension one. The lemma follows.

Choosing such a φ and V we let ν be that positive character of M(A) which satisfies

ν(a) =
∣∣χ(a)∣∣, a ∈ A(A),

and introduce the Hilbert space L◦
2 = L◦

2

(
M(F )\M(A), χ

)
of all measurable functions ψ on

M(Q)\M(A) satisfying the following conditions.

(i) For all m ∈M(A) and all a ∈ A(A), ψ(ag) = χ(a)ψ(g).

(ii)
∫
A(A)M(Q)\M(A)

ν−2(m)
∣∣ψ(m)

∣∣2 dm <∞.

L◦
2 is a direct sum of irreducible invariant subspaces and if ψ ∈ V then m → ψ(m, g) lies

in L◦
2 for all g ∈ G(A). Choose some irreducible component H of L◦

2 on which the projection
of ψ(·, g) is not zero for some g ∈ G(A).
For each ψ in V define ψ′(·, g) to be the projection of ψ(·, g) on H. It is easily seen that,

for all m1 ∈M(A), ψ′(mm1, g) = ψ′(m,m1g). Thus we may define ψ′(g) by ψ′(g) = ψ′(1, g).
If V ′ = {ψ′ | ψ ∈ V }, then we realize π as a quotient of V ′. However if δ2 is the modular
function for M(A) on N(A) and σ the representation of M(A) on H then V ′ is contained in
the space of Ind δ−1σ.
To prove the converse, and thereby complete the proof of the proposition, we exploit

the analytic continuation of the Eisenstein series associated to cusp forms. Suppose π is a
representation of the global Hecke algebra H, defined with respect to some maximal compact
subgroup K of G(A). Choose an irreducible representation κ of K which is contained
in π. If Eκ is the idempotent defined by κ let Hκ = EκHEk and let πκ be the irreducible
representation of Hκ on the κ-isotypical subspace of π. To show that π is an automorphic
representation, it is sufficient to show that πκ is a constituent of the representation of Hκ

on the space of automorphic forms of type κ. To lighten the burden on the notation, we
henceforth denote πκ by π and Hκ by H.
Suppose P and the cuspidal representation σ of M(A) are given. Let L be the lattice of

rational characters of M defined over F and let LC = L⊗C. Each element µ of LC defines
a character ξµ of M(A). Let Iµ be the κ-isotypical subspace of Ind ξµσ and let I = I0. We
want to show that if π is a constituent of the representation of I then π is a constituent of
the representation of H on the space of automorphic forms of type κ.
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If {gi} is a set of coset representatives for P (A)\G(A)/K then we may identify Iµ with I
by means of the map φ→ φµ with

φµ(nmgik) = ξµ(m)φ(nmgik).

In other words we have a trivialisation of the bundle {Iµ} over LC, and we may speak of a
holomorphic section or of a section vanishing at µ = 0 to a certain order. These notions do
not depend on the choice of the gi, although the trivialisation does.
There is a neighborhood U of µ = 0 and a finite set of hyperplanes passing through U

such that for µ in the complement of these hyperplanes in U the Eisenstein series E(φ) is
defined for φ in Iµ. To make things simpler we may even multiply E by a product of linear
functions and assume that it is defined on all of U . Since it is only the modified function
that we shall use, we may denote it by E, although it is no longer the true Eisenstein series.
It takes values in the space of automorphic forms and thus E(φ) is a function g → E(g, φ)
on G(A). It satisfies

E
(
ρµ(h)φ

)
= r(h)E(φ)

if h ∈ H and ρµ is Ind ξµσ. In addition, if φµ is a holomorphic section of {Iµ} in a neighborhood
of 0 then E(g, φµ) is a holomorphic in µ for each g, and the derivatives of E(φµ), taken
pointwise, continue to be in A.
Let Ir be the space of germs of degree r at µ = 0 of holomorphic sections of I. Then

φµ → ρµ(h)φµ defines an action of H on Ir. If s ⩽ r the natural map Ir → Is is an
H-homomorphism. Denote its kernel by Isr . Certainly I0 = I. Choosing a basis for the linear
forms on LC we may consider power series with values in the κ-isotypical subspace of A,∑

|α|⩽r µ
αψα. H acts by right translation on this space and the representation so obtained is,

of course, a direct sum of that on the κ-isotypical automorphic forms. Moreover φµ → E(φµ)
defines an H-homomorphism λ from Ir to this space. To complete the proof of the proposition
all one needs is the Jordan-Hölder theorem and the following lemma.

Lemma 7. For r sufficiently large the kernel of λ is contained in I0r .

Since we are dealing with Eisenstein series associated to a fixed P and σ we may replace E
by the sum of its constant terms for the parabolic associated to P , modifying λ accordingly.
All of these constant terms vanish identically if and only if E itself does. If Q1, . . . , Qm is a set
of representatives for the classes of parabolics associated to P let Ei(φ) be the constant term
along Qi. We may suppose that M is a Levi factor of each Qi. Define ν(m) for m ∈M(A)

by ξµ(m) = e⟨µ,ν(m)⟩. Thus ν(m) lies in the dual of LR. If φ ∈ Iµ, the function of Ei(φ) has
the form

Ei(nmgjk, φ) =
a∑

α=1

b∑
β=1

pα
(
ν(m)

)
ξνβ(µ)(m)ψαβ(m, k).

Here ψαβ lies in a finite-dimensional space independent of µ and gj; νβ, 1 ⩽ β ⩽ b is a
holomorphic function of µ; and {pα} is a basis for the polynomials of some degree. This
representation may not be unique. The next lemma implies that we may shrink the open set
U and then find a finite set h1, . . . , hn in G(A) such that E(φµ) is 0 for µ ∈ U , φµ ∈ Iµ if
and only if the numbers Ei(hj, φµ), 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n are all 0.

Lemma 8. Let U be a neighborhood of 0 in Cℓ, ν1, . . . , νk holomorphic functions on U and
p1, . . . , pa a basis for the polynomials of some given degree. Then there is a neighborhood V
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of 0 contained in U and a finite set y1, . . . , yb in Cℓ such that if µ ∈ V then

(∗)
∑

pi(y)e
νj(µ)·y = 0

for all y if and only if it is 0 for y = y1, . . . , yb.

To prove this lemma one has only to observe that the analytic subset of U defined by the
equations (∗), y ∈ Cℓ, is defined in a neighborhood of 0 by a finite number of them.

We may therefore regard E as a function on U with values in the space of linear transfor-
mations from the space I, which is finite-dimensional, to the space Cmn. One knows from
the theory of Eisenstein series that Eµ is injective for µ in an open subset of U . Then to
complete the proof of the proposition, we need only verify the following lemma.

Lemma 9. Suppose E is a holomorphic function in U , a neighborhood of 0 on Cℓ, with
values in Hom(I, J), where I and J are finite-dimensional spaces, and suppose that Eµ is
injective on an open subset of U . Then there is an integer r such that if φµ is analytic near
µ = 0 and the Taylor series of Eµφµ vanishes to order r then φ0 = 0.

Projecting to a quotient of J , we may assume that dim I = dim J and even that I = J .
Let the first nonzero term of the power-series expansion of detEµ have degree s. Then we
will show that r can be taken to be s+ 1. It is enough to verify this for ℓ = 1, for we can
restrict to a line on which the leading term of Eµ still has degree s. But then multiplying E
fore and aft by nonsingular matrices we may suppose it is diagonal with entries zα, 0 ⩽ α ⩽ s.
Then the assertion is obvious.

In conclusion I would like to thank P. Deligne, who drew my attention to a blunder in the
first version of the paper.
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