ON UNITARY REPRESENTATIONS OF THE VIRASORO ALGEBRA

ROBERT P. LANGLANDS

The Virasoro algebra \mathfrak{v} is an infinite-dimensional Lie algebra with basis L_m , $m \in \mathbf{Z}$, and Z and defining relations:

- (i) $[L_m, L_n] = (m-n)L_{m+n} + \frac{m(m^2-1)}{12}\delta_{m,-n}Z;$
- (ii) $[L_m, Z] = 0$

Some representations π of \mathfrak{v} of particular interest [2] are the Verma modules $(V,\pi) = (V^{h,c}, \pi^{h,c}), h, c \in \mathbf{R}$. They are characterized by the following conditions.

- (i) There is a vector $v = v_{\phi} \neq 0$ in V such that $L_n v = 0$, n > 0, $L_0 v = h v$, Z v = c v.
- (ii) Let A be the set of sequences of integers $k_1 \ge k_2 \ge \cdots \ge k_r > 0$ of arbitrary length, and if $\alpha \in A$ let $v_{\alpha} = \pi(L_{-k_1}) \cdots \pi(L_{-k_r}) v_{\phi}$. Then $\{v_{\alpha} \mid \alpha \in A\}$ is a basis of V.

Observe that V is just the free vector space with basis $\{v_{\alpha}\}$ and is thus independent of h and c. It is easy to see [1] that there is a unique sesquilinear form $\langle u, v \rangle = \langle u, v \rangle^{h,c}$ on V with the properties:

- (i) $\langle v_{\phi}, v_{\phi} \rangle = 1$;
- (ii) $\langle u, v \rangle = \overline{\langle v, u \rangle};$
- (iii) $\langle \pi(L_m)u, v \rangle = \langle u, \pi(L_{-m})v \rangle, m \in \mathbf{Z}.$

If this form is non-negative then the representation ρ of \mathfrak{v} on the quotient of V by the space of null vectors is unitary, in the sense that

$$\rho(L_m)^* = \rho(L_{-m}).$$

Theorem FQS. The form $\langle \cdot, \cdot \rangle_{h,c}$ is non-negative only if either $c \ge 1$, $h \ge 0$ or there exists an integer $m \ge 2$ and two integers p, q, $1 \le p < m$, $1 \le q \le p$, such that

$$c = 1 - \frac{6}{m(m+1)}, \quad h = \frac{((m+1)p - mq)^2 - 1}{4m(m+1)}.$$

This theorem has been proven by Friedan-Qiu-Shenker [1]. The sketch of the proof that they provided was unconscionably brief, and has evoked some scepticism among mathematicians. In this note, which grew out of a series of lectures at the Centre de recherches mathématiques that overlapped the workshop, details are worked out. In the meantime, Friedan, Qiu and Shenker have themselves provided them [3], but the present account, which turns out to diverge from theirs in some respects, may still be a useful supplement to it. Several other authors have proven that the conditions of the theorem are not only necessary but also sufficient for non-negativity, but that is not the concern here.

The proof proceeds by lemmas. I write Lv rather than $\pi(L)v, L \in \mathfrak{v}, v \in V$.

Lemma 1. If $\langle \cdot, \cdot \rangle$ is non-negative then $h \geqslant 0$, $c \geqslant 0$.

Proof. Since $L_nL_{-n}v_{\phi}=L_{-n}L_nv_{\phi}+2nhv_{\phi}+\frac{n(n^2-1)}{12}cv_{\phi}$, we have $\langle L_{-n}v_{\phi},L_{-n}v_{\phi}\rangle=2nh+\frac{n(n^2-1)}{12}c$. Taking n first equal to 1 and then very large we obtain the lemma.

For arbitrary m we set $c = c(m) = 1 - \frac{6}{m(m+1)}$, $h_{p,q} = h_{p,q}(m) = \frac{\left((m+1)p - mq\right)^2 - 1}{4m(m+1)}$, $p, q \in \mathbf{N}$. Observe that c(-1-m) = c(m) and that $h_{p,q}(-1-m) = h_{q,p}(m)$.

Lemma 2.

- (a) For 1 < c < 25, m is not real and neither is $h_{p,q}(m)$ unless p = q.
- (b) As m runs from 2 to ∞ , c increases monotonically from 0 to 1.
- (c) For c > 1, -1 < m < 0.
- (d) If -1 < m < 0 then $h_{p,q}(m) < 0$ unless p = q = 1 when $h_{p,q}(m) = 0$.
- (e) If p = q then $h_{p,q}(m) = \frac{p^2 1}{24}(1 c)$.
- (f) If $p \neq q$ then $h_{p,q} + h_{q,p} = \frac{p^2 + q^2 2}{24}(1 c) + \frac{(p-q)^2}{2}$. In addition $h_{p,q}h_{q,p}$ is equal to

$$\begin{split} \frac{(p^2q^2-p^2-q^2+1)}{16\cdot 36}(1-c)^2 \\ &+\frac{\left(2p^2q^2-pq(p^2+q^2)-(p-q)^2\right)}{48}(1-c) \\ &+\frac{\left(p^4+q^4-4p^3q-4pq^3+6p^2q^2\right)}{16}. \end{split}$$

Proof. The first four parts of the lemma are clear, and the last two are straightforward calculations. \Box

There is a second sesquilinear form on V defined by $\{v_{\alpha}, v_{\beta}\} = \delta_{\alpha\beta}$. If V_n is the subspace of V with basis $\{v_{\alpha} \mid \alpha = (k_1, \ldots, k_r) \mid \sum_{i=1}^r k_i = n\}$, then $V = \bigoplus_{n \geq 0} V_n$ and the spaces V_n are mutually orthogonal with respect to both forms. The first form is defined on V_n with respect to the second by a hermitian linear transformation $H_n = H_n(h, c) : \langle u, v \rangle_n = \{H_n u, v\}_n$. Let P(n) be the dimension of V_n . It is the number of partitions of v_n . The Kac determinant formula (cf. [1]) is the key to the proof of Theorem FQS.

Kac determinant formula. *If* c = c(m) *then*

$$\det H_n(h,c) = A_n \prod_{k \le n} \prod_{pq=k} (h - h_{p,q})^{P(n-k)},$$

where A_n is a positive constant.

Lemma 3. The form $\langle \cdot, \cdot \rangle_n$ is non-negative for $h \ge 0$, $c \ge 1$.

Proof. By continuity it suffices to treat pairs for which h > 0, c > 1. Since the previous lemma implies that $\det H_n(h,c)$ is nowhere zero in this region, it suffices to prove that the form is positive for one pair (h,c). If $\alpha = (k_1, \ldots, k_r)$, $r = r(\alpha)$, $n(\alpha) = k_1 + \cdots + k_r$, set $v'_{\alpha} = L_{-k_r} \cdots L_{-k_1} v_{\phi}$. It is generally different than v_{α} . It clearly suffices to show that for a given c and h large,

(3.1)
$$\langle v_{\alpha}', v_{\alpha}' \rangle = c_{\alpha} h^{r(\alpha)} (1 + o(1)), \qquad c_{\alpha} > 0$$

(3.2)
$$\langle v'_{\alpha}, v'_{\beta} \rangle = o\left(h^{\left(r(\alpha) + r(\beta)\right)/2}\right), \qquad \alpha \neq \beta.$$

This is proved by induction on $n(\alpha) + n(\beta)$. First of all $L_k^a L_{-k}^a$ is equal to

$$L_k^{a-1}(bL_0+d)L_{-k}^{a-1}+L_k^{a-1}L_{-k}L_kL_{-k}^{a-1}, \qquad b>0.$$

Moving the single L_k in the second term ever further to the right, we obtain finally

$$L_k^a L_{-k}^a = L_k^{a-1} (bL_0 + d) L_{-k}^{a-1} + L_k^{a-1} L_{-k}^a L_k,$$
 $b > 0$

Take $k_1 \geqslant k_2 \geqslant \cdots \geqslant k_r > k$. If $\alpha = (k_1, \dots, k_r, k, \dots, k)$, then

$$\langle v'_{\alpha}, v'_{\alpha} \rangle = \langle L_{k_1} \cdots L_{k_r} L_k^a L_{-k_r}^a L_{-k_r} \cdots L_{-k_1} v_{\phi}, v_{\phi} \rangle$$

$$= c_{k,a} h (1 + o(h)) \langle L_{k_1} \cdots L_{k_r} L_k^{a-1} L_{-k}^{a-1} L_{-k_r} \cdots L_{-k_1} v_{\phi}, v_{\phi} \rangle$$

$$+ \langle L_{k_1} \cdots L_{k_r} L_k^{a-1} L_{-k}^a L_k L_{-k_r} \cdots L_{-k_1} v_{\phi}, v_{\phi} \rangle$$

with $c_{k,a} > 0$. In the second term we move the L_k further and further to the right obtaining the sum of

$$(k+k_r)\langle L_{k_1}\cdots L_{k_r}L_k^{a-1}L_{-k}^aL_{-k_r}\cdots L_{-k_{j+1}}L_{-(k_{j-k})}L_{-k_{j-1}}\cdots L_{-k_1}v_{\phi},v_{\phi}\rangle.$$

The induction assumption together with the defining relations for v implies readily that each of these terms is $o(h^{r(\alpha)})$ and that

$$\langle L_{k_1} \cdots L_{k_r} L_k^{a-1} L_{-k_r}^{a-1} L_{-k_r} \cdots L_{-k_1} v_{\phi}, v_{\phi} \rangle = \langle v_{\gamma}', v_{\gamma}' \rangle = c_{\gamma} h^{r(\gamma)} (1 + o(1)),$$

if $\gamma = (k_1, \dots, k_r, k, \dots, k)$, with k repeated a - 1 times, so that $r(\alpha) = 1 + r(\gamma)$.

On the other hand, if $\beta = (\ell_1, \dots, \ell_s, k, \dots, k)$, with k repeated $a' \leq a$ times, a > 0, $a' \geq 0$, $\ell_s \geq k$ even if a' = 0, then

$$\langle v_{\beta}', v_{\alpha}' \rangle = \langle L_{k_1} \cdots L_{k_r} L_k^a L_{-k}^{a'} L_{-\ell_s} \cdots L_{-\ell_1} v_{\phi}, v_{\phi} \rangle$$

is equal to the sum of

$$c_{k,a'}h(1+o(1))\langle L_{k_1}\cdots L_{k_r}L_k^{a-1}L_{-k}^{a'-1}L_{-\ell_s}\cdots L_{-\ell_1}v_{\phi},v_{\phi}\rangle$$

and

$$\sum_{j} (k + \ell_{j}) \langle L_{k_{1}} \cdots L_{k_{r}} L_{k}^{a-1} L_{-k}^{a'} L_{-\ell_{s}} \cdots L_{-\ell_{j+1}} L_{-(\ell_{j}-k)} L_{-\ell_{j-1}} \cdots L_{-\ell_{1}} v_{\phi}, v_{\phi} \rangle.$$

We take $c_{k,0} = 0$ if a' = 0. So induction yields (3.2).

Observe that if m > 0 and p > q then $h_{p,q} > h_{q,p}$. If $h \ge 0$ and m > 0 define M > 0 by $M^2 = 1 + 4m(m+1)h$. Then $M \ge 1$. Let D be the closed shaded region in the diagram I. It is bounded by the lines

$$mx - (m+1)y = \pm M$$
 and $(m+1)x - my = M$.

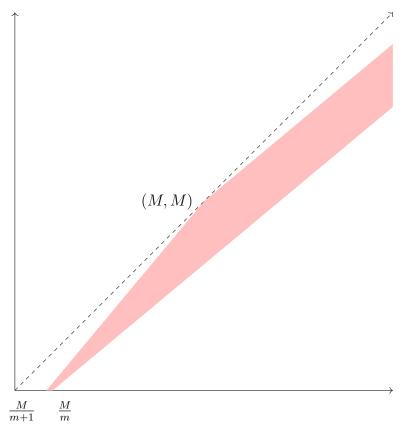


Diagram I

Lemma 4.

- (a) $h_{p,q} \geqslant h \geqslant h_{q,p}$ if and only if $(p,q) \in D$. (b) D contains an integral point (p,q) with q > 0.

Proof. Since $h_{p,q} \ge h$ if and only if $((m+1)p - mq)^2 \ge M^2$ and $h \ge h_{q,p}$ if and only if $((m+1)q-mp)^2 \leq M^2$, the first statement of the lemma is clear. For the second choose a large integer p and let $a = \frac{mp-M}{m+1}$. Then the points (p,q) with $a \leqslant q \leqslant a + \frac{2M}{m+1}$ lie in D. So do the points (p+1,q), $a + \frac{m}{m+1} \leqslant q \leqslant a + \frac{m+2M}{m+1}$ and so on. So we need only show that one of the intervals $\left[a + \frac{km}{m+1}, a + \frac{km+2M}{m+1}\right]$, $k \in \mathbf{Z}$, $k \geqslant 0$, contains an integer. This is clear if $\frac{m}{m+1}$ is irrational. Otherwise, increasing q if necessary, we may suppose that a is as close to its integral part as any $a + \frac{km}{m+1}$. Then $a + \frac{m}{m+1} < [a] + 1$, but $a + \frac{m+2M}{m+1} \geqslant a + \frac{m+2}{m+1} > [a] + 1$, and the interval $\left[a + \frac{m}{m+1}, a + \frac{m+2M}{m+1}\right]$ contains [a] + 1.

Let $p(h,c) = \min_{(p,q) \in D} p$ and let $q(h,c) = \min_{(p,q) \in D} q$. It is clear that

$$P(h,c) = (p(h,c), q(h,c)) \in D.$$

In the following geometrical arguments, it is sometimes necessary to recall that $h-h_{p_0,p_0}<0$ if and only if $p_0 > M$.

Lemma 5. If P(h,c) lies in the interior of D then $\langle v,v\rangle$ assumes negative values in V.

Proof. Let (p,q) = P(h,c) and let n = pq. If $p_0q_0 \leqslant n$, $p_0 \geqslant q_0$ and $(p_0,q_0) \neq (p,q)$ then either $p_0 < p$ or $q_0 < q$ so that $(p_0, q_0) \notin D$. In general set

$$\phi_{p_0,q_0} = (h - h_{p_0,q_0})(h - h_{q_0,p_0}), p_0 \neq q_0,$$

= $h - h_{p_0,q_0}, p_0 = q_0.$

If $(p_0, q_0) \notin D$ and $p_0 \neq q_0$ then $\phi_{p_0, q_0} > 0$. Suppose that for some p_0 with $p_0^2 \leqslant pq$ we had $h - h_{p_0, p_0} < 0$. Then there would be a minimum such p_0 and if $n_0 = p_0^2$ then

$$\det H_{n_0} = A_{n_0} \prod_{\substack{p_1 \geqslant q_1 \\ n_1 = p_1 q_1 \leqslant n_0}} \phi_{p_1, q_1}^{P(n_0 - n_1)}$$

Since P(h,c) lies in the interior of $D, p \neq q$ and none of the pairs (p_1,q_1) that intervene here lie in D. Moreover, all terms of the products are positive save $\phi_{p_0,p_0}^{P(0)} = \phi_{p_0,p_0}$. Since this is negative, $\langle \cdot, \cdot \rangle$ assumes negative values on V_{n_0} .

If, however, $\phi_{p_0,p_0} > 0$ for all $p_0 \leqslant q$ then the same argument shows that $\det H_n < 0$, so that $\langle \cdot, \cdot \rangle$ assumes negative values on V_n .

The treatment of those points (h,c) for which P(h,c) lies on the boundary of D is more delicate. There are at first three possibilities for (p,q) = P(h,c):

- (A) mp (m+1)q = M;
- (B) (m+1)p mq = M;
- (C) $mp (m+1)q = -M, p \neq q$;

Lemma 6. The case (C) above does not occur.

Proof. It is clear from the diagram defining D that in case (C), $p \ge M$, $q \ge M$. If q = 1then M = 1 and p = 1, so that we have rather case (B). If q > 1 then p > 1 and (m+1)(q-1) - m(p-1) = (m+1)q - mp - 1, so that M > (m+1)(q-1) - m(p-1) > -M. Moreover, (m+1)(p-1)-m(q-1)-M=(m+1)(p-1-q)-m(q-1-p)=(2M+1)(p-q)-1. Since $m \ge 2$ this is positive if $p \ne q$. Consequently $(p-1,q-1) \in D$, and this is a contradiction.

Fix (p,q). In case (A) we have $h=h_{q,p}(m), c=c(m)$. In case (B) we have $h=h_{p,q}(m),$ c = c(m).

Lemma 7.

- (a) The set of all $m \ge 2$ for which $h = h_{q,p}(m)$, c = c(m) yields case (A) is the interval m > q + p - 1.
- (b) The set of all $m \ge 2$ for which $h = h_{p,q}(m)$, c = c(m) yields case (B) is the interval m > q + p - 1 if $(p, q) \neq (1, 1)$ and is the interval $m \ge 2$ if (p, q) = (1, 1).

It will be helpful, when proving this and the following lemmas, to keep the diagrams IIA and IIB in mind.

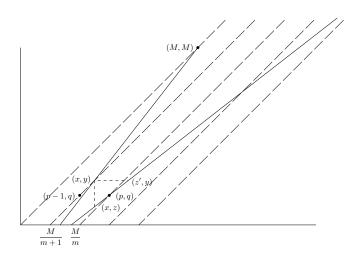


Diagram IIA

Proof. We first show that if $h_{q,p}(m_0)$, $c(m_0)$ yield case (A) then so does $(h_{q,p}(m), c(m))$ for $m \ge m_0$. It is clear from the diagram that it is sufficient to verify that M, $\frac{M}{m+1}$, and $\frac{M}{m}$ are increasing functions of m. But M = m(p-q) - q, $\frac{M}{m} = (p-q) - \frac{q}{m}$, $\frac{M}{m+1} = (p-q) - \frac{p}{m+1}$. It is also clear that

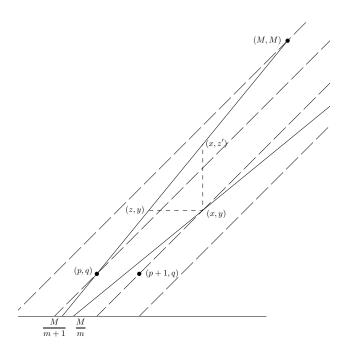


Diagram IIB

we can decrease m without passing out of case (A) so long as M = m(p-q) - q remains greater than or equal to 1 and (m+1)(p-1) - mq > mp - (m+1)q. But

$$(m+1)(p-1) - mq = mp - (m+1)q \iff m = p+q-1.$$

As we decrease to these points, M decreases to

$$(p+q-1)(p-q)-q=p^2-q^2-p=(p-1)^2-q^2+p-1.$$

This number is greater than 1 because $p > q \ge 1$.

For case (B), M = m(p-q) + p is a non-decreasing function of m, and $\frac{M}{m} = (p-q) + \frac{p}{m}$, $\frac{M}{m+1} = (p-q) + \frac{q}{m+1}$ are decreasing functions. Since the slope of mp - (m+1)q = M is $1 - \frac{1}{m+1}$, it is increasing and the conclusion is the same. The minimal value of m is given by

$$(m+1)p - mq = mp - (m+1)(q-1) \iff m = p+q-1.$$

because

$$(p+q-1)(p-q) + p = p^2 - q^2 + q \ge 1,$$

unless p = q = 1 when m cannot go below 2.

In case (A) the intersection of the two lines (m+1)x - my = M and x - y = p - q - 1 is a point (x(m), y(m)) with $p' \ge x(m) > p' - 1$ where p' is an integer, $p' \ge p$. If x(m) = p' then y(m) = q' = p' - p + q + 1, and m = p' + q. Thus $m \in \{2, 3, ...\}$, p' < m, $q' \le p'$ and c = c(m), $h = h_{p',q'}(m)$.

In case (B) the intersection of the lines x - y = p - q + 1 and mx - (m+1)y = M is a point (x(m), y(m)) with $p' \ge x(m) > p' - 1$, $p' - 1 \ge p$. If x(m) = p' then m = p + q' lies in $\{2, 3, \dots\}$, $q \le p$, p < m and c = c(m), $h = h_{p,q}(m)$.

Thus to prove the theorem it suffices to establish the following proposition.

Proposition. If case (A) or (B) obtains and p' > x(m) > p' - 1 then the form $\langle \cdot, \cdot \rangle$ assumes negative values in V.

We assume the contrary and derive a contradiction. We occasionally abbreviate c(m) to c and $h_{q,p}(m)$ or $h_{p,q}(m)$ to h(m) or to h.

Lemma 8.

- (a) Suppose p' > x(m) > p' 1. If (p_1, q_1) lies on the boundary of D(h, c) and $p_1q_1 \leq p'q'$ then $(p_1, q_1) = (p, q)$.
- (b) Define m' by p' = x(m') and set c' = c(m'), $h' = h_{q,p}(m')$ or $h_{p,q}(m')$. If (p_1, q_1) lies on the boundary of D(h', c') and $p_1q_1 \leq p'q'$ then (p_1, q_1) is (p, q) or (p', q').

Proof. Set (x,y) = (x(m),y(m)) and define z, z' as indicated by the diagrams. It clearly suffices to show that in case (A) y-z < 2, z'-x < 2, and that in case (B), x-z < 2, z'-y < 2. In case (A) elementary algebra yields m = x+q, $y-z = \frac{x+z}{m} = 1 + \frac{z-q}{x+q}$ and $\frac{z-q}{x+q} = \frac{x-p}{x+q} \cdot \frac{z-q}{x-p} < 1$. On the other hand $z'-x = \frac{x+y}{m} = 1 + \frac{y-q}{p+y-1} < 2$. A similar argument works for case (B).

Since p, q and p' are fixed it will be useful to let C denote the curve c = c(m), $h = h_{q,p}(m)$ (A) or $h = h_{p,q}(m)$ (B), m > p' - 1.

Lemma 9.

- (a) If x(m) > p' 1, $x(m) \neq p'$, and $n_1 \leq n'$, then the dimension of the space of null vectors in V_{n_1} is $P(n_1 n)$.
- (b) If x(m) = p' and $n_1 < n'$ then the dimension of the space of null vectors in V_{n_1} is $P(n_1 n)$, but if $n_1 = n'$ it is $P(n_1 n) + 1$.

Proof. Observe that $P(n_1 - n) = 0$ if $n_1 < n$ and that when this is so the lemma is clear. So take $n_1 \ge n$ and denote the pertinent dimension by $d_{n_1}^0$. We begin by showing that $d_{n_1}^0 > 0$ and that $d_{n_1}^0 \le P(n_1 - n)$ unless x(m) = p' and $n_1 = n'$ when $d_{n_1}^0 \le P(n_1 - n) + 1$.

For $0 \le c < 1$, m is locally an analytic function of c and we may write $h_{p,q}(m) = h_{p,q}(c) = h(c)$ or $h_{q,p}(m) = h_{q,p}(c) = h(c)$. Fix c and consider $H_{n_1}(h,c)$ as a function of h near h(c). Its eigenvalues are the roots of a polynomial equation with real analytic, indeed polynomial, coefficients and they are all real for h real. It is easily seen that this implies that there is no ramification at h = h(c) and that in a neighborhood of this point there are expansions

$$\alpha_i(h) = \alpha_{i0} + \alpha_{i1}(h - h(c)) + \alpha_{i2}(h - h(c))^2 + \cdots, \ 1 \le i \le P(n_1)$$

for the eigenvalues of H_{n_1} . Thus

$$\det H_{n_1}(h,c) = \prod_{i=1}^{P(n_1)} \left(\alpha_{i0} + \alpha_{i1} (h - h(c)) + \cdots \right),$$

and the power of h - h(c) that divides it is greater than or equal to the number of zero eigenvalues of $H_{n_1}(h(c), c)$. On the other hand, the left side is equal to

$$A_n \prod_{k \leq n_1} \prod_{p_1 q_1 = k} (h - h_{p_1, q_1}(c))^{P(n_1 - k)},$$

and $h_{p_1,q_1}(c) = h(c)$ only if (p_1,q_1) or (q_1,p_1) lies in the boundary of D. Thus the assertion follows from Lemma 8.

Choosing $n_1 = n$, we see in particular that the dimension of the null space of V_n is 1. Thus if m > p' - 1 then in a neighborhood of (h(m), c(m)) we can find an analytic function v(h, c) with values in V_n such that v(h, c) has length 1, is an eigenvector of $H_n(h, c)$, and corresponds to the eigenvalue 0 when (h, c) falls on the curve C.

Since

$$L_0v(h(m), c(m)) = (h(m) + n)v(h(m), c(m)),$$

$$L_kv(h(m), c(m)) = 0, \quad k > 0,$$

there is a homomorphism of \mathfrak{v} -modules, $\phi \colon V^{h(m)+n,c(m)} \to V^{h(m),c(m)}$, taking $v_{\phi}^{h(m)+n,c(m)}$ to $v\left(h(m),c(m)\right)$. If it is injective on $V_{n_1-n}^{h(m)+n,c(m)}$ then $d_{n_1}^0 \geqslant P(n_1-n)$ because the image consists of null vectors. Since $d_{n_1}^0$ is lower semicontinuous, $d_{n_1}^0$ will be greater than or equal to $P(n_1-n)$ everywhere on C if it is so on a dense set. The homomorphism ϕ will be injective if $\det H_{n_1-n}^{h(m)+n,c(m)} \neq 0$ because the kernel consists of null vectors. So it is enough to show that this determinant does not vanish identically on C. However, if $h(m)+n=h_{p_1,q_1}(m)$ then

$$((m+1)p + mq)^{2} = ((m+1)p_{1} - mq_{1})^{2}$$

or

$$(mp + (m+1)q)^2 = ((m+1)p_1 - mq_1)^2.$$

This can occur for at most two values of m.

It remains to show that at m' the dimension of the space of null vectors in $V_{n'}$ is P(n'-n)+1. For this we need further lemmas.

Lemma 10. det
$$H_{n'-n}^{h(m')+n,c(m')} \neq 0$$
.

Proof. It has to be shown that the equality $h(m') + n = h_{p_1,q_1}(m')$, $p_1q_1 \leq n' - n$ is impossible. This equality amounts to

(A)
$$(m'p + (m'+1)q)^2 = ((m'+1)p_1 - m'q_1)^2$$

or

(B)
$$((m'+1)p + m'q)^2 = ((m'+1)p_1 - m'q_1)^2.$$

It is not supposed that $p_1 \geqslant q_1$.

The first equation implies that $m'p + (m'+1)q = \pm ((m'+1)p_1 - m'q_1)$ or $m'(p \pm q_1) = (m'+1)(\pm p_1 - q)$. Since m' is an integer this implies $(p \pm q_1) = a(m'+1)$, $(\pm p_1 - q) = am'$. Since n' = p'q' = (m'-q)(m'-p+1) the inequality $n' \ge n + p_1q_1$ becomes

$$(m'-q)(m'-p+1) \geqslant a(m'+1)q - am'p + a^2m'(m'+1)$$

or

$$((1+a)(m'+1) - p)((1-a)m' - q) \ge 0.$$

Since m' = p' + q = p + q' - 1, m' > q, m' + 1 > p. So the inequality is possible only for a = 0, but a cannot be 0. The case (B) is treated in a similar fashion.

For $n_1 < n'$ or $m \neq m'$ we let $U_{n_1} = U_{n_1}(m)$ be the space of null vectors in V_{n_1} . For h, c close to h(m'), c(m') we let $U_{n_1}(h, c)$ be the span of

$$\left\{L_{-k_1}\cdots L_{-k_r}v(h,c)\mid k_1\geqslant \cdots\geqslant k_r>0, \sum k_i=n'-n\right\}.$$

We set $U_{n'}(m) = U_{n'}(h(m), c(m))$, the two definitions of $U_{n'}(m)$ coinciding when they both apply. Thus for m > p' - 1, $U_{n_1}(m)$ is defined and analytic as a function of m. Let W_{n_1} be its orthogonal complement with respect to the form $\{\cdot, \cdot\}$. It follows from that part of Lemma 9 already proved that the restriction $J_{n_1} = J_{n_1}(m)$ of H_{n_1} to W_{n_1} is non-singular unless $n_1 = n'$, m = m'. In particular, our assumption, which was made for a particular m, implies that $J_{n_1}(m)$ is positive for all m > p' - 1 if $n_1 < n'$.

Lemma 11. Near
$$m'$$
, det $J_{n'}(m) = \delta(m)(m - m')$ where $\frac{1}{\delta} \geqslant |\delta(m)| \geqslant \delta > 0$.

It will follow from this lemma that the remaining assertion of Lemma 9 is true. In addition the lemma together with our assumption on the non-negativity of $\langle \cdot, \cdot \rangle$ for a particular m, p' > x(m) > p' - 1, will imply that the form takes negative values for m > m' because det $J_{n'}(m)$ changes sign at m'.

Let v(h, c), defined in a neighborhood of (h(m'), c(m')), correspond to the eigenvalue $\alpha(h, c)$ of $H_n(h, c)$. All the other eigenvalues of $H_n(h, c)$ are bounded above and, if the neighborhood is sufficiently small, away from 0. On the other hand, all factors $h - h_{p_1,q_1}(c) = h - h_{p_1,q_1}(m)$, c = c(m), of det $H_n(h, c)$ are bounded away from 0 in a neighborhood of h(m'), c(m') except for h - h(c), where h(c) is $h_{q,p}(c)$ or $h_{p,q}(c)$ according as we are dealing with case A or case B. Thus we have the following lemma.

Lemma 12. In a neighborhood of (h(m'), c(m')) we have $\alpha(h, c) = a(h, c)(h - h(c))$ with $\frac{1}{a} \ge |a(h, c)| \ge a > 0$, a being a constant.

Here h(c) is $h_{q,p}(m)$ (A) or $h_{p,q}(m)$ (B), c=c(m). More generally we have

Lemma 13. Let $K_{n'}(h,c)$ be the restriction of $H_{n'}(h,c)$ to $U_{n'}(h,c)$. Then, in a neighborhood of (h(m'), c(m')), $\det K_{n'}(h,c) = k(h,c)\alpha(h,c)^{P(n'-n)}$, with $\frac{1}{k} \geqslant |k(h,c)| \geqslant k > 0$.

Proof. The determinant of $K_{n'}(h,c)$ is that of the form $\langle \cdot, \cdot \rangle_{n'}$, calculated with respect to a basis of $U_{n'}(h,c)$ orthogonal with respect to the form $\{\cdot,\cdot\}_n$. However the basis

$$\left\{ \phi(v_{\alpha}) \mid v_{\alpha} \in V^{h(m)+n,c(m)}, \ n(\alpha) = n'-n \right\}$$

is related to such a basis by a matrix whose determinant is bounded in absolute value above and below. So it is enough to consider $\det\left(\left\{\phi(v_{\alpha}),\phi(v_{\beta})\right\}\right)$.

We have

$$\langle \phi(v_{\alpha}), \phi(v_{\beta}) \rangle = \langle L_{\ell_s} \cdots L_{\ell_1} L_{-k_1} \cdots L_{-k_r} v(h, c), v(h, c) \rangle$$

$$= \{ L_{\ell_s} \cdots L_{\ell_1} L_{-k_1} \cdots L_{-k_r} v(h, c), H_{n'}(h, c) v(h, c) \}$$

$$= \alpha(h, c) \{ L_{\ell_s} \cdots L_{\ell_1} L_{-k_1} \cdots L_{-k_r} v(h, c), v(h, c) \}.$$

At h(m), c(m) the value of $\det \left(\left\{ L_{\ell_s} \cdots L_{\ell_1} L_{-k_1} \cdots L_{-k_r} v(h,c), v(h,c) \right\} \right)$ is

$$\det\left(\langle v_{\alpha}, v_{\beta}\rangle_{n'-n}^{h(m')+n, c(m')}\right).$$

By Lemma 10 this is not 0. Lemma 13 follows.

In a neighborhood of h(m), c(m) we decompose $V_{n'}$ as an orthogonal sum $U_{n'} \oplus W_{n'}$. The linear transformation $H_{n'}(h,c)$, or its matrix with respect to a compatible basis, then decomposes into blocks. I claim that the entries in the off-diagonal blocks are $O(h - h_{p,q}(c))$ in a neighborhood of h(m), c(m). To verify this it is sufficient, for the pertinent basis can be supposed to depend analytically on h, c, to verify that they are zero when $h = h_{p,q}(c)$, but that is clear by the definition of $U_{n'}$.

It follows that

(1)
$$\det H_{n'}(h,c) = \det J_{n'}(h,c) \det K_{n'}(h,c) + O\left(\left(h - h_{p,q}(c)\right)^{P(n'-n)+1}\right)$$

if $J_{n'}(h,c)$ is the matrix in the diagonal block corresponding to $W_{n'}$. Since

$$\det H_{n'}(h,c) = A_{n'} \prod_{k \le n'} \prod_{p_1 q_1 = k} (h - h_{p_1 q_1}(c))^{P(n' - p_1 q_1)}$$

we may divide the relation (1) by $(h - h_{p_1q_1}(c))^{P(n'-n)}$ and then set $h = h_{p,q}(c)$, c = c(m). The result clearly yields Lemma 11 because $h(m') = h_{p_1,q_1}(m')$, $p_1, q_1 \leq n'$, only if (p_1, q_1) is (q, p) or (p', q') (case A) or (p, q) or (q', p') (case B).

Our assumption that $H_{n_1}(h(m), c(m))$ is non-negative for a given m, p' > m > p' - 1, has led to the conclusion that $J_{n_1}(m)$ is positive for large m and $n_1 < n'$ but that $J_{n'}(m)$ has negative eigenvalues for large m. We show not that this is impossible.

As m approaches infinity, the point (h(m), c(m)) approaches $(h_0, c_0) = \left(\frac{(p-q)^2}{4}, 1\right)$. If $p \neq q$ a suitable coordinate on the curve is $\mu = \frac{1}{m}$. If p = q we may take $\mu = 1 - c$. All the matrices $H_{n_1}(\mu) = H_{n_1}(m) = H_{n_1}(h(m), c(m))$ are analytic functions of μ . The eigenvalues of $H_{n_1}(\mu)$ are given by power series.

$$\alpha_i = \alpha_i(\mu) = \alpha_{i0} + \alpha_{i1}\mu + \alpha_{i2}\mu^2 + \cdots$$

Let $V_{n_1}^1(\mu)$ be the space spanned by the eigenvectors corresponding to α_i with $\alpha_{i0} = 0$; let $V_{n_1}^2(\mu)$ be the space spanned by the eigenvectors corresponding to α_i with $\alpha_{i0} = \alpha_{i1} = 0$ and so on. One proves by induction that these spaces are well-defined, depend analytically on μ (in

the sense that we have analytic functions $v_1(\mu), \ldots, v_{P(n_1)}(\mu)$, such that $\{v_1(\mu), \ldots, v_{d_k}(\mu)\}$, $d_k = \dim V_{n_1}^k$ forms a basis of $V_{n_1}^k(\mu)$ for each μ), and that $\mu^{-k}\{H_{n_1}(\mu)v_i(\mu), v_j(\mu)\}$, $i \leq d_k$, $j \leq P(n_1)$ is analytic for small μ . It can even be supposed that $\{H_{n_1}(\mu)v_i(\mu), v_j(\mu)\} = 0$, $i \leq d_k$, $j > d_k$.

 $i \leqslant d_k, j > d_k.$ Let $V^k = \bigoplus_{n_1} V_{n_1}^k(0)$ and $X^k = V^k/V^{k+1} = \bigoplus_{n_1} V_{n_1}^k(0)/V_{n_1}^{k+1}(0)$. If $u = \sum_{i \leqslant d_k} a_i v_i(0) \in V_{n_1}^k(0)$ and $v = \sum_{i \leqslant d_k} b_i v_i(0) \in V_{n_2}^k(0)$, define $\langle u, v \rangle^{(k)}$ to be 0 if $n_1 \neq n_2$, and if $n_1 = n_2$ set

$$\begin{split} \langle u,v\rangle^{(k)} &= \langle u,v\rangle_{n_1}^{(k)} = \sum a_i \bar{b}_j \lim_{\mu \to 0} \mu^{-k} \big\langle v_i(\mu),v_j(\mu) \big\rangle \\ &= \sum a_i \bar{b}_j \lim_{\mu \to 0} \Big\{ \mu^{-k} H_{n_1}(\mu) v_i(\mu),v_j(\mu) \Big\}. \end{split}$$

It is clear that $H_{n_1}(\mu)$ is non-negative for small μ if and only if the forms $\langle u, v \rangle_{n_1}^{(k)}$ are all positive.

Lemma 14.

- (a) The spaces V^k are all invariant under $\pi = \pi^{h_0, c_0}$, so that \mathfrak{v} operates on X^k .
- (b) The form $\langle \cdot, \cdot \rangle^{(k)}$ on X^k satisfies $\langle L_m x, y \rangle = \langle x, L_{-m} y \rangle$, $m \in \mathbb{Z}$.

Proof. Set $L_m(\mu) = \pi^{h(\mu),c(\mu)}(L_m)$ and $L_m = L_m(0)$. We have to show for each n_1 that $L_m v_i \in V^k$ if $v_i = v_i(0)$ and $i \leq d_k$. However

$$L_m v_i = \lim_{\mu \to 0} L_m(\mu) v_i(\mu) = \lim_{\mu \to 0} \sum_i c_{ij}(\mu) v_j'(\mu)$$

where the c_{ij} are analytic functions of μ . It is to be shown that $c_{ij}(0) = 0$ for $j > d'_k$. The primes refer to $n_2 = n_1 - m$ rather than to n_1 . In other words it has to be shown that

$$\{H_{n_2}(\mu)L_m(\mu)v_i(\mu), v'_{\ell}(\mu)\} = O(u^k)$$

for all ℓ . Since $H_{n_2}(\mu)L_m(\mu)=L_{-m}^*(\mu)H_{n_1}(\mu)$, the adjoint of $L_{-m}(\mu)$ being taken with respect to the form $\{\cdot,\cdot\}$, this is clear. So is the second assertion of the lemma.

For any $h \ge 0$ the representation $\pi^{h,1}$ on $V^{h,1}$ has a unique irreducible quotient $\rho^{h,1}$ on $X^{h,1}$, which by Lemma 3 carries a hermitian form for which $\rho^{h,1}$ is unitary in the sense that the adjoint $\rho^{h,1}(L_m)$ is $\rho^{h,1}(L_{-m})$. Such a form is unique up to a scalar multiple. Take in particular $h = \frac{r^2}{4}$, $r \in \mathbb{Z}$. Then $h = h_{p_2,q_2}(c)$ if and only if $(p_2 - q_2)^2 = r^2$. In particular, $h = h_{r+1,1}(c)$. Thus the lowest weight for a null vector in V is r+1 and $h+r+1 = \frac{(r+2)^2}{4}$, so that the kernel of $V^{h,1} \to X^{h,1}$ contains a quotient of $V^{h',1}$, $h' = \frac{(r+2)^2}{4}$. Thus $V^{h,1}$ admits a sequence of invariant subspaces $V^{h,1} = V^{h,1}(0) \supseteq V^{h,1}(1) \supseteq V^{h,1}(2)$ such that the representation on $V^{h,1}(0)/V^{h,1}(1)$ is $\rho^{h,1}$ and that on $V^{h,1}(1)/V^{h,1}(2)$ is $\rho^{h',1}$. In general set $h^{(\ell)} = \frac{1}{4}(r+2\ell)^2$.

Lemma 15. $V^{h,1}$ admits an infinite decomposition series $V^{h,1}(0) \supseteq V^{h,1}(1) \supseteq \cdots \supseteq V^{h,1}(\ell) \supseteq \cdots$ such that the representation on the quotient $V^{h,1}(\ell)/V^{h,1}(\ell+1)$ is $\rho^{h(\ell),1}$.

Proof. If $\lambda = h + k$, $k \in \mathbb{Z}$, $k \geqslant 0$, let

$$d_{\lambda} = \dim \left\{ v \in V^{h,1} \mid L_0 v = \lambda v \right\},$$

$$d_{\lambda}(\ell) = \dim \left\{ v \in X^{h(\ell),1} \mid L_0 v = \lambda v \right\}.$$

The lemma follows easily from a formula of Kac ([2], Th. 5), according to which $d_{\lambda} = \sum_{\ell=0}^{\infty} d_{\lambda}(\ell)$. Indeed, suppose we have constructed an initial segment of the series $V^{h,1}(0) \supset \cdots \supset V^{h,1}(\ell)$. Then $\frac{1}{4}(r+2\ell)^2$ is a lowest weight in $V^{h,1}(\ell)$ and

$$\dim \left\{ v \in V^{h,1}(\ell) \mid L_0 v = \frac{1}{4} (r + 2\ell)^2 \right\} = 1.$$

Take $V^{h,1}(\ell+1)$ to be the sum of all invariant subspaces of $V^{h,1}(\ell)$ for which the lowest weight is greater than $\frac{1}{4}(r+2\ell)^2$.

Now take r = p - q. It follows immediately from the preceding lemma that X^k is the direct sum of irreducible invariant subspaces X_j^k carrying distinct representations and that the restriction of $\langle \cdot, \cdot \rangle^k$ to X_j^k is either positive or negative. The assumption that we are trying to contradict implies that the form is positive if X_j^k contains non-zero vectors of weight $h + n_1$, $n_1 < n'$, but that for some j and k for which X_j^k contains vectors of weight h + n', it is negative.

Thus the following lemma completes the proof of Theorem FQS.

Lemma 16. The equation $\frac{r^2}{4} + n' = \frac{1}{4}(r+2\ell)^2$ has no solution $\ell \geqslant 0$ in \mathbb{Z} .

Proof. The equation may be written as $n' = \ell(\ell + r)$. Recall that n' is (p + a)(q + a + 1) in case A and (p + a + 1)(q + a) in case B, with $a \ge 0$. Since r = p - q, the equation is $(p + a + \ell)(q + a + 1 - \ell) = \ell$ or $(p + a + 1 + \ell)(q + a - \ell) = -\ell$. Both equations are manifestly impossible.

References

- [1] Friedan, D., Z. Qiu and S. Shenker, Conformal invariance, unitarity and two-dimensional critical exponents, in Vertex operators in mathematics and physics, eds. J. Lepowsky, S. Mandelstam and I. M. Singer, Springer (1985).
- [2] Rocha-Caridi, A. Vacuum-vector representations of the Virasoro algebra, ibid.
- [3] Friedan, D., Z. Qiu and S. Shenker, Details of the non-unitary proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys. 107 (1986).

Compiled on May 7, 2024.