
ON UNITARY REPRESENTATIONS OF THE VIRASORO ALGEBRA
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The Virasoro algebra v is an infinite-dimensional Lie algebra with basis Lm, m ∈ Z, and Z
and defining relations:

(i) [Lm, Ln] = (m− n)Lm+n +
m(m2−1)

12
δm,−nZ;

(ii) [Lm, Z] = 0.

Some representations π of v of particular interest [2] are the Verma modules (V, π) =
(V h,c, πh,c), h, c ∈ R. They are characterized by the following conditions.

(i) There is a vector v = vϕ ̸= 0 in V such that Lnv = 0, n > 0, L0v = hv, Zv = cv.
(ii) Let A be the set of sequences of integers k1 ⩾ k2 ⩾ · · · ⩾ kr > 0 of arbitrary length,

and if α ∈ A let vα = π(L−k1) · · · π(L−kr)vϕ. Then {vα | α ∈ A} is a basis of V .

Observe that V is just the free vector space with basis {vα} and is thus independent of
h and c. It is easy to see [1] that there is a unique sesquilinear form ⟨u, v⟩ = ⟨u, v⟩h,c on V
with the properties:

(i) ⟨vϕ, vϕ⟩ = 1;

(ii) ⟨u, v⟩ = ⟨v, u⟩;
(iii)

〈
π(Lm)u, v

〉
=

〈
u, π(L−m)v

〉
, m ∈ Z.

If this form is non-negative then the representation ρ of v on the quotient of V by the space
of null vectors is unitary, in the sense that

ρ(Lm)
∗ = ρ(L−m).

Theorem FQS. The form ⟨·, ·⟩h,c is non-negative only if either c ⩾ 1, h ⩾ 0 or there exists
an integer m ⩾ 2 and two integers p, q, 1 ⩽ p < m, 1 ⩽ q ⩽ p, such that

c = 1− 6

m(m+ 1)
, h =

(
(m+ 1)p−mq

)2 − 1

4m(m+ 1)
.

This theorem has been proven by Friedan-Qiu-Shenker [1]. The sketch of the proof that they
provided was unconscionably brief, and has evoked some scepticism among mathematicians.
In this note, which grew out of a series of lectures at the Centre de recherches mathématiques
that overlapped the workshop, details are worked out. In the meantime, Friedan, Qiu and
Shenker have themselves provided them [3], but the present account, which turns out to
diverge from theirs in some respects, may still be a useful supplement to it. Several other
authors have proven that the conditions of the theorem are not only necessary but also
sufficient for non-negativity, but that is not the concern here.

The proof proceeds by lemmas. I write Lv rather than π(L)v, L ∈ v, v ∈ V .

Lemma 1. If ⟨·, ·⟩ is non-negative then h ⩾ 0, c ⩾ 0.

Proof. Since LnL−nvϕ = L−nLnvϕ + 2nhvϕ + n(n2−1)
12

cvϕ, we have ⟨L−nvϕ, L−nvϕ⟩ = 2nh +
n(n2−1)

12
c. Taking n first equal to 1 and then very large we obtain the lemma. □

Appeared in Infinite-dimensional Lie algebras and their applications, World Scientific (1988).
1



2 ROBERT P. LANGLANDS

For arbitrary m we set c = c(m) = 1− 6
m(m+1)

, hp,q = hp,q(m) =
((m+1)p−mq)

2
−1

4m(m+1)
, p, q ∈ N.

Observe that c(−1−m) = c(m) and that hp,q(−1−m) = hq,p(m).

Lemma 2.

(a) For 1 < c < 25, m is not real and neither is hp,q(m) unless p = q.
(b) As m runs from 2 to ∞, c increases monotonically from 0 to 1.
(c) For c > 1, −1 < m < 0.
(d) If −1 < m < 0 then hp,q(m) < 0 unless p = q = 1 when hp,q(m) = 0.

(e) If p = q then hp,q(m) = p2−1
24

(1− c).

(f ) If p ̸= q then hp,q + hq,p =
p2+q2−2

24
(1− c) + (p−q)2

2
. In addition hp,qhq,p is equal to

(p2q2 − p2 − q2 + 1)

16 · 36 (1− c)2

+

(
2p2q2 − pq(p2 + q2)− (p− q)2

)
48

(1− c)

+
(p4 + q4 − 4p3q − 4pq3 + 6p2q2)

16
.

Proof. The first four parts of the lemma are clear, and the last two are straightforward
calculations. □

There is a second sesquilinear form on V defined by {vα, vβ} = δαβ. If Vn is the subspace of
V with basis

{
vα

∣∣ α = (k1, . . . , kr)
∣∣ ∑r

i=1 ki = n
}
, then V =

⊕
n⩾0 Vn and the spaces Vn are

mutually orthogonal with respect to both forms. The first form is defined on Vn with respect
to the second by a hermitian linear transformation Hn = Hn(h, c) : ⟨u, v⟩n = {Hnu, v}n. Let
P (n) be the dimension of Vn. It is the number of partitions of n. The Kac determinant
formula (cf. [1]) is the key to the proof of Theorem FQS.

Kac determinant formula. If c = c(m) then

detHn(h, c) = An

∏
k⩽n

∏
pq=k

(h− hp,q)
P (n−k),

where An is a positive constant.

Lemma 3. The form ⟨·, ·⟩n is non-negative for h ⩾ 0, c ⩾ 1.

Proof. By continuity it suffices to treat pairs for which h > 0, c > 1. Since the previous
lemma implies that detHn(h, c) is nowhere zero in this region, it suffices to prove that the
form is positive for one pair (h, c). If α = (k1, . . . , kr), r = r(α), n(α) = k1 + · · · + kr, set
v′α = L−kr · · ·L−k1vϕ. It is generally different than vα. It clearly suffices to show that for a
given c and h large,

⟨v′α, v′α⟩ = cαh
r(α)

(
1 + o(1)

)
, cα > 0(3.1)

⟨v′α, v′β⟩ = o
(
h(r(α)+r(β))/2

)
, α ̸= β.(3.2)

This is proved by induction on n(α) + n(β). First of all La
kL

a
−k is equal to

La−1
k (bL0 + d)La−1

−k + La−1
k L−kLkL

a−1
−k , b > 0.
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Moving the single Lk in the second term ever further to the right, we obtain finally

La
kL

a
−k = La−1

k (bL0 + d)La−1
−k + La−1

k La
−kLk, b > 0.

Take k1 ⩾ k2 ⩾ · · · ⩾ kr > k. If α = (k1, . . . , kr, k, . . . , k), then

⟨v′α, v′α⟩ = ⟨Lk1 · · ·LkrL
a
kL

a
−kL−kr · · ·L−k1vϕ, vϕ⟩

= ck,ah
(
1 + o(h)

)
⟨Lk1 · · ·LkrL

a−1
k La−1

−k L−kr · · ·L−k1vϕ, vϕ⟩
+ ⟨Lk1 · · ·LkrL

a−1
k La

−kLkL−kr · · ·L−k1vϕ, vϕ⟩
with ck,a > 0. In the second term we move the Lk further and further to the right obtaining
the sum of

(k + kr)⟨Lk1 · · ·LkrL
a−1
k La

−kL−kr · · ·L−kj+1
L−(kj−k)L−kj−1

· · ·L−k1vϕ, vϕ⟩.
The induction assumption together with the defining relations for v implies readily that each
of these terms is o(hr(α)) and that

⟨Lk1 · · ·LkrL
a−1
k La−1

−k L−kr · · ·L−k1vϕ, vϕ⟩ = ⟨v′γ, v′γ⟩ = cγh
r(γ)

(
1 + o(1)

)
,

if γ = (k1, . . . , kr, k, . . . , k), with k repeated a− 1 times, so that r(α) = 1 + r(γ).
On the other hand, if β = (ℓ1, . . . , ℓs, k, . . . , k), with k repeated a′ ⩽ a times, a > 0, a′ ⩾ 0,

ℓs ⩾ k even if a′ = 0, then

⟨v′β, v′α⟩ = ⟨Lk1 · · ·LkrL
a
kL

a′

−kL−ℓs · · ·L−ℓ1vϕ, vϕ⟩
is equal to the sum of

ck,a′h
(
1 + o(1)

)
⟨Lk1 · · ·LkrL

a−1
k La′−1

−k L−ℓs · · ·L−ℓ1vϕ, vϕ⟩
and ∑

j

(k + ℓj)⟨Lk1 · · ·LkrL
a−1
k La′

−kL−ℓs · · ·L−ℓj+1
L−(ℓj−k)L−ℓj−1

· · ·L−ℓ1vϕ, vϕ⟩.

We take ck,0 = 0 if a′ = 0. So induction yields (3.2). □

Observe that if m > 0 and p > q then hp,q > hq,p. If h ⩾ 0 and m > 0 define M > 0 by
M2 = 1 + 4m(m+ 1)h. Then M ⩾ 1. Let D be the closed shaded region in the diagram I. It
is bounded by the lines

mx− (m+ 1)y = ±M and (m+ 1)x−my = M.
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(M,M)

M
m+1

M
m

Diagram I

Lemma 4.

(a) hp,q ⩾ h ⩾ hq,p if and only if (p, q) ∈ D.
(b) D contains an integral point (p, q) with q > 0.

Proof. Since hp,q ⩾ h if and only if
(
(m+ 1)p−mq

)2
⩾ M2 and h ⩾ hq,p if and only if(

(m+ 1)q −mp
)2

⩽ M2, the first statement of the lemma is clear. For the second choose a

large integer p and let a = mp−M
m+1

. Then the points (p, q) with a ⩽ q ⩽ a+ 2M
m+1

lie in D. So

do the points (p+ 1, q), a+ m
m+1

⩽ q ⩽ a+ m+2M
m+1

and so on. So we need only show that one

of the intervals
[
a+ km

m+1
, a+ km+2M

m+1

]
, k ∈ Z, k ⩾ 0, contains an integer. This is clear if m

m+1

is irrational. Otherwise, increasing q if necessary, we may suppose that a is as close to its
integral part as any a+ km

m+1
. Then a+ m

m+1
< [a] + 1, but a+ m+2M

m+1
⩾ a+ m+2

m+1
> [a] + 1,

and the interval
[
a+ m

m+1
, a+ m+2M

m+1

]
contains [a] + 1. □

Let p(h, c) = min(p,q)∈D p and let q(h, c) = min(p,q)∈D q. It is clear that

P (h, c) =
(
p(h, c), q(h, c)

)
∈ D.

In the following geometrical arguments, it is sometimes necessary to recall that h−hp0,p0 < 0
if and only if p0 > M .

Lemma 5. If P (h, c) lies in the interior of D then ⟨v, v⟩ assumes negative values in V .
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Proof. Let (p, q) = P (h, c) and let n = pq. If p0q0 ⩽ n, p0 ⩾ q0 and (p0, q0) ̸= (p, q) then
either p0 < p or q0 < q so that (p0, q0) /∈ D. In general set

ϕp0,q0 = (h− hp0,q0)(h− hq0,p0), p0 ̸= q0,

= h− hp0,q0 , p0 = q0.

If (p0, q0) /∈ D and p0 ̸= q0 then ϕp0,q0 > 0.
Suppose that for some p0 with p20 ⩽ pq we had h − hp0,p0 < 0. Then there would be a

minimum such p0 and if n0 = p20 then

detHn0 = An0

∏
p1⩾q1

n1=p1q1⩽n0

ϕP (n0−n1)
p1,q1

Since P (h, c) lies in the interior of D, p ̸= q and none of the pairs (p1, q1) that intervene here

lie in D. Moreover, all terms of the products are positive save ϕ
P (0)
p0,p0 = ϕp0,p0 . Since this is

negative, ⟨·, ·⟩ assumes negative values on Vn0 .
If, however, ϕp0,p0 > 0 for all p0 ⩽ q then the same argument shows that detHn < 0, so

that ⟨·, ·⟩ assumes negative values on Vn. □

The treatment of those points (h, c) for which P (h, c) lies on the boundary of D is more
delicate. There are at first three possibilities for (p, q) = P (h, c):

(A) mp− (m+ 1)q = M ;
(B) (m+ 1)p−mq = M ;
(C) mp− (m+ 1)q = −M , p ̸= q;

Lemma 6. The case (C) above does not occur.

Proof. It is clear from the diagram defining D that in case (C), p ⩾ M , q ⩾ M . If q = 1
then M = 1 and p = 1, so that we have rather case (B). If q > 1 then p > 1 and
(m+1)(q−1)−m(p−1) = (m+1)q−mp−1, so that M > (m+1)(q−1)−m(p−1) > −M .
Moreover, (m+1)(p−1)−m(q−1)−M = (m+1)(p−1−q)−m(q−1−p) = (2M+1)(p−q)−1.
Since m ⩾ 2 this is positive if p ̸= q. Consequently (p − 1, q − 1) ∈ D, and this is a
contradiction. □

Fix (p, q). In case (A) we have h = hq,p(m), c = c(m). In case (B) we have h = hp,q(m),
c = c(m).

Lemma 7.

(a) The set of all m ⩾ 2 for which h = hq,p(m), c = c(m) yields case (A) is the interval
m > q + p− 1.

(b) The set of all m ⩾ 2 for which h = hp,q(m), c = c(m) yields case (B) is the interval
m > q + p− 1 if (p, q) ̸= (1, 1) and is the interval m ⩾ 2 if (p, q) = (1, 1).

It will be helpful, when proving this and the following lemmas, to keep the diagrams IIA
and IIB in mind.
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M

m+ 1

M

m

(p− 1, q)

(x, y)

(x, z)

(p, q)

(z′, y)

(M,M)

Diagram IIA

Proof. We first show that if hq,p(m0), c(m0) yield case (A) then so does
(
hq,p(m), c(m)

)
for

m ⩾ m0. It is clear from the diagram that it is sufficient to verify that M , M
m+1

, and M
m

are

increasing functions of m. But M = m(p− q)− q, M
m

= (p− q)− q
m
, M

m+1
= (p− q)− p

m+1
.

It is also clear that

M

m+ 1

M

m

(p, q) (p+ 1, q)

(z, y)
(x, y)

(x, z′)

(M,M)

Diagram IIB

we can decrease m without passing out of case (A) so long as M = m(p − q) − q remains
greater than or equal to 1 and (m+ 1)(p− 1)−mq > mp− (m+ 1)q. But

(m+ 1)(p− 1)−mq = mp− (m+ 1)q ⇐⇒ m = p+ q − 1.
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As we decrease to these points, M decreases to

(p+ q − 1)(p− q)− q = p2 − q2 − p = (p− 1)2 − q2 + p− 1.

This number is greater than 1 because p > q ⩾ 1.
For case (B), M = m(p− q) + p is a non-decreasing function of m, and M

m
= (p− q) + p

m
,

M
m+1

= (p − q) + q
m+1

are decreasing functions. Since the slope of mp − (m + 1)q = M is

1− 1
m+1

, it is increasing and the conclusion is the same. The minimal value of m is given by

(m+ 1)p−mq = mp− (m+ 1)(q − 1) ⇐⇒ m = p+ q − 1.

because
(p+ q − 1)(p− q) + p = p2 − q2 + q ⩾ 1,

unless p = q = 1 when m cannot go below 2. □

In case (A) the intersection of the two lines (m+ 1)x−my = M and x− y = p− q − 1 is
a point

(
x(m), y(m)

)
with p′ ⩾ x(m) > p′ − 1 where p′ is an integer, p′ ⩾ p. If x(m) = p′

then y(m) = q′ = p′ − p+ q + 1, and m = p′ + q. Thus m ∈ {2, 3, . . . }, p′ < m, q′ ⩽ p′ and
c = c(m), h = hp′,q′(m).
In case (B) the intersection of the lines x− y = p− q + 1 and mx− (m+ 1)y = M is a

point
(
x(m), y(m)

)
with p′ ⩾ x(m) > p′ − 1, p′ − 1 ⩾ p. If x(m) = p′ then m = p+ q′ lies in

{2, 3, . . . }, q ⩽ p, p < m and c = c(m), h = hp,q(m).
Thus to prove the theorem it suffices to establish the following proposition.

Proposition. If case (A) or (B) obtains and p′ > x(m) > p′− 1 then the form ⟨·, ·⟩ assumes
negative values in V .

We assume the contrary and derive a contradiction. We occasionally abbreviate c(m) to c
and hq,p(m) or hp,q(m) to h(m) or to h.

Lemma 8.

(a) Suppose p′ > x(m) > p′ − 1. If (p1, q1) lies on the boundary of D(h, c) and p1q1 ⩽ p′q′

then (p1, q1) = (p, q).
(b) Define m′ by p′ = x(m′) and set c′ = c(m′), h′ = hq,p(m

′) or hp,q(m
′). If (p1, q1) lies

on the boundary of D(h′, c′) and p1q1 ⩽ p′q′ then (p1, q1) is (p, q) or (p′, q′).

Proof. Set (x, y) =
(
x(m), y(m)

)
and define z, z′ as indicated by the diagrams. It clearly

suffices to show that in case (A) y − z < 2, z′ − x < 2, and that in case (B), x − z < 2,
z′ − y < 2. In case (A) elementary algebra yields m = x + q, y − z = x+z

m
= 1 + z−q

x+q
and

z−q
x+q

= x−p
x+q

· z−q
x−p

< 1. On the other hand z′ − x = x+y
m

= 1 + y−q
p+y−1

< 2. A similar argument

works for case (B). □

Since p, q and p′ are fixed it will be useful to let C denote the curve c = c(m), h = hq,p(m)
(A) or h = hp,q(m) (B), m > p′ − 1.

Lemma 9.

(a) If x(m) > p′ − 1, x(m) ̸= p′, and n1 ⩽ n′, then the dimension of the space of null
vectors in Vn1 is P (n1 − n).

(b) If x(m) = p′ and n1 < n′ then the dimension of the space of null vectors in Vn1 is
P (n1 − n), but if n1 = n′ it is P (n1 − n) + 1.
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Proof. Observe that P (n1 − n) = 0 if n1 < n and that when this is so the lemma is clear. So
take n1 ⩾ n and denote the pertinent dimension by d0n1

. We begin by showing that d0n1
> 0

and that d0n1
⩽ P (n1 − n) unless x(m) = p′ and n1 = n′ when d0n1

⩽ P (n1 − n) + 1.
For 0 ⩽ c < 1, m is locally an analytic function of c and we may write hp,q(m) = hp,q(c) =

h(c) or hq,p(m) = hq,p(c) = h(c). Fix c and consider Hn1(h, c) as a function of h near h(c).
Its eigenvalues are the roots of a polynomial equation with real analytic, indeed polynomial,
coefficients and they are all real for h real. It is easily seen that this implies that there is no
ramification at h = h(c) and that in a neighborhood of this point there are expansions

αi(h) = αi0 + αi1

(
h− h(c)

)
+ αi2

(
h− h(c)

)2
+ · · · , 1 ⩽ i ⩽ P (n1)

for the eigenvalues of Hn1 . Thus

detHn1(h, c) =

P (n1)∏
i=1

(
αi0 + αi1

(
h− h(c)

)
+ · · ·

)
,

and the power of h − h(c) that divides it is greater than or equal to the number of zero
eigenvalues of Hn1

(
h(c), c

)
. On the other hand, the left side is equal to

An

∏
k⩽n1

∏
p1q1=k

(
h− hp1,q1(c)

)P (n1−k)
,

and hp1,q1(c) = h(c) only if (p1, q1) or (q1, p1) lies in the boundary of D. Thus the assertion
follows from Lemma 8.

Choosing n1 = n, we see in particular that the dimension of the null space of Vn is 1. Thus
if m > p′ − 1 then in a neighborhood of

(
h(m), c(m)

)
we can find an analytic function v(h, c)

with values in Vn such that v(h, c) has length 1, is an eigenvector of Hn(h, c), and corresponds
to the eigenvalue 0 when (h, c) falls on the curve C.

Since

L0v
(
h(m), c(m)

)
=

(
h(m) + n

)
v
(
h(m), c(m)

)
,

Lkv
(
h(m), c(m)

)
= 0, k > 0,

there is a homomorphism of v-modules, ϕ: V h(m)+n,c(m) → V h(m),c(m), taking v
h(m)+n,c(m)
ϕ to

v
(
h(m), c(m)

)
. If it is injective on V

h(m)+n,c(m)
n1−n then d0n1

⩾ P (n1 − n) because the image
consists of null vectors. Since d0n1

is lower semicontinuous, d0n1
will be greater than or equal to

P (n1−n) everywhere on C if it is so on a dense set. The homomorphism ϕ will be injective if

detH
h(m)+n,c(m)
n1−n ̸= 0 because the kernel consists of null vectors. So it is enough to show that

this determinant does not vanish identically on C. However, if h(m) + n = hp1,q1(m) then(
(m+ 1)p+mq

)2
=

(
(m+ 1)p1 −mq1

)2
or (

mp+ (m+ 1)q
)2

=
(
(m+ 1)p1 −mq1

)2
.

This can occur for at most two values of m. □

It remains to show that atm′ the dimension of the space of null vectors in Vn′ is P (n′−n)+1.
For this we need further lemmas.

Lemma 10. detH
h(m′)+n,c(m′)
n′−n ̸= 0.
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Proof. It has to be shown that the equality h(m′)+n = hp1,q1(m
′), p1q1 ⩽ n′−n is impossible.

This equality amounts to

(A)
(
m′p+ (m′ + 1)q

)2
=

(
(m′ + 1)p1 −m′q1

)2
or

(B)
(
(m′ + 1)p+m′q

)2
=

(
(m′ + 1)p1 −m′q1

)2
.

It is not supposed that p1 ⩾ q1.
The first equation implies that m′p+ (m′ + 1)q = ±

(
(m′ + 1)p1 −m′q1

)
or m′(p± q1) =

(m′ + 1)(±p1 − q). Since m′ is an integer this implies (p± q1) = a(m′ + 1), (±p1 − q) = am′.
Since n′ = p′q′ = (m′ − q)(m′ − p+ 1) the inequality n′ ⩾ n+ p1q1 becomes

(m′ − q)(m′ − p+ 1) ⩾ a(m′ + 1)q − am′p+ a2m′(m′ + 1)

or (
(1 + a)(m′ + 1)− p

)(
(1− a)m′ − q

)
⩾ 0.

Since m′ = p′ + q = p + q′ − 1, m′ > q, m′ + 1 > p. So the inequality is possible only for
a = 0, but a cannot be 0. The case (B) is treated in a similar fashion. □

For n1 < n′ or m ≠ m′ we let Un1 = Un1(m) be the space of null vectors in Vn1 . For h, c
close to h(m′), c(m′) we let Un1(h, c) be the span of{

L−k1 · · ·L−krv(h, c)
∣∣∣ k1 ⩾ · · · ⩾ kr > 0,

∑
ki = n′ − n

}
.

We set Un′(m) = Un′
(
h(m), c(m)

)
, the two definitions of Un′(m) coinciding when they both

apply. Thus for m > p′ − 1, Un1(m) is defined and analytic as a function of m. Let Wn1

be its orthogonal complement with respect to the form {·, ·}. It follows from that part of
Lemma 9 already proved that the restriction Jn1 = Jn1(m) of Hn1 to Wn1 is non-singular
unless n1 = n′, m = m′. In particular, our assumption, which was made for a particular m,
implies that Jn1(m) is positive for all m > p′ − 1 if n1 < n′.

Lemma 11. Near m′, det Jn′(m) = δ(m)(m−m′) where 1
δ
⩾

∣∣δ(m)
∣∣ ⩾ δ > 0.

It will follow from this lemma that the remaining assertion of Lemma 9 is true. In addition
the lemma together with our assumption on the non-negativity of ⟨·, ·⟩ for a particular m,
p′ > x(m) > p′ − 1, will imply that the form takes negative values for m > m′ because
det Jn′(m) changes sign at m′.

Let v(h, c), defined in a neighborhood of
(
h(m′), c(m′)

)
, correspond to the eigenvalue α(h, c)

of Hn(h, c). All the other eigenvalues of Hn(h, c) are bounded above and, if the neighborhood
is sufficiently small, away from 0. On the other hand, all factors h− hp1,q1(c) = h− hp1,q1(m),
c = c(m), of detHn(h, c) are bounded away from 0 in a neighborhood of h(m′), c(m′) except
for h− h(c), where h(c) is hq,p(c) or hp,q(c) according as we are dealing with case A or case
B. Thus we have the following lemma.

Lemma 12. In a neighborhood of
(
h(m′), c(m′)

)
we have α(h, c) = a(h, c)

(
h− h(c)

)
with

1
a
⩾

∣∣a(h, c)∣∣ ⩾ a > 0, a being a constant.

Here h(c) is hq,p(m) (A) or hp,q(m) (B), c = c(m). More generally we have

Lemma 13. Let Kn′(h, c) be the restriction of Hn′(h, c) to Un′(h, c). Then, in a neighborhood
of

(
h(m′), c(m′)

)
, detKn′(h, c) = k(h, c)α(h, c)P (n′−n), with 1

k
⩾

∣∣k(h, c)∣∣ ⩾ k > 0.
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Proof. The determinant of Kn′(h, c) is that of the form ⟨·, ·⟩n′ , calculated with respect to a
basis of Un′(h, c) orthogonal with respect to the form {·, ·}n. However the basis{

ϕ(vα)
∣∣∣ vα ∈ V h(m)+n,c(m), n(α) = n′ − n

}
is related to such a basis by a matrix whose determinant is bounded in absolute value above

and below. So it is enough to consider det
({

ϕ(vα), ϕ(vβ)
})

.

We have 〈
ϕ(vα), ϕ(vβ)

〉
=

〈
Lℓs · · ·Lℓ1L−k1 · · ·L−krv(h, c), v(h, c)

〉
=

{
Lℓs · · ·Lℓ1L−k1 · · ·L−krv(h, c), Hn′(h, c)v(h, c)

}
= α(h, c)

{
Lℓs · · ·Lℓ1L−k1 · · ·L−krv(h, c), v(h, c)

}
.

At h(m), c(m) the value of det
({

Lℓs · · ·Lℓ1L−k1 · · ·L−krv(h, c), v(h, c)
})

is

det
(
⟨vα, vβ⟩h(m

′)+n,c(m′)
n′−n

)
.

By Lemma 10 this is not 0. Lemma 13 follows. □

In a neighborhood of h(m), c(m) we decompose Vn′ as an orthogonal sum Un′ ⊕ Wn′ .
The linear transformation Hn′(h, c), or its matrix with respect to a compatible basis, then
decomposes into blocks. I claim that the entries in the off-diagonal blocks are O

(
h− hp,q(c)

)
in a neighborhood of h(m), c(m). To verify this it is sufficient, for the pertinent basis can be
supposed to depend analytically on h, c, to verify that they are zero when h = hp,q(c), but
that is clear by the definition of Un′ .

It follows that

(1) detHn′(h, c) = det Jn′(h, c) detKn′(h, c) +O
((

h− hp,q(c)
)P (n′−n)+1

)
if Jn′(h, c) is the matrix in the diagonal block corresponding to Wn′ . Since

detHn′(h, c) = An′

∏
k⩽n′

∏
p1q1=k

(
h− hp1q1(c)

)P (n′−p1q1)

we may divide the relation (1) by
(
h− hp1q1(c)

)P (n′−n)
and then set h = hp,q(c), c = c(m).

The result clearly yields Lemma 11 because h(m′) = hp1,q1(m
′), p1, q1 ⩽ n′, only if (p1, q1) is

(q, p) or (p′, q′) (case A) or (p, q) or (q′, p′) (case B).
Our assumption that Hn1

(
h(m), c(m)

)
is non-negative for a given m, p′ > m > p′ − 1, has

led to the conclusion that Jn1(m) is positive for large m and n1 < n′ but that Jn′(m) has
negative eigenvalues for large m. We show not that this is impossible.

As m approaches infinity, the point
(
h(m), c(m)

)
approaches (h0, c0) =

(
(p−q)2

4
, 1
)
. If

p ̸= q a suitable coordinate on the curve is µ = 1
m
. If p = q we may take µ = 1− c. All the

matrices Hn1(µ) = Hn1(m) = Hn1

(
h(m), c(m)

)
are analytic functions of µ. The eigenvalues

of Hn1(µ) are given by power series.

αi = αi(µ) = αi0 + αi1µ+ αi2µ
2 + · · ·

Let V 1
n1
(µ) be the space spanned by the eigenvectors corresponding to αi with αi0 = 0; let

V 2
n1
(µ) be the space spanned by the eigenvectors corresponding to αi with αi0 = αi1 = 0 and

so on. One proves by induction that these spaces are well-defined, depend analytically on µ (in
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the sense that we have analytic functions v1(µ), . . . , vP (n1)(µ), such that
{
v1(µ), . . . , vdk(µ)

}
,

dk = dimV k
n1

forms a basis of V k
n1
(µ) for each µ), and that µ−k

{
Hn1(µ)vi(µ), vj(µ)

}
, i ⩽ dk,

j ⩽ P (n1) is analytic for small µ. It can even be supposed that
{
Hn1(µ)vi(µ), vj(µ)

}
= 0,

i ⩽ dk, j > dk.
Let V k =

⊕
n1
V k
n1
(0) and Xk = V k/V k+1 =

⊕
n1
V k
n1
(0)/V k+1

n1
(0). If u =

∑
i⩽dk

aivi(0) ∈
V k
n1
(0) and v =

∑
i⩽dk

bivi(0) ∈ V k
n2
(0), define ⟨u, v⟩(k) to be 0 if n1 ̸= n2, and if n1 = n2 set

⟨u, v⟩(k) = ⟨u, v⟩(k)n1
=

∑
aibj lim

µ→0
µ−k

〈
vi(µ), vj(µ)

〉
=

∑
aibj lim

µ→0

{
µ−kHn1(µ)vi(µ), vj(µ)

}
.

It is clear that Hn1(µ) is non-negative for small µ if and only if the forms ⟨u, v⟩(k)n1 are all
positive.

Lemma 14.

(a) The spaces V k are all invariant under π = πh0,c0, so that v operates on Xk.
(b) The form ⟨·, ·⟩(k) on Xk satisfies ⟨Lmx, y⟩ = ⟨x, L−my⟩, m ∈ Z.

Proof. Set Lm(µ) = πh(µ),c(µ)(Lm) and Lm = Lm(0). We have to show for each n1 that
Lmvi ∈ V k if vi = vi(0) and i ⩽ dk. However

Lmvi = lim
µ→0

Lm(µ)vi(µ) = lim
∑
j

cij(µ)v
′
j(µ)

where the cij are analytic functions of µ. It is to be shown that cij(0) = 0 for j > d′k. The
primes refer to n2 = n1 −m rather than to n1. In other words it has to be shown that{

Hn2(µ)Lm(µ)vi(µ), v
′
ℓ(µ)

}
= O(uk)

for all ℓ. Since Hn2(µ)Lm(µ) = L∗
−m(µ)Hn1(µ), the adjoint of L−m(µ) being taken with

respect to the form {·, ·}, this is clear. So is the second assertion of the lemma. □

For any h ⩾ 0 the representation πh,1 on V h,1 has a unique irreducible quotient ρh,1 on Xh,1,
which by Lemma 3 carries a hermitian form for which ρh,1 is unitary in the sense that the
adjoint ρh,1(Lm) is ρ

h,1(L−m). Such a form is unique up to a scalar multiple. Take in particular

h = r2

4
, r ∈ Z. Then h = hp2,q2(c) if and only if (p2 − q2)

2 = r2. In particular, h = hr+1,1(c).

Thus the lowest weight for a null vector in V is r + 1 and h + r + 1 = (r+2)2

4
, so that the

kernel of V h,1 → Xh,1 contains a quotient of V h′,1, h′ = (r+2)2

4
. Thus V h,1 admits a sequence

of invariant subspaces V h,1 = V h,1(0) ⊇ V h,1(1) ⊇ V h,1(2) such that the representation on
V h,1(0)/V h,1(1) is ρh,1 and that on V h,1(1)/V h,1(2) is ρh

′,1. In general set h(ℓ) = 1
4
(r + 2ℓ)2.

Lemma 15. V h,1 admits an infinite decomposition series V h,1(0) ⊇ V h,1(1) ⊇ · · · ⊇ V h,1(ℓ) ⊇
· · · such that the representation on the quotient V h,1(ℓ)/V h,1(ℓ+ 1) is ρh(ℓ),1.

Proof. If λ = h+ k, k ∈ Z, k ⩾ 0, let

dλ = dim
{
v ∈ V h,1

∣∣∣ L0v = λv
}
,

dλ(ℓ) = dim
{
v ∈ Xh(ℓ),1

∣∣∣ L0v = λv
}
.
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The lemma follows easily from a formula of Kac ([2], Th. 5), according to which dλ =∑∞
ℓ=0 dλ(ℓ). Indeed, suppose we have constructed an initial segment of the series V h,1(0) ⊃

· · · ⊃ V h,1(ℓ). Then 1
4
(r + 2ℓ)2 is a lowest weight in V h,1(ℓ) and

dim

{
v ∈ V h,1(ℓ)

∣∣∣∣ L0v =
1

4
(r + 2ℓ)2

}
= 1.

Take V h,1(ℓ + 1) to be the sum of all invariant subspaces of V h,1(ℓ) for which the lowest
weight is greater than 1

4
(r + 2ℓ)2. □

Now take r = p− q. It follows immediately from the preceding lemma that Xk is the direct
sum of irreducible invariant subspaces Xk

j carrying distinct representations and that the

restriction of ⟨·, ·⟩k to Xk
j is either positive or negative. The assumption that we are trying to

contradict implies that the form is positive if Xk
j contains non-zero vectors of weight h+ n1,

n1 < n′, but that for some j and k for which Xk
j contains vectors of weight h + n′, it is

negative.
Thus the following lemma completes the proof of Theorem FQS.

Lemma 16. The equation r2

4
+ n′ = 1

4
(r + 2ℓ)2 has no solution ℓ ⩾ 0 in Z.

Proof. The equation may be written as n′ = ℓ(ℓ + r). Recall that n′ is (p + a)(q + a + 1)
in case A and (p + a + 1)(q + a) in case B, with a ⩾ 0. Since r = p − q, the equation is
(p+ a+ ℓ)(q+ a+1− ℓ) = ℓ or (p+ a+1+ ℓ)(q+ a− ℓ) = −ℓ. Both equations are manifestly
impossible. □
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