ON ABEL’S DIFFERENTIAL EQUATIONS.*

By PaiLLip A. GRIFFITHS.**

1. Introduction. In this talk I would like to describe two related
variations on the classical Abel theorem concerning the abelian integrals
attached to an algebraic curve. Both results have as common theme that
the presence of addition theorems (loosely interpreted) or functional
equations may have rather striking consequences—both local and global
—on a geometric configuration.

My interest in these affairs first arose in thinking about threefolds-
i.e., algebraic varieties of dimension three. Here the theory of divisors and
linear systems which served so beautifully in the study of curves and
surfaces does not seem to suffice. Rather, the deeper analysis of specific
threefolds appears to frequently require understanding of the curves on
the variety. One explanation for this is cohomological: Due to the
Lefschetz theorems the “new’” cohomology on a smooth projective variety
V of dimension n is in H™(V),' and this cohomology relates to the
subvarieties of dimension [n/2]. For n=1 and 2 we have divisors, but for
n>3 one is faced with higher codimensional cycles. For this—or
whatever reason—it seemed to me that general methods, probably of a
less linear nature, were required for understanding specific geometric
questions in higher codimension. The possibility of using “addition theo-
rems” to study the integral varieties of Abel’s differential equations
provides the motivation for the results discussed below.

Before getting more into specifics, it might be worthwhile to try and
cast some perspective on what will be discussed. Birationally attached to
an algebraic variety V is the algebra Q¥ V)= 6}90 Q4(V) of regular
differentials. These are extremely important invariants of the variety, ones
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IThe so-called hard Lefschetz theorem reduces the study of H*(V) to H KV) fork<n,
and then the Lefschetz hyperplane theorem tells us that for k<n—1 H k(V) lies on an
(n—1)—dimensional variety.
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which may be said to have three faces:

(i) Cohomology classes. The regular_differentials define the holo-
morphic part H*%(V)= E>BO H%%(V) of the Hodge decomposition
q

for any non-singular model Vof V.

(i) Homogeneous coordinates. Taking for simplicity the n-forms
Q"(V) where n=dimV, we may use any basis w,...,wy to
define a rational map

[6s e+ W0y ] : V=PV,

the so-called canonical mapping, which frequently gives an
intrinsic projective model of V; and

(iii) Differential equations. For a variable O-cycle =P, +--- +F,
the abelian differential equations®

w(Py )+ +w(Py)=0, wEQ*(V) (1.1)
define birationally invariant differential systems on the various
symmetric products V@ of V. For curves we have an essentially
linear theory which amounts to the classical Abel theorem, but
for higher dimensional varieties the differential systems are
generally non-linear. It is probably for this reason that, although
the first two facets of the regular differentials have been the
subject of considerable study, not much attention has been
directed toward the integrals of these abelian differential equa-
tions (1.1). It is the possibility of using general theorems to
understand at least the maximal ones among these integral
varieties which is at the back of this work.

It is a pleasure to thank many colleagues, especially Bernard Saint-
Donat, Joe Harris, and S. S. Chern for helpful discussions on the subject
of Abel’s theorem.

2. The Classical Elliptic Integral. A good place to begin is with
the inversion of the classical elliptic integral following the original method
of Abel, which is now just 150 years old. Suppose that we consider a
non-singular cubic curve C in the complex projective plane. For example,

2The notation is explained in Section 2.




28 P. A. GRIFFITHS

we may assume that C has affine equation

flx.y)=y*~p(x)=0

where p(x)=(x—x;)(x —x)(x— %) is a cubic with distinct roots. The
Riemann surface associated to C is a two-sheeted covering of the x-plane
branched at the x, and o0

/‘ \\

/ | —® Xy N
xlr—T \

and consequently has genus one. We consider the elliptic integral

w=dx/y=dx/\p(x) .

It is easily verified that w is everywhere regular and non-zero on the
Riemann surface, and consequently «(P) is locally holomorphic and
globally well-defined modulo the lattice A in C generated by the two
periods of w. Integrals such as (2.1) arose frequently in problems in
geometry and mechanics in the 18th century, but they caused a lot of
trouble since they were not expressible in terms of elementary functions.
The key to understanding general integrals of rational differentials on
algebraic curves was provided by Abel’s general addition theorem, and we
shall apply his method to study (2.1).

The point is to consider an abelian sum 2, u(P,) where the P, are the

1
points of intersection of C with a variable curve D. For instance, suppose
L is a variable line in the plane meeting C in three points P,(L). Then a
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}pecial case of Abel’s theorem states that the abelian sum

>, u(P,(L))=Constant (modulo periods). (2.2)

i

E His proof was elementary using only calculus, and in this instance runs as
£ follows: Suppose that L= L(a,b) has equation

y=ax+b

where (a, b) are affine coordinates in the dual projective plane P?" of lines
E in P%. Assuming that L(0,0) meets C in three distinct points, for small a
P and b the points of intersection are of the form

P;(a,b)=(x(a,b),y,(a,b))

b where the x, are the roots of the equation

F(x,a,b)=(ax+b)*—p(x)=0

and y, = ax; + b. Differentiation of the abelian sum (2.2) gives

& {sen)-4(3 e

i i (%0, Y0)

ox;(a,b
-3 8w

' ‘_fi Now then

F(x,(a,b),a,b)=0,
and so
, 9% oF
F %'FE-—O
_OF o OF _
where F'= e Since % =2(ax+ b)x

dx; 9F /..,
a_a/y‘___éE/F Y;

= —2x,/F'(x)
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and consequently

aia(zu(z.(a,b)))= “2( 2Fy(cx) )

i

At this juncture we recall the Lagrange interpolation formula

g(x)
2 = (24)
where g(x),h(x) are polynomials with degg < degh—2 and the x; are the
roots of h(x). Comparing (2.3) and (2.4) gives that 3/da of the abelian
sum (2.2) is zero, and similarly 8 /9b of it also vanishes. Q.E.D.

We may use Abel’s theorem to construct the elliptic functions as
follows: Let L, be a flex tangent—i.e., a line with third order contact—to
C at some point Py, so that LyC=3P,. Elementary algebra gives that
there are nine of these.

Lines L close to L, will meet C in three points P, close to Py, and by (2.2)
u(Py)+u(Py)+u(Py)=0.

Using the ordinary inverse function theorem and w(Py)70 we may define
a local parametrization

P(u)=(x(u).y(u)

of C near P, by inverting the elliptic integral (2.1) according to the

relation
P(u)
wm [,
P,

(i}

PR
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: Here u varies in a disc A, = {4 EC|u| < e}. Now, for u, and u, in say A/
the line the line P (u,)P (1) will meet C in a third point P(us) whose
" coordinates are visibly rational functions of those of P(u,) and P(u,). On

;‘: the other hand by Abel’s theorem u,+ us+u,=0. Consequently, we
¢ obtain a functional equation

{x(— (u;+up))=R (x(ul)sy(u’l)’x(u2)’y(u2))
y(—(u+ uy)) =S (x(1y), y(ul),x(uz),y(uz))

. valid for uj,u, in A, and where R,S are rational functions. Taking
: u,=u, we find a duplication formula which allows us to express x(2u)
' and y(2u) rationally in terms of x(—u) and y(— u). Then we may use this

relation to analytically continue x(u),y(u) to A,,, then to A, etc. In this
way we arrive at entire meromorphic functions which are easily seen to
be doubly periodic with period lattice A and which satisfy

_ ((x(u)y(w)
u= f dx/y (A (2.5)
(%0, o)
1ox(uw)  y(w)
1 x(uy)  yl(ug)|=0e up+uy+u,=0(A). (2.8)
1 x(ug)  y(us)
These are of course just the Weierstrass elliptic functions, here con-
structed by elementary reasoning based on Abel’s theorem. The essential

properties of these functions are immediate consequences of (2.5) and
(2.6): Differentiation of (2.5) gives

1=x'(u)/y(u)

which implies the Weierstrass differential equation

Then substituting y(u)= x'(u) in (2.6) gives the addition theorem for x(u)
if we note that x(— u)=x(u).

3. The Generalized Sophus Lie Theorem. The philosophy underly-
ing the preceding discussion of the inversion of the elliptic integral may
be summarized as stating that the presence of a suitable functional
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equation allows one to propagate a locally given analytic object into one
which is global. We shall now give a theorem which is a geometric variant
of this philosophy. The result had its origins in some work of Sophus Lie
in which he wanted to characterize surfaces of double translation type as
being the theta divisor of plane quartic curves. The Sophus Lie theorem
has recently been deeply studied and extended by Bernard Saint-Donat,
and it was he who first got me interested in this whole business. The
result I shall describe is proved in my paper “Variations on a theorem of
Abel”, Inventiones Math., vol. 35 (1976), pp. 321-390.

Lie’s theorem was based on the case n=4 of the following analytical
result: Suppose we are given n distinct points P, on a line L, in the
projective plane P2, and germs of analytic arcs C, meeting L, transversely
at P,

Assume, moreover, that we are given local parameters t, on C, such that
the addition theorem

n
> t(C-L)=Constant !
i=1

is valid for lines L in a neighborhood U of L, in the dual projective plane
P, Then there is a plane algebraic curve C and rational differential w on
this curve such that each C, is a piece of C, and for P on C,

P
t‘(P)zj;, w + Constant.

0
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It should be recalled that, in case C is non-singular and « is an

. everywhere holomorphic differential on the curve, then a general form of
P Abel’s theorem gives

E f =k (modulo periods)

i Py

¥ where K is a constant and

B are the variable points of intersection of a line L with C. So the above is a
. kind' of converse to Abel’s theorem. When Saint-Donat told me the
£ Sophus Lie theorem, I was quite struck by the beauty of the result and in
. trying to find a proof for myself was led to a generalization which will
now be explained.

First we need to recall the notion of the trace of a differential form

B relative to a family of zero-cycles on a variety. Suppose that V is such a
¥ variety, say of dimension n and with no assumptions about non-singular-
E ity,.and that  is a rational g-form on V. A family of zero-cycles, written

L(t)=P (t)+ - + Py (1) (teT),

:- is given by a parameter variety T and subvariety I C T X V such that the
¢ projection

I—T

€ is generically finite. Thus, for generic tE T the intersection

I (tX V)=tXT(t)

: ,, where I'(t) is a set of points P,(¢) as above. The trace of « is the rational
B/ g-form © on T defined by

() =w(Py(£))+ - +w(Py(t) (3.1)

B where w(P(t)) is the pullback to T (defined locally of course) of the map

i t—P,(#). We naturally assume that none of the points P,(t) varies entirely
P in the polar divisor of w, since otherwise (3.1) would not make sense. In
® fact, if we say that the family of zero-cycles is non-degenerate in case
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each F,(t) is not constrained to lie in a subvariety of V—i.e., around a
generic point it covers a little open set on V—then we may always form
the trace. For our purposes one may think of the families of zero-cycles as
being non-degenerate.

Alternatively, a family of zero-cycles is given by a rational map

:T-»v@
into the d-fold symmetric product

(d) = . i
1% Vx--- xV /(permutations)
d-times

whose points I'=P, + - - - + P, € V@ are just the set of all zero-cycles of
degree d. The form w on V induces a form ¢ on the symmetric product by

o([)=w(P))+ - +w(P;),

and the trace is just w(I'(f)).

A basic fact is that holomorphic forms may be defined for general
varieties and have the properties (i) that the pullback of a holomorphic
form under a rational map is again holomorphic, and (ii) that the induced
form @ on the symmetric product of a holomorphic form w on the original
variety is again holomorphic. Consequently, the trace of a holomorphic
form is again holomorphic.

For example, suppose that our variety is the cubic plane curve
discussed in Section 2 above, that T is the dual projective plane P2" of
lines L in P and that our family of zero-cycles are the residual intersec-
tions

I'(L)y=L-C.
Then, in the notation from that section, the trace

o(a,b)= 3 (x(a,b),y,(a,b))

t

= S ds(a.b)/y(ab)

=d(2 (xpya)w)
(xO!yO)
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L. is the differential of the abelian sum. Since w is holomorphic on C, @ is
holomorphic on P** and consequently w=0. This is Abel’s theorem again,
proved here from the local properties of the trace and global fact that
E HO(P¥',QY) =0,

g In general, we shall say that w is of the first kind relative to the
;. family I'(t) of zero-cycles if the trace (3.1) is holomorphic on T. If this is
’ B the case and if H %(T,929)=0, then we obtain a general form

S w(B(1)=0 (32)

i of Abel's theorem. We may view (3.2) as a sort of addition theorem
¥ linking together the local behavior of the branches of V around the points
¥ F,(2). The relation has been expressed in differential form since we cannot
' take the indefinite integral of a g-form for g > 1.

As an example suppose that V is embedded in P*** and T is the
, Grassmannian G(k,n+ k) of projective k-planes in P***, A general such
® Kplane A will meet V in d=degree of V points P,(A), and we write
: A-V=3 P,(A). The incidence coorespondence

IcGlk,n+k)xV

is defined as {(A,P):PEVNA} and so 7:I-G(k,n+k) is generically
finite with fibre A-V. If w is a rational g-form on V which is of the first
kind relative to the zero-cycles A-V, then

3 o (4))=0, (33)

i

. In case V is smooth, w is of the first kind here exactly when it is
£ holomorphic on the complex manifold V. On the other hand, suppose we
% consider the situation where VcP™ ! s a hypersurface with affine
equation

flape sz y)=f(x,y)=0.

3
If we write a rational n-form as

_r(ny)dn A Adx,
of/dy(x.y)  °

then w is of the first kind relative to the lines in P**! if and only if r(x,y)
is a polynomial of degree d—n—2.

(3.4)
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The proof of this last assertion is based on a rather nice formula
which we now explain. Suppose that

x=ay+Db

gives the equation of a line L(a,b) in P"**. Here x, a, and b are vectors
and (a,b) are affine coordinates in G((1,n+1) (recall that dim G(k,n+ k)
=(k+1)n). Now then the intersection

L(a,b)-V= ZE(a,b)

1

P,(a,b)=(x(a,b).y,(a, b))

satisfies x,(a,b)=ay,(a,b)+b. For any function g(x,y) we set Q(y)=
g(ay+b,y). Then our formula for the trace of w as given by (3.4) is

7 F'(y;) g

i

wla,b)=3 i‘(z R (4) ”')da,/\dbc (3.5)

where J=(j;,...,j;) runs over all increasing index sets selected from
1,...,n), da,=dah/\- .. /\daiq, J¢ is the complementary index set, and
|7|= g is the number of elements in J. Our assertion about w being of the
first kind follows from (3.5) and the Lagrange interpolation formula (2.4).

The result we set out to describe is a converse to (3.3). Here is the
precise statement:

TueoreEM 1. Suppose that Ay is a k-plane in P*** and V,,...,V,
are germs of n-dimensional analytic varieties each meeting A, in a single
point. Suppose moreover that we are given holomorphic n-forms w,#0 on
V, such that the addition theorem

2w (AV;)=0 (3.6)

is valid for k-planes A varying in a neighborhood of A,. Then there is an
algebraic variety V in P*** and rational n-form w on V, of the first kind
relative to the zero-cycles A-V (A E€G(k,n+k)), and with V,CV and
0| V,=w,.

It is perhaps of interest to outline the proof of this theorem. For
simplicity of notation we take the case k=n=1 of plane curves.
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The crucial observation is that what is being sought is the pair
{V,w}, and moreover this pair is equivalent to giving the rational 2-form

_ p(xy)dxAdy
==y (3.7)

on P? whose polar variety is V and whose Poincaré residue

p(xy)dx °
af/ 3y (x,y)

is . Here the right-hand side is restricted to V.
Conversely, suppose that we can find a neighborhood W of L, in P2

and meromorphic 2-form @ in W with polar divisor > V; and Resy (Q)=
i

Resy 2=

;. Then, taking L, to be the line at infinity in P? and shrinking W so that
P2— W is the complement of a ball in c?,

AN

a variant of the Levi-Hartogs theorem gives a meromorphic extension of &
to all of P2. This will be our desired form (3.7), and so the problem is to
construct 2 on W.

Next, we change the picture slightly and assume that L, is now the
y-axis {x=0} and that the lines L(a,b) given by ’

x=ay+b, |a|,|b[<e

3poincaré residues are discussed in the paper “Variations on a theorem of Abel”
mentioned at the beginning of this section. Since (3f/9x)dx + (3f/3y)dy=0 on V, we note
that on V
b
_pdx __ pdy
of/dy of/ox”
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fill out W. We write the intersection
L(a,b)-V,=(x,(a,b),y;(a,b))= P, (a,b).

Now consider the disjoint union

Iy= U L(ab)

lal,[bl<e

of the lines in W. This is just the restriction of the incidence correspon-
dence I CP*" XP? to W, and there is a fibering

I, W
with one dimensional fibers. The surfaces
y=y,(a,b)

in Iy, project onto V;, so that the picture is something like

"]
L y=y;(a,b)

I~
L o]

(a,b)

Taking (y,a,b) as product coordinates in I, since

m*dxN\dy=(yda+ db) A\dy
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1; if our form § exists then it will be uniquely given on Iy, by an expression

_ h(y,a,b)(yda+ db) \dy
H<y_yi(a’b))

i

a*Q

(3.8)

where h(y,a,b) is holomorphic in a,b and rational in y. We may

determine the function h by noting that along the line L(a,b)

h(y,a,b)dy dy
., . (a,b)—2—— .
IL(y—yi(a,b)) Zp'( ) y—y,(a,b) (39)

where the p;(a,b) are given by

Wi
Pi(a,b)=Resp‘(a,b)(x—_ay—_—b), (3.10)

Combining (3.8)—(3.10) gives a unique candidate 2, for 7*{, and it is not
difficult to see that Qy, is of the form #*Q if and only if the exterior
derivative

dQyw=0. (3.11)

The last step, which is not difficult but is a little miraculous in how
elegantly it works out, is proved by a computation based on (3.5) which
shows that (3.11) is equivalent to the addition theorem (3.6).

4. Abel’s Theorem and Webs. Now even though Theorem 1 does
give a converse to an Abel type theorem, it seems pretty reasonable to
expect deeper results when one deals with all the differentials of the first
kind and not just one among them. Indeed, such considerations will be
essential in order to hope to come to grips with the integral varieties of
Abel’s differential equations (1.1). One recalls that a proper understanding
of inversion of the abelian integrals f r(x,y)dx of the first kind on an

algebraic curve f(x,y)=0 is achieved only by simultaneously inverting all
of them. As a first approximation, what is needed here is a Sophus Lie
type theorem where one is given the local pieces of analytic variety V; as
before, but where the global linear spaces are replaced by a family A,(t)
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(t€T) of pieces of analytic variety in correspondence . F The questions to be discussed are local in nature, and so will take
lace in a sufficiently small open set U in R" or in C". In the first case we
/\P bwill work with C* functions, and with holomorphic functions in the

Esecond—in either case we shall typically write such functions as u(x)=
'u(x'l, .,x,) where (x,,...,x,) is an appropriate coordinate system in U. In
jthe complex analytic case no use will be made of the conjugate variables

fx, or Cauchy-Riemann equations 8_?_ =0, so that it won’t really be
< ax,

fnecessary to specify which situation we are discussing.

Recall that a foliation of U by codimension k submanifolds is
Eaccording to the Frobenius theorem given by a collection of everywhere
lnearly independent 1-forms

and where a number of abelian equations @ (%)s0e0r 4 (x)
> w1 (A1) V) =0 f hich satisfy the complete integrability condition

are satisfied.

Now it so happens that related questions, although in quite a '5
different guise, were extensively discussed in the 1930’s by Blaschke and A there {®,-..,@; ) is the ideal generated by the ,’s. The linear indepen-
his school in Hamburg. They were interested in the subject of webs, and I dence is expressed by the non-vanishing of the differential form
there is a book by Blaschke-Bol entitled “Geometrie die Gewebe” pub- P
lished by Springer-Verlag in which they present their theory. Chern was a . Q(x)=wy () A\ Awy(x),
student in Hamburg toward the end of this period, and he wrote a thesis ‘
on webs which appeared in two papers in the Abhandlung Math Seminar*
of Hamburg. The first of these deals with the subject of Abel’s theorem ’ des, AR=0.
and webs, which occupied the last third of the Blaschke-Bol book o3
concluding with a rather beautiful theorem due to Bol, one which in fact f'We may think of ©(x) as being the normal to the leaves of the foliation.
used the Sophus Lie addition theorem. Since I was spending the year at ‘The tangent (n— k)-planes are defined either by the equations
Berkeley it was quite natural that Chern and I should begin discussing L
these matters, and we were able to clarify and find a generalization of . (0,,§)=0
Bol’s theorem which I would like to describe now.> The method of proof 3
of this result is of a rather general geometric character, and it is hoped .
that the techniques will prove useful in dealing with the abelian differen- - LA Q=0
tial equations (1.1); indeed this has already happened in a few special »
cases. S where £ is a tangent vector and A is the contraction operator. Sometimes
b we shall simply write

do,={wy,..., 0}

t,and the complete integrability by

4“Abzahlungen fiir Gewebe™ Abh. Math. Sem. Hamburg (1935), pp. 163-170 and “Eine ¢
Invariantentheorie der Dreigewebe aur r-dimensionalen Mannigfaltigkeiten im R2"”, loc. cit i . W (x) =0
(1936), pp. 333-338. o g
5This result will appear in a joint paper with Chern entitled “Abel’s theorem and webs”

to appear in Deutsche Math. Ver. '_ P as defining the equations of the leaves in the foliation.
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Here is the basic

Definition. A d-web of codimension k is given by d foliations of U
by codimension k submanifolds.

It is always assumed that the web is non-degenerate in the sense that
the tangent (n— k)-planes to the d leaves of the foliation passing through
any point of U are planes in general position.

For example, when k=1 and n=2 a d-web in an open set U in the
plane is given by d families of curves meeting pairwise transversely

]

In general, when we are discussing the codimension one case we shall
only speak of a d-web.

In a few cases a web may be put in standard local form. For example,
when d=1 the web is equivalent to the usual linear foliation

{x,=const,...,x, =const}.

On the other hand, in the case k=1 of hypersurface webs the leaves may
be assumed to be given by the level sets

u,(x) = constant (i=1,...,d)

of suitable functions. Since the web is non-degenerate, when d<n we
may take the v () as part of a coordinate system and thereby put the web
in the standard form consisting of d families of parallel hyperplanes.

In general, however, there will be local invariants of a web and it
was the study of these which interested Blaschke and his colleagues. A
basic question concerns the linearization of a web. Suppose that we say
that a web is linear in case the leaves of all the foliations are (pieces of)
linear subspaces of R", and that a web is linearizable in case it is
diffeomorphic to a linear web. A natural question is to find conditions
when a web is linearizable. As an example of an interesting linear web, let
C be an algebraic plane curve and recall that through a general point P
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E there will pass d = class of C distinct tangent lines to the curve

As P varies in an open set we have found a linear d-web. Note that the

E various families of lines are not all parallel. There are some beautiful

p pictures of such webs when d=3 in the book by Blaschke-Bol.

) As another type of a web coming from algebraic geometry, we
con51der a k-dimensional variety V and family

L(t)=P, (t)+--- +P,(t) (teT) ;

; of zero-cycles as discussed in the previous section. Here T may be either a
E global algebraic variety or may be an open set in C*. We do make the
E non-degeneracy assumption that for a general point of T the P(t) are
L distinct and the mapping

B (1)

;,“ has rank k, so that the points each vary in an open set on V. Now then,
fixing a point P,(t,) defines a codimension-k submanifold passing through
¢ the point £, in 7. In this way the d equations

; B ()= R, (1)

defme a d-web of codimension k in the neighborhood of a general point in
L T. We shall call this the web defined by the family {I¥( )}tET of
Zero-cycles and emphasize that the codimension of the leaves is the same
 as the dimension of the variety V.
3 For example, in case we have an embedded variety V, CP**! of
degree d, we may take T to be the Grassmannian G(/,k+1) of I-planes A
fin P**! The zero-cycles A-V= ZP ) then define a codimension-k

A-‘ d-web in an open set on the Grassmanman (here n=k(I+1)). The leaves
£ of this web are the Schubert cycles of all I-planes in P**! passing through

l = a fixed point in the projective space. In the case k=1 when V is a curve

.
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in P'*1 the Grassmannian in question is the dual projective space of
hyperplanes and the Schubert cycles are themselves linear hyperplanes in
this P'*1". Relabelling, we may say that a non-degenerate algebraic curve
C of degree d in P" defines a linear d-web in the dual projective space.
Explicitly we write the intersection

d

A-C= X F(A) (AeP™)

i=1

and then the leaf of the ith foliation passing through A, is defined by
P,

1

(A)=P,(Ao)-

Fi(Ao)

Returning to the linearization question, the simplest case is that of a
3-web in the plane. Through each point there will pass three curves which
we label as 1,2,3. We then attempt to draw an infinitesimal hexagon as
indicated by the following figure

The web is said to be hexagonal in case this figure closes up, at least
modulo higher order terms. One of the first theorems in the subject is that
the web is linearizable exactly when it is hexagonal. To express the
hexagonal condition analytically, we note that if w(x)=0 (i=1, 2,3)
defines the ith curve of the web, then there is a linear relation

Fy (x)wl(x)+F2(x)w2(x)+F3(x)w3(x)=0 (4.1)

Loty
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i among the three web normals at each point x=(x;,x,). This relation is
f unique up to multiplication by a function, and it turns out that the
i hexagonal condition is expressed analytically by the equations

dF, (x) \e;(x) =0,

i or equivalently that F,(x) should be constant along the ith curve.

Granting this, suppose that ith family of curves is given as the level

sets of a function u;(x) and take w,(x)= du,(x). Then (4.1) becomes

Fy (uy(x)) du, (x) + Fy (ug (%)) dug (x) + Fy (t5(x)) dug (x) =0.

Setting

" and U, (x)=U,(14(x)), the ith family of curves is defined by U,(x)=
t constant, and the linear relation (4.1) among the web normals is equiv-
alent to

U, (x) + U, (x) + U3 (x) =Constant. (4.2)

b Taking U, and U, as local coordinates in the plane we conclude from (4.2)
E that in this coordinate system our web is the standard linear web

\

Once the linearization has been achieved, we may think of the web

b as defining three arcs in the dual projective plane of lines—to each x
there are associated 3 lines passing through that point, and these describe
£ the arcs in P?°. When this is done, (4.1) becomes an abelian differential
b equation of the sort encountered in the Sophus Lie theorem, with the
j upshot being: A 3 web in the plane is linearizable exactly when it is
b equivalent to the web defined by the tangents to a curve of class three.

Hopefully these remarks at least support a connection between the

linearization question for webs and algebraic geometry, where the link is
E provided by interpreting the linear relations among the web normals as
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being something very similar to abelian differential equations. The theo-
rem of Blaschke-Bol and subsequent generalization by Chern and myself
is along these lines.

Before stating this result we need to give one more definition.
Suppose that

w1 (%)= @ (%) =0
defines a d-web of codimension k in some open set U.

Definition. An abelian q-equation is given by a linear relation

2 Finpn (R0 (KA Awyy () =0 (4.3)

B

where

dF; x,..., AqEO{wi,l""’wi,k}' (44)

The number of linearly independent abelian g-equations is called the
g-rank of the web.

We note that as before the integrability condition (4.4) is equivalent
to stating that the coefficient function F,,  , (x) is constant on the
leaves of the ith foliation.

As an example, suppose that we return to a family {I'(t)},cr of
zero-cycles on an algebraic variety V. If w is a rational g-form on V which
is of the first kind relative to this family, then the abelian differential
equation

.....

gives an abelian g-equation on the corresponding web in T. Consequently,

the study of webs and their abelian equations includes as a special case -

the study of the local integral varieties

Tcve

of the differential system
o(T)=w(P,)+ - +w(P;)=0

defined by the regular differentials w€Q9(V) on an algebraic variety.
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One of the goals of the theory is to approach these questions in algebraic
geometry by means of the general theory of webs.

Now it seems at least plausible that a good place to begin with the
study of the abelian equations associated to a codimension-k web should
be with those of highest degree—i.e., with the abelian k-equations.

If we denote by

9;':"":,1/\' ALY

the ith web normal, then such an abelian equation is of the form
2 F, (x)8(x)=0 (47)
i
where
dF, (x) AQ,{x) =0.

When k=1 we set £,=w, and write (4.7) as
2 F; (x)w; (x)=0. (4.8)

Recall that the k-rank is the number of linearly independent equations
(4.7). A first question is whether or not this rank is finite, and if so then a
natural problem is to study the webs of maximal k-rank. At this juncture

b we begin to get into some quite interesting mathematics.

For simplicity, let’s consider the case k=1 of webs whose leaves are

..‘ hypersurfaces in an open set U in n-space. The l-rank will be called
- simply the rank and denoted by r. It is the number of independent

equations (4.8) where dF;(x) Aw;(x)=0. It was proved by Blaschke-Bol for

n=2,3 and by Chern in general that the rank satisfies the upper bound

r< w(d,n) (4.9)

where

(m+1;(n—1)_1}’ m=[d—1].

n—1

'n(d,n)=m{d—

This number #(d,n) was known from algebraic geometry as being the
maximum genus of a non-degenerate algebraic curve C of degree d in P".
For plane curves this is classical (probably due to Cayley), for n=3 it was
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proved by Clifford and Max Noether, and for general n the bound is due
to Castelnuovo. We note that the estimate (4.9) implies Castelnuovo’s
bound by taking the web associated to the algebraic curve and using
Abel’s theorem. Since (4.9) is proved a local calculation involving succes-
sive differentiation of (4.8), we have here again a rather deep theorem in
algebraic geometry proved by calculus. In fact, the proof contains the
Riemann-Roch theorem for curves as well as Clifford’s theorem.

This is just the beginning. Suppose we agree to say that a non-degen-
erate curve of maximum genus is extremal. For n< d<2n—1 the ex-
tremal curves turn out not to be especially interesting—e.g., every alge-
braic curve appears here. For d=2n the extremal curves are just the
canonical curves, and for d >2n they constitute a beautiful class of curves
which lie in rather special way on ruled surfaces or scrolls in projective
space. For example when n=3 they lie on quadric surfaces. Our main
result is

THEOREM 2. Suppose that {w,(x)=0} defines a d-web of maximum
rank r=x(d,n). Assume moreover that

{d=n+l, d=2n or
d>2n and n>3.

Then the web is linearizable, and is equivalent to the web defined by an
extremal algebraic curve in P",

I should like to comment very briefly on the proof of this theorem,
which involves a rather intricate blending of algebraic and differential
geometry.

Recall that the web associated to an algebraic curve C in P* is given
in suitable open sets U of the dual projective space P"" by writing

A-C=3F(A) (AeP™),

and then the ith web hypersurface passing through A, is defined by

P,(A)=P(4,).
Now, as is true in any projective space, the tangent directions to P"" at A
may be naturally identified with the lines passing through A. These lines
are just the linear pencils of hyperplanes in P* which contain A, and as

such are uniquely given by their axes which are hyperplanes in A =Pr-1’

ABEL’S DIFFERENTIAL EQUATIONS 49

i Dualizing, we find that the projectivized cotangent space to P™" at A is
g naturally identified with A itself. When this is done the web normals
. correspond to the points F,(A)EA.

Now suppose that C is an extremal algebraic curve of degree d >2n

£ where n > 3, and let S be the ruled surface on which the curve lies. Then
b SN A is a rational normal curve in A=P""! which contains the web
¥ normals P;(A). This last statement that the web normals «;(x) lie on a
f rational normal curve E (x) in the projectivized cotangent spaces P(T}) to
b U at x makes sense for any web, and may be proved to hold for webs of
maximal rank when d >2n and n > 3. The proof is obtained by differenti-
 ating the abelian equation (4.8) as in the argument for Chern’s theorem
E and concluding that the web normals lie on co®~1~2/2 jndependent
E quadrics on P(T*)=P"~’. Any set of d >2n points lying on such a linear
system of quadrics then lies on a unique rational normal curve E (x). In a
£ sense what we have done here is to infinitesimally reconstruct a hyper-
E plane section of Castelnuovo’s ruled surface S.

Now any rational normal curve E in P*~! is projectively equivalent

k- to the standard one given parametrically by [L,¢,...,t""!]. Thus the field
¥ of rational normal curves E (x) CP(T*) gives a special type of G-structure,
i one which has the distinguished property of having a large number of
._ completely integrable cross-sections w,(x) € E(x). Using this one may
i deduce the existence of a unique projective connection with certain local
{ properties and for which the web hypersurfaces are totally geodesic.
Further argument then implies that this connection is projectively flat,
g which then yields the linearization theorem. The global algebraicity is a
i consequence of the Sophus Lie theorem.

Actually, it is quite reasonable that projective differential geometry

L should enter into the picture since this provides the basic infinitesimal
L calculus dealing with a general linear structure. More precisely, our web
¥ of maximal rank leads to a system of ordinary differential equations

dxg
(%)
.Y

d%, dx, dx dx, \ | d dx, dx,.
2 S g P By | i .
dt2+§r“ydt dt} (dt) dt2+}\2rﬁ dt dt]

(4.10)

. " whose solution curves give a system of paths in U. Were our linearization
k. theorem to be true, this system of paths would be diffeomorphic to the
(& system found by the straight lines in P". Equivalently, there would be a
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change of coordinates y,=y,(x) and change of parameter s=s(t) con-
verting (4.10) into the system
2
ids—yf —o0, (4.11)
Now the basic theorem of local projective differential geometry is that
one may attach an intrinsic projective connection to the system (4.10) in
much the same way as the Levi-Civita connection is associated to a
Riemannian metric, and moreover the system (4.10) is equivalent to (4.11)
exactly when the projective curvature tensor is zero (n > 3).
Finally this admittedly very sketchy discussion of the proof would
not be complete without mentioning the main algebro-geometric input.
This method is due to Poincaré® which provides a web-theoretic analogue

of the canonical curve associated to an algebraic curve. Namely, suppose
that

d
.§1F,‘.i(x)wi(x)=0 A=1...,7) (4.12)

give a basis for the abelian equations associated to our maximal rank web.
The point
= -1
Z (x)= [Fl_,.(x),...,F,,‘. (x)] P
is intrinsically defined, and as x varies it describes an arc C, since the

F, ;(x) are constant on the web hypersurfaces. The equations (4.12) may
be written as

and so the points Zy(x),...,Z;(x) span a P2~""!(x) in P""!, The space
P"~1 has an intrinsic linear structure (whereas U does not), and the
infinitesimal structure of the Poincaré map

xﬁpd-n—d (x> CPr——l
turns out to reflect the field of rational normal curves E (x) P(T#). In the

%“Sur les surfaces de translation et les fonctions abeliennes”, Bull. Soc. Math France,
Vol. 29 (1901), pp- 61-86.

i

;
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i
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b end, it is the counterpoint relation between this algebro-geometric config-
b uration and the projective differential geometry which leads to the proof
£ of our theorem.

The reason for giving this brief sketch is to provide some motivation

} for previously mentioned hope of using these geometric methods for
p dealing with at least the extremal integral varieties of the abelian differen-
j tial equations (1.1). In this context I would like to close by mentioning one
particular result in higher dimension. Suppose that S is an irreducible

quintic surface in P? given by an equation f(x,y,2)=0. The differentials

_ plmyadindy
w= 5f /32 (%,y.%) (degp<1) (4.13)

are those which are of the first kind relative to the family {L € G(1,3)} of
i ]
E for the differential system w=0 induced by the forms w given by (4.13) on
. S. Our result in the converse:

lines in P%. Thus, G(1,3) gives one 4-dimensional integral variety in S

ProOPOSITION.  Suppose that T CC* is an open set parametrizing a

‘I‘(t)=P1(t)+---+P5(t) (teT)

of zero-cycles on S and which has the properties:

(i) the points P,(t) vary in an open set on S
(i) the abelian differential equations

2 w(ﬂ (t)) =0
are satisfied for all « given by (4.13). Then T is an open set on
G(1,3) and the zero-cycles T(t) are residual intersections of S
with lines.

In other words, any local 4-dimensional integral variety T cS® of
the differential system w=0 which is in general position is necessarily
global algebraic and describes the geometric property “5 points lie on a
line” in the surface S. With some considerable luck, this result may be
part of a general pattern.
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