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On the Existence of a Locally Complete 
Germ of Deformation of Certain G-Structures 

By 
PHESLIP A.  fiRIFFITHS ill Berkeley 

In  [3] we have defined the notion of a deformation of a G-structure on a 
compact manifold X. The purpose of this paper is to construct a universal germ 
of deformation of such a structure with the hypothesis tha t  G be of finite type 
plus another mild restriction. The pertinent definitions and precise statement 
of the main Theorem are given in § 1. 

The analogous theorem for deformations of complex structure has been 
proven in [6] by KURA~TISm. However, since we are mainly concerned with 
deformations of non-integrable structures, the methods of [6] do not imme- 
diately apply to our case. In fact, i t  is easy to see that  in general there exists no 
differential equation of the Frobeniu8 type which, when given a family of G- 
structures, tells us whether or not the family forms a deformation. In  the 
complex case, given a 1-parameter family of almost-complex structures 
J~ ( -  s < t < e), with J0 integrable, there is a differential equation A such that  
A J~ = 0 implies that  the J~ are integrable so that  we get a deformation of the 
complex structure on X. I t  is this construction which does not generalize to 
general G-structures. 

In  fact, the class of G-structures for which such an operator A does exist 
are the so-called transitive structures. In §9 2 and 4 we construct A for a special 
transitive structure, and in the Appendices, A is constructed for a general 
transitive structure of finite type. 

In  § 3 the main reduction in our Theorem occurs when it  is shown the 
existence of a universal germ of deformation of a general G-structure follows 
from the existence of a universal germ in a special transitive case. In  99 4 and 5 
the operator A is used to construct the universal germ in the special transitive 
case. 

In  9 6, the reduction, together with the construction in the transitive 
situation, are combined to complete the proof of our main result. 

In  9 7 some examples and applications are given. For  instance, a special 
ease of our main theorem gives a generalization of some recent results of 
H. C. W ~ G  concerning the space of lattices in certain Lie groups. Our transcen- 
dental methods give a/ocal  construction of this space of lattices for any Lie 
group. The results of WAI~G saying tha t  this space is, in certain cases, a mani- 
fold of a certain dimension then follow from the computation of some coho- 
mology groups. The general calculation of these cohomology groups will 
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presumably give the complete local structure of the space of lattices in any 
Lie group. 

In  fact, our results show that  the space of lattices in a Lie group, with the 
equivalence relation that  two lattices are identified if they are conjugate, is 
locally an analytic set. The cohomological result then gives the dimension of 
this set and, if it exists, the non-singularity. 

1. Statement of the Theorem 

Throughout our discussion we shall denote by G a connected hnear Lie 
group which is then a subgroup of GL(n,R). Let l (x)= (IX(x) . . . . .  l"(x)) 
(x = (x 1 . . . . .  x~)) be a local diffeomorphism of R n, and denote by J1 (x) the 
Jacobian matrix of / at x E Rn. Recall that  G is said to be of finite type if there 
exists an integer P0 = #0 (G) such that, for any diffeomorphism ] with J1 (x) E G 

a~,+-..+~,, / 
for all x, (0xl), .... (Ox"),, = 0 whenever/~1 + " " " +/~n > #0. 

Let X be an n-manifold. Then a G-structure on X is given by a reduction of 
the structure group of the tangent bundle of X from GL (n, R) to G. If we let Ba 
be the manifold of all G-/tames, then there is a principal fibration G ~ B G -+ X. 
The principal bundle GL (n, R) -+ B ~ X obtained by extending the structure 
group of Ba to GL(n, R) is then the principal tangent bundle of all frames on X. 

Consider now a local diffeomorphism / : X - ~  X. (By this, we mean that  
there exist open sets U, U' ( X and a diffeomorphism / : U -+ U'.) Such an / 
has a canonical lifting to a bundle automorphism 

/ . : B - >  B 

/ : X ~ X .  

We say that  ] is a local G.automorphism if ]. (Ba) ( B G when BG is considered 
as a submanifold of B. 

Let 0 be a local vector field on X. Then 0 generates a local one-parameter 
group / ( t)= exp(t0) of local diffeomorphisms of X. We say that  0 is an 
infinitesimal G-automorphism if the /(t) are local G-automorphisms. Denote by 
Oa the sheaf on X of germs of infinitesimal G-automorphisms. 

Suppose that  G is of finite type. Then each stalk Oa(x) (x E X) is a finite- 
dimensional real vector space, and we say that  the G-structure on X is normal 
if dim Oa (x) is independent of x. This happens in particular when everything 
is real analytic. 

Let now U ( R m be an open neighborhood of the origin in R m with para- 

meter t -- (t 1 . . . . .  t=), and let ~ ~ U be a differentiable fibre bundle with 
fibre X. We may take as structure group of the tangent bundle of ~P the group 

of all matrices (~ ; )where~EGL(n,R) , f lEGL(m,R)and*EHom(R'~ ,Rn) .  

Let G* be the linear group of all matrices of the above form where ~ E G, and 
let G' C G* consist of the subgroup of all matrices where * = 0. Suppose that  
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we have given on g/s- a G*-structure. Then  on each fibre X~ = 05-1 (t), there is 
an induced G-structure G ~ Bt;(t) ---> Xt. 

Before defining wha t  it means for ~ to  give a deformat ion of the G-struc- 
ture  of X, we observe that ,  if Z C X is any  open set, then there is a natura l  
G'-s tructure on Z × U induced f rom the G-structure on Z. We  let s t :Z x 
× U -+ U be the project ion mapping.  

Now let ~ ~ U be as above and  suppose t h a t  we have  on ~ a G*-structure. 

We say the $//" ~ U gives a de]ormation o I the G-structure on X if the  following 
two conditions are satisfied: (I) There is a G-diffeomorphism between X and 

Xo _ 05-1 (0) ; (II)  The fibre bundle ~ ~ U is locally G-trivial in the following 
sense : For  each point  x o E ~ r~ X0, there exists a neighborhood V (xo) of x 0 
in ~ ,  a neighborhood Z(xo) of x o in X 0, and a diffeomorphism ]~0 : V(xo) 

Z(xo) × U such t h a t  st o ] = 05 and which t ransforms the induced G*- 
s t ructure  on V(xo) into the natura l  G'-s tructure on Z(xo) × U. 

Given deformations ~gz', ~ U' and ~ ~ U of G ~ B~ ~ X, a mapping o] 
de]ormations is given by  a pair  of mappings  F : C/z, ~ S/s', ] : U '  ~ U such t h a t  

~ '  ~ 

/ : U ' ~ U  

commutes  and such t h a t  F is a G*-mapping which is a diffeomorphism on 
fibres. F r o m  this we m a y  define equivalent deiormations and finally, in a well- 
known manner ,  a germ o/de/ormation. 

For  the purposes of this paper,  the  above  definition of deformat ion is no t  
sufficient, and we mus t  allow t h a t  U has singularities (e.f. the  examples in 
§ 10 of [3]). Thus  let V C U be an  analyt ic  set t h rough  the origin, and  suppose 

t h a t  W ~ U has a G*-structure such t h a t  (I) above is satisfied. Then  this da t a  
gives a deformat ion if (II)  is satisfied in the following sense: For  each x o E X0, 
there exists a neighborhood V (x0) of x o in W,  a neighborhood Z (x0) of x o in X 0, 
and a diffeomorphism /Xo : V (xo) -+ Z (x0) × U with st o / = 05 and  such t h a t  
holW-l(t) ~ V(xo)--->Z(xo) × {t} is a G-isomorphism whenever  t E V. We let 

= 05-x(V) and  write such a deformat ion as { ~  V}, the  existence of 
ambient  spaces W of ~ and U of V being understood.  

We also say t h a t  { ~  ~ V} is e~ective, or effectively parametr ized,  if no 
restriction of ~¢r to  an  analyt ic  curve th rough  the origin gives a trivial deforma- 
tion. 

Given V' C U',  V C U and  deformations { ~ '  ~ V'}, {$g" ~ V}, a mapping  
between these deformations is given by  a G*-mapping F : W ' ~  W and a 
differentiable mapping  l :  U ' - ~  U such t h a t  / ( V ) f f  V', / (0 ) - - -0 ,  and  0 5 ' o F  

I 05. We (F, 1) v'} = o --> V}. ( In  case V is non.singular  

at  0, i t  is unders tood t h a t  V = U.) A germ of deformat ion {S/P -~ ~ V} is locally 

complete if, given a n y  non-singular germ { ~ ' - ~  U'}, there exists a mapping  
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of germs (F, f ) :  (~ f '  ~-~ U }-~ (~qr _~ F}. The germ (y/z ~ F} is said to he 
strongly locally complete if we may omit the adjective "non-singular" above. 

Now let G be of finite type and G -~ Ba -~ X a G-structure. Recall tha t  a 
lattice in a Lie group A is a discrete subgroup F C A such that  the quotient 
A/Fis  compact. We say tha t  a normal G-structure G -~ Ba -> X is regular if the 
Lie group A of G-automorphisms of the universal covering ~[ of X (with the 
natural G-structure) has finitely many components and if the fundamental 
group of X is a lattice in A. 

Our main result is the following 
Theorem: Let X be compact and G -~ B a -~ X a regular G-structure. Then 

there exists a locally complete e~ectlve germ {?/f ~ F) of deformation of this G- 
structure. 

Remark: The germ which we shall construct is almost certainly strongly 
locally complete --  our methods, however, fail to give this result except in an 
important  special case. 

2. Some General Remarks on G-Structures and Deformations 

Let  V be a real vector space and (7 C GL(V) a closed linear subgroup. 
Proposition: The set M a of translation-invariant G-structures on V forms a 

manifold which may be identified with G L (V)/G. 
This may be seen as follows. By identifying V with its tangent space at  the 

origin, a translation invariant G-structure on V is given by a set of frames S 
such that ,  if e, e' E S, then e = e'g for some g E G. By choosing a coordinate 
system, a frame is given by a non-singular matrix, and we let e 0 be the coordi- 
nate frame. Define a mapping ~ : GL(V) -~ M o by setting ~(~) = ~eoG for 
~' E GL(V). Then clearly ~ establishes an isomorphism z:GL(V)/G_~ M a. 
Q . E . D .  

Now we may choose coordinates around cog in Ma to be linear coordinates 
in a neighborhood N of 0 in gl(n, R)/91). Thus the set of G-structures near a 
given G-structure form part  of a linear space. We now carry this over to manifolds. 

Let  G -~ Ba -~ X be a q-structure, and let 2: be the sheaf of germs of smooth 
sections of the bundle Ba×agl(V)/9 where (7 acts on gl(V)/9 by the ad]oint 
action (for v E g/(V)/g, g E G, g .v = ge t - l ) .  Then, by the above remarks, 
the G-structures on X near to G -~ B a -> X are given by the "small" sections 
of the sheaf 2:-~ X. We give some examples of this construction. 

(1) G -- 0(n). Then GL(n, R)/0(n) is the cone S(n) of symmetric positive 
definite matrices. Furthermore, gl(n,R)/O(n) may be identified with the 
linear space of symmetric matrices. 

Let g(x) be a Riemannian metric on X. Then the above says tha t  the 
Riemannian metrics near to g(x) are of the form g(x) -k ~(x) where ~ : X -~ Z 
is a small symmetric tensor. 

(2) (~= G L ( n , C ) ( G L ( 2 n ,  R). Then we may identify MaL(me) 

a) Here 9 denotes the linear Lie algebra of G; al(n, R) = Hom(R', R~). 
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~ : G L ( 2 n ,  R ) ~ M a L ( , , c  ) by z t ( ? ) = ? J o ?  -1 ( ? E G L ( 2 n ,  R)). Then ~t 
establishes an isomorphism ~:  GL(2n,  R)/GL(n,  C) -+ MaL(, .c  ). 

Let J EMaL(n,c ). Then the tangent space to MaL(n,c ) at J is equal to 
{ A E H o m ( R 2 " , R 2 " ) [ A J q - J A = O } .  Note that  MaL(n,c ) has an almost- 
complex structure K given by K ( A )  = J A  for A E T(J).  This structure is 
integrable, and indeed Maz(n,c ) may  be identffied with an open submanifold 
of the complex Grassmann variety of complex n-planes in C s". Let  W be the 
eomplexification of R ~" and write W --- WI(J) @ W2(J) where Wl(J)  is the 
+ ~/~1 eigenspaee of J and W 2 ( J ) =  Wl(J).  The condition A J A - J A  = 0 
means that ,  when A is extended to Horn (W, W), A = A 1 + A1 where A s E 
E Hom(W2(J),  Wl(J)). Thus the sections ~ : X - ~ 2 :  are essentially the so- 
called vector-valued (0, 1) forms ~ = (~)  and the nearby almost-complex 
structures are given by  the small vector-valued (0, 1) forms. 

This may be done directly as follows. Let  e ¢~ = (e, ~) where e = (e I . . . . .  e,) 
be an admissible frame for J .  Then a complex frame corresponding to the vector- 
valued (0, 1) form ~(x) is given by (e Jr ~ ,  ~ T ~e). 

(3) G = I is the identi ty matrix. Then Mx = GL(n,  R). An /-s t ructure 
on X is given by a field of frames e I (x) . . . . .  en (x) which give a parallelism on X. 
A section a : X - + •  is a matrix valued function ~ ( x ) =  (~(x)i), and ' the 
corresponding/-structure is given by the field of frames e~ (x) . . . . .  e~ (x) where 

e~ (x) = I ~(~)~ e,(~) + ej (~). 
i = 1  

Let now ~ = H ° (X, 2:) and suppose that  we have on S a norm [I H such 
that  its completion is a Banach space. (Correspondingly, the set of G-structures 
on X may be made into a Banach manifold whose tangent space at  G -+ Ba ~ X 
is just S.) Le t / 2  be a neighborhood of 0 in 2 .  Then there exists a variation of 

the G-structure {3qz ~ / 2 }  where 5-1( t ) ( t  E/2) has the G-structure given by 
t E/2. This space is a sort of universal model for the local deformations of 

G -~ B a -+ X: Given any deformation {3¢~' ~ U'}, we have a mapping (F , / )  : 

: {3q r '  L U'}-+ {3q/'L/2} as follows: For t 'E  U', I(t') E/2 is the section of Z 
such tha t  oS'-~(t ') has the G-structure corresponding to /(t'), and then F is 
the identity. 

This universal model is unsatisfactory in two respects: (i) the structures 

c5 -~ (t) (t E/2) are not all locally equivalent so that  {~q/" ~ / 2 }  is not  a deforma- 

tion in our sense; (ii) the space {¢4P ~ / 2 }  is not effectively parametrized --  
we must, in some sense, take the orbit space of ~2 under the group of diffeo- 
morphisms of X. 

We now give a sort of general procedure for dealing with (i) --  this general 
procedure will be specialized in § 4, and also in the Appendix. Also, in § 5, we 
shall give a general method for treating (ii). Taking these together will give the 
Theorem of § 1. 

The idea in (i) is to find a (non-linear, of course) differential operator 
A = Aa on ~ such that ,  for a E D, A a = 0 is a necessary and sufficient condition 
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t h a t  the  G-s t ruc~re  G - ~  B a ( a ) - ~  X determined by  a is locally equivalent  
to  G -~ Ba  -~ X.  I f  this has been done, then  we set U = {kerzJ} ~ ~Q and  get  

a bona  fide universal germ o I deformation {~YP ~ U} of G -~ B a -~ X .  

As an example, recall t h a t  G -~ B a -~ X is integrable if there  exists a co- 
ordinate  covering { Ua} of X with coordinates (xla . . . . .  xa n) in Ua such t h a t  the  (' ,) coordinate f rame a x l  ' " " " '  0 4  E Ba. I f  G-~  B e ~ X is integrable, then 

A a - - 0  (a E D) should be the  equat ion of integrabili~y of the  "a lmost  G- 
s t ruc ture"  defined by  o'. Such a zl exists in the complex analyt ic  case ([5]) and 
also for m a n y  other  integrable s tructures  ([9]). 

The operator  A has, in the past,  been determined f rom the  differential 
operators in an injective resolution of the sheaf Oa. We outline now a procedure 
for get t ing the first few terms in such a resolution. 

Let  now Z be the sheaf of germs of sections of B o x agl (n ,  R)/g, and let ~" 
be the sheaf of germs of t angen t  vectors. Define j : Oa ~ J -  to  be injection 

of the subsheaf Oo of 57- into ,~.  We now define D 1 : 3 -  ~ 27 such tha t  0 -~ Oa ~ 

J 3 -  ~ 27 is exact.  Let  ~ (x) (0) 1 (x), . . ~o n (x)) be a local co-frame for the  ~ ~ ° ,  

O-structure O ~ B a ~ X. Then any  other  admissible co-frame m' (x) m a y  be 
wri t ten as m' (x) = co (x) g (x) where g (x) is a local mapping  of X into G. Le t  0 
be a germ in 3", and consider L~,f 0 co = (~° 0 co 1 . . . . .  ~° 0 co n) ~). Then  we m a y  write 
• .~0~o = - t - m  • ~'(x) where )J(x)Effl(n, R). We claim that ,  considering ~,(x) as 
an  element of gl(n,  R)/g, ~, is a section in Z'. Indeed,  if m' is any  other  co-frame, 
then  m' = co • g and  -~0(eo') = ~ o w  • g + co • -'~fog = + ¢0'g -1 7g -~ C0~f0g 
= m' (+  g-1 7g -~ g-1 Lf0g). Since g-1 ~f0 g is a mapping  of X into 9~ ~), we see t h a t  

(x) is in fact  a germ in 2:, and  we se t / )10  = r (2: .  Clearly c~a-~ : ~  -~ ~ is exact.  
This m a y  be done more  intrinsically as follows. Let  B be the bundle of all 

f rames on X,  so t h a t  B a ( B is a sub-manifold,  and  let V be a fibre for  the  
tangent  bundle  of X (¥ ~ R"). There  is on B a Y-valued form co such that ,  
for  h ~ G L ( V )  act ing on B on the  right,  w ( b h ) = h - ~ . w ( b )  ( b ~ B ) .  L e t  

eo a = eo I Ba, and  let 0 ~ ~ ' .  Then  0 defines a r ight- invar iant  vec tor  field 0 on B, 
and  thus  ~foco = ~ - 7 .  o~ for  some funct ion 7 : B - ~ g l ( ¥ ) .  F r o m  the  r ight  

invar iance of 0 and  the  t ransformat ion  law on w, we get  t h a t  y (bh)  = h -~ 7(b)h  
(b ~ B ,  h ~ G L ( ¥ ) ) .  Le t t ing  g : g l ( V ) - ~ g l ( ¥ ) / 9  be the  projection, then,  on  
Ba, .5~0eo a = 7 -  wa and ~(7)  is a funct ion on B a with values in gt(V)/9  which 
t ransforms b y  Ad  when G acts  on the  r ight ;  i.e. ~ (7) is a section of 27 and  
~ ( 7 )  ----- D~(O). 

Now the  next  logical step is to  find a sheaf A of germs of sections of a bundle 

and  a differential operator  D~:27-~  A such t h a t  ~" ~ Z~¢  A is exact.  I n  
practice, once D~ is found,  it is easy to find A. We shall car ry  ou t  this procedure 
for a special s t ructure  in § 4 and in the Appendix  for an  arb i t rary  transi t ive 
(7-structure of finite type .  

a) Here ~q~a ( @ ) is the Zde derlva$ive of ~ along the vector field 0. 
~) Recall that the (left.invariant) Maurer.Cartan form ~2 on G is given by ~2(g)=g-~dg. 
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3. Reduction of the Problem 

Let  A be a Lie group a n d / '  C A a lattice. Denote by  o~ 1, . . . ,  co ~ a basis for 
the right invar iant  forms on A. Then, on the manifold Y--- -A/I ,  there is 
defined a parallelism, which is a G-structure where G -  I ,  defined by  the 
Pfaffians e e l , . . . ,  go ~. For  convenience, we call a parallelism an I-structure. 

Let  now G -> BG -> X be a regular G-structure. Denote by  ~ the universal 

covering manifold of X and l e t / ' - ~  J~-~ X be the covering fibration where 
/" = ~1 (X). Over X there is uniquely induced a G-structure by  the requirement 
tha t  ~ should be a G-mapping. Then, as was shown in [3], the group of G- 
automorphisms of G-~/~a ~ J[ is a Lie group 3 ) A with Lie algebra a = H ° (J[, ~fa). 
C lear ly / "  is a discrete subgroup of A which, by assumption, is a lattice. (The 
fact  t h a t / "  ( A is a lattice is automatic  if G is compact.  This follows from the 
easily proved fact  tha t  A acting on J[ has a closed orbit.) 

Let  ~ be the universal covering group of A with projection a : .~ -+ A. Then 
a-1 (/ ' )  is a la t t i ce /~  C J~, a n d / ~  is an extension o f / "  by the discrete finitely 
generated kernel of a. In  fact, it will cause no real loss in generality if we 
assume tha t  A is simply connected - -  the general situation may  be easily 
derived from this by  the methods in [3]. 

Suppose tha t  P is an open neighborhood of the origin in R ~, tha t  R ( P 

is an analytic set, and let {9 ~ ~ R} be a germ of deformation of the I -s t ructure  
on Y. Then, for each 7 E R, p-1 (7) = Y, has A as its universal covering mani- 
fold. Thus we m a y  associate to 7 E R the discrete subgroup/ '~  C A such tha t  
Y~ = A//'~. Clearly t h e n / ' ~  is a lattice in A and we m a y  define X~ = 1~//'~. 
On X~ there is a G-structure G -~ Ba (v) -~ X~. We assume tha t  there exists an 

open set U C R M such tha t  R C U and a deformation {$f ~ R} of the G- 
structure on X such tha t  ~5 -1 (7) = X~. This assumption will be met  in the 
cases we shall consider below. 

Theorem A: I] {~,~ £ R} is a locally complete germ o/ de/ormation o/ the 

I-structure on Y, then ($4/" ~ R} is a locally complete germ o/de/ormation o/the 
G.structure on X.  

Proo]: Let  (?/f' ~ U'} be a non-singular germ of deformation of the G- 
structure G ~ B a -~ X. By the results of [3], we see that ,  for each t' E U', the 
universal covering of X t, = ffg'-l(t ') is ~ with the G-structure G - > / ~ a - ~  
(the assumption of normali ty is used here). Thus, for each t' E U',  we have a 
l a t t i ce / ' t '  in A. 

Let  now R0(/ ' ,  A) be the component o f / ' i n  the space of lattices in A which 
are, as abst ract  groups, isomorphic to /1 .  Then clearly R o (/ ' ,  A) is an analytic 
set and we let P '  be a neighborhood of /"  in Ro( / ' ,A  ) so tha t  a : 7 ~ a ( 7 )  
= / ' ,  E P '  is a regular mapping of U' into P ' .  We now construct a germ of 

deformation {9 ~' ~ P '} of the I -s t ructure  on Y by  letting l~'-~(/'~) = Ye 
= A//'~ (/'~ E P'). 

*) This statement, is, I believe, due first to Mine. P. LIE~mu~Am~. 
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Suppose that  {Sf ~ R} is a strongly locally complete germ of deformation 

of t h e / - s t r u c t u r e  on Y. Then there exists a mapping (H, h) : ( ~ '  ~ P'} -~ 

(5 f ~ R} of the deformations. For e a c h / ~  E P ' ,  H : Y~ ~ p-1(h(/'~)) is a 
mapping of / - s t ruc tures  and lifts to a mapping H~ : A -~ A. For  ? E F,  we let 
7~ denote the corresponding element in 1~ acting on X on the right, and we 
write h(/'$) = h(~) (/'¢ E P') .  Then H~ satisfies (H¢)*of = o f  (0: = 1 . . . . .  n) 
and H~(a ~,~) = H~(a) Fa(¢) for a E A. The first condition implies tha t  H ,  is left 
translation by some element a, E A, and the second gives tha t  a, ~,a~ 1 --- Va (0 
or acT',a-i 1 = Fh(,). Clearly ~ -+ a$ is a smooth mapping of P '  into A. 

We now define (F, ]) : { ~ '  ~ U'} -~ ( ~  ~ R}. For  ~ E U', we set ](~) 
= h (a (v)) E R. In order to define F,  it  will suffice to define F~ : 1~ -+ 1~ such tha t  
F~ (2- y~) = F~ (2) ~I (~), and such that  F depends smoothly on v. We do this 
by setting F ,  (2) = 2 • a ~ )  (recall tha t  A acts on :~ on the right). This completes 
the proof of Theorem A. 

In  order to complete the proof of our main result, i t  will suffice to show: 
Theorem B: Let 1" C A be a lattice where A is simply connected and has 

finitely many components. Then there exists a strongly locally complete e~ective 

germ {~f" ~ V} o/de/ormation o[ the I.structure on A/I'. 
Theorem C: I f  this germ is carried over to the deformation o / a n y  normal 

G.structure G ~ Ba-~ X as in Theorem A, the result is an e~ective germ o/ 
de/ormation o/this G-structure. 

The proof of Theorem B will be given in §§ 4 and 5, and Theorem C together 
with some other miscellaneous results will be discussed in § 6. We remark that ,  
since the local deformation theory o f / '  in A is not changed when we replace /"  
by a subgroup of finite index i n / ' ,  we may assume that  A is connected. 

The proof of Theorem B will be an application to the I-structure on A / F  
of the general program in deformation theory which was outlined in § 2. 
Indeed, § 4 will mainly be concerned with rectifying the objection (i) in the 

umversal family ( $ f  -~ Q}, and § 5 will deal with (if). Finally, in the Appendices, 
we shall show tha t  the techniques of §§ 4 and 5 can be adapted to show tha t  
there exists a strongly locally complete germ of deformation of any transitive 
G-structure of fimte type. 

4. Construction o~ a Locally Complete Germ of De lormat ion  

Let  now A be a connected, simply connected Lie group, P C A a lattice, 
and X -~ A/F. Denote by eo 1 . . . . .  o~" a basis for the right-invariant Maurer- 
Cartan forms on A considered as giving an / . s t ruc tu re  on X. We let e~ . . . . .  e~ 

1 be  the frame on X dual  to the eoframe o~ ~ . . . . .  ~o~; if deo ~ = ~- ~ c~v ~o~ ̂  cot, 

then  [e~, e ~ ] - - ~  c~e~. We designate by  5fq the sheaf of germs of vector- 

valued q-forms on X and set Tq = H ° (X, 5fq) -- global vector-valued q-forms 
on X .  There is a canonical element ~ E T ~ defined by ~2 -- ~ e~ ® eo ~. In  fact, 

any  germ ~ in ~f~ m a y  be written as ~] = ~ e~ ® ~7 • where the ~7 • are germs of 
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q-forms on X. We define a pairing [ ,  ] : 5 ~  ® S~q -+ ®of • + ~ as follows: I f  
7 = ~ e~ ® 7~anda  = ~ ep ® a~,then [7, a] = ~ [e~, e~] ® 7 • ^ o4 = ~ e~® 

® c~a7 ~ ̂  a~. This pairing makes 5 a = ~ 5Pq a sheaf of graded Lie al#ebras 
q > 0  

and, in particular, T = ~ Tq is itself a graded Lie algebra. I f  d:  5 p a ~  ocp~+x 
q > 0  

is defined by  d(2~e, ® 7 ~) = ~ e~ ® dT*, then the Maurer-Cartan equation 
1 

is writ ten d/2 = ~- [/2,/2]. 

We remark tha t  the Jacobi identity in a graded Lie algebra reads: For  
7 ~ ,  a E 6e~, r ~Ser 

(4.1) (-1)**[[7, a] ,x]+(-1)qr[[r ,  7] ,a]+(-1)~q[[a ,T] ,7]=O.  

I f  7 E ~ ' ,  then (4.1) gives 

( -  1)~[[/2,/2], 7] + ( -  1)~[[7, /2], /2] - [[/2, 7] , /2]  = 0 .  

Applying the anti-commutation rule [7, a] = ( - 1 )  rq+l [a, 7] to this equation 
then gives 

(4.2) [[/2,/2], 7] = 2 [/2, [/2, 7] ] -  

We now set O = Oi and carry out the program of obtaining a resolution 

(4.3) 0-~ o £ ~ 0 ~  y ~  ~ , ~ . . .  

outlined in § 2. Accordingly, for a germ 0 in cpo, we define Do0 E ~q~ by DoO 

= ~ e~ ® .~O0o9~. Then (4.3) is clearly exact at  S ~°. Since d.~0¢o ~ =  .oq'0 dee" 

= ~ c~r.~oco/J ̂  ejr, d(DoO ) = [/2, D00], and this suggests tha t  we define D x 
~,m 

by D17 = d 7 - [/2, 7]. In  fact, if for q > 1, we define 

(4.4) D~7 = d7 - [/2, 7 ] ,  

then we claim tha t  (4.3) is an exact sequence of sheaves over X. Furthermore,  
dropping the subscripts and writing D for any D~, we claim that ,  for 7 ~ 5 ~ ,  

(4.5) D[7 ,  ~] = IDa,  a] + ( -  1)~[ 7, Da]. 

Although this has been proven in [3], we shall for completeness now 
verify these facts. First, by  an explicit calculation, we have 

1 
(4.6) d[/2, 7] = -~ [[/2,/2], 7] - [/2, 4 7 ] -  

We now check tha t  D Z =  0. Since D~D o - 0 ,  i t  will suffice to show tha t  
DqD~_t = 0 (~ > 1). We have then tha t  D(DT) = D(d 7 - [/2, 7]) = di7 - 

1 
- d [/2, ~] - [Q, 47]  + [/2, [D, 7]] = (by (4.2) and (4.6)) - -~ [[~,  ~ ] ,  7] + 

1 
+ [/2, d7]  - [/2, dT] + ~ [[/2, ~ ] ,  7] = 0. Also, (4.5) m a y  be checked in a 

similar fashion. 
The Poincar~ lemma which then implies the exactness m a y  be verified by  

the following device. Since we are working locally, we m a y  assume tha t  we a r e  
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on a germ of a Lie group and t h a t  we have left- invariant  vector  fields 11 . . . . .  f~ 
as well as the r ight- invar iant  vector  fields e 1 . . . . .  e~. Then  we m a y  write 
7 E ~ q  as 7 -- ~ f~ @ ~ and, when we do this, i t  can be directly checked t h a t  

We now come to  the  crucial point  in our discussion. Le t  ~ E T 1 be small. 

= o :  + 7 ~ (~ Then  / 2 - ?  V defines a new / - s t ruc ture  w~ . . . . .  w~ where w~ 
= , ~  e~ @ 7~). We wish to verify t h a t  this new I - s t ruc tu re  is locally equivalent 

to  the old one if, and only if, 
1 

(4.7) DV - -~ IV, V] = 04) • 

1 
For  this, we let A be the operator  D - ~ [ ,  ] and verify t h a t  d(/2 + ~) - 

1 
2 [~Q + ~ ' / 2  + ~] = 0 (Maurer-Cartan equation) if, and only if, A ~  = 0. 

1 1 
But  d(/2 + ~/) - -~ [/2 ÷ 7 , / 2  + 7] = d / 2 -  ~- [/2, ~2] + d 7 - [/2, ~] - ~ [~/, ~]. 

Q . E . D .  

Now let ds 2 ~ ~ (co~) 2 be a Riemannian  metrie on X. Hav ing  int roduced 
~ 1  

this metric,  we m a y  form an inner p roduc t  on Tq and we let ~:q be the completion 
of Tq in this inner product .  Then  ~N consists of the square-integrable vector-  
valued g-forms on X. Using this inner product ,  we define the adjoint  D* : ~q -+ 

T~- I  of D and then,  since [] = D D *  + D * D  is s t rongly elliptic, we have the 
Hedge theorem: There exists a unique completely continuous self-adjoint 
operator  f i :  ~q ~ ~q such t h a t  []  G = G[]  = 0, D G  -- GD, D*G = D ' G ,  and 
we have  the formula  of or thogonal  decomposit ion 

(4.8) ~N = Hq $ D * D G ~ q  $ D D * G ~  

where ltq = ker[:] is the  harmonic  space. 
Now suppose t h a t  we have on Tq a norm II ][q and let l"q be the Banach  

space obtained by  complet ing Tq in I[ ][,. We suppose tha t  this norm H II~ has 
the  proper ty  t h a t  D and  D* G are bounded t ransformat ions  and tha t  [ ,  ] is a 
bounded  bi-linear t ransformation,  all in the appropr ia te  norms.  Final ly  we 
suppose t h a t  Tq is the Banach  space produc t  of the sub-Banach spaces obtained 
by  completing Hq, D*DGTq,  and DD*I]T~ in I] Hq. We let ~H, ~D*, and ~D 
be the  respective project ion operators so t h a t  T~ = ~ (T~) × z ~ .  (T~) × ~ (T~), 
and  we let Z~ be the Banach  subspaee ~H(~'~) × ~D(Tq). We shall use the 
technique of successive approximations writ ten as an implicit  funct ion theorem 
in Banach  spaces ([2]); this approach is mot iva ted  by  the work of NXJ~.NHU~S 
and  Rmn*aDso~ .  We denote by  N(*)  a generic neighborhood of zero in a 
B a n ~ c h  s p a c e  *. 

1 
We say  t h a t  7 ~ l u  is semi-integrable if D ~  - ~ [ 7 ,  7] = 0. 

~) Equation (4.7) should be compared with eqn. (4.10) in [3]. 
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Lemma 1: There exists N(gz(-V1)) and N(~D, ( 'P ) )  and a di~erentiable 
mapping o/Banach spaces r : N (gz (1"1)) -~ N (~o* (1"1)) such that, i / 9  E XCz (T1) 
and ~p C ~D*(T~), then 9 + ~v is semi.integrable i/, and only i], r(9 ) = v 2. 

Proo]: Define F : gz  (-[D) × ~/) ,(T a) -~ :~D(T ~) by  F ( 9 ,  ~v) = D ( 9  + ~v) - 
1 

--  ~- ~D [9 + YJ, 9 + ~]" Then F is differentiabte and D~F (0, O) = D : TeD. ('P) 

-+ ~D (T~) • Thus D~F (0, 0) is an isomorphism of Banach spaces, and thus there 
exists r :  N ( z z ( ~ ) )  ~ N(~D,(T~)) such tha t  F ( 9 ,  yJ) = 0 if, and only if, 
r ( 9 ) =  ~. Q . E . D .  

Define R : 7tlt(-li a) -~ "I~ by R(9)  = 9 + r (9)  (9 ~-~I~('V~)) • 
Lemma 2: There exists N(zH(T~))  such that, i/ 9 E N(ZH(-[P)), A R ( 9 )  = 0 

i/, and only i/, 7~H [R(9), R(9) ]  = 0. 

1 {zip * [R (9), R (9)] + 7~H [R (9), R (9)]} and if A R ( 9  ) = 0, Proo/: A R (9) = - 

then ~i t [R(9) ,  R(9) ]  = 0 since ~ t I (T  2) A 7~D. ( ~ )  = 0. 
1 

Assume now tha t  n i l [R(9) ,  R(9)] = 0. Then, if A = ~ D . [ R ( 9 ) ,  R(9)] ,  

A = D*G[DR(9) ,  R(9)]  (by (4 .5))= D*G[A, R(9)  ] (by (4.1)). Thus we get 
l[Al]~ <= c lIR(9)]l~ HAHv and, since R ( 0 ) = 0 ,  it  follows tha t  A = 0 if 
9 E N(zI~( 'P)) .  But  then A R ( 9  ) = O. Q . E . D .  

Now let U be a small neighborhood of 0 in the finite dimensional Banaeh 

space ~ ( T ~ ) .  We define a family {W ~ U} of I-s t ructures  on X by  letting 
c5-1(~) (~ 6 U) have the I -s t ructure  given by Q +  R(~). I f  we then let 
V = {~ ~ U]AR(~) = 0}, V is an analytic set through the origin (Lemma 2) 
and the structure on X ,  = ~5 -x (~) (~ ~ V) is locally isomorphic to t h e / - s t r u c -  

ture on X ~ ) .  Thus, i f # "  = c5-~ (V), { ~  ~ V} defines a germ of deformation of 
the structure on X. In  §§ 5 and 6, we shall prove: 

Theorem D: The germ o/de/ormation {Of ~ V} is strongly locally complete 
and egective. 

5.  Proof  of T h e o r e m  D 

An I-s tructure on X, near to the given structure, is uniquely written as 
+ ~ for some ~ ~ -~.  By  abuse of language, we simply say tha t  ~ gives an 

I-structure,  and we define this structure to be extremal if D* ~ = O. By Lemma 1 
in §4, if ~ is extremal and semi-integrable, then ~ = R ( 9  ) = 9  + r (9)  for 
some 9 ~ z~(T~) • I f  U' ( R ~ is an open set and ff for each t' ~ U' we have 

(t') ~ ~ ,  we say tha t  we have a di~erentiable ]amily o/1.structures if the local 
expressions ~ (x, t') are smooth in x and t'. 

I f  / : X  ~ X is a diffeomorphism near  the identity,  then ] transforms 
+ ~ into a new I-s t ructure  writ ten as ~2 + ~ (h. Clearly ~ is integrable if, 

and only if, ~7(/) is- 
I f  ~ ~ N (T°), we define a diffeomorphism e(~) to be exp (~)]~ = 1- Theorem D 

will follow from 

~) 1" being a linear space has a real analytic structure. Then ~H, ~D, ~D*, D . . . .  are 
real analytic, as is R; and consequently V is a real analytic set. In fact, the power series 
defining V may be explicitly written down. 

Math. Ann. 159 12 
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T h e o r e m  E:  There exists a dil~erentiable mapping s : N ( ' ~ )  -+ N(zt•.('lO)) 
such that,/or q9 EN(Tx), ~ E N(XtD.(~)), ~0(e(~)) is extremal if, and only if, 

= s (q a). Furthermore, if q~ (t') depends smoothly on t', then so does ~ (t') = s(q)(t')). 

Proof of Theorem D: Let (Of" ~ V'} be a deformation of t he / - s t ruc tu re  

on X and let U' ) V' be the ambient space so that  we have {W' ~ U'} with 
tS ' - I (V ' )=$¢ r'. For each t 'E U', U(t ' )E -P  defines the /-structure on X t, 
= e5 '-1 (t') and ~ (t') depends smoothly on t'. Then there exists an open subset 
U of a finite-dimensional subspace A CgH('I~) × ~D.('I~) such tha t  
~(t')(e(~(t'))) E V for all t 'E V', where now ~(t ')= s(~l(t')). Since ~(t') is 
integrable for t' E V', ~(t') (e(~(t'))) E V for t' E V', and we may define (F, f) :  

: { W ' ~  V ' } - ~ { W ~  U} by f ( t ' ) =  ~(t')(e(~(t'))) and F[~ ' - l ( t ' )=e(~( t ' ) ) .  
Then ](V') C V and we in fact have a mapping of deformations. Q. E. D. 

Set now ~(e(~)) = q~ + D ~ +  R(% ~) for ~v E N( 'B) ,  ~ E N(T°). Theorem E 
will follow from 

Proposition A: R is a di~erentiable mapping of N ( T  1) × N(~D,(T°))-~ 
N (T 1) which satisfies D2~(O, O) = O. 
Proof of Theorem E: Define S : N ( ' O ) ×  NQtl ) . (T°))~N(~D(T1))  by 

S (% ~) = D~ + ~rD{~ + ~2(cp, ~)}. Then, by Proposition A, S is a differen- 
tiable mapping of Banach spaces and D2(0, 0) = D. By the implicit function 
theorem, there exists s:  N(T1)-+N(ztl) .(T°)) such that  S(% ~)=  0 if, and 
only if, ~ = s(~). But  S(~,  ~) = 0 if, and only if, D*S(~,  ~) = 0 which in turn 
is equivalent to D*D~ + D*~  + D * ~ ( ~ ,  ~) = D*(~(e(~))) = 0. 

The smooth dependence on parameters is also easily established by using 
again successive approximations 5). Q . E . D .  

So far we have avoided mention of what the norm ]] ][q on Tq should be. 
Given a norm ]] ][z on vector-valued q-forms on an open subset Z < R", we may 
take a finite coordinate covering {U~} of X and define [] II~V~}=~w II I1~. 

Furthermore, for any two finite coverings {U~}, {U:}, the norms I1 II~ ~}, 
II I1~ ~}  w~l be equivalent. Thus, having defined II I[ z, we may define 11 llq as an 
equivalence class of norms obtained from finite open coverings. With this in 
mind, we choose k > n + 3 and let I[~11~ be the ~obogev ~ o r ~  II~llf-~ on a vector- 
valued q-form ~ on Z. Thus, if 

n = Z vi,...~, ~ -  ® dx¢, A ' ' '  A axe , ,  ( l lvl lLO ~ = 

Z f ID.vI,...~.]~ dx, 
O ~ k - - q  g 

i ; h  . . . . .  Je 
where Du runs over all partial derivatives of order p. 

Clearly then D : Tq-~ Tq +x is a bounded transformation and also D* G: Yq-+ 
- ~ T  ~-~ is bounded, due to the property []O~[l~+ ~ _~ c][~H ~' where Z C Z' ([7]). 
Finally, [ ,  ] : T ~ @ Yq-~ Tv + q is clearly a bounded bi-linear transformation. 
Thus it  remains to verify Proposition A with our choice of norms. 

t) I t  can be shown, by  a di rect  convergence argument ,  t h a t  if ~ (t) depends real- 
analytically on t, then  so does ~ (t) ---- s (~ (t)). 
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Suppose therefore t ha t  Z < R" and t ha t  we have on Z a n / - s t r u c t u r e  given 
by  o~ x . . . . .  o?.  F ix  ~ < 1 and suppose t ha t  we have a vector-valued form 

= { ~ }  and vector  fields 4 =  {~}, 4 ' = { ~  '~} with [[qgH~< ~, I]~[[~< 3, [I~'[]~< (~. 
Le t  Z '  C Z be an open set with e(~) Z'  C Z, e(~')Z '  C Z. Then,  writing 
q(e(~)) = ~ + D $  + ~ ( ~ ,  ~), it  will suffice to prove:  

Lemma A: For  Z "  C Z '  C Z, 

(5.1)  I I ~ ( ~ ,  4) - ~ ( ~ ,  ~')Ilz~l _-< c(ll~ll~' + 11411~' + 114'11~') (11~ - ~'11~') • 

We prove (5.1). Fi rs t  observe t ha t  ( e x p ~ ) * ( o ~ + q ~ ) =  ~o~+ ~0~+ 
+ .5f~(¢o ~ + ~ ) +  ~ R ~ ( q ,  ~ ) ~ .  F rom this it  follows tha t  q ( e ( ~ ) ) =  ~0 + 
+ D ~  + .LP~q~ + ~ R~r(q ,  ~ ) ~ .  Thus we m a y  write 

(5 .2)  ~ ( ~ ,  ~) - ~ ( ~ ,  ~') = D ( ~  - 4') + ~o (~_~ , )q  + T ( ~ ,  ~, ~') 

where T ( q ,  ~, 4') can be determined.  Clearly IIn(~ - $')11~'-'1 -~ e(ll~ - ~'ll~'). 
To derive an est imate 

using the  Cartan identity .Lf (~_~,) q~ = d i ($  - ~ ' )q  + i(~ - ~') dq~, i t  will 
dea r ly  suffice to  have an est imate of the sort  

(5,3) ll/~li~-~ - cli!ilL~ll~ItL~ 
Z' 

for functions /, g on Z '  with finite norm [I [1~-1- However ,  for k - 1 > n, 
(5.3) is an easy consequence of Sobolev's lemma ([7]): For  l > n/2, x E Z " ,  
ID" h(x)l < ellhilZ+, where h is a funct ion on Z'  with finite norm II [IZ,+,. 

To complete the proof, we must  derive an est imate 

(5.4)  l i T ( q ,  ~, ~')11~"~ - c( l l~l lf '  + I[~[If' + I[~'lif') (t[~ - ~'16z') • 

S i n c e  l iT(q,  ~, 4')H = {(exp~)*q - (exp~')*9~) -4- {(exp4)*¢o - (exp~')*o~} + 
+ ~9°(n_n,) 90, we claim tha t  to  prove (5.4), it  will suffice to  show 

Lemma B: Let Z "  ~ Z '  ~ Z ~ R" be open sets with Z convex. Suppose 
that we have mappings / :  Z '  -+ Z, 9 : Z '  ~ Z which satis]y 11/ - II[~-x < ~, 
IIg -- 1]]~'1< ~ where ~ <  1. Assume that h is a /unction on Z with I[hllf< ~. 
Then there exists c = c(Z" ,  Z ' ,  Z,  ~) such that 

(5.5)  lib o / - h o ~ l l f" l  < c(lihllf + t1! - / l l f ' - ~  + II~ - It6Z-~) (ll! - ~llf'-~) • 

Indeed,  suppose t ha t  (5.5) is satisfied. Then,  for  example,  

a e(,~) (=) a , 
( e x p ~ ) * ~  - ( e x p ~ ' ) * ~  = ~ a ~  ~ ' ( e ( ~ ) )  - ~ - ~  e (~  ) (~) 7~ (c (~ ' ) )  

ae(~) ~, . . . .  , ,  a 
_- ~ a,(~)ax~ (~(e(~)) - - - ~ )  ~(e(,~')) + ~ - - ~  tet~ U - -~ -e(~ ' )  ~(e(~'))  

and thus  

il(e~p~:)* ~-  (exp':')* ~Iif"~ __ c{II~(4)ilf'--~" II~'(e(4))- ~(e(~'))llf'-~ + 
.a~(~) a,(~') z' / 

+ ll¢'(e(~'))llf '-~" a=,, a=,, ~ - ~  
) 

12" 
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(by (5.3)). But, if (5.5) holds, we then get H(exp~)*~-  (exp~')*~H~" 1 
c{(H~Hf' + H~Hf'+ H~'t[f') (H~- ~'l[z')} • Similarly, the other terms in 

T(~ ,  ~, ~") may  be estimated. 
The proof of (5.5), which is due to K u ~ m s H ~ ,  can be found in the Appendix 

to [4]. This completes the proof of Lemma A and hence of Theorem D. 

6. Completion of the Proot of the main Theorem 

We first finish the proof of Theorem B. Suppose on X that  we have an 

/ .s t ructure  given by co l, co ~ where dee ~ - 1 ~ c ~ o ~  ^ e)~ and the c ~  are " '  "' - 2 ~,~ 

constant. In the notations of § 4, let U be an open neighborhood of the origin 

in zH(-[~) and construct the family o f / - s t ruc tu res  (W ~ -~ U} where eh-l(~) 
(~ E U) has t h e / - s t r u c t u r e  corresponding to R(~) = ~ -b r(~) in Lemma 1 

of §4. If then V=(q~UIAR(~)=O}, ~ =  ~-l(V), then {¢Z5 V} is a 
strongly locally complete germ of deformation of t he / - s t r uc tu r e  on X. We 
want to show that  this germ is effective. 

Suppose then that  { ~ '  ~ V'} is any germ of deformation of the I-structure 
on X. Let  ~0(V')  = ~ be the Zariski tangent space to V' at the origin. We 
define the linear mapping e : ~ -+ H i (X, O) as follows: Let  ~ (s) (s E ( -  e, ~)) 
be an analytic curve in I z', and let q(s) be the element in y1  which defines the 

d~(s) ] 
/ -structure on ~5'-1 (Y (s)). Then, if ~ = g s J 8 = 0, since/1 q~ (s) = 0, D T = 0 

and we may  thus assign to ~ (s) the element ~ E H i (X, O). Since ~ is spanned 
by tangents to analytic curves in V', we may thus define ~ : ~ -+ H 1 (X, O). 

I t  is easy to see that,  if { ~ '  ~ V'} is a trivial germ of deformation, then 
is the zero map. (For our purposes, we may assume that  V' is non-singular, in 
which case the statement is obvious.) 

Returning to the case of our strongly locally complete germ {OF ~ V}, 
the Zariski tangent space ~¢0 to V at  the origin is a linear subspace of ~H (,'P), 

and ~ is the identity map. Then clearly ( ~  ~ V} is effective. This proves 
Theorem B. 

To prove Theorem C, we let G -~ B G --> X be a regular G-structure of finite 
type. Let  A be the Lie group of automorphisms of the induced G-structure on 
the universal covering of X, and let /~ C A be the fundamental group. Set 
Y ~ A / F .  I f  ~ is the set of germs of deformation of the I-structure on Y and 
if ~ is the set of germs of deformation of the G-structure on X, then we have 
defined ~ : ~ -~ ~-. Associated with each germ 7 in ~ or ~-, we let ~eo(~, ) be 
the Zariski tangent space to the base space of ~ at the origin. Then, for ~ E $¢, 
we have defined ~: v~0(~)-~/~(Y,  Oi)- Similarly, if ~ E ~ ,  we may  define 
v~ : ~.~o(7) -~ H I ( X ,  0~).  Now, as was shown in [3], there are natural isomor- 
pblsms H i ( Y ,  @I) ~ H i  (F, a ) , / ~ ( F ,  a) ~- H i (X, O~) where H ~ (F, a) is group 
eohomology and/~ acts on a by Ad. Thus there is an isomorphism ~: H i ( Y, @~) -~ 
~- H l(X, 0~). 
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Now, if y E @, it  is easy to check tha t  the following diagram commutes: 

~r0(~,) £ Hi(Y, Oi) 

~0(~ (r)) -~ H~ (X, Oa). 

Then the same argument as in Theorem B proves Theorem C. 
This completes the proof of our main Theorem. 

7. Applications and Examples 

Let  A be a connected, simply connected Lie group a n d / '  a discrete group. 
A lattice in A is a faithful representation Q : / ' - ~  A such tha t  Q (T') is discrete 
and A/~ (F) is compact. Let  R (/', A) be the space of lattices o f / r ' in  A. Since/~ 
is finitely generated and finitely related, R (/', A) has locally the structure of an 
analytic space. In  fact, let ~0 E R(F,  A) and let Yl . . . . .  ?N be generators o f / ' .  
Then there exists a neighborhood U of the unit e E A such that  U ?~ f~ U ?j 
= ¢(i  4 j). Then a neighborhood of ~0 in R(T', A) is a subset of U × • • • × U; 

~v 

in fact, R(/ ' ,  A) f~ ~U × • • • × U} is clearly the zero locus of finitely many 

analytic functions corresponding to the relations o f / ' .  

Now let ~0 E R(F,  A) and let R0(F, A) be the component o f / "  in R(F,  A). 
Then A acts on R0{/', A) by sending a lattice into its conjugate; it  is well 
known tha t  Ro(I', A)/A need not even be Hausdorff. However, our Theorem B 
is easily seen to imply the following 

Theorem: There exists a n~ighborhood U o/Qo in Ro(F, A) and Z of e in A 
~uch that, i /~,  ~' E U are declared equivalent i /~  = ~ '  ~-1/or some ~ E Z, then 
the quotient space has the structure of an analytic subset of H 1 ( F, a ). 

Thus, although Ro(F , A)/A is poorly behaved globally, it is in some sense 
a locally analytic space. We denote by V(~0) the germ "U factored by the 
equivalence relation in the above theorem." Clearly, if V(Q0) is an analytic 
set without singularities, then a neighborhood of ~0 in R(F, A) is a manifold, 
but  not conversely. 

As for examples, it  has been shown by H. GAP~LA~D that ,  if A is nilpotent, 
then Hi(F, A) .~ Hi(a, a) independently of the l a t t i ce / ' .  In this case, for the 

tocMly complete germ (~¢/P ~ -~ F}, V is non-singular and is in fact a neighborhood 
of the identi ty in the outer automorphism group. Furthermore, due to the 
stable nature of Hi(X, 0i) under a deformation, an easy continuation argu- 
ment shows tha t  all lattices in A are obtained by  applying an automorphism 
of A t o / ' .  This is a theorem of M~c~.v ([10]). 

In fact, by  computing an appropriate cohomology group, the results of 
WAnG [10] should follow from our construction ~ his Theorem that  R0(/', A) 
is, in some cases, a manifold should be a consequence of the cohomological 
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result tha t  there are no obstructions to constructing a deformation through 
0 ~ H ~ (X, e~)e). 

On the other hand, we have in [3] given two examples of a construction 

of a strongly locally complete family (Yf ~ V} where V had singularities (in 
one case a quadratic and in the other a cubic singular locus). I t  would perhaps 
seem now as though local the theory of deformations of a lattice in a Lie group 
could be in some sense completed if a uniform method of comput ing /~  (/ ' ,  a) ~ 

H 1 (X, Oi) could be found. 

A lxpendix I :  Transitive and homogeneous G-structures 

We keep the notations of § 2. Let  (7 C GL(n,  R) be a connected linear Lie 
group. I t  is well-known ([1]) tha t  we may  associate to (7 a sequence 
G 0 = G, (71 . . . .  of linear groups, where (7~ is the pm prolongation of (7. In  
fact, if dim(7= r, then G 1C (TL(n ÷ r ,R)  is the abelian linear group whose 
linear Lie algebra 91 consists of all matrices of the form 

r ~b 

r((0 

where ~ E Hom(R", 9) is written as ~k = ~ j  and, for each fixed b, ~]~ = ~(k) Eg. 
Then (7# is defined inductively by (7~ = (G~_~)~. 

Let  now G -> Bo ~ X be a G-structure. Then ([1] and also below) there is 
naturally induced on B G a Gx-structure (71-~ BG,-~ Ba; furthermore, on BG, 
there is a natural G~-structure, and so forth. Clearly G is of finite type if, and 
only if, 9~, = 0 for some P0, which happens if, and only if, there is induced on 
(7#o-1 ~ BO~o_ 1 -"> B(7~,,_ 2 a linear connexion. 

Thus, given (7~ Ba-+ X,  we have a sequence of bundles ((Tv -~ Ba~ ' ~ Bqg_l  } 

and clearly any (7-automorphism f of X "lifts" to a sequence (/~) of (7~-auto- 
morphisms of Ba~,_ 1. (]o = / and/1 = / ,  is the differential of / ,  etc.) Conversely, 

given any (7~-automorphism h of Bad_l, there exists an G-automorphism / of X 

such tha t /~  = h. 
If T is a set {t} of local diffeomorphisms of a manifold Y, we say that  T 

acts locally transitively on Y if, given y, y' E Y which are sufficiently close, 
there exists t ~ T such tha t  t (y) = y'. 

Let  G-~ Ba ~ X be a G-structure, and let F be the set of local (7-auto- 
morphisms of X. Then / ' i nduces  a s e t / ' ~  of local G.automorphisms on Ba~,_ 1. 

We say that  (7-,. B a ~  X is locally homogeneous if 1" acts locally transitively 
on X, and we define the G-structure (7 -~ B G -~ X to be transitive if a l l / ~  act 
locally transitively on B%. There exists a P0 such that  (7 ~ B a ~  X is tran- 

sitive if, and only if, F~ acts locally transitively on B% for 0 ~ p _~ P0- 

Examtges: (i) Any integrable structure is transitive, and B% ma y  be 

thought  of as the bundle of jets of order p of local (7-automorphisms. (ii) If  

,) The necessary cohomology results have now been obtained by H. G ~ L ~ D  in his 
thesis at the University of California, Berkeley. 
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O = 0 (n), then local homogeneity means tha t  X is covered by  a homogeneous 
Riemannian manifold, provided, of course, tha t  the Riemannian structure on X 
is complete. Transi t ivi ty of the Riemannian structure means nothing more nor 
less than  constant curvature. 

Generalizing the notion of constant curvature, we shall now describe the 
most  general transit ive G-structure of finite type.  (Their importance for us is 
tha t  they are probably the most  general structures for which we can find the 
operator A of § 2.) 

Le t  A be a connected Lie group and B C A a dosed, connected subgroup. 
Set V = a/b and let G(A, B) C GL(¥) be the linear group of all t ransformations 
{Ad(b)} (b E B) acting on a/b. Then X = A/B clearly has an A-invariant  
G(A, B) structure, and, in fact, this is the smallest A-invariant  G-structure 
on X. 

Set B 1 - Ker(Ad} where Ad is the above linear representation of B. Then 
obviously Ba(~,B)-~ A/B1, and, if y l  = a/b1, then on A/B 1 we have the A- 
invariant  G(A, BI) structure. Clearly G(A, B)I C G(A, B1). In  this way, we 
may  construct the bundles BG(~,B)= A/B~+ 1, and this process terminates 

with some integer/~0 where B~o + 1 = {1} and then Ba<~. B)g0-- A. Thus we have 

Proposition: The canonical G(A, B) structure on A/B is ~ transitive G. 
structure of finite type. 

Remarlc: The condition G(A, B)I = {1} is implied by  the condition tha t  
A/B be a red~tive cose~ space ([8]). By  this, we mean tha t  the representation 
Ad of B on a admits  a complementary subspace to b C a. 

Now we shall prove conversely the 
Theorem: Any transitive G-structure G-+ B a ~  X of finite type is locally 

equivalent to the G (A, B) structure on A /B  for some A and B. 
For  simplicity we shall assume tha t  § 1 - - 0  (i.e. GI = (1}); the general 

argument  is the same. Let  dim G = r. We agree on the ranges of indices 
1 _~ i, j, k ~_ n, and 1 g q, a, • g r. Le t  (%~ be a basis for the linear Lie 
algebra 9. By  choosing the usual basis for gl(n, R), we m a y  write eQ as the 
matr ix  a~j. Let  ~o be the canonical Rn-valued form on B o which satisfies 
eo(bg)-- g-l~o(b) (b EB,  g EG). In  §2,  eo was denoted by  o~ a. Then 
~o = (co 1, . . . ,  co n) and we m a y  locally write 

(A.1) d e o ' = -  r a~,~o' ̂ :v~+ l ~ c]k(b)co' he) ~ 

where the ~ are locally defined forms on B a which restrict to the left- invariant 
Maurer-Cartan forms on each fibre. The forms (~l . . . . .  ~n; col . . . . .  ojn) 
define a local co-frame on Ba, and any other local co-frame is of the form 
(rgl . . . . .  ~ , r ;  wl, . . . .  o~') where g ' q - - ~ t ~ - ~  b~co ~. The b~ define 

k 
an element ~(b) E H o m ( R  ~, 9) by  ~(b)- -  ( ~ )  where ~----z.~ ~a~ib ~.~ The new 

functions c;~ in (A.1) are given by  e~ c~ + ~ ~ ~ ~"~ ~ = (ae~b ~ - ~ ,  and, since 

these functions are global, i t  follows tha t  ~ = ~ i .  This proves tha t  on B a 
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there is a natural  Gl-structure. Clearly if G -~ B a - ~  X is transitive, then the 
functions c~k are constant. 

I t  is clear tha t  for a general G, we m a y  t rea t  the Gl-structure on B~ in the 
same fashion, and so on. However,  suppose tha t  G 1 = (1}. Then the ~ m a y  be 
assumed to be globally defined, and (~x . . . . .  ~r; co 1 . . . . .  co~} gives a parat- 

1 i lelism on B a. We set c~j= a~  so tha t  dco t ~ - Z c~ieo~ ̂  ~ ~- ~ Z cjko~ ^ co k. 

Furthermore,  since the r~ clearly give a connexion in G-~ B a ~  X ,  d ~ -  

1 2: c ~ q  h ~---- 1 2:C~j~0 ~ ̂  m s where the c~i are functions on Ba  which 
2 

essentially give the curvature of the connexion, and where c ~  are the constants 
of structure of g. Now if/~1 acts transit ively on Ba, then clearly the c]k and 
ciq/are constants, as well as the c ~  and i 6q~. 

Then the Pfaffians (~1 . . . . .  ~ ;  co 1 . . . . .  o ~  define locally on B a the 
structure of a Lie group, and it is easy to see tha t  G-~ B a -~ X is locally 
equivalent to the G (A, B) structure on A/B  for some chosed, connected sub- 
group B C A. Furthermore,  in case A/B is a reductive coset space, and the 
connexion given by  ~1 . . . . .  ~ on Ba is just the canonical connexion of the 
first kind in [8]. 

Example: Let X = P~(R) be the real projective space written as a coset 
space X ~  A/B  where A ~ S L ( n ~  1, R) is the projective group. Then 
G(A, B)I =~ (1} but  G(A, B)~-~ (1}, so tha t  G(A, B) may  be said to be of 
order 2. The G (.4, B)I structure on A/B 1 is a so-called projective-connexion and 
just as the spheres are models for Riemanuian geometry of constant positive 
curvature,  X is the model for the projective connexion of zero projective 
curvature. The transi t ivi ty of the G (A, B)-structure on P~ (It) is the s ta tement  
tha t  the projective group acts transit ively on the bundle of tangent  directions 
over P~(R). One m a y  clearly make similar models for the (Weyl) conformal 
eounoxions, etc. 

Appendix I I :  A resolution o/the infinitesimal automorphism8 
o/a  transitive G-structure o/finite tyTe 

Since the problem is local, and by  the result in Appendix I ,  i t  will suffice to 
t rea t  the  case of the canonical G (A, B)-structure on a eoset space A/B  where A 
is a connected Lie group and B C A is a closed connected subgroup. We begin 
with some preliminary calculations. Again we assume tha t  G(A, B)~ = (1} - -  
the general case wilt be clear from this. 

For  any manifold Y, we let T (Y) be the tangent  bundle and T (Y)* the dual 
cotangent bundle. I f  A / B  --- X ,  then T(A) /B  is a vector bundle over X, and 
we let 27a be the sheaf of germs of sections of the bundle T(A)/B@ AqT(X) *. 
We m a y  describe 2:q as  follows : Let  ~ be the Lie algebra of/e/t-invariant vector  
fields (-~ infinitesimal right translations) on A, and set Y q =  a ®  Aq(~/b) *. 
T h e r e  is a natural  representation qq of B on ¥% derived f rom the adjoint 
representation of B on a, and then T(A) /B @ AqT(X)* -- A ×~ Yq. 

Let  now 5~q be the sheaf on A of germs of vector-valued q-forms. Then there 
is an injection ~ : Xq-~ 2~q which is induced from the injection ~ : a @ A q (a/b)* -~ 
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a @ Aq(a) *. On 5f  -- ~ 5~q, we have defined in § 4 a differential opera tor  
q ~ l  

D : 5 pq -+ 5 pq + 1 and  a bracket  [ ,  ] : 5P~ ® 5fq -~ 5fv + q. 
Proposition: D(27 q) C 27q+1 and [27~, 27q] C 27 v+q. 
Proo[: Let  ~q  C 5fq be the  subsheaf consisting of germs of functions 

: A -+ a @ Aq(a) such t h a t  (Rbl?) = ~q(b)~ where Rb = r ight  t ranslat ion by  
b E B and ~q is the  adjoint  representat ion of B on a ® A q (a)*. Then  27q C ~q. 

W e  now assume t h a t  d i m A  = m, d i m B  = r, m - r = n, and  we agree on 
the  ranges of indices 1 < i , j , k ~ m ;  1 < a, f l , ? <  r, a n d r + l  g Q , a , v <  
~_ r + n = m. Le t  el . . . . .  e~ be a basis for  a such t h a t  e 1 . . . .  , e r is a basis 
for b. Fur thermore ,  let o~ 1 . . . . .  ¢o ~n be the  dual basis for  the  Maurer-Cartan 
forms on A. Then  the  canonical  form oJ on A / B  is just  ~ % ® eo~; ~o is a global 

section of L "1. Also, Q = ~ ei ® c# is a section of ~1.  A germ ~ in ~q  is wri t ten 
i 

= ~ ei ® ~t where ~/* is a germ of a q-form on A. Then  the  infinitesimal r ight  
i 

t ranslat ion is given b y  ~Cf%~/i = 2: c~j~ j where the  c~k are the  s t ructure  

constants  of a. 
I f  V =  2 7 e t ® ~ ,  ~ = 2 7 e J ® ~ ,  then [ ~ , ~ ] = 2 7 e  i ® c ~ k ~ A ~ .  To show 

tha t  [~v, ~q]  C ~v+q,  we mus t  show t h a t  

(A.2) . £ f % ( 2 7 c ~  ^ ~ )  = 27c~c~1~ h ~ .  

Using the  relations .Lf%(~) = X c ~  t, ~ % ~  = 2 7 c ~  t (since ~?, ~ E ~  v, ~ 

respectively), (A.2) reduces to  showing t h a t  ~ c ~ c ~ i +  c~i c~ ~ = ~ c~" c~, 
k k 

which is just  the  Jacobi- ident i ty .  This clearly implies t h a t  [2:v, 27q] C 27~+q. 
Now let ~ = 2 :e~® ~i E l q  (q > 1). Then U ~  0(rood@).  B y  definition, 

D ~  = d~ - [~ ,  ~], and, by  the above paragraph,  D ~  E ~q+t .  To complete the  
proof, we show t h a t  D ~  0(mod~oq); i.e. i ( e~)D~ = 0 ( a =  1 . . . . .  r). Bu t  
i(e~) d~ ~ + di(e~)v ~ = . ~ 0 ~  ~ and, since i (%)~ i = 0, i(e~) d~ i = 2 7 c ~  ~. 

Since D ~  = 27 e~ ® {d~ t - c~o~ ^ ~ ) ,  i(e~) D ~  = 2: e~ ® {i(e~) d~ ~ - c ~ ?  ~} 
= 0 .  Q.E.D.  

This Proposi t ion easily implies that ,  over X,  we have  the exact  sequence 
of sheaves 

(A.3) Z~ ~ I s-+ . . . -~ I q ~ I q+~ ~ . . . . 

I n  § 2, we have  derived a sequence 

(A.4) 0 -+ Oa "~ 5 '  ~ I. 

Our program will be completed by  showing 
Theorem:  There exists a canonical isomorThism ~ : 27 ~ 1"I such that: 
(i) ~ toD~ 1.1 ~ Z~ is exact 

(ii) For a ~ H ° ( X , Z ~ ) ,  i /  A a =  D a -  + [ a , a ] ,  then the equation A a = 0  

defines those G-structure~ on X which are locally equivalent to the given transitive 
G-structure o/ finite type, provided that a is small. 
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Prool: Let  W = a/b, and let b(W) ( g l ( W )  be the linear space generated 
by  the transformations {ad (b)} (b E b). Then the vector space g l(W)/b (W) is a 
B-module, and 2: was the sheaf of germs of sections of A ×•gl(W)/b(W).  
Now, if • ( H ° ( X ,  2:) is a neighborhood of zero, we had interpreted the 
elements in 3 as giving the G(A, B) structures on X = A / B  which were near  
to the given structure. Le t  a E S and let G CA, B) -~ Ba (a) -~ X be the cor- 
responding G(A, B) structure. Then Ba(a ) is differentiably ~uivalent to A, 
and so we m a y  think of Be(a) as being A with a different parallelism {eda)} 
where ei (0) = e~. But  this parallelism is not arbitrary,  for there should exist 
an action a of B on the right on A so tha t  the parallelism {e~ (a)} is tha t  which 
results from the canonical G(A, B) structure on the quotient X~ = A/a(B).  
Let  {co ~ (a)} be the dual parallelism to {e~ (a)}. Then the above condition is met  
if the following equations are satisfied: 

(i) [e~(a), ea(a)] = 2:c~a%(a) 

Indeed, (i) means tha t  B acts on A on the right by  an action a (B), and (ii) 
guarantees tha t  the parallelism {eda)} is the parallelism arising f rom the 
(7(A, B)-strueture on A/a(B)  = X~. 

But,  and this is the whole point, if a is sufficiently small, then there exists 
a function ~(a) : A -+ Hem(a/b,  a) such tha t  me(a) = ~(a) • we where co(a) 
= (w 1 (a) . . . . .  w ~ (a)) and o~ = (~1 . . . . .  eo ~) are the canonical forms associated 
with respect to the G(A, B) structures on X ,  and X respectively. Then ~(a) 
is a section of S~, and, from (i) and (ii), we see tha t  ~(a) is in fact a section 
of 2: x. This whole argument  is reversible: Given a section ~ of 2:1, we m a y  
define an element a e of 2: by  the lafle oJ (ae) = ~" o~ such tha t  (i) and (ii) will 
be satisfied for the parallelism {e (a¢)t} determined by  co (a~). Then ~ (a~) = ~ and 
ae(o ) = a, so tha t  we in fact  have an isomorphism of sheaves j : 2: -~ 2:1 (j(a) 
= ~ ( q ) ) .  

Now it  is clear f rom (4.7) tha t  (ii) in the Theorem is satisfied. Indeed,  if 
1 - - ~  ~ 1 

diet'(a) - "~ ".~ c~vo~ (a) ^ a~'(a) = -~ Z c~,:(a) ¢oQ(a) ̂  to*(a) and if do.)e(a) - 

1 
-- 2: ~ ,  o9" (a) ^ ~o* (a) = -~ 2: c$ ~ (a) co" (a) ^ co* (a), the equation d a = 0 is 

just the same as saying tha t  the structure functions c~(a) and ~ ( a )  are con- 
stant.  

I t  remains only to check (i). Now on A the sequence 5 ~° ~ 5 ~  ~ ~q'~ 
described in § 4 is exact. Furthermore,  there is a mapping of sheaves k : ~"  ~ 5 f° 
obtained by  sending a vector field 0 on X = A / B  into its "l if t"  on B~ -- A 
with respect to the connexion determined by  the G(A, B) structure. I t  is then 
easy  to  see that  the  diagram 

, ,  • > 

~t t t 

is commutat ive ,  and this gives (i). Q. E. D. 
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Corollary:  Let X be a compac~ manifold on which there is a transitive G- 
structure of finite tyTe G ~ B a -~ X .  Then there exists a strongly locally complete 
germ o/deformatio~ o/this  structure. 

T h e  proof  m a y  now be  done  e x a c t l y  as  for  a t r a n s i t i v e / - s t r u c t u r e .  
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