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ON THE DIFFERENTIAL GEOMETRY 
OF HOMOGENEOUS VECTOR BUNDLES 

BY 

PHILLIP A. GRIFFITHS 

This paper falls roughly into three parts. The first section (??I-III) may be 
considered as an extension of the works of Nomizu and Wang [15; 19] to bundles 
over homogeneous complex manifolds. These results lay the groundwork for the 
succeeding paragraphs. The second section (??IV-VI) gives differential-geometric 
derivations of various properties of homogeneous complex manifolds. The last 
section (??VII-IX) gives some applications of differential geometry to homo- 
geneous vector bundles in the sense of [4] and to the study of sheaf cohomology. 

To be more explicit, we let X be a homogeneous complex manifold which may be 
written as the coset space of complex Lie groups A, B (X = A/ B) and also as the 
coset space of compact Lie groups M, V (X = M/ V) where M is semi-simple. 
The first part treats the following question: If P -> X is any analytic principal 
bundle to which the action of A on X lifts, we ask for a computable algebraic 
description of those connexions x in P which are M-invariant and compatible 
with the complex structures involved. (It will be seen that the adjective "com- 
putable" is for us crucial.) Moreover, given such a x, we seek its curvature form, 
and, in the case where P is the principal tangent bundle, we ask for the complex 
torsion of x. 

In the second part, we single out two types of connexions in such a P for further 
study. The first are those connexions arising from an invariant Hermitian metric 
in P. By examining these connexions, we are able to give a unified differential- 
geometric treatment of several aspects in the theory of homogeneous complex 
manifolds. The complex torsion plays an important role here.The other connexion, 
which we call the canonical complex connexion, is the complex analogue of the 
Nomizu canonical affine connexion; it is important for applications to sheaf 
theory. 

In the third part, we first give a geometric realization of the "curvature class", 
a sheaf cohomology class defined by Atiyah in [1]. Next, using a metric geometry, 
we discuss a "vanishing theorem"; the chief application here is the non-Kahler 
case. In the last paragraph, we give a new type of application of differential 
geometry to sheaf cohomology; this application arises from a connextion be- 
tween the holonomy algebra of a linear connexion and the coboundary maps 
in an exact cohomology sequence. 
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2 P. A. GRIFFITHS [October 

Two remarks on the nature of the differential-geometric problems involved 
when A/B is a complex manifold are pertinent. We shall eventually consider 
homogeneous complex manifolds which may be written as M/V where M,V 
are compact Lie groups and may also be written as A/B where A, B are complex 
Lie groups; say X=M/V=-A/B. Then if G is a complex Lie group and G-?P--X 
is an analytic principal fibre bundle to which the actions of M and A on X 
lift, it is too much to require that a differential-geometric structure be A- 
invariant (e. g., T(P,,(C)). Thus we are led to analyze those connexions 
in P which are M-invariant and are "compatible " with A, i.e., re- 
spect the complex structure on P. Also one knows that on T(A/B) we may 
define the complex torsion [2] whose vanishing is related to the Kahler con- 
dition on X. To our knowledge, this torsion has not been exhibited on a class 
of spaces, and by doing so here we recover the condition of Borel-Lichnerowicz 
that A/B be Kaihler. 

We close with a few words on inotation and conventions to be adopted. All 
manifolds, mappings, etc., will be C?; if X is a manifold, its tangent bundle 
is denoted by T(X). A general vector bundle over X will be written as E -+ E -+ X 
where E is a vector space representing a typical fibre. If E is a vector space, E' 
will be its dual and thus E' E' - X will be the vector bundle dual to 
E -+ E -+ X. In general, all manifolds and groups will be assumed to be con- 
nected. If Vis a vector space over a field K and if V' c Vis a subset, we denote 
by K(V) the smallest linear subspace of V containing V'. We denote by GL(V) 
the group of automorphisms of V and by gl(V) the algebra of endomorphisms 
of V. If again Vis a vector space over the reals R or the rationals Q, we denote the 
complexification V0 CR or V0QC by V. If A is a Lie group, we denote by ac 
the real Lie algebra of A and by a0 the algebra complexification of a?. If G is a 
complex Lie group, we denote by g the complex Lie algebra of G. As usual, 
"exp" denotes the exponential mapping. We remark that although in general, 
a representation of the Lie algebra does not allow us to recover a representation 
of the group, we shall ignore this in certain cases (e.g., Theorem 1); for economy 
of notation, we shall write equations in the algebra and state results for groups 
in all cases this will be permissible. 

Whenever X is a complex manifold, the complexified tangent bundle splits 
into type components: T(X) = T(X) OR C - (X) GY(X) where 5(X) denotes 
the bundle of vectors of type (1,0). In particular, for a complex Lie group G, 
we write g0= gh gh. If again X is a complex manifold, we denote by Jx the 
almost-complex structure tensor. 

For background material, we suggest the following references: [16] for the 
general differential-geometric background; [6] and [7] for the relationship 
between curvature and characteristic classes; and [9] or [18] for a discussion 
of those homogeneous complex manifolds with which we shall be mainly con- 
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cerned. Finally we remark that this paper is intended to accompany another 
work [8] in which the results obtained here will be used frequently. 

I. Invariant connexions in homogeneous vector bundles. Let G be a Lie group 
and G -* P -> X a principal fibration over a manifold X. We recall that a con- 
nexion x in P is given either by a right-invariant C distribution of horizontal 
spaces, which we write p -* H(p) c Tp(P) (p E P), or by a g?-valued form w on 
P satisfying (Rg)*) = (Ad g 'co) (g e G). The connexion form co appears as a 
bonafide form on P; however, co comes from a nontensorial form 0 on X and 
we may symbolically write 

(1.1) CO=g dg+ (Ad g- ')0. 

Later on we shall study holomorphic fibrations G -* P -* X where all mani- 
folds and maps are complex analytic. If Jy represents the almost complex struc- 
ture tensor of an appropriate object Y, we define a complex connexion X in P 
to be a real connexion X such that: 

(i) Jp(p)H(p) = H(p)Jp(p) (p E P). 

It is easily checked that (i) is equivalent to: 

(i)I JGCW = coJP. 

Now let G -* P -* X be a holomorphic fibration, _ a connexion in P extended 
by linearity to (T(P)) =T(P) 0RC 1(P) e1(P), and denote the extension 
of H by X? 

PROPOSITION 1.1. The following are necessary and sufficient that x be a 
complex connexion: 

(i) Xf: 1(P) -*1(P) and f(i) =X(v)for v E T(P); 

(ii) f(p)=Xh(p) Xh(p) is a splitting of the horizontal spaces into con- 
jugate subspaces; 

(iii) CO :1(P) -- gh and co(v) =co(v); 
(iv) if 0 is given by (1.1), 0 = 01,0 + 00,1 where 00,1 = 01,0 and 01,0 is a local 

form of type (1, 0) on X. 

Proof. The proof is easy from the definitions together with the fact that, 
if Yis a complex manifold,3;(Y) is the set of vectors of the form (iv - iJ y(y)Av) 
for veTy(Y), A,eC. 

Throughout the rest of ?I, we shall work in the real case and shall return to 
the complex situation in ?11. Let X be a manifold on which a Lie group A acts 
transitively; then we write X = A/B where B is the stability group of a point 

xo on X. A bundle G -+ P E+ X such that A acts on P in such a manner that 
the following diagram commutes 
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A 
P-P 

lA l4 
X- >X 

will be called a homogeneous bundle. We then have that b(7G-'(xo)) c C-'(xo) 
for all b e B, and we may define a homomorphism 0 : B -+ G as follows: if 
po ci7 -'(xo) is fixed once and for all, then bpo = pogb for some gbe G and the 
mapping +(b) = go is a homomorphism. We thus have 

(1.2) q5:B-+G by b(b)=gb and I*: b + g?0. 

DEFINITION 1.1. A connexion X in P is A-invariant if, for any peP, a eA, 
a*H(p) c H(ap). This condition is easily equivalent to a*wo = o where O is the 
connexion form. 

Thus the invariant connexions are characterized by 

(1.3) a*H = Ha* a*co = co. 

We define a mapping a:A-+ P by 

(1.4) a(a) = apo. 

If o is a connexion form on P, then c*co is a 1-form on A with values in g? and 
we have 

PROPOsITIoN 1.2. Let t ea, be Bo. Then, if o is A-invariant, 

(i) cr*Co(Ad b(t)) = Ad k(b)(cy*o(t)); 
(ii) v e b => v*Co(v) = O(v) E go. 

Proof. The proof is done by a calculation using the definitions; we refer to 
[19, ?5] for the proof. 

The converse to Proposition 1.2 is also given in [19] and we have: 

THEOREM W. The A-invariant linear connexions in the homogeneous 
bundle G -+ P -+ A/B are given by the linear mappings x :o a -+ g' satisfying 
the conditions: 

(i) X o Ad = (Ad o ) o , 

(1.5) (ii) x(v) = -*(v) for v e bo. 

Here 4 is defined by (1.2); the relation between the connexion form CO and 
the mapping X is *a I ao = X where a is given by (1.4). 

From the Cartan structure equation for the curvature form and the fact that 
0*co is left invariant on A, it follows that the curvature E, considered as an 
element of Hom(a0 0 a0, g?), is given by 

(1.6) (t, t') = 
2 {[x(t), x(t')]-x[t, t']} (for t, t' E a?). 



1963] HOMOGENEOUS VECTOR BUNDLES 5 

Finally, since we shall be working primarily with Lie algebras instead of 
groups, we shall state the differential form of (1.5). 

THEOREM 1. The A-invariant linear connexions in G- P -A/B are given 
infinitesimally by the linear mappings x:a?a0go satisfying thc conditions: 

(1.7) (i) X[b,a] = [(b),X(a)] a e ao, b eb, 

(ii) X(b) = f* (b) b E- b'. 

The curvatureform H E Hom (a0? a, go) is given by 

(1.8) ="(a, a') = i {[x(a), X(a')]-X[a, a']} a, a'e a0. 

II. Invariant complex connexions in homogeneous analytic vector bundles. We now 
wish to examine the structures in analytic fibre bundles G -+ P -* A/B where 
A/B is a complex homogeneous manifold. It will be assumed that A/B is a C-space 
as defined in [18]; this means that A/B is a compact homogeneous complex 
manifold with a finite fundamental group. For a while the essential property of 
a C-space X which we shall use is the following: a C-space X may be represented 
as the coset space of compact Lie groups A, B; X =A/B (compact description) 
or as the coset space of complex Lie groups E, F; X = E/F (complex description). 
Furthermore, we may and shall assume that all groups are connected, that A, E 
are semi-simple, and that E is the complexification of A. The theorems of the 
next two sections are true for homogeneous complex manifolds satisfying the 
requirements of the preceding sentence, although these results shall only be 
stated for C-spaces. 

Let X = A/B = E/F be a C-space where A/B is the compact description and 
E/F the complex form. Suppose that G -+ PE+ X is a holomorphic principal 
fibration with the complex connected Lie group G as structure group. As dis- 
cussed above, we desire those connexions which are compatible with E and 
A-invariant. Some delicacy is required here, for not just any solution will do. 
In fact we desire a formulation involving only the complex Lie algebras of E 
and G and the homomorphism 0* defined in ?I. As will appear below, an answer 
in terms of the real Lie algebras is not difficult to obtain; however, such a solu- 
tion is unsatisfactory in practice. (Witness how unwieldy the real Lie algebra 
SL(n,C) is.) With these remarks in mind, we begin. 

In the analytic fibration G -+ P 4 X, we assume that the action of E on X 
lifts holomorphically to P, i.e., the diagram 

- P P 

E E > x 
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is commutative and analytic. Define the pair (a', 0') for (E, F) in the same manner 
as (a, 0) for (A,B); (a', 4') extends (a, 0). The mapping a' E -+ P is analytic, so 
that Jp* = a 'JE. The equation for complex compatibility of a connexion co 
on P is JG 0?C = C-) ?JP. Consider the mappings. 

(2.1) a*a) :-*g? = X 
(a' *t: ?? -* = % ' ? ? g0 

(?? is the real Lie algebra of E). Take e E F?; then (a')* (s) E Tpo(P) and since a' 
is analytic, JPU*(8) = U*$JE(W); thus 

X'(JES) = (a')*w(JEE) = 0w(U*'JEe) 

= 0)(JPU'*E) = JGw(aOK ) 

= JG(U )*O(8) = JGX'(E). 

PROPOSITION 2.1. The equation of complex compatibilityfor the connexion 

x IS 

(2.2) X'JE = JGX- 

Recall that denotes the complexification of a real Lie algebra, i.e., 

a0 ?R C = W?. Extend x' to ??h @ ?h by complex linearity. Then (cf. Proposition 
1.1) 

x' : ?h gh7 

(2.3) X' . F g- and X(8 ) = i'(8) 

There are two things which must be attended to: 
(i) invariance under the compact group A; 
(ii) compatibility with the complex group E. 

The general situation is this: Let X be a manifold and G -> P E+ X a principal 
fibration and assume the existence of 

(i) a fibre-transitive group E on P with isotropy group F, 
(ii) a fibre-transitive group A c E on P with isotropy group B ' F. Then 

X = A/B = E/F and we may define (a, q) and (a', 0'). Let co be an A-invariant 
connexion on P; then G : T(P) -? g and (a')*co : T(E) -> gQ gives (by restriction 
to ??) z' :F,'-+ g'. Furthermore, *w) : T(A) -+ g0 restricts to x : ai' -+ g' and x' 
extends x from a? to ??. Invariance under A means that 

Z'[a, b] = Z[a, b] = [X(a) Z(b)] 

- [Z'(a), Z'(b)] a E a?, b Eb bo. 

Since co is a connexion, we also may say that x'(f) 0 '(f) for fe fo; in 
particular, Z'(b) = x(b) = 08(b) = 0*(b) for b E bo c f?. 
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Returning now to the case of C-spaces where everything is complex (this being 
a special case of the above), we wish X' to be a complex connexion, i.e., 

a' I ?0 = X : a0 g 

and 

X'JE = JGX 

Since A is by assumption a maximal compact subgroup of E, ?? = a? (JEaC 

and hence X' is uniquely determined by X. But every X does not give a X' because 
of the condition X' jf? = O'. Indeed, if every X uniquely extended to such a 
complex X', this would mean that every real connexion on A was complex. This, 
however, is false; simple examples appear below. In an effort to trap both com- 
plex compatibility and A-invariance in a single computable expression, we pro- 
ceed as follows. 

DEFINITION. Define a linear mapping p: aQ ?-h by 

(2.4) p(a) = I (a + iJEa) for a Ea. 

That p takes ao into Fh follows from the discussion in ?1. Both a0 and Zh are 
complex Lie algebras and we shall prove below that p is an algebra isomorphism. 
Before doing this, an example might be instructive. 

Let A = U(n) and E = G = GL(n, C). Then ao = the (real) algebra of n x n 
skew-Hermitian matrices; any ce a? may be written as a = f, + iy, where ,B is 
real skew-symmetric and y is real symmetric. On the other hand, GL(n, C) 
c GL(2n, R) and g' may be represented as the sub-algebra of gl(2n,R) of ma- 
trices of the form 

where il, X E gl (n, R). Furthermore, we may represent JGL(n, C) = J as the matrix 

j2 0 -1 oJ; I 

J =(0 - 0 1 1 0)P 

and 

( ) =(7 1 ) (2 t ) = e 1 

We first check that g? = ao 0 Ja?; remark, however, that o ,B + iy E a? =u(n) 
must be written in the form 
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when U(n) is considered as lying in GL(n, C). 
(i) u1(n) nJ(u(n)) = 0: let a E U(n) fn J(u(n)); then 

or ,B = ', v =-,B' where ,B, ,B' are real skew-symmetric; y, y' are real symmetric. 
Thus u(n) n J(u(n)) = 0. 

(ii) go = 11(n) 0 J(u(n)). Now u1(n) 0 J(u(n)) c go and from dimensional con- 
siderations, we are done. However, it is of interest to give an explicit proof. 
Given 

we wish to write 

-T rJ ay J ap ' 

where ,B, ,B' are skew-symmetric, y, jy' are symmetric. The statement that 
11 = ,B + ', X = y - /3' is just the well-known statement that a real matrix may 
be (uniquely) written as the sum of a symmetric matrix and a skew-symmetric 
matrix; A = I (A + tA) + 2 (A - tA) (1) 

Now (u(n)) = u(n) ?R C = the set of matrices 

((4y A3)} 
where /3 is complex skew-symmetric and y is complex symmetric. Furthe---ore, 

= (( T z)} 

il, -regl(n,C). We mayisolate gh and g- 

., 
(T 1) 2 {(-T 1) (5 T) i ) 

4'=4(4+iz) and 

gh = {(: -hi) 

for q e gl(n, C). Similarly, 

(1) The statement precisely corresponds (in the sense of Lie algebras) to the statement that 
as gl(n, C) may be uniquely written as the sum of an Hermitian plus a skew-Hermitian matrix. 
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for q E gl(n, C) and [gh, g-]-0. Furthermore, (u(n)) gl(n, C) gh; the first 
isomorphism is the footnote above; the second is given now. Define p: (u(n)) gh 

by 

p(a) = p(O + iy) = P ( ) 

2 #t- S (-# y) 2 (iax a) 

where ,B and y are the symmetric and skew-symmetric parts of oc egl(n,C). 
We see that p is simply given by p(ac) = I (a + iJ). One checks that 

(i) a = + iy (P 4) is a Lie algebra isomorphism, 

(ii) 
a 

+ - 2 (i ) is a Lie algebra isomorphism. 

These are both special cases of 

LEMMA 2.1. Let E be a complex semi-simple Lie group and A a maximal 
compaict subgroup. Then a??h and the isomorphism given by p(a)= I(a + iJEa) 

for aect. 

Proof. p[a, a'] -{[a, a'] +iJE[a, a']} and [p(a), p(a')] -{[a, a'] + i[JEa, a'] 
+ i[a,JEa'] -[JEa,JEa']}. Since JEis an integrable almost complex structure, 

[a, a'] + JE[JEa, a'] + JE[a,JEa']- [JEa,JEa'] = 0; hence i[JEa, a'] + i[a,JEa'] 
iJE[a, a']- iJE[JEa,JEa']. Thus 

[p(a),p(a')] = '{[a,a']- [JEa,JEa'] + iJE[a,a'] - iJE[JEa,JEa]} 

- z{p[a, a'] -P [JEa,JEa']}. 

On the other hand, [nh, h- ](2) = 0, which implies that 

0 = [a + iJEa,a' -iJEa'] = [a,a'] + i[JEa, a'] - i[a,JEa'] + [JEa, JEa']. 

Now taking a, a' to be real (i.e., a, a' E ac), we see that [a, a'] = - [JEa,JLa']; 
this equation remains true on a by complex linearity. We conclude that 

[p(a),p(a')] = {{p[a, a'] + p[a, a']} 

- p[a,a'] for a,a'e ac. 

(2) This is clear, since if zl,,*., Zn is a complex canonical coordinate system for E and 
Xe 6h, Ye ej then there exists local holomorphic functions fi and fy such that 
X = 1if (O)8/aziI, Y Y- Yf (0) aIaZ]i.= 0 
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Thus p is a homomorphism; restricted to a', it clearly is injective and thus has 
no kernel on a?. Finally, since dimc0 = 2 dim a?, for reasons of dimensionality 
p is surjective. Q.E.D. 

We need one further lemma. 

LEMMA 2.2. Let G -* P -* X be a complex principal fibration over a com- 
plex manifold X. Let f? ' go be a sub-algebra such that JG(UO) n f?= 0. If 
o is a complex connexion on P with the property that cl)(x) lies in f for all 
xe T(P), then the curvature Q of w satisfies Q2(x,y) = Q2(Jpx,Jpy) for all 
x, y E T(P). 

Proof. Using the Cartan structure equation, it will suffice to know: for 
x, y E H(p), w([x, y]) = w([Jp(x), Jp(y)]). But since w is a complex connexion 
and Jp is integrable, 

- w([x,y]) + w([JPx,Jpy]) = Jp{w([Jpx,y]) + w([x,Jpy])} 

and we are done. 
This lemma holds, in particular, for metric connexions (example above Lem- 

ma 2.1). For all complex connexions which we shall consider, it either follows 
from Lemma 2.2 or may be checked directly that Q(x, y) = Q(Jpx,Jpy); in any 
event this condition on Q (and hence on co) will be assumed henceforth. 

REMARK. Lemma 2.2 is equivalent to saying that Q is of type (1.1). Indeed, 
assume that Q(x, y) = Q9(Jpx, Jpy) for tangent vectors x, y. Then 

Q2(x + iJpx,y + iJpy) = Q(x,y) - Q(x, y) + i{Q(x,Jpy) + 92(Jpx, y)} = 0 

since Q2(x, Jpy) = - Q2(Jpx, y). Conversely, if Q2(x + iJpx, y + iJpy) = 0, then 

Q2(x,y) - ?Q(Jpx,Jpy) + i{Q(x,Jpy) + 92(Jpx,y)} = 0; 

taking x and y to be real, we see that Q2(x, y) = Q(Jpx, Jpy). 
We return now to the case of a C-space X = A/B = E/F. In computing the 

curvature form E on ao in ?I, we used the fact that *&o was left-invariant on 
A; this in turn was equivalent to A-invariance of w on P. However, since 

a?(DJEaC= z? and '(JEa,JEa') = '(a,a'), '(a,JEa') =- "(JEa,a') we shall 
be able to compute 6 on ??, at the appropriate time. 

Now our original goal was to get everything on ao (not on ??); furthermore, 
the obvious way of extending X on a0 to ao by complex linearity is insufficient. 
This was the precise reason for introducing p. 

DEFINITION. Define X: ao -+ gh by x(a) = X'(p(a)) for a e a . 

PROPOSITION 2.2. X is a well-defined complex linear mapping. 

Proof. We must compute X(ia) two ways and show consistency. On the one 
hand, for e Ec s,, k(ip-1(e)) = i-(p-'(e)) = iZ'(e) = JGXZ(e); also -(ip` (e)) 

- x(p '(ie)) = (p 'JE(e)) = X'(JEe) = JGX'(e) which was to be shown. 
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The following is the crucial proposition. 

PROPOSITION 2.3. For a e a', b e bc, 

(2.5) j[a, b] = 

Proof. 

(i) j[a, b] = x'(p[a, b]) 

= %'([p(a), p(b)]) (by Lemma 2.4) 

(2.6) - %'[a,b] + iX'[JEa,b] 

+ iX[a,JEb] + X'[JEia, JEib]. 

(ii) [X(a),%(b)]=[x'(p(a)), x'(p(b))] 

(2.7) = [X'(a), x'(b)] + i[JGZ'(a), Z'(b)] 

+ i [z'(a), JGX%(b)] + [JGx'(ia), JGX (ib)]. 

Now [Ch, Fh]= 0 implies that [a, a'] + i[JEa, a'] -i [a,JEa']- [JEia, JEiaW] 

= 0, and since p is a homomorphism, 

:{[a,a'] + i[JEa, a'] + i[a,JEa'] + [JEia,JEia']} = 2([a, a'] + JEi[a,a ]); 

thus 

[a, a'] + [JEia, a'] = [a, a'] + JEi[a, a'] 

and 

[a,JEia'1 + [JEia,JEia'] = [a, a' + JEi[a,a']. 

Using these equations in (2.6) and (2.7), we obtain the result. 

PROPOSITION 2.4. V P(fh) = 4 O P. 

Proof. Let fefh; f = a + iJEa for some a 'ao. Then 

%(a) = Z(p-' (f))=x'(a + iJEa) = 0*(a + iJEa) = 4*4op(a) Q.E.D. 

To complete the discussion in this section, we compute the curvature of our 
complex connexion x'. We have that 

H(a + iJEa, a' -iJEa') = '(a, a') + i ̂  (JEa, a') 

-iE(a,JEa') + o(JEa,JEa') (for a,a'E ao) 

= 2E(a, a') + 2i =(JEa, a') 

= 2"(a,a') + 2iJG'(a,a'). 
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On the other hand, 

I {&[a, a']Z-[(a), (a')]} = 4{x'[a, a'] + iJGX'[a,a'] 

- [X'(a), X'(a')] - i[JGX'(a), x'(a')1 

- i [x'(a), JGX'(a')] - [iJGX'(a), iJGXZ(a)]} 

- 4{x[a,a'1 + iJGX[a,a'] 

-[Z(a), x(a')] - iJG[X(a), x(a')]} 

= 2{E(a, a') + iJGX(a, a')}. 

(2.8) E (p(a), p(a')) = 2 {[a, a'] -[(a), 

for a,a'e-a'. 

THEOREM 2. Let X = A/B = E/F be a C-space where A, B are compact 
groups, E, F are complex groups. Suppose that G -* P -* X is a holomorphic 
principalfibration with the complex Lie group G as structure group where the 
action of E on X lifts analytically to action on P. Then the complex A-invariant 
connexions on P are given by the complex linear mappings gh a? g such 
that 

(i) k[a, b] = [x(a), x(b)] for a E a', b Ec 
(ii) x(f) = 08(f) whenever p(f) E fh where p is given by (2.4). The curvature 
is assumed of type (1, 1) and is given by 2 (a,d ') = 2{ [a, a'] - 

upon identifying a' with ?h by p. 

III. Real and complex torsion on homogeneous complex manifolds. In this section 
we shall discuss real and complex torsion on homogeneous manifolds. In the first 
part, a derivation of the expression for the usual (real) torsion is obtained in 
such a manner that it may formally be repeated in the complex case. The complex 
torsion is of interest because its vanishing, for metric connexions, is equivalent 
to the Kahler condition on a complex manifold. Because of this, our expression 
for the complex torsion, when coupled with the form of a metric connexion 
to be given in ?IV below, will allow us to derive many results which have here- 
tofore had a topological or group-theoretic derivation. 

Let X be a manifold, P(X) the bundle of frames on X so that we may write 
GL(n, R) -+ P(X) !+ X where n = dimR X. The fundamental form o on P(X) 
may be described as follows. Let V be a fixed vector space taken as a standard 
fibre of T(X), and let 4, 1..4n be a basis of V. Then the fibre tT1(x) c P(X) 
may be thought of in the following way: each p E -'(x) is a frame (x, tl, ..., t") 
and to p we associate the linear mapping p V-+ TX(X) defined by p(Ei) = ti. 
Then co is the V-valued form given by 

Cl)(t) = p (r*(t)) for t E Tp(P). 
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PROPOSITION 3.1. Let *rO = f so that +f is a V-valued form on A. Then f is 
left-invariant on A. 

(We follow here the notations of ?I.) 
Proof. The proof is easy since co depends only upon the differentiable structure 

of X. 
If we have a linear connexion a in GL(n, R) -+ P(X) !+ X, o has its values in 

gl(V) and hence, for t E T(P(X)), v E V, w(t) o v is defined. Matters being so, the 
torsion form ( on P(X) is given by 

(3.1) C(t, t') = dd(t, t') + o{w(t) 0 co(t') - o.(t') 0 cq(t)} 

for t, t' E T(P(X)). Hence, for a, a' E ao, we have that 

(%*() (a, a') = (ay*djjo) (a, a') + ?{uy*w(a) o u*&(a') - a*((a') o a*6(a)} 

- dlf(a,a') + I{X(a)o f(a') - X(a')oVI(a)} 

= - al2[a, a'] + <{X(a) o a(a') - X(a') o I(a)}. 

(The last step here follows from (3.1) and the Maurer-Cartan equation on A.) 
Setting a* = z, we have: 

PROPOSITION 3.2. The torsion z E Hom (a?? (8 ac, V) of a linear connexion x in 

GL(n, R) -* P(A/ B) - A/ B is given by 

(3.2) 2T(a, a') = - 4[a, a'] + X(a)o oI(a') - X(a')O lf(a) 

where f is defined by Proposition 3.1. 

An example here might be instructive. Let B -+ A - A/ B be the principal group 
fibration of a reductive homogeneous space A/ B; then, by definition, ao = b0 o 

and Ad B: fto f. We then have 

A - ( P(A/B) 

AIB identity 
A/B !-* A/B 

and A is embedded in P(A/B) by a. We define an affine connexion in P(AIB) 
which is in fact a connexion in A (i.e., the horizontal spaces are tangent to A) by 

X(b) = b, b E bo, 

X(k) = 0, k E fo. 

The condition (i) on the connexion is the statement of reductiveness (i.e., preser- 
vation under infinitesimal right translation by B). The curvature is given by 
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a(a,a') = 0 if a or a' lie in b0, 

=(k, k') = -I [k, k']bo. 

The form i is clearly the identity on to and 0 on bo; thus the torsion is 
2f(k, k') = [k, k']s.t and r = 0 if and only if [f",? f] C b? in which case we have 
a symmetric space. This is the Nomizu canonical affine connexion of the first 
kind. 

Now f = TO(A/B) and we may take V = 1'; x should be gl(V)-valued 
and, in view of reductiveness, this is indeed the case; for k e 1', b e bo, 
Z(b)o k = [b, k] E f0. Furthermore, the homomorphism 0*: b0 -+ gl(V) is given by 
#*(b)(k) = [b,k]; this is just the infinitesimal linear isotropy representation. 
The verification that x satisfies (1.7) is trivial; geometrically, fo is the left-invariant 
horizontal space on A and bo is the vertical space. 

Before discussing the complex torsion, it would be well here to give in more 
detail the structure of a C-space X=A/B (compact form) = E/F (complex 
form).We recall that a' = eo and that (2.4) defines an algebra isomorphism between 
c or a0 and h. Now a? c co, bo ( f? and we may write Fi' = no G f? (direct sum of 
vector spaces) where n? To(X) and [b0, no] c no, i.e., the splitting F? = no ?D fo 
may be chosen to be b0-reductive. By complexification, -?- h ~ Ewhere 

F-h= nh 3 fh and under the isomorphism (2.4) we may write ao = n* D f where 
n*-(X) and [b0, n*] c n*. One may describe quite precisely the subalgebras 

b0, n*, f, etc., in terms of a Cartan decomposition of ? into root spaces; this will 
be done as needed below. 

Let x(t) be a smooth curve on a C'-manifold X; in terms of local coordinates 
(x', ,x'), the mapping 

t (x(t),ax (t), x t 

gives a local moving frame (cross section of P(X) over x(t)). The vector tangent 
to x(t) is given by 

dt _]to j=i- Xxi x(to) dt ]to 

more generally, for an arbitrary moving frame (x(t), e1(t), *--, en(t)) with a co-frame 
(x(t), a) (t), *--,n d (t)), 

i.e., 
n 

dx = e wco 
i=1 



1963] HOMOGENEOUS VECTOR BUNDLES 15 

A connexion geometrically gives the infinitesimal deviation of each ei(t) from 
parallel displacement; 

n 

dej = E oej. 
j=1 

With this in mind, the torsion is the vector form 

n 

d(dx) = , d(ej 0 oj) 
j=l 

n n 

= , ek (3 0wJ A +eoj J 0d e w ( oj 
j,k=1 j=1 

for the coordinate frame e - / xJ, we simply get 

d(dx) = i( k Fi(J .)dxl A dxk. 
j,i<k ai i 

For an arbitrary frame (x, e) = (x, e1, , e1j), denoting by (x, n) the natural frame 

Xo x' 'xn) 

e(x) = g(x)n(x) where g(x) E GL(n, R) and the torsion form is transformed 
pointwise by g 1(x) on the left. 

In the complex analytic case, we may take either real or complex displacements 
dx; the former leads to the torsion of the underlying real connexion, the latter 
to the complex torsion. Having in mind the latter case, we write locally, for a 
complex connexion r, 0,l= F,', dz' and 

(ta = Ya dXq + Y,'O'X?y 

where XPY" = 3' and (z 1, zn, Xa; cx,/3 =1, .,n) are local coordinates in the 
complex analytic frame bundle of the complex manifold X. Thus 

d(dx) = 
a 

(3 (ria-F' ) dzl A dz; 

this is in terms of the coordinate frame; for another frame we operate on the left 
pointwise by GL(n, C). Now it is known that an Hermitian metric (hP) = h on X 
gives a natural complex connexion(3) 0= h-1 Ah (i.e., Op = h ah13). For this 
connexion 

rn hay hpy 

and 

(3) See Proposition 1 in [7]. 
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(1p7 r - ) - hay -h.8y - hay Ohr7 

az: z 
=hay ( h/3y _ OhrT 

az: a ) 

The vanishing of the torsion is thus precisely the Kahler condition on the metric h. 
From this discussion, we see that the complex torsion is a (1, 0)-vectorial two form 
of type (2, 0) (i.e., a cross section of Y(X)?M Y(X)' AS(X)') and is obtained from 
the complex connexion by the same formal operations which one performs on a 
real connexion to get the real torsion. 

Consider now the principal complex analytic fibration GL(n, C) -* P -* X over 

a C-space X = A/ B = E/ F. Associated to T(X) -* X we have a standard fibre V; 
then V ?RC = Vh V- so that we have 

Vh D Vh - (X) D (X) =(T( X)) X 

as the complexified fibration. 
DEFINITION. Set (Vi(a)) = i(p(a)) for a E a? and also define the complex 

torsion f by f(a, a') = r(p(a), p(a')) where z was defined in ?111. Note that T, in 
contrast to E, is a form of type (2, 0) and this accounts for the difference in defi- 
tions. The following equation justifies our definitions: for a, a' E a', 

T(a, a') = r(p(a), p(a')) 

- - 2 +f[p(a),p(a')]- x(p(a)))V(p(a'))+?X(p(a'))4(p(a)) 

= - ?Q[a, a'] -2(a)+(a') + &(a')i(a) 

(since p is a homomorphism). That is 

(3.3) 2T(a, a') =- f[a, a'] - &(a)(a') + &(a')i(a), a, a' E a?. 

From (4.1) and from the discussions above, we see that f is Vh-valued(4) and in fact 
gives precisely the complex torsion as originally defined above. Recalling the 
structure of a C-space X = A/B = EIF as described above, we have the b0- 
reductive splitting ?h = nh G ?h or ao n f where n* -7o(A/B) and we may 
take Vh = n* whereby i,r is simply the projection of ao on n*. 

IV. Metric geometry of C-spaces. We now determine the form of a complex 
metric connexion on a C-space X; naturally we desire A-invariant metrics. Such 
an A-invariant Hermitian metric is given by a bilinear mapping Q: n* x n* - C 
satisfying 

(4) We remark on the obvious fact that co :Y (p) -- Vh and c75(j) = co(v) 
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(i) Q(cxn, fin') = acqQ(n, n') for n, n' E n*, 

(ii) Q(Ad b(n),Ad b(n')) = Q(n, n') for b E B, or 

(4.1) (ii') Q([b, n], n') + Q(n, [b, n']) = 0 for b E b?, 

(iii) Q(n, n) > 0 for n E nt*. 

As mentioned above, for such a Q there is a unique complex connexion XQ such 
that parallel translation preserves the Hermitian inner product. Before isolating 

XQ, we must make one comment about covariant differentiation on local sections 
of a complex analytic vector bundle. Let M be a complex manifold and B - > M 
an analytic vector bundle over M; for a local (C') cross section v: 
U c M -* 7t'(U), Dv is a well-defined cross section over U of B (0 Y(M)'. Con- 
sequently, in trying to "differentiate" v(z), we need only worry about the (1,0) 
component of the differentiation operation and this is what a complex connexion 
in B does. Thus covariant differentiation on vectors is given by D = D' + a 
where D' = a + e(O) for a complex connexion 0 in B. Finally, 

DZ(v) = <D(v), z> 

< KD'(v),z> if z is of type (1,0), 

- (D(v),z> if z is of type (0, 1). 

THEOREM 3. For x, y, z E n*, %q is given by 

(4.2) QQQ(Z)X, Y) = -Q(X, ay) 

where A:(y) = <a(y), z>. 

NOTE. As will be seen later, the computation of @(y) is easily done within the 
framework of Lie-algebra cohomology. 

Proof. Let dim A/B = m and let n1, -.., nm be a basis of n*; then, by left 
translation, we get a complex frame (e, nl(e), ..., nm(e)) (e e E) on E which locally 
around the origin projects onto a complex frame ([e], r * nl(e), - rr * nm(e)) = 

(z, n*(z), -.., n *(z)) on X; this is seen by using canonical coordinates of the first 
kind in a fashion similar to [15, pp. 42-43]. Let x, y, z be vectors in n* = Y_(A/B) 
and let x(z), y(z),z(z) be the unique vectors obtained locally by parallel trans- 
lation along a geodesic curve z(t) where 

dz(t) ] to 

Then _ t=to 
m 

X(Z) = O (z)n*(z), 
1=1 

m 

y(z) = z jzn() 
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where 4i, j are C' complex-valued functions. They may be assumed holo- 
morphic if and only if the connexion is holomorphic (which means that it is flat!). 
Recalling that if h(z) = (hap(z)) is the matrix of the Hermitian metric, 
Q(x(z), y(z)) = '(Y(z) h(z)g(z)), we have 

__ 

Q(x(z),y(z)) L 2 (z)tjj(z)Q(n*(z), n*(z)) = Q(x,y) 
i,j=l 

(since parallel translation preserves the Hermitian inner product). But 
Q(n*(z), n"(z)) = Q(ni, nj) since the metric is A-invariant and thus 

m 

I 0(?)nj(?)Q(nj,nj) Q((z),y(z)) 
i,j=1 

m 
= E 4i(z) tj(z)Q(nj, nj). 

i,j=l 

We now apply the operation 2(z)]0 to both ends of this scalar equation: 

L {Z(di)]o ij(O) + i(O) 2(nj)]0} Q(ni, nj) = 0. 
i,j=1 

Now recalling 
(i) that the above is taking place along the integral curve (z(t)), 
(ii) the geometric definition of covariant differentiation (Nomizu [16, p. 52]), 

and 
(iii) the above remarks about complex covariant differentiation (for which 

the geometrical interpretation is still true), we see that 

m 

f 2(Qi0)]0nj = -DZ(X)]O = - DZ() = XQ(Z) o X, 
i=1 

m 

E Z(l)]On = -a (45)II = -a (5)]O-= -a() 
j=1 

Combining all, we have that Q(X Q(Z) o X, y) + Q(x, a0-(y)) = 0 which was to be 
proven. 

NOTE. The above demonstration was suggested by the proof of the similar 
Proposition 13.1 in [15]. One might also derive this result using a theorem of 
Singer [17] which gives the horizontal space explicitly in the Hermitian case. 
Indeed, a proof using Singer's result would be more in the spirit of the present 
work. We were not able to find such; however, it perhaps would be of interest 
to do so. 

V. Some applications of the theory. Before continuing on, we shall show how 
the above theory gives some known results in a fairly explicit manner. We have 
proven the first part of 
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THEOREM 4. The complex torsion of a complex connexion X on a C-space 
A/B = E/F is given as a mapping i: n* x n* -+ n given by 2f(n, n') = - [n, n'] 
- (n) o n' + &(n') o n, n, n' E n*. If we have an A-invariant Hermitian metric 
Q: n* x n* - C, then the associated complex connexion X Q is given by 
Q( Q(n) o n', n") =-Q(n', -n(n")), n, n', n" E n. The Cartan-Killing form gives 
a Kdhler geometry on A/B if and only if A/B is Hermitian symmetric. There 
is a natural Kdhler metric on a Kdhler C-space X such that X becomes a 
simply-connected Einstein space and is in fact an algebraic variety with a 
negative canonical bundle. 

To prove the statement beginning with "The Cartan-Killing form ...," we 

shall need to know more precisely the structure of C-spaces and a little bit of 
the structure theory of complex semi-simple Lie algebras. Both of these are 
reviewed in [4] and we only list the facts we shall use. Upon choosing a Cartan 
subalgebra 1) c, we may write 

V = ) D ( e v,) 
a e- ? 

where I is the root system and va is a 1-dimensional eigenspace for the 
root ac. In particular, we may choose eigenvectors ea E va such that 
[eu,ep] = N,,pe,+, (cx # - /1) where the Na, obey the structure relations given, 
for example, in [9]. We denote the Cartan-Killing form on t by Q. The most 
general C-space is given as X = A/B (compact form) = E/F (complex form) where 
? = G? and we shall describe B and F by describing b? and f (because of Lemma 
2.1). Associated to b0, there is first of all a closed subsystem T c r (T' are the 
roots of b0). We set bT = complex Lie algebra generated by e. (cx e T). Define 

by, = {h E l, <ae, h > = 0 for all ax E T}. Then there is a rational splitting t) = bB@D[ 

and a splitting of t) into complex subspaces: p= p 0 such that 
(i) b0 -t)B G b, 
(ii) f = b D p AD n where n = c(ea : a c-7 - T) (_ denotes negative roots 

relative to an ordering). We observe three things: 
(i)' If n* = c(ea : oc E + - TP+), this n* is the same as n* above; n* -=9(A/B), 

whenever p =0. If p # 0, 9T0(A/B) n* 0G p. 
(ii)' G) f) ED (b. fr Ib) lies on no rational hyperplane. 
This section is concerned with those C-spaces X = A/B = EIF such that 

p = 0. In this case, n* 3F0(A/B) and n _ Yo(A/B). Thus it makes sense to 
speak of A:(y) (y, z E n*) and the final remark is that 

(iii)' A:-(y) = [2, y].* (conjugation with respect to the compact form A of E). 
Thus if y = ep, z = ea (cx, P E +- T 

(5.1) e (ep) = ae ,(ep) = [e_a,e#] = N' +pe,+ 

where 
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N'_a,= N-a,p (-c + E Y - T), 

N' a,f= 0 otherwise. 

Let Q = Cartan-Killing form on n* and XQ = x; then, by (5.1), 

Q(x(e.)ey,ep) = Q(ey,Np '.e0_,) (NI- - = N, -a) 

On the other hand, if TQ =T, 2-r(e., ep) = N- ,e+p - X(e)ep + X(ep)e,. Com- 
bining, 

2Q(-r(ea,ep), ey) = Q(-N.,pe+-X(e.)ep + X(ep)e,,ey) 

= -Na,p6y+p + Ny, 3a - N 6 a 

-0 0C+I-y#O 

- -Nap + Ny,_-NY,_ a + f y=0. 

Assume that x+fl-y=0, fa+ fJ 0, l-ys 0, oa-y:$0. Then 

N p=Np_ N 
and 

2Q(r(e., e.), e) = -Nap -Na -N = -3Na,. 

By arguing out the low dimensional cases to justify the assumption, we get 

PROPOSITION 5.1. T = 0 for the Cartan-Killing form if and only if n* is 
a commutative Lie algebra which happens if and only if A/B is Hermitian- 
symmetric. That is, the Cartan-Killing form gives an Hermitian geometry 
on a Kdhler C-space A/B which is a Kdhler geometry if and only if A/B is 
Hermitian-symmetric. 

The above is similar to the main theorem of Hano and Matsushima [10]. 
An affine connexion X on a reductive homogeneous space A/B (a0 = bo ? fo) 
is said to be of the first kind if X(k) ok' = I[k, k']to. The result of Hano and 
Matsushima states that, for a complex metric connexion jQ where Q is Kahler, 
X is of the first kind for A/B if and only if A/B is Hermitian-symmetric. Re- 
calling that the complex Hermitian geometry coincides with the underlying 
Riemannian geometry if and only if the Hermitian connexion is torsion-free 
and that the Kahler condition implies that %Q(X) JX(y) = Jx(%Q(x) o y) for 
x,y E n*, a calculation similar to the above gives 

PROPOSITION 5.1'. Let A/B be a C-space with p = 0 as described above. 
In order that a Riemannian connexion on A/B induced by an invariant Kdhler 
metric be of thefirst kind, it is necessary and sufficient that A/B be Hermitian- 
symmetric. 
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Having seen what metric geometries on A/B (p = 0) are not Kahler, we ask 
what (if any) metrics give a torsion-free connexion. Choose a linear form t1 E 1' 
such that <q, h > = 0 for all h E 1 n bw. We define an Ad B-invariant inner pro- 
duct Q, on nt by 

(5.2) Q(e.,ep) = 3pQ(ac,q). 

Then, such an il defines an (in general degenerate) invariant Kaihler geometry 
on A/B. Indeed, if Xr = Q,, # = XQ,q 

Qj(4(e., ep), e) = N- ,,e+ - X(ea)ep + x (ep)ea, ey) 

= - NN,p(q, y) + N,, _.(,) N)- _p(Nq, ) (assuming ac + / = y) 

= -NNa,p(, y- o-OC) 

= 0. 

There is a canonical element g e)', g = a c; g is canonical for a?; 
for b0, the element g1 = ' a C is canonical. If g = g1 + g2, then 

(i) g2 is orthogonal to () bp) and 
(ii) Q(g2,cx) > Q(06, cx) (for ac eI+ - TP+). Since the condition that Qa con- 

structed above be positive-definite is that Q(c, 1) >0 for c E + -+, =2 

gives an invariant Kiihler metric on A/B. 
This particular Kahler metric ' = g2 has a very nice geometric interpretation 

as follows. For a Kahler manifold, one has the curvature tensor as a mapping 
R :Y 0 Y -+Hom (9, Y), i.e., R E Hom(Y-.Y, Hom(Y, Y)) and for t, t' c , 
one defines the Ricci form R by R(t, U) = tr R(t, t'); R E Hom (V 0 , C). If, 
in local coordinates, R' is the curvature tensor, then 

m 

Ry= Rlr. 
: = 1 

Now one knows furthermore that 

1 m 

- 
: ROdz" A d2" 27ti a,l=1 Il 

gives the first Chern class of the compact Kahler manifold in question. 

PROPOSITION 5.2. The C-spaces A/B = E/F with p = 0 as given above are 

all Kdhler-Einstein spaces with the Kdhler metric given by Qg2. 

That the Kahler C-spaces are Einstein spaces may be found in [13]. 
Proof. We must compute the trace of the linear mapping E(ea, e).): n*-ln* 

given by ='(e.,e_p)e, = I {[Z(e.),Z(e_p)]e, - Z[e,,e-p]e,} where X is the con- 
nexion associated to the Hermitian metric described in the proposition. Thus 

o(e., e-p)ey = A1ey + A2ey, whereA1ey = 2[X(e,), X(ep)]ey and A2ey = -ix[ea e..p]e 
Since tr(Al + A2) = trA, + trA2 and trAl = 0 (A1 is a commutator), we con- 
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clude that tr .(ea, e-0) =- tr X[ea, e-#]. But 

Qg2(X[e., e.p] e?, e?) = N.,-P.Qg2(X(e _p)eT, e?) = 0 

unless ac =f in which case 

Qr2([e,eJ-a] et,e) = Qg2([h, et], e) = Q(a, -) Q (g2,z). 

On the other hand, Qg2([ea, ep] e?, e?) = (A2)a_pfQ(g2, -) which implies that 

(AD'-Jq = I 6Q( x,z) 

Ra, =3f YQ(o,-r) = 3'Q(g2,.) Q.E.D. 

COROLLARY 1 (BOREL-HIRZEBRUCH[3]). In a C-space AIB with p = 0, the 
canonical bundle of A/B is a negative line bundle [12] and thus these C-spaces 
are algebraic varieties. 

COROLLARY 2 (BOREL-GOTO). A C-space AIB with p = 0 is simply connected. 

Proof. Follows from [10]. 
This corollary is definitely not true for a general C-space. 

VI. Canonical geometries in homogeneous vector bundles. In the preceding 
section we derived geometric properties of those C-spaces A/B (compact form) 
where rank B =rank A ( <. p = 0). We now relax this restriction. In T(X) 
where X = A/B = E/F, the A-invariant complex connexions are given by the 
linear mappings c = -gl (n, C) (n = dimc X) such that 

(i) x[e, b] = [x(e), x(b)], e E -, b E b?, 

(ii) X(f ) = adf: c/ f : / f, f E f. 

DEFINITION 6.1. Let p: F -+ GL(VP) be a holomorphic representation of F on 
a finite-dimensional C-module VP. Associated to the fibering F -+ E -+ F/E, we 
form the holomorphic vector bundle VP -+ VP = E X F VP E/F. Then VP is 
by definition a homogeneous vector bundle. We observe that 3T(X) = E X FE/f 

where F acts on ?/f by "Ad." 

PROPOSITION 6.1. Define X by 

x(n)= 0 (n E n* ? p), 

x(f)- ad f: c/f -?/f (fe f). 

Then X gives a complex connexion in $J(X) considered as a homogeneous 
vector bundle. 

Proof. Since [n*, b] c n* and [p, b0] = 0, one easily checks that (i) and (ii) 
above are satisfied. Q.E.D. 
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This connexion is actually the connexion in F -* E -- E/F which is the complex 
analogue of the example discussed in ?111. 

DEFINITION 6.2. The above connexion is called the canonical complex affine 
connexion on E/F. 

PROPOSITION 6.2. The canonical complex affine connexion in Y(X) gives 
a metric connexion < E/F is Hermitian symmetric. 

Proof. Suppose that - = XQ for some metric Q (Q need not be the Cartan- 
Killing form). Then, for n, n', n" E n* p, 0 = Q(XQ(n) o n', n") -Q(n', --(n")) 

n 

= + Q(n', [fi, n"].*e ,). It follows immediately that p = 0, i.e., rank B = rank A. 
If there exists ac, , E I +-'T+ such that a + , fEI -'T+, then - fel -P- 
and 0 = Q(ep,[ep,e,f+p]) = N_#,x+Q(ep,ep) # 0; a contradiction which implies 
that n* is commutative. Q.E.D. 

The canonical complex connexion is in the fibration F -+ E -* E/F; its cur- 
vature form is an f-valued form of type (1,1) (recall Lemma 2.2) and is given by 

(6.1) =(n, f') = -+[n, i']f (n, n' E nt* ?D p). 

If p: F -+ F' is a holomorphic homomorphism of complex Lie groups, the 
associated to the fibering F -> E -+ E/F, we have F'-?E x FF'-? E/F and j 
goes over into a complex connexion -'. The curvature of X' in 
F'-+E x FF' -+ E/F is f'-valued and is given by 

(6.2) m'(n, i') = -1 p([n, i'] (n, n' E n*Ep). 

We close this section with two applications to metric geometry. 

PROPOSITION 6.3. Let A/B = E/F be a C-space with p = 0. Then for no 

A-invariant Hermitian metric in 9f(A/B) can TQ = 0 where iZQ is the complex 
torsion. 

REMARK. Thus rank B=rankA is a necessary and sufficient condition that 
a C-space A/B be Kdhler. This result is due to Borel and Lichnerowicz and 
heretofore has had a topological proof. 

Proof. Suppose that Q exists with the associated -, and T( = 0. Then 

Q(fQ(n, n'), n") = Q(- [n, n'], n") - Q(Q(n), n', n") + Q(jQ(n'), n, n") 

or 

0 -Q([n, n'],n") + Q(n', [mi,n"]n*?p) - Q(n, [fi', n'].*ep). 

Set n =e., n' = kep, n"=e,; then 

0 = Q([e,, k], ej) + Q(k, [e _, ej *D,) + Q(e., <k, a > e.) 

= - <,k>Q(e,,,eO,) + Q(k,(h.)n*e,) + <a,k>Q(ec, e,) 
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and Q(k,(h ) 1*ep) = 0. But since p = 0 and f nt lies on no rational hyperplane, 
we may find an a such that (h<,)tt*,D # 0; for this cx we take k = (h,),*X3p 
((h,,).,*3p cp) and have Q(k, k) = 0, k # 0 which is a contradiction. Q.E.D. 

Now Proposition 6.2. shows that the canonical complex connexion in a homo- 
geneous vector bundle V -+VP->E/F is not in general a metric connexion. 
For the purposes of harmonic theory and vanishing theorems, a metric connex- 
ion is required. On the other hand, the curvature of the canonical complex con- 
nexion is easily computable. The gap is bridged for line bundles by 

PROPOSITION 6.4. Suppose that p is 1-dimensional and A/B is Kahler. 
Then if Xp is the canonical complex connexion in VP-+ VP"- A/B, x may 
be taken to be a metric connexion for an Hermitian metric h in VP; 

Xp=(h-'ah), and , =a(h-1'h) is then suitable for harmonic theory. 

Proof. For the canonical bundle, Proposition 5.2 gives the result. In the 
general case, one must parallel the proof of Proposition 2.8 and we omit the 
calculation. 

VII. A geometric realization of the Atiyah construction. In this section we give 
a geometric interpretation to the curvature class as constructed by Atiyah in 
[1]. The construction in [1] goes briefly as follows: Let E -* P -+ X be a complex 
principal fibration over a complex manifold X with a complex group E as 
structure group. Since E acts analytically on P on the right, we may form Y(P)/E 
and in fact have 

J_(p) 
_ 

S(P) /E 

1 t~~~A 
Y(X) - X. 

The geometrical interpretation of J-(P)/E is that vectors in Y(P) related by 
right action of E are identified; the standard fibre of $f(P)/E is Vh D Ehwhere 
Vh is a standard fibre of JT(X). Setting Q(P) =(P)/E, we form the Atiyah 
sequence 

(7.1) 0 -+ L(P) -+ Q(P) -+ Y(X) -+ 0 

where the standard fibre of L(P) is ?,h* 

A C -splitting of (7.1) always exists and indeed gives a connexion as is clear 
from the geometrical interpretation. However, an analytic splitting does not 
in general exist, the obstruction to such is now obtained. Writing L = L(P), 
Q = Q(P), Y = Y(X), we consider the derived exact sequence of analytic vector 
bundles 

0 - Hom (QT L) - Hom (Q, L)- Hon (L, L) -> 0. 

This gives an exact sequence of sheaves 
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O-+ HIor (i L)-* Hom (Q, L)-* Hom (L, L) -O 

and from it results the exact cohomology sequence 

* H0(X, Horn (Q, L)) H?(X, Horn (L, L)) 

- H'(X, Horm (, L)) * 

There is a canonical element 1 e H0(X, Hon (L, L)); the obstruction element 
6e1 H'(X,Hom(rn (,L))is defined to be the curvature class. On the other 
hand, there are the isomorphisms Hom(,T, L) & 0 L and H'(X,(T'0 L)) 

H0"(X, ' 0 L). Thus, under the Dolbeault isomorphism, 6*1 is a global 
form of type (1, 1) with values in L(P), i.e., a Lie algebra valued form of type 
(1, 1) which is just what a curvature tensor for a complex connexion is. It is of 
geometrical interest to interpret this curvature class here. 

Now let X: EIF = A/B be a C-space; associated to the fibering F -* E -+ E/F 
we make may the Atiyah construction 0 -O L -> Q -+ -+0; it is easily seen 
that L, Q, T are the homogeneous vector bundles E X F, E X F, E XF/f 

where F acts on f, c, and e/f by Ad. Thus 0 -O L - Q 0 is obtained from 
the exact sequence of F-modules 0 - f- -+ f - c - 0 and similarly 0 -> 

Hom (!i, L) -+ Hom (Q, L) -+ Hom (L, L) - 0 is obtained from the exact se- 
quence of F-modules 0 -> Hom(e/fM) -+ Hom(z, f) -+ Hom(f, f) -+0. 

If VP-> VP-+ E/F is a homogeneous vector bundle, E acts on VP and also on 
HI*(X, VP) where X = E/F. In [4] (or also [14]) it is proved that 

(7.2) H*(X, VP) = E V ( 0 H*(rt, VY0 vP)b 

where VA runs over all irreducible finite-dimensional E-modules, VY is contra- 
gradient to VY, and H*(n, V i 0 VP)b is Lie algebra cohomology where 
ii = int p c f acts on V H*3 VP and the notation H*(n, V y0 VP)b0 means that 
we take b0-invariant cochains. 

THEOREM 5. Let X = E/F = A/B be a C-space. Associated to the fibering 
F -* E -+ E/F, one constructs the Atiyah sequences 

O -e L -> Q -* I -> 0, 

O -> Hom'3L) -> Hom(Q,L) -* Hom(L,L) - 0, 

which are infact exact sequences of homogeneous vector bundles over X. Then, 
under the requirement of E-invariance, the curvature class 6*1 in the sense of 
Atiyah is given (uniquely in the Kdhler case) under the Dolbeault isomorphism 
as the curvature tensor of the canonical complex affine connexion. In particular, 
the statements of Proposition 6.2 concerning the canonical complex affine 
connexion are validfor the curvature class in the Atiyah construction. 

Proof. The Lie algebra cohomological analogue of the exact sequence 
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-e H?(X, Hom (Q, L)) -* H?(X,Hom (L, L)) 

+ H'(X, Hom (37-, L)) ** 

is 
-+ O VA0HI('i,V A Hom(c, f))b 

V "3 H?(ii, Vn 0 Hom(f, D)b 
* V_(3H0(ii,VY30Hom(c/ff))b * 

The requirement that we consider c-invariant cocycles means that we take V 
to be a trivial c-module. Thus we consider 

H (n, Hom(c,' ))b H(ii, Hom(f, ))' 

H (n, tHom(c/f, Wf))-+ 

(clearly 1 e HI (iit, Hom (f, f))Z?). To compute 6* 1, we must go to Hom (c, f)iP? 
- C?(n, Hom(?, f)) and find a i there which extends 1 E Hom(f, f) b 

LEMMA 7.1. Writing c = n* 0Df, a i satisfying the above condition is 
given by the linear projection map of c onto f. In the Kdhler case, this i is 
unique. 

Proof. It will suffice to prove uniqueness in the Kahler case. If ir E Hom (c, f) 
extends 1 e Hom(f, f), then, since 1 c bo, 

h o (ea)-ir[h, eJ = 0 for ea 6 * (= n*), h el) 

Thus [h, ir(e,)] = <o, h > ir (er,) for all h E b and thus either 7r(e.) = 0 or 7r(ea) E vc. 
The rest is clear. Q.E.D. 

We observe that ir is nothing other than the canonical affine connexion inter- 
preted as a cochain. To compute 6* 1, we need only commute dir. Indeed 
dire Hom(n,Hom(ui,Hom(c/f,f))) and for n,n' en, di(n')(i) lies in f and is 
given by 

(7.3.) dir(n')(fi) = [fi,r(n')] - ir[f,n'] 

=-n, n'] = .2. (n',n 

where E is the curvature of the canonical complex affine connexion. Q.E.D. 
REMARK. ir is not unique in the non-Kahler case. 
In [8] we shall use Theorem 5 to prove the following theorem. 

THEOREM. Let X be a non-Kdhler C-space and let T2" - X -X I be the toral 
fibering of X onto a Kdhler C-space X. Then there exist a-independent line 
bundles L1, **, La on X such that cl(Lj) = 0 but such that the Atiyah Chern 
class of Lj is =# 0. 
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REMARK. This theorem when X = S t1(3) was given by Bott in [4]. 

VIII. Vanishing theorems on C-spaces. The purpose of this section is to use 
some of the above results to investigate the vanishing mechanism and to try to 
glean some results in the non-Kahler case. Before doing this, we recall two facts 
from the theory of complex manifolds [5]. Let X be a compact complex manifold 
with an Hermitian structure ( , ) in T(X). Associated to ( , ) is a (1, 1)-form Q; 
dQ=0 oX is Kahler. On AP,' (= forms of type (p,q)), one has L:APq -AP+ lq+l 

defined by L(q) = Q A , and we define A AP,q _AP- 1,q- by (Lj, 0) = (1, AO). 
Then 

(8.1) AL-LA = (n-p-q)I on AP,q 

where I is the identity. If V -+ V -+ X is an analytic vector bundle over a Kahler 
manifold X, then if V has a Hermitian metric h, one has as usual a pairing (,) 
between AP,q(V) and An-qn-P(Vy). As mentioned above, 0 = h-'Oh gives a 
connexion in V and covariant differentiation on local sections of V is given by 

D = D' +a 

where D' = 0 + e(0). If we define L and Y' by (4,Vq) = (0a, C), (4,?'j) (D'+, 1), 
then [-I = 0O + #@ gives a Laplacian in AP,q(V) and 

(8.2) AO 

which is the fundamental Kahler identity. Finally, the Ricci identity reads: 

(8.3) D =(D'+)2 =D'+aD' =e(^) 

where E = 00 is the curvature form (see [7]). 

PROPOSITION 8.1 (NAKANO). /-1 (Ae(E)4, 0) _ 0 for 4 harmonic, 

0 E AP q(V). 

Proof. 

/-1 (Ae(6)4, 0) = j-i (AOD'O, 4) 

- 1-1 (AaD'4,0)- -1 (D'4,LO9) 

- 1-1 ((Aa-aA)b,1)= -1 (-1-1 (L D')4t) 

- (D'4,D') ? 0. Q.E.D. 

Dually, one proves that 1-1 (e(E)A4, 4) _ 0 and by subtraction, 

1/-1 ((Ae(6) - e(E)A)O, q) _ 0. 
Now let VY-P VVP -+ X = A/B = E/F be a homogeneous line bundle over a 

Kahler C-space X. Then f = Np (D bp (c n and p I bp @ n= 0, i.e., p is a complexi- 
fication of a character on the center of B. We choose a positive-definite Kahler 
metric Q,1 by (5.2) on X so that Q,,(ea, ep) = MQ(q, a) for oc, ,B E - T +. We denote 
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the Cartan-Killing form Q by (, ) and for o E + - T + we set fa = ej a(ji c) 
so that 

Ql(falff) = P 6P(falf =- pp((h.) ,)/(1, cx) by (6.2) 

where h. = [ea, e-] and ()T signifies the projection of I on bT. If w)" is dual tofu, 

dS2 = Y cto o&i 
a .+ - T+ 

and 

Q = 8/2- z ct9 A ct9a 2 Ye.+ - + 

Finally, we remark that p given above is the curvature of a metric connexion by 
Proposition 6.4 and thus (8.3) and Proposition 8.1 both hold for E. 

PROPOSITION 8.2. If p(ha) < Ofor all ac E - P +, then there are no harmonic 
forms in Ao? (V)for 0 < q < n. 

Proof. Since the metric and curvature are A-invariant, we may calculate at the 
origin (=-coset of the identity). There 4 = (1/ q!)Op ...fiq 9Pl'A... A 0'Pl where 
0 ...Pa transforms in VP 0 (A q9J'(X)). By a routine calculation which need not 
be written out, 

Ae(_ =-A1' y i p((h )PJ) lJpj cp A P A A 
Ae('P)o ~2(q!) '\ZP..a(j,xa) 

and the Nakano inequality implies that 

-1 fb (Ae(6p)))h A * ?0. 

Up to a positive constant, the integrand of this expression evaluated at the origin is 

E p((h.)b,o) 1 t 12 

a*li ...P , x 

The proposition follows from this. 

COROLLARY. If p((h_)b) < Ofor oc E - TJ+ and iffor one such cx, p((ha),,+)<O, 
then there are no harmonicforms in A?'0(VP). 

We may now ask about harmonic forms in APq (VP). 

PROPOSITION 8.3. If p(ha)<O for a + - T+, then there are no harmonic 
forms 4 E AP q(VP) for p + q < n - 1. 

Proof. This may be done exactly the same way as Proposition 8.2; we proceed 
somewhat differently. If p satisfies the given hypothesis, then we define Qp by 
Qp(ea, e_p) = - 6pp(h.) (note that p(h.) = 0 for cx E T +). Then 
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dS2= I - p(h.)ct) ? 
oeX + -T+ 

and 

Q2 = X phjcev A coe 2 cel+-TP+ 

and thus 

op-- g_I Q where A > O. 

By (8.1) and the remark after Proposition 8.1, 

0 < /-1 ((Ae(^P) - e(Ep)A)0), 4)) =-A((AL - LA)O, C)) 

= -i(n-p-q) (4 , q). Q.E.D. 

We have proven the following theorem, most of which is due to Borel and Bott. 

THEOREM 6. Let VI -+ VI -+ X be a homogeneous line bundle over a Kdhler 
C-space X = A/B = E/F. Then if p is nonpositive and has at least one negative 
eigenvalue on the center of b0, H0(X,VP) = 0. If p is strictly negative on the 
center of b0, HP,q(X, VP) = Hq(X, jP (? VP) = 0 for p + q < n - 1 where 

In the non-Kahler case, one has (8.1) but (8.2) is no longer true. Whereas in the 
Kahler situation, the Nakano inequality is an expression of the form (R4, )) > 0 
(4 harmonic) where R is an operator involving only second order or curvature 
terms, in the non-Kahler case one arrives at an expression of the form 

(8.4) (R4, O) + (X(0,) 0) > 0 (4 harmonic) 

where X is an operator in the first order or connexion terms. 

THEOREM 6'. Let EP - EP-+ X be a homogeneous line bundle over a C-space 
X where dimcX = n (X may be Kdhler or not). Suppose that thefirst Chern class 
cl(EP) is given by a negative semi-definite quadraticform of index k < n. Then 

(8.5) Hg(X, 9P) = 0 (q < k). 

REMARKS. If k = n, X is necessarily Kahler and we recover Proposition 8.2. 
fhe idea of the proof of (8.5) is contained in the proof of Proposition 8.2; the 
details are somewhat more complicated. We remark that using (8.5) it is not too 
hard to give a purely differential-geometric proof for line bundles of the main 
theorem of Bott (Theorem IV' in [4]). Our main interest is in the non-Kahler 
case and we shall give this result here, deferring its proof together with the proof 
of (8.5) to a later paper. 

Let X = G/I I be a non-Kahler C-space and suppose that T2- _+ X .! Xis 
the toral fibering of X over a Kahler C-space X = G/I 9. Then 96 is a normal 
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subgroup of 1, we have p: i -+ 1l/ I L? T27, and the manifold X is given as the 
homogeneous torus bundle G x T T2a. This bandle is an analytic principal bundle 
associated to the principal bundle ? -t G -+ G/I W; thus T2 X -+ X inherits 
the canonical complex connexion (Definition 6.2) in l? -* G -+ G/I . Letting 
p=complex Lie algebra of T2 , the connexion form o is a p-valued (1,0) form 

on X and, choosing an isomorphism p Ca, we may write o = w1 + - + (Oa 

where the oj are scalar-valued (1,0) forms on X. The curvature form m may be 
written = E1 + + + La where 

6V 
= dd(w) = A(w) (since E is of type (1,1)). 

This implies that Owj = 0 and because the connexion is not integrable, E, # 0. 
The forms Cojj are thus invariant (since the connexion is) (0,1) forms which are 
a-closed but are not d-closed. 

Let Eo -* Eo- A be a homogeneous line bundle; in [4] Bott showed that 

H"( f) # 0 for at most one q = qo and H40( ,^P) is an irreducible G-module 
with induced representation denoted by p*. The restriction of A to O? gives 
p: ?-+ GL(EP) and we may form EP -*E'P-+ G/ I ; it is not hard to show that 
ir-'(E") = EP where 7r -' =lifting of bundles. Thus if 4 is an Er-valued form 

representing a cohomology class in H4o(g, 'P ) H? qo(X,EP), r*( ) is defined and 

represents a class in H0 ,(X, EP). 

THEOREM 7. Hg(X, gP) _0 if q < q0 a nd H"o+P(X,JP) Hqo(f, 4"0)?HP(X,fi). 
The induced representation is (,5)* 0) 1, and the forms representing 

qo+ P(X, P) -Ho qo+P(X,EP) may be chosen to be i*(4) 0 &ij...jp where 

&j ...ip = Eij A ... A&o)i and the Coj and 4 were defined above. 

This shows how the canonical connexion enters into the discussion of the 
groups Hq(X, gP). The proofs of Theorems 6' and 7 will be given in [8] and the 

initerpretation of the forms will rely upon the results of this paper. 

lX. Some applications to sheaf theory. To the best of the author's knowledge, 
the main applications of differential geometry to complex manifold theory have 

been to the study of characteristic classes and to vanishing theorems. We shall 

now indicate some other (less profound) applications which may be of interest. 

(i) Let X = G/ U (complex form) = M/ V (compact form) be a C-space, and 

let p: U -> U' GL(EP) be a holomorphic representation. Then we may construct 

the homogeneous principal bundle 

(9. 1) U'+P'-=PxuU' >X 

and the associated vector bundle 

(9.2) EP -*EP =P' x u,EP -+X. 

Forming the Atiyah sequence (?6) associated to (9.1), we get 

(9.3) 0 -* L(P') -+ Q(P') -+ T(X) -O0. 
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From Theorem 5, we have 

PROPOSITION 9.1. The obstruction to splitting (9.3) is given by 
=p*(E)eH'(X,Homr(T(X),L(P'))) where is the curvature tensor of the 

canonical complex connexion. 

The bundle T(P')/U'=Q(P') is a homogeneous vector bundle given by some 
linear action of U: we shall determine this representation. Note that L(P') is 
given by the linear representation Ad o p of U on ui'. A typical fibre of Q(P') 
is E = u'@ g/u, and because of (9.3), the representation of ui on E must be of 
the form 

(9.4) u 0ad(u) 4(u) for some C Hom(u,Hom(g/u,u')). 

PROPOSITION 9.2. Write u = Do (0 n. Then the element C E Hom (u, m(g/u,u')) 
in (9.4) is given as follows: 

((v) = 0 for v Et V? and C(n)g' = ='(g, n) for n E n, g E g/u. 

Thus we may write the representation of u in theform 

(ad ' 
(9.5) 0 adJ 

Proof. If we consider the case of the principal bundle U -> G -+ G/U, then 
E = u 0) g/u _ g (as vector spaces) and the representation (9.5) is just the ad- 
joint representation of u on g, since E is the curvature of the canonical complex 
connexion. The general case follows from this, coupled with mapping properties 
of the Atiyah construction. Q.E.D. 

Now the homogeneous bundle E has a holomorphic connexion if and only 
if (9.3) splits analytically, which can be done if and only if in the cohomology 
sequence 

(9.6) -. -+* H?(X, Hom (T(X), Q(P'))) I+ H?(X, Hom (T(X), T(X))) 

there exists a X E H?(X, Hom (T(X), Q(P'))) such that or(x) = 1. Now (9.6) is an 
exact sequence of M-modules, and if such a X exists, it may be chosen to be 
M-invariant. It then follows, by (7.2), that (9.3) splits analytically if and only 
if the exact sequence of u-modules 0 -*n' -* E -* g/u -+ 0 splits. Thus, by Pro- 
position 9.2, we conclude that, by redefining the action of u by a change of co- 
ordinates if necessary, (9.3) splits analytically if and only if the canonical complex 
connexion is integrable. Since ir1(X) = 1, we have 

THEOREM 8. A homogeneous vector bundle has a holomorphic connexion 
if and only if it is analytically trivial. 
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(ii) The results in this section are valid for arbitrary complex manlifolds. 
Let X be a complex manifold and let 

(9.7) (S) : O E' -> E -+ E" O 

be an exact sequence of analytic vector bundles over X. Then there is associated 
to (S) an element, unique to nonzero multiples, C(s) - H'(X, Hom (E', E')) such 
that (S) splits analytically if and only if C(s) = 0. If U = { Ui is a Stein covering 
of X with nerve N, and if the transition functions of E', E" are {e/j}, {e" }, then 
the transition functions of E may be written as 

(9.8) =i (ej . i) 

and C(s) E H'(N, Hom (E", E')) is given by Qij = oij (eij) '. 

Now if A, B, C are analytic sheaves over X, and if there is a pairing A 0 nB C, 
then there is defined a pairing 

(9.9) o : CP(N, A) 0 Cq(N, B) CP+q(N, C) 

such that 

(9.10) b(C o n) = b(0) o n + ( 1)P b() 

where ' e CP(N, A), e Cq (N, B). The definition of this pairing is the same 
formally as for constant sheaves. By (9.10) there is a cup-product 

(9.11) o : HP(N, A) 0 Hq(N, B) -+ HP+q(N, C). 

In particular, there is a cup-product 

(9.12) H'(X,Hom(E"',E')) 0 H--(X, H ') ,). 

PROPOSITION 9.3. In the exact cohomology sequence of (9.7), the coboundary 
mappings Hq 1 H-1(Y, ") > H (Y, ') are given by 

(9.13) 3q'(q) = ,(oq for ,eH l(y,4 ). 

Furthermore, o may be interpreted either in terms of Cech or Dolbeault 
cohomology. 

Proof. Write #' = g-', s = ~, y" - i", Cq(~F,) = Cq(N,$'), etc., and con- 
sider the diagram 

0 -- - E c, - E -- -0 

(9.14) o oV 
O YEq Cq(Hom("," ))qC'(S")O 

q r+s=q q r+s=q q r+s=q 
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By defining 3 on Cr(Hom (,', 6)) 0 C3(~FY) (-= Y',Y,Y") to be 3 = 30 1 + 

(-l 1) l03, then by (9.10), (9.14) is a commutative diagram of chain comp- 
lexes. Thus we have 

Hq- 1(s-) 
6q-I 

H q(g7q) 

T0 T0 

E HH(Hom(yF, Y7")) 0 Hs(,,I) 
q 1 

Hr(Hom(sFt, .F)) 0 Hs((') 
r+s=q-1 r+s=q 

A. 

H?(Hom (s"', ~F")) 0 Hq (t) > H'(Hom (eF', ~F')) 02 H- O(F ') 

0 0 
Now the mapping 

-q-1 : Hr(Hom (.F ,")) 0 Hs(,FI) > Hr '(Hom (H, )) 0HF") 

OHr(Hom (.F', F/')) 0 Hq+ 1 (y) 

is simply br 0 1 0 + 0 where 3r: Hr(Hom (eF"F')) Hr '(Hom (.F", .F')) is the 
usual coboundary. Thus, if 1cH q- 1,H0(Hom(F', ~F ')) hen 6q 

- 
l(Co ) = 60g)o q, 

and taking = 1 E H4(Hom (Y", p")), we get the first part of the proposition. The 
second part follows, e.g., from the general remarks in the last chapter of the book 
by Godement on sheaves. Q.E.D. 

Now let Y be compact and let A -> P -+ Y be an analytic principal bundle 
where A is a complex Lie group. Let 0 E H?(Y, (T(Y)) ) be a global holomorphic 
vector field on Y, and set 0(t) = exp(tO). Then we clearly have: 

PROPOSITION 9.4. Let 0 -O L(P) -e Q(P) -o T(Y) - 0 be the Atiyah sequence 
of A -+ P Y. Then 0(t) lifts to bundle action in P if and only if there exists 
a section fEr H(Y,(Q(P))-) such that c(f) = 0 E H(Y, T(Y)-). 

PROPOSITION 9.5. In order that 0(t) lift in action in P, it is both necessary 
and sufficient that,for any connexion o of type (1,0) in P with aco = X, we have 

(9.15) i(0)* = 04na for some Cm section I8 of L(P). 

(Here i is the operation of contraction.) 

Proof. By Proposition 9.3, 30(0) = i(0) 1, and we may use Proposition 9.4. 

Q.E.D. 
REMARK. Equation (9.15) will have applications to variation of complex 

structure. 
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