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In [3] we have defined the notion of a deformation of a G-structure on a
compact manifold X. The purpose of this paper is to construct a universal germ
of deformation of such a structure with the hypothesis that @ be of finite type
plus another mild restriction. The pertinent definitions and precise statement
of the main Theorem are given in § 1.

The analogous theorem for deformations of complex structure has been
proven in [6] by Kuranisair. However, since we are mainly concerned with
deformations of non-infegrable structures, the methods of [6] do not imme-
diately apply to our case. In fact, it is easy to see that in general there exists no
differential equation of the Frobenius type which, when given a family of G-
structures, tells us whether or not the family forms a deformation. In the
complex case, given a l.parameter family of almost-complex structures
J, (—e< t< &), with J, integrable, there is a differential equation A such that
AJ, = 0 implies that the J, are integrable so that we get a deformation of the
complex structure on X. It is this construction which does not generalize to
general G-structures.

In fact, the class of G-structures for which such an operator 4 does exist
are the so-called #fransitive structures. In §§ 2 and 4 we construct 4 for a special
transitive structure, and in the Appendices, 4 is constructed for a general
transitive structure of finite type.

In §3 the main reduction in our Theorem occurs when it is shown the
existence of a universal germ of deformation of a general G-structure follows
from the existence of a universal germ in a special transitive case. In §§4 and 5
the operator 4 is used to construct the universal germ in the special transitive
case.

In §6, the reduction, together with the construction in the transitive
situation, are combined to complete the proof of our main result.

In §7 some examples and applications are given. For instance, a special
case of our main theorem gives a generalization of some recent results of
H. C. Waxa@ concerning the space of lattices in certain Lie groups. Our transcen-
dental methods give a local construction of this space of lattices for any Lie
group. The results of Wawne saying that this space is, in certain cases, a mani-
fold of a certain dimension then follow from the computation of some coho-
mology groups. The general calculation of these cohomology groups will
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presumably give the complete local structure of the space of lattices in any
Lie group.

In fact, our results show that the space of lattices in a Lie group, with the
equivalence relation that two lattices are identified if they are conjugate, is
locally an analytic set. The cohomological result then gives the dimension of
this set and, if it exists, the non-singularity.

1. Statement of the Theorem

Throughout our discussion we shall denote by G a connected linear Lie
group which is then a subgroup of GL(n,R). Let f(z) = (1 (), ..., "))
(z=(a,...,2") be a local diffeomorphism of R”, and denote by J,(x) the
Jacobian matrix of f at « € R*. Recall that G is said to be of finite type if there

exists an integer u, = po (&) such that, for any diffeomorphism f with J,(x) € G

b I e o )
for all 7, Wm"f)“nz 0 whenever u, + * -+ + u, > .

Let X be an n-manifold. Then a G-structure on X is given by a reduction of
the structure group of the tangent bundle of X from G L(n, R) to G. If we let By
be the manifold of all G-frames, then there is a principal fibration @ - Bg - X.
The principal bundle G L (n, R) - B — X obtained by extending the structure
group of Bg to G L(n, R) is then the principal tangent bundle of all frames on X.

Consider now a local diffeomorphism f: X — X. (By this, we mean that
there exist open sets U, U’ C X and a diffeomorphism f: U — U’.) Such an f
has a canonical lifting to a bundle automorphism

fu: B~ B
v
f: X X.

We say that f is a local G-automorphism if f,(Bg) C Bg when By is considered
as a submanifold of B.

Let 0 be a local vector field on X. Then 0 generates a local one-parameter
group f(t) = exp(t0) of local diffeomorphisms of X. We say that 0 is an
infinitesimal G-automorphism if the f(t) are local G-automorphisms. Denote by
@ the sheaf on X of germs of infinitesimal G-automorphisms.

Suppose that G is of finite type. Then each stalk @¢(z) (x € X) is a finite-
dimensional real vector space, and we say that the G-structure on X is normal
if dim @g(x) is independent of . This happens in particular when everything
is real analytic.

Let now U C R™ be an open neighborhood of the origin in R™ with para-

meter t = (!, ...,t™), and let #~ 5 U be a differentiable fibre bundle with

fibre X. We may take as structure group of the tangent bundle of #” the group
»*

of all matrices ((’,’ ﬁ) where y ¢ GL(n, R), f € GL(m, R) and * ¢ Hom (R™, R").

Let G* be the linear group of all matrices of the above form where y € &, and
let G C G* consist of the subgroup of all matrices where * = 0. Suppose that
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we have given on %" a G*-structure. Then on each fibre X; = @&~1(t), there is
an induced @-structure & — Bg(t) - X,.

Before defining what it means for #~ to give a deformation of the @G-struc-
ture of X, we observe that, if Z C X is any open set, then there is a natural
G'-structure on Z x U induced from the G-structure on Z. We let n:Z x
x U - U be the projection mapping.

Now let % > U be as above and suppose that we have on %" a G*-structure.

We say the #~ L gives a deformation of the G-structure on X if the following
two conditions are satisfied: (I) There is a G-diffeomorphism between X and
X, = @"1(0); (1I) The fibre bundle %~ SUis locally @-trivial in the following
gense: For each point x, € #~ N X,, there exists a neighborhood V(z,) of x,
in #°, a neighborhood Z(x,) of z, in X, and a diffeomorphism f, : V(x,) —
—Zi(xy) X U such that mof= & and which transforms the induced G*.
structure on V (z,) into the natural G'-structure on Z(x,) x U.

Given deformations ¥”' 5 U’ and # 3 U of ¢ > By —~ X, a mapping of
deformations is given by a pair of mappings F: #"' —#", f: U’ - U such that
o' —>w

T

f:U=>U
commutes and such that F is a G*-mapping which is a diffeomorphism on
fibres. From this we may define equivalent deformations and finally, in a well-

known manner, a germ of deformation.

For the purposes of this paper, the above definition of deformation is not
sufficient, and we must allow that U has singularities (c.f. the examples in
§ 10 of [3]). Thus let ¥ C U be an analytic set through the origin, and suppose

that W 3 U has a G*-structure such that (I) above is satisfied. Then this data
gives a deformation if (II) is satisfied in the following sense: For each z, € X,
there exists a neighborhood ¥V (z,) of z, in W, a neighborhood Z (z,) of x, in X,
and a diffeomorphism f,, : V(x,) > Z (%) X U with mof= & and such that
fo, |01 (@) NV (24) > Z(x,) X {f} is a G-isomorphism whenever ¢ € V. We let
W = ®-*(V) and write such a deformation as {#" 3 V}, the existence of
ambient spaces W of #” and U of V being understood.

We also say that {#~ g V} is effective, or effectively parametrized, if no
restriction of #” to an analytic curve through the origin gives a trivial deforma-
tion,

Given V' C U’, V C U and deformations {#" % V), {# 5 V}, & mapping
between these deformations is given by a G*-mapping F: W' -~ W and a
differentiable mapping f: U’ - U such that {(V)C V', f(0) =0, and & o F

= fo@. We write (F, f) {1//’-» V- {“///-» V}. (In case V ]S non-gingular
at 0, it is understood that V = U.) A germ of deformatlon (W 5 V} is locally
complete if, given any non-singular germ {‘/// "~ U'}, there exists a mapping



154 Porrar A. GRIFFITHS ;

of germs (F,f): {(#" % U’}—>{‘/I/f> V}. The germ {# 5 V} is said to be
strongly locally complete if we may omit the adjective ‘‘non-singular’ above.

Now let @ be of finite type and @ - Bg— X a G-structure. Recall that a
lattice in a Lie group A4 is a discrete subgroup I' ¢ 4 such that the quotient
A|T is compact. We say that a normal G-structure G — By — X is regular if the
Lie group 4 of G-automorphisms of the universal covering X of X (with the
natural G-structure) has finitely many components and if the fundamental
group of X is a lattice in 4.

Our main result is the following

Theorem: Let X be compact and @ —~ Bg—~ X a regular G-structure. Then

there exists a locally complete effective germ {#~ 3 V} of deformation of this G-
structure.

Remark: The germ which we shall construct is almost certainly strongly
locally complete — our methods, however, fail to give this result except in an
important special case.

2. Some General Remarks on G-Structures and Deformations

Let V be a real vector space and G ¢ G@L(V) a closed linear subgroup.

Proposition: The set Mg of translation-invariant G-structures on V forms a
manifold which may be identified with GL{V)/Q.

This may be seen as follows. By identifying V with its tangent space at the
origin, a translation invariant G-structure on V is given by a set of frames S
such that, if e, ¢’ €8, then e = ¢'g for some g € G. By choosing a coordinate
system, a frame is given by a non-singular matrix, and we let ¢, be the coordi-
nate frame. Define a mapping 7 : GL(V) > Mg by setting n(y) = ye,@ for
y € GL(V). Then clearly n establishes an isomorphism 7 :GL(V)/G 2 M.
Q.E.D.

Now we may choose coordinates around ¢,G in M to be linear coordinates
in a neighborhood N of 0 in gl(n, R)/g'). Thus the set of G-structures near a
given G-structure form part of a linear space. We now carry this over to manifolds.

Let @ - By - X be a Q-structure, and let X be the sheaf of germs of smooth
sections of the bundle Bgx ggl(V)/g where & acts on ¢gi(V)/g by the adjoint
action (for v €gl(V)/g, g €@, g-v=gvg~*). Then, by the above remarks,
the @G-structures on X near to G- Bg— X are given by the “small” sections
of the sheaf 2 — X. We give some examples of this construction.

(1) G = 0(n). Then GL(n, R)/0(n) is the cone S(n) of symmetric positive
definite matrices. Furthermore, gi(n, R)/O(n) may be identified with the
linear space of symmetric matrices.

Let g{z) be a Riemannian metric on X. Then the above says that the
Riemannian metrics near to g(x) are of the form g(z) + £(z) where £: X > X
is a small symmetric tensor.

(2) @=GL(n, C)CGL(2n, R). Then we may identify Mgr., o
with the set {/ ¢ Hom(Re, R*#)[J? = ~I}. Let J,=(; ) and define

1} Here g denotes the linear Lie algebra of @; gl(n, R) = Hom(R», R»).
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w:GL2n,R)> Mgrme by n(y)= )/Jc,y"1 (y €GL2n,R)). Then =
establishes an isomorphism #: GL(2n, R)/GL(n, C) > Mg, ¢)

Let J € Mgr(n,¢)- Then the tangent space to Mgy, ¢y at J is equal to
{A ¢ Hom(R?", R?*)|AJ + JA = 0}. Note that Mgy, ¢y has an almost-
complex structure K given by K(A4) = JA for 4 ¢ T(J). This structure is
integrable, and indeed Mgy, (s, ¢y may be identified with an open submanifold
of the complex Grassmann variety of complex n-planes in €. Let W be the
complexification of R?* and write W = Wl( ) ® Wy(J) where W, (J) is the
+ ]/— eigenspace of J and W,(J) = W1 (). The condition AJ 4+ J4 =0
means that, when 4 is extended to Hom (W, W), 4 = 4, + 4, where 4, ¢
¢ Hom (W, (J), W (J)). Thus the sections £: X — X are essentially the so-
called vector-valued (0,1) forms & = (5;) and the nearby almost-complex
structures are given by the small vector-valued (0, 1) forms.

This may be done directly as follows. Let e¥ = (e, &) where ¢ = (e,,..., ¢,)
be an admissible frame for J. Then a complex frame corresponding to the vector-
valued (0, 1) form &(x) is given by (e + £¢, & + £e).

(3) @ =1I is the identity matrix. Then M; = GL(n,R). An I.structure
on X is given by a field of frames ¢, (%), . . ., e, (x) which give a parallelism on X.
A section ¢: X — X is a matrix valued function o(z) = (o(z)}), and ‘the
corresponding I-structure is given by the field of frames ¢ (z), . . ., ¢, (x) where
& (x) = 21 (@)} es(x) + &(x).

Let now & = H®(X, X') and suppose that we have on = a norm | || such
that its completion is a Banach space. (Correspondingly, the set of G-structures
on X may be made into a Banach manifold whose tangent space at @ - Bg— X
is just 5.) Let £ be a neighborhood of 0 in 5. Then there exists a variation of

the Q-structure {“I/f ~>.Q} where @1(t) (£ € 2) has the G-structure given by
t € £2. This space is a sort of universal model for the local deformations of

@ — By~ X: Given any deformation {#" d U’}, we have a mapping (F, f):

W SUY S d £2} as follows: For ¢ ¢ U’, f(t') € 2 is the section of X
such that @'~1(¢') has the G-structure corresponding to f(¢'), and then F is
the identity.

This universal model is unsatisfactory in two respects: (i) the structures

B-1(t) (¢ € Q) are not all locally equivalent so that {%~ 5 £2} is not a deforma-

tion in our sense; (ii) the space {#~ 3 £2} is not effectively parametrized —
we must, in some sense, take the orbit space of £ under the group of diffeo-
morphisms of X.

We now give a sort of general procedure for dealing with (i) — this general
procedure will be specialized in § 4, and also in the Appendix. Also, in § 5, we
shall give a general method for treating (ii). Taking these together will give the
Theorem of § 1.

The idea in (i) is to find a (non-linear, of course) differential operator
A4 = Ay on £ such that, for o € 2, Ao = 0is a necessary and sufficient condition
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that the G-structure G - Bg(o) —~ X determined by o is locally equivalent
to G — By — X. If this has been done, then we set U = {ker4} n £ and get

a bona fide universal germ of deformation {#~ 3 Ut of G— By~ X.
As an example, recall that G — By — X is integrable if there exists a co-
ordinate covering {U,} of X With coordinates (x}, . . ., 27) in U, such that the

. € By, If G~ By— X is integrable, then
am" gr

Ao =0 (o €8) should be the equation of integrability of the “almost G-
structure” defined by ¢. Such a A exists in the complex analytic case ([5]) and
also for many other integrable structures ([9]).

The operator A has, in the past, been determined from the differential
operators in an injective resolution of the sheaf @;. We outline now a procedure
for getting the first few terms in such a resolution.

Let now 2 be the sheaf of germs of sections of Bgx ggl(n, R)/g, and let I~
be the sheaf of germs of tangent vectors. Define j: @y — J to be injection

of the subsheaf @4 of .7 into J". We now define D;: 7 — X such that 0 - @ 3

L 7% 5 is exact. Let w(x) = (w'(x), . . ., ®"(z)) be a local co-frame for the
G-structure G — Bg — X. Then any other admissible co-frame w’(z) may be
written as o' (x) = w(x) g(x) where g(x) is a local mapping of X into G. Let 6
be a germ in 7, and consider Fyw = (Fyw', . . ., Lyw")?). Then we may write
ZLow = +w - y(x) where y( ) €gl(n, R). We claim that, considering y(z) as
an element of gl(n, R)/g, y is a section in 2. Indeed, if o’ is any other co-frame,
then w' =w-g and Lp(w)=Fyw g+ 0w - Log=+0'g"1yg + 0Ly
=o' (+g-1yg + g ZL,9). Sinceg-t Fyg is a mapping of X into g“) we see that

y{x)isinfact a germin X, and we set D, § = ¢ € 2, Clearly @G—> T2 Zis exact.

This may be done more intrinsically as follows. Let B be the bundle of all
frames on X, so that By C B is a sub-manifold, and let V be a fibre for the
tangent bundle of X (V =« B*). There is on B a V-valued form w such that,
for R € GL(V) acting on B on the right, w(bh) =21 - w(b) (b B). Let
wg = w|Bg,andlet § € 7. Then § defines a right-invariant vector field § on B,
and thus Pyw = + y - w for some function y: B-—gl(V). From the right
invariance of § and the transformation law on w, we get that y(bh) = A~y (b)h
(b € B, B cGL{Y)). Letting = : gl(V) > gl(V)/g be the projection, then, on
Bg, Lowg =y - wg and 7{y) is a function on By with values in gI(V)/g which
transforms by Ad when @ acts on the right; i.e. #(y) is a section of 2 and
7(y) = Dy(6).

Now the next logical step is to find a sheaf A of germs of sections of a bundle
and a differential operator D,: 2 - 4 such that %53 A is exact. In
practice, once D, is found, it is easy to find 4. We shall carry out this procedure
for a special structure in § 4 and in the Appendix for an arbitrary transitive
@-structure of finite type.

. 2
coordinate frame (—a—T s e
xﬂ

%) Here Zg( 4 ) is the Lie derivative of 3 along the vector field 6.
1¢) Recall that the (left-invariant) Maurer-Cartan form £ on @ is givenby 2(g)=g-1dg.
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3. Reduetion of the Problem

Let 4 be a Lie group and I C 4 a lattice. Denote by o', . . ., o™ a basis for
the right invariant forms on 4. Then, on the manifold ¥ = A/I', there is
defined a parallelism, which is a G-structure where G = I, defined by the
Pfaffians @', ..., @*. For convenience, we call a parallelism an I-structure.

Let now G — By — X be a regular G-structure. Denote by X the universal

covering manifold of X and let I'> X 5 X be the covering fibration where
I' = 7, (X). Over X there is uniquely induced a G-structure by the requirement
that m should be a G-mapping. Then, as was shown in [3], the group of G-
automorphisms of G— Bg— X is a Lie group?®) 4 with Lie algebra a=H°(X,6).
Clearly I' is a discrete subgroup of 4 which, by assumption, is a lattice. (The
fact that I' C A4 is a lattice is automatic if ¢ is compact. This follows from the
easily proved fact that 4 acting on X has a closed orbit.)

Let A be the universal covering group of 4 with projection ¢: 4 — 4. Then
o~(I") is a lattice I' ¢ A4, and I' is an extension of I by the discrete finitely
generated kernel of ¢. In fact, it will cause no real loss in generality if we
assume that A4 is simply connected — the general situation may be easily
derived from this by the methods in [3].

Suppose that P is an open neighborhood of the origin in R™, that B C P

is an analytic set, and let {& Le R} be a germ of deformation of the I-structure
on Y. Then, for each T € B, p~'(z) == Y, has A as its universal covering mani-
fold. Thus we may associate to t ¢ R the discrete subgroup I, C 4 such that
Y, = A|T,. Clearly then I, is a lattice in 4 and we may define X, = X/I,.
On X, there is a G-structure G — Bg(r) -~ X,. We assume that there exists an

open set U C RM such that R C U and a deformation {#~ fj>R} of the G-
structure on X such that &~1(zr) = X,. This assumption will be met in the
cases we shall consider below.

Theorem A: If {¥ 2 R} is a locally complete germ of deformation of the

I-structure on Y, then {#~ 3 R} is a locally complete germ of deformation of the
G-structure on X.

Proof: Let {#"~ Su '} be a non-singular germ of deformation of the G-
structure ¢ - By — X, By the results of [3], we see that, for each ¢’ € U’, the
universal covering of X, = & ~(#) is X with the G-structure G - By~ X
(the assumption of normality is used here). Thus, for each ¢’ € U’, we have a
lattice Iy in A.

Let now By(I', 4) be the component of I in the space of lattices in A which
are, as abstract groups, isomorphic to I". Then clearly Ry(I", 4) is an analytic
set and we let P’ be a neighborhood of I" in R,(I, A) so that ¢:7—>c(7)
= I, € P' is a regular mapping of U’ into P’. We now construct a germ of

deformation {#' % P’} of the I-structure on Y by letting p'~1(l}) = ¥,
=A[ly (¢ P).

8) This statement, is, I believe, due first to Mme, P. LIEBERMANN.
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Suppose that {& 3 R} is a strongly locally complete germ of deformation
of the I-structure on Y. Then there exists a mapping (H, A): {5‘”—’; P}

—{# 3 R} of the deformations. For each I'; ¢ P’, H: Y;— p~1(h(I)) is a
mapping of I-structures and lifts to a mapping H,: 4 > 4. For y €I, we let
y¢ denote the corresponding element in I'; acting on X on the right, and we
write A(Ig) = ME&) (I'; € P'). Then H, satisfies (H)*w*=0o* (x=1,...,n)
and H(a y;) = Hg(a) y5 (o for a € 4. The first condition implies that H, is left
translation by some element a; € 4, and the second gives that a; .07 = v,
or aglsaz! = Iy (y. Clearly & —> a; is a smooth mapping of P’ into 4.

We now define (7, f): {’W'fr U’}»{’}’Ifﬁ R}. For 7€U’, we set f(z)
= h(0 (7)) € R. In order to define F, it will suffice to define F, : X — X such that
F (& pe) = F (%) 7, and such that F depends smoothly on v. We do this
by setting F, (£) = & - a,}) (vecall that A acts on X on theright). This completes
the proof of Theorem A.

In order to complete the proof of our main result, it will suffice to show:

Theorem B: Let I'C A be a laitice where A is simply connected and has
finitely many components. Then there exists a strongly locally complete effective

germ {#" 3 V} of deformation of the I-structure on A/I.

Theorem C: If this germ is carried over to the deformation of any normal
G-structure G — By — X as in Theorem A, the result is an effective germ of
deformation of this G-structure.

The proof of Theorem B will be given in §§ 4 and 5, and Theorem C together
with some other miscellaneous results will be discussed in § 6. We remark that,
since the local deformation theory of I'in 4 is not changed when we replace I"
by a subgroup of finite index in I", we may assume that 4 is connected.

The proof of Theorem B will be an application to the I-structure on A/I"
of the general program in deformation theory which was outlined in §2.
Indeed, § 4 will mainly be concerned with rectifying the objection (i} in the
universal family {#" 3 £}, and § 5 will deal with (ii). Finally, in the Appendices,
we shall show that the techniques of §§ 4 and 5 can be adapted to show that

there exists a strongly locally complete germ of deformation of any transitive
G-structure of finite type.

4, Construetion of a Loeally Complete Germ of Deformation
Let now 4 be a connected, simply connected Lie group, I'C 4 a lattice,
and X = A4/I". Denote by o, ..., »" a basis for the right-invariant Maurer-
Cartan forms on 4 considered as giving an I-structure on X. Welete,, ..., e,

be the frame on X dual to the coframe w?, ..., o*; if do* = % 2%, wPAw?,

By
then [e,, 6] = 3 cfze,. We designate by ¢ the sheaf of germs of vector-

14
valued g-forms on X and set T¢ == H%(X, %9) = global vector-valued g-forms
on X. There is a canonical element £2 ¢ T* defined by 2 = 3 ¢, ® w*. In fact,

any germ 7 in &7 may be written as 5 = 3 e, ® 7* where the #* are germs of
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qforms on X. We define a pairing [, ]: 7 @ ¢~ F?+2 ag follows: If
Z,‘e ® 7~ anda-Ze,,@aﬁ then [, 0] = 2 [6a &1 ® n*AGF =} €,®

v b

® ctgn* A of. This pamng makes & = 2 5”“ a sheaf of graded Lie algebras
and, in particular, T = J}' T¢is itself a graded Lie algebra. If d: 59> S9+1
is defined by d(2'e, 5 %72) =} e, ® d7®, then the Maurer-Cartan equation
is written 42 = 3 [, Q1.

We remark that the Jacobi identity in a graded Lie algebra reads: For
neESrhocSLTES”

“1) (=D*7[ln, o], z] + (= 1)*7[[7, ), 0]+ (= 1)**[[0, 7). n] = O
If n € 7, then (4.1) gives
(=1)?[[2, 21, ]+ (= 1)?[[n, 21, 21 - [[2, 9], L] =

Applying the anti-commutation rule [n, 6] = (—1)?2+1[g, 5] to this equation
then gives

We now set @ = @) and carry out the program of obtaining a resolution
(4.3) 0>05 7% B g,

outlined in § 2. Accordingly, for a germ 6 in &9, we define Dy0 € & by D,0

= ‘f‘ 6, ® Low* Then (4.3) is clearly exact at 0. Since dLyw* = L, dw*
—az_,’lcﬂ,,.?ewﬁ A w?, d(D,0) = [Q2, D,0], and this suggests that we define D,
by D17} dn — [£2, n]. In fact, if for ¢ > 1, we define

(4.4) Doy =dn — [£2,7],

then we claim that (4.3) is an exact sequence of sheaves over X. Furthermore,

dropping the subscripts and writing D for any D,, we claim that, for 5 € &7,
oY

(4.5) D{n,o]=[Dn, o]+ (- 1)*[y, Do].

Although this has been proven in [3], we shall for completeness now
verify these facts. First, by an explicit calculation, we have

(4.6) a2, 7] = 5 [(Q, 21, 7] - [2, dn].

We now check that D2 =0. Smce D, D, =0, it will suffice to show that

D,D,_,=0 (¢g>1). We have then that D(Dn)=D(dy — [2, ) = d*n —
1

= d[2,n] - [Q,dn] + [2, [2, n]] = (by (4.2) and (4.6)) — 5 [[2, 2], 7] +

+ (2, dy] - (2, dnl+ 3 [[2, 2], 7] = 0. Also, (4.5) may be checked in &
similar fashion.

The Poincaré lemma which then implies the exactness may be verified by
the following device. Since we are working locally, we may assume that we are



160 PHILLIP A. GRIFFITHS:

on a germ of a Lie group and that we have left-invariant vector fields f,, . . ., f,
a8 well as the right-invariant vector fields e,,..., e,. Then we may write
neFa8 =) 1, ® 7 and, when we do this, it can be directly checked that

Dy=}1,® di

We now come to the crucial point in our discussion. Let » ¢ T! be small.
Then Q2 + n defines a new I-structure w},, ..., 0} where w%=w*+ n* (n
=) ¢, ® 7%). We wish to verify that this new I-structure is locally equivalent

to :he old one if, and only if,

(.7) Dy — 5 [n,n] =09,

For this, we let A be the operator D — —;— [,] and verify that d(2+ %) —
- —;— [2+ 75, 2+ n]=0 (Maurer-Cartan equation) if, and only if, 49 = 0.

1 1 1
Q.E.D.

n
Now let ds?2 = 3’ (w%)? be a Riemannian metric on X. Having introduced
a=1
this metric, we may form an inner product on T? and we let £2 be the completion
of T in this inner product. Then €¢ consists of the square-integrable vector-
valued g-forms on X. Using this inner product, we define the adjoint D* : 7 —
— §2-1 of D and then, since [] = D D¥ + D* D is strongly elliptic, we have the
Hodge theorem: There exists a unique completely continuous self-adjoint
operator G :%7-> §7 such that G =60 =0, DG = GD, D*@G = D*@, and
we have the formula of orthogonal decomposition

4.8) g1=H?@ D*DGS1® DD*GSe

where H? = ker(J is the harmonic space.

Now suppose that we have on T? & norm | |, and let T? be the Banach
space obtained by completing T? in || |, We suppose that this norm | |, has
the property that D and D* @ are bounded transformations and that [, ] is a
bounded bi-linear transformation, all in the appropriate norms. Finally we
suppose that T is the Banach space product of the sub-Banach spaces obtained
by completing H?, D*DGT?, and DD*@T¢ in | |, We let my, 7tps, and xp
be the respective projection operators so that T9= 7z (T X spe(T9) X 7p (9,
and we let Z? be the Banach subspace 7ig(T9) X 7p(T9). We shall use the
technique of successive approximations written as an implicit funetion theorem
in Banach spaces ([2]); this approach is motivated by the work of NIsENHUIS
and RicHarpsoN. We denote by N (*) a generic neighborhood of zero in a
Banach space *.

We say that % € T! is semi-integrable if Dy — —;— npln, n]=0.

4) Equation (4.7) should be compared with eqn. (4.10) in [3].
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Lemma 1: There exists N(nz(TY)) and N (np«(T')) and a differentiable
mapping of Banach spaces r: N (g (T4)) — N (mp« (T1)) such that, if ¢ € g (T?)
and p € wps (TL), then @ + y is semi-integrable if, and only if, r(@) = .

Proof: Define F: 7z (T % mpe (T — 7p(T?) by Flp, p) = D(p+ y) —
— —% wple + v, ¢+ p]. Then F is differentiable and Dy F (0, 0) = D : mpe (TY) —
— 7 (T2). Thus D, F (0, 0) is an isomorphism of Banach spaces, and thus there
exists 7: N(nz(TY)) — N(7p«(TY)) such that F(p, ) =0 if, and only if,
r{p)=19u. Q.E.D.

Define R : g (T") - T* by R(9) = ¢ + 7(9) (p €72 (T).

Lemma 2: There exists N (mgg(T1)) such that, if ¢ € N(ng(TY)), AR(g)=10

Proof: AR(g) = — & {mps [R(9), R(¢)]+ 7u[R(9), R(g)T}and if A R(g) =0,
then g [R{g), B{p)] = 0 since g (T?) N npe(T2) = 0.
Assume now that ng[R(g), B(¢)] = 0. Then, if 4 =%7z}p[R(<p), R{p)],

A = D*G[DR(¢), R(p)] (by (4.5)) = D*G[A, R(¢)] (by (4.1)). Thus we get
(4] = ¢|R(¢)]1 | 4], and, since R(0) =0, it follows that A =0 if

@ € N(zg(TY)). But then 4R(¢) = 0. Q.E.D.
Now let U be a small neighborhood of 0 in the finite dimensional Banach

space g (T1). We define a family {Wi U} of I-structures on X by letting
®1(n) (n €U) have the I-structure given by Q2+ R(zn). If we then let
V={ncU|AR(n) =0}, V is an analytic set through the origin (Lemma 2)
and the structure on X, = &=1(n) (n € V) is locally isomorphic to the I-struc-

ture on X4¢). Thus,if # = &—1(V), {# 3 V} defines a germ of deformation of
the structure on X. In §§ 5 and 6, we shall prove:

Theorem D: The germ of deformation {#~ d V} is strongly locally complete
and effective.

5. Proof of Theorem D

An I-structure on X, near to the given structure, is uniquely written as
£+ g for some 7€ T By abuse of language, we simply say that 5 gives an
I-structure, and we define this structure to be extremal if D*5 = 0. By Lemma 1
in §4, if 5 is extremal and semi-integrable, then # = R(¢) = ¢ + r(¢) for
some @ Cmg(TY. If U' C B™ is an open set and if for each ¢ £ U’ we have
n{t') € T%, we say that we have a differentiable family of I-structures if the local
expressions 7 {x, {') are smooth in x and ¢

If f: X— X is a diffeomorphism near the identity, then f transforms
Q + 7 into a new I-structure written as £ + #(f). Clearly % is integrable if,
and only if, #{f) is.

If & € N(T?), we define a diffeomorphism e (&) to be exp(££)]; - . Theorem D
will follow from

%) T being a linear space has a real analytic structure. Then sy, 7y, Zpe, D, . . . 8T8
real analytic, as is B; and consequently V is a real analytic set. In fact, the power series
defining ¥ may be explicitly written down.

Math, Ann. 159 12
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Theorem E: There exists a differentiable mapping s: N(T) - N(zp.(T)
such that, for ¢ € N(T), & € N(zps(T?), @(e(£)) s extremal if, and only if,
& = s(@). Furthermore,if ¢ (t') depends smoothly on t', then so does & (t') = s(@(t')).

Proof of Theorem D: Let {#"” 5 V'} be a deformation of the I-structure

on X and let U’ >V’ be the ambient space so that we have {W’ 5 U’} with
&' Y V'y=w#". For each t' ¢ U’, 5n(t') € T* defines the I-structure on X,
= @' ~1(t') and 7 (¢') depends smoothly on #'. Then there exists an open subset
U of a finite-dimensional subspace A C ag(T!) x mp«(T!) such that
n(¢') (e(())) €U for all ¢ € U’, where now £(¢') = s(n(t"). Since n(t') is
integrable for ¢’ € V", (t) (e(€()) €V for ' € V', and we may define (F, f):
AW S U (W3 U} by 1) = n(t) (e(6(t))) and F|a' (') = e(£().
Then f(V’) C ¥V and we in fact have a mapping of deformations. Q. E. D.

Set now @ (e(§)) = ¢ + D&+ R(gp, &) for ¢ € N(TY), £ € N(T?). Theorem E
will follow from

Proposition A: R is a differentiable mapping of N(T") x N(mp«(T°)—~
-» N (1) which satisfies Dy (0, 0) = 0.

Proof of Theorem E: Define 8:N(TY) x N(zps(T%))-> N(mp(TY)) by
S(p, &) = DE+ mp{p + # (@, £)}. Then, by Proposition A, § is a differen-
tiable mapping of Banach spaces and D,(0, 0) = D. By the implicit function
theorem, there exists s: N(T')—> N(mp«(T?)) such that S(¢p, & =0 if, and
only if, & = s(p). But 8(p, &) = 0 if, and only if, D*8 (@, £) = 0 which in turn
is equivalent to D*D& + D* @ + D*% (g, £) = D*(p(e(£))) = 0.

The smooth dependence on parameters is also easily established by using
again successive approximations’). Q. E. D.

So far we have avoided mention of what the norm || ||, on T¢ should be.
Given a norm | |Z on vector-valued g-forms on an open subset Z € R, we may
take a finite coordinate covering {U,} of X and define | [{¥d = 37| |Ze.

Furthermore, for any two finite coverings {U.}, {U.}, the norms | iU},
| 1575} will be equivalent. Thus, having defined | |Z, we may define | |, as an
equivalence class of norms obtained from finite open coverings. With this in
mind, we choose ¥ > n + 3 and let |5|Z be the Sobolev norm |n||£_, on a vector-
valued g-form % on Z. Thus, if

.8 . .
=2 M. 457 ® da n - ndate, (n)f_)? =

2 [ |Drgg gl da,
Osusk—q 2
30100000

where D*# runs over all partial derivatives of order u.

Clearly then D : T?-> T2+ ig a bounded transformation and also D*G: T¢—
- T9-1 is bounded, due to the property |G#|if, o < c|n|f where Z C Z’ ([7]).
Finally, [,]: T?® T9-> T?+9 is clearly a bounded bi-linear transformation.
Thus it remains to verify Proposition A with our choice of norms.

5) It can be shown, by a direct convergence argument, that if ¢(t) depends real-
analytically on f, then so does &(f) = s(¢(f)).



Germs of Deformation of Certain G-Structures 163

Suppose therefore that Z € R* and that we have on Z an I-structure given
by !, ..., " Fix d< 1 and suppose that we have a vector-valued form
9 = {¢*} and vector fields & = {£}, & = {£'*} with | gl < 6, |é|f < 8,]£1F < o.
Let Z'’CZ be an open set with e(§)Z' C Z, e(£')Z' C Z. Then, writing
p(e(&) = ¢ + DE+ R(p, &), it will suffice to prove:

Lemma A: ForZ" CZ' C Z,

(6.1) |%(@, &) — Rl &) M1 < c(lglF + NEIE + 1E1E) (16 - £1F) -

We prove (5.1). First observe that (expé)*(w®*+ ¢%) = w* + ¢* +
+ Ze(w* + ¢*) + 3 RS, (@, )P £r. From this it follows that g(e(§)) = ¢ +
+ DE+ Lep+ 3 Ry, (g, £)8P&r. Thus we may write

(5.2) R(@, &)~ R(p, &) =D - &)+ L+ T(p, & &)
where T'(g, £, £') can be determined. Clearly [|D(& — &')|Z, < c(|& — &'|£).
To derive an estimate
| Le—er Pl 1 = cglE + 1E1E + 1818 (1€ - &18),
using the Cartan identity L_enp=di(f— o +i(f—E)de, it wil

clearly suffice to have an estimate of the sort

(6.3) Ifglf-1 < clflE-a gl

for functions f, ¢ on Z’ with finite norm | [|£_,. However, for k — 1 > n,
(5.3) is an easy consequence of Sobolev’s lemma ([7]): For 1 > n/2 x¢Z"”,
|D= h(x)| < c|h|Z, ; where h is a function on Z’ with finite norm || |47 ;.

To complete the proof, we must derive an estimate

(6.4) 1T (g, & ENMEZ1 < cllolf + 1EF +1£18) € - €18) -

Since |T'(g, &, &) = {(exp&)* @ — (exp&)* ¢} + {(expé)*w ~ (exp&')*w} +
+ &~z @, we claim that to prove (5.4), it will suffice to show

Lemma B: Let Z'" ¢ Z' ¢ Z ¢ R* be open sets with Z convex. Suppose
that we have mappings f: Z' —~Z,g: Z' - Z which satisfy |f — I|§_, < 0,
lg — I|Z_1< 6 where < 1. Assume that b is a function on Z with |h|f < 6.
Then there exists ¢ = ¢(Z",Z', Z, 8) such that

6.5) hof—hoglf < c(Bf + If — TIE_1 + lg — ZT1E-0) (If — glE-0)
Indeed, suppose that (5.5) is satisfied. Then, for example,

(exp&)* g — (exp&)*p = X 2D geo(g)) — 0 e(¥) (@) 92(e(@)
= 228 pateqy) - 2 gete() + 2 gu(e(s) - o e (&) pH(e(€))
and thus

lexpé)* g ~ exp&* ¢y = ofle(@IE: - 197(e(8) — g NI +

de(§) _ 9e(d)

“9x% 9% |

z'
)

12*

+ (@I -
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(by (5.3)). But, if (5.5) holds, we then get |(exp&)* ¢ — (exp&)*¢|f ; <
< c{(lglf + 1EIE + 1€1E) (16~ &1F)}. Similarly, the other terms in
T (o, & &) may be estimated.

The proof of (5.5), which is due to Kuranissi, can be found in the Appendix
to [4]. This completes the proof of Lemma A and hence of Theorem D.

6. Completion of the Proof of the main Theorem
We first finish the proof of Theorem B. Suppose on X that we have an
I.structure given by w', . . ., o™ where dw® = -—;— 2 ¢%,wf A w” and the c§, are

By
constant. In the notations of § 4, let U be an open neighborhood of the origin

in 7y (TY) and construct the family of I-structures {W il U} where &—1(g)
(@ € U) has the I-structure corresponding to B(¢)= ¢ + r(p) in Lemma 1

of §4. If then V= {9 ¢ U|AdR(¢)=0}, # = &~ *(V), then {"1/’«% V}is a
strongly locally complete germ of deformatlon of the I-structure on X. We
want to show that this germ is effective.

Suppose then that {#" 5 V'} is any germ of deformation of the I-structure
on X. Let &4(V') = &, be the Zariski tangent space to V' at the origin We
define the linear mapping o : & — H' (X, ©) as follows: Let y(s) (s € (—¢, &)
be an analytic curve in V', and let @{s) be the element in T* which deﬁnes the
dqo(s)

I-structure on &' ~1(y(s)). Then, if ¢ = }s:m since Ag(s)=0,Dp=10

and we may thus assign to y (s) the element @ € H'(X, ©). Since Z is spanned
by tangents to analytic curves in V', we may thus define ¢: £y~ H (X, 0).

1t is easy to see that, if {#"~ Z V'} is a trivial germ of deformation, then ¢
is the zero map. (For our purposes, we may assume that ¥’ is non-singular, in
which case the statement is obvious.)

Returning to the case of our strongly locally complete germ {# 5 |43
the Zariski tangent space &, to V at the origin is a linear subspace of 7z (T?),

and p is the identity map. Then clearly {#~ s V} is effective. This proves
Theorem B.

To prove Theorem C, we let G — By — X be a regular G-structure of finite
type. Let 4 be the Lie group of automorphisms of the induced G-structure on
the universal covering of X, and let I'C 4 be the fundamental group. Set
Y = A|I'. If & is the set of germs of deformation of the I-structure on ¥ and
if & is the set of germs of deformation of the @-structure on X, then we have
defined 7 : & - F. Associated with each germ y in & or &, we let Z,(y) be
the Zariski tangent space to the base space of y at the origin. Then, for y € &,
we have defined ¢: Zy(y) - HX(Y, ©;). Similarly, if y ¢ #, we may define
o: Zo(y) > HY(X, Og). Now, as was shown in [3], there are natural isomor-
phisms HY(Y, @) o HY(T, a), H{(I', a) == H (X, O4) where H (', a) is group
cohomology and I"acts on a by Ad. Thus there is an isomorphism 7: HY(Y,0,) >
3 HY(X, Oy).
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Now, if y € &, it is easy to check that the following diagram commutes:

Zo(y) S HUY, O)
+ Iz
Zy(n(y)) > HY(X, 0y) .

Then the same argument as in Theorem B proves Theorem C.
This completes the proof of our main Theorem.

7. Applications and Examples

Let 4 be a connected, simply connected Lie group and I a discrete group.
A lattice in 4 is a faithful representation g : I'—~ 4 such that o(I") is discrete
and 4/p(I") is compact. Let B(I, A) be the space of lattices of I'in 4. Since I
is finitely generated and finitely related, R(I', 4) has locally the structure of an
analytic space. In fact, let g, € R(I', 4) and let y,, . . ., yx be generators of I,
Then there exists a neighborhood U of the unit e € 4 such that Uy, N\ Uy,
= ¢ (i % 7). Then a neighborhood of g, in R(I", 4)is a subset of U x -+ - x U;

N 2
in fact, R(I', 4) " {U x - -+ x U} is clearly the zero locus of finitely many
[ —

5
analytic functions corresponding to the relations of I

Now let gy € R(I', 4) and let Ry(I", A) be the component of I' in R(I", A).
Then A acts on Ry(l', 4) by sending a lattice into its conjugate; it is well
known that Ry(I’, A)/A need not even be Hausdorff. However, our Theorem B
is easily seen to imply the following

Theorem: There exists a neighborhood U of g, in Ry(I', Ay and Z of e in 4
such that, if o, o' € U are declared equivalent if ¢ = yo' y~* for some y € Z, then
the quotient space has the structure of an analytic subset of H (I, a).

Thus, although R, (I', A)/A is poorly behaved globally, it is in some sense
a locally analytic space. We denote by V(g,) the germ “U factored by the
equivalence relation in the above theorem.” Clearly, if ¥V (g,) is an analytic
set without singularities, then a neighborhood of g, in R(I", 4) is a manifold,
but not conversely.

As for examples, it has been shown by H. GARLAND that, if A is nilpotent,
then HY(I', A) o« H*(a, a) independently of the lattice I. In this case, for the

locally complete germ {#~ it V}, V is non-singular and is in fact a neighborhood
of the identity in the outer automorphism group. Furthermore, due to the
stable nature of H(X, @;) under a deformation, an easy continuation argu-
ment shows that all lattices in 4 are obtained by applying an automorphism
of 4 to I". This is a theorem of MALcEv ([10]).

In fact, by computing an appropriate cohomology group, the results of
Wane [10] should follow from our construction — his Theorem that By (I, 4)
is, in some cases, a manifold should be a consequence of the cohomological
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result that there are mo obstructions to constructing a deformation through
0 c H\(X, 6Oy)%).

On the other hand, we have in [3] given two examples of a construction
of a strongly locally complete family {#~ it ¥} where V had singularities (in
one case a quadratic and in the other a cubic singular locus). It would perhaps
seem now as though local the theory of deformations of a lattice in a Lie group
could be in some sense completed if a uniform method of computing H* (7', a) o~
=~ HY(X, &) could be found.

Appendix I: Transitive and homogeneous Q-structures
We keep the notations of § 2. Let @ C GQL(n, R) be a connected linear Lie
group. It is well-known ([1]) that we may associate to @ a sequence
G,= @G, G, ... of linear groups, where G, is the u'® prolongation of @. In
fact, if dim@ = r, then G, C GL(n + r, R) is the abelian linear group whose
linear Lie algebra g, consists of all matrices of the form

r %
N ey

r{(0 &

(I
where & ¢ Hom (R", g) is written as &, = &f; and, for each fixed &, &, = &(k) €g.
Then G, is defined inductively by G, = (G,—1):.

Let now @ > Bg — X be a G-structure. Then ([1] and also below) there is
naturally induced on Bg a Gy-structure G, - Bg, — Bg; furthermore, on Bg,
there is a natural @,-structure, and so forth. Clearly @ is of finite type if, and
only if, g, = 0 for some u,, which happens if, and only if, there is induced on
Gy—1~> Bg, _, > Bq, _, a linear connexion.

Thus, given G- Bg— X, we have a sequence of bundles {G, — BG” - BG”__ 4
and clearly any G-automorphism f of X “lifts” to a sequence {f*} of G,-auto-
morphisms of ng_l. (f® = f and f* = f, is the differential of f, etc.) Conversely,
given any G,-automorphism % of BG,,my there exists an G-automorphism f of X
such that f* = h.

If T is a set {t} of local diffeomorphisms of a manifold Y, we say that T
acts locally transitively on Y if, given y, ¥’ € ¥ which are sufficiently close,
there exists ¢ ¢ T such that t(y) = ¥'.

Let G- Bg— X be a G-structure, and let I” be the set of local G-auto-
morphisms of X. Then I"induces a set I™* of local G-automorphisms on BG“_ -
We say that @ — By — X is locally homogeneous if I" acts locally transitively
on X, and we define the G-structure G - Bg > X to be fransitive if all I'* act
locally transitively on Bgﬂ. There exists a y, such that @ - By — X is tran-
sitive if, and only if, I acts locally transitively on Bgﬁ for0< u < g

Ezamples: (i) Any integrable structure is transitive, and By may be
thought of as the bundle of jets of order u of local G-automorphisms. (ii) If

%) The necessary cohomology results have now been obtained by H. GaRLAND in his
thesis at the University of California, Berkeley.
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@ = 0(n), then local homogeneity means that X is covered by a homogeneous
Riemannian manifold, provided, of course, that the Riemannian structure on X
is complete. Transitivity of the Riemannian structure means nothing more nor
less than constant curvature.

Generalizing the notion of constant curvature, we shall now describe the
most general transitive G-structure of finite type. (Their importance for us is
that they are probably the most general structures for which we can find the
operator 4 of § 2.)

Let 4 be a connected Lie group and B C 4 a closed, connected subgroup.
Set V = a/b and let G(4, B} C GL(V) be the linear group of all transformations
{Ad ()} (b € B) acting on a/b. Then X = A/B clearly has an A-invariant
G (4, B) structure, and, in fact, this is the smallest 4-invariant G-structure
on X.

Set B, = Ker{Ad} where Ad is the above linear representation of B. Then
obviously Bg4, = A4/B,, and, if V! = a/b;, then on 4/B, we have the A-
invariant G(4, B,) structure. Clearly G(4, B);, C G(4, B;). In this way, we
may construct the bundles Bg,, B,= A[B,.;, and this process terminates
with some integer u, where B, , ; = {1} and then Bg,, By = A. Thus we have

Proposition: The canonical G (4, B) structure on A|B is a transitive G-
structure of finite type.

Remark: The condition G(4, B), = {1} is implied by the condition that
A[B be a reductive coset space ([8]). By this, we mean that the representation
Ad of B on a admits a complementary subspace to b C a.

Now we shall prove conversely the

Theorem: Any transitive G-structure G — Bg— X of finite type is locally
equivalent to the G (A4, B} structure on A|B for some A and B.

For simplicity we shall assume that g, =0 (i.e. Gy = {1}); the general
argument is the same. Let dimG =r. We agree on the ranges of indices
1<% 4,k=n and 1 <9, 0, v < r. Let {¢} be a basis for the linear Lie
algebra g. By choosing the usual basis for gl(n, R), we may write e, as the
matrix ab;. Let w be the canonical R*-valued form on Bg which satisfies
wbg) =grtod) BB ged). In §2, o was denoted by wg Then

o= (!, ..., »") and we may locally write
(A.1) dwt = — Z al;of A 7f + %Zk' ch(b) o A 0*
e.j i

where the 72 are locally defined forms on By which restrict to the left-invariant

Maurer-Cartan forms on each fibre. The forms (#},...,n"%; o', ..., 0"

define a local co-frame on Bg, and any other local co-frame is of the form

@ ...,7" oY)..., o") where z'? =72+ 3 biw*. The bf define
E

an element &(b) ¢ Hom (R, g) by £(b) = (5;:,0) where 5},,-——- P afﬁbk". The new
. . °
functions ¢;f in (A.1) are given by ¢ji = cj + 3 (ab;b§ — ab;bf), and, since

Q
these functions are global, it follows that &f; = &£};. This proves that on Bg
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there is a natural Gy-structure. Clearly if @ —~ By — X is transitive, then the
functions cf; are constant.

It is clear that for a general G, we may treat the G;-structure on By in the
same fashion, and so on. However, suppose that @, = {1}. Then the n? may be
assumed to be globally defined, and {#%,...,n"; w!,..., ®"} gives a paral-

. . . . 1 .
lelism on By. We set ¢;; = a}; so that dof = — X'cj;07 A 22 + 5 X 007 A 00,

Furthermore, since the n? clearly give a connexion in G- By — X, dn? —
A 1 y g o]
— 5 L AaT = 5 X cfjt A where the cf; are functions on Bg which

essentially give the curvature of the connexion, and where c?, are the constants
of structure of g. Now if I acts transitively on By, then clearly the c}; and
¢% are constants, as well as the 2, and c’;.

Then the Pfaffians {#!,..., n"; w',..., 0"} define locally on Bg the
structure of a Lie group, and it is easy to see that G —> Bg— X is locally
equivalent to the G(4, B) structure on 4/B for some chosed, connected sub-
group B C A. Furthermore, in case A/B is a reductive coset space, and the
connexion given by #l, ..., n" on By is just the canonical connexion of the
first kind in [8].

Example: Let X = P,(R) be the real projective space written as a coset
space X = A/B where 4= SL(n-+ 1,R) is the projective group. Then
G(4, B), #= {1} but G(4, B), = {1}, so that G(4, B) may be said to be of
order 2. The G (A4, B), structure on 4/B, is a so-called projective-connexion and
just as the spheres are models for Riemannian geometry of constant positive
curvature, X is the model for the projective connexion of zero projective
curvature. The transitivity of the G/(4, B)-structure on P,(R) is the statement
that the projective group acts transitively on the bundle of tangent directions
over P,(R). One may clearly make similar models for the (Weyl) conformal
connexions, etc.

Appendiz I1: A resolution of the infinitesimal automorphisms
of a transitive G-structure of finite type

Since the problem is local, and by the result in Appendix 1, it will suffice to
treat the case of the canonical G (4, B)-structure on a coset space 4/B where 4
is a connected Lie group and B C 4 is a closed connected subgroup. We begin
with some preliminary calculations. Again we assume that G(4, B), = {1} —
the general case will be clear from this.

For any manifold ¥, we let T(Y) be the tangent bundle and T(Y)* the dual
cotangent bundle. If A/B = X, then T{4)/B is a vector bundle over X, and
we let X be the sheaf of germs of sections of the bundle T(4)/B® AT (X)*.
We may describe X7 as follows: Let a be the Lie algebra of left-invariant vector
fields (= infinitesimal right translations) on 4, and set V¢= a ® A2(a/b)*.
There is a natural representation g? of B on V¢, derived from the adjoint
representation of B on a, and then T(4)/B @ A'T(X)* = A4 x5 Vo

Let now &% be the sheaf on 4 of germs of vector-valued ¢-forms. Then there
is an injection j : 27— %7 which is induced from the injectionj: a ® A%(a/b)* —
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—>a® A%a)*. On ¥ = & 9, we have defined in § 4 a differential operator

=1
D: ¥~ F4*1land a bx?a,cket [,]: 7@ F1-» FP+a,

Propesition: D(2'9) ¢ Ze+1 and [Xr, N9 Xr+e,

Proof: Let #2C ¢ be the subsheaf consisting of germs of functions
7n:4->a® A%a) such that (Ry7) = 09(b)n where R, = right translation by
b € B and p? is the adjoint representation of B on a ® A¢(a)*. Then X C #e.

We now assume that dimA4 = m, dim B = r, m — r = n, and we agree on
the ranges of indices 1 £ ¢, f, ks m; 12 o, B,y < randr+ 15,07
<r+n=m. Let e, ..., ¢, be a basis for a such that e, ..., e, is a basis
for b. Furthermore, let w!, ..., o™ be the dual basis for the Maurer-Cartan
forms on A. Then the canonical form w on 4/Bis just }’ e, ® w?; w is a global

e
section of X1, Also, 2 = 3¢, ® ' is a section of Z*. A germ 7 in % is written
i
7 =2 ¢; ® u’ where % is a germ of a g-form on 4. Then the infinitesimal right
@

translation is given by &, n'= 2 iy’ where the ¢} are the structure
constants of a.

I n=Xe;, @7, £E=2e;® &, then [1, £]= 2 e;® cjyn’ r &*. To show
that [P, %] C %#*+9, we must show that

(A.2) Lo (Z chi! A E%) = Zclyofpm’ A EE.

Using the relations %, (1) = Xt Lo §* = L ki (since 7, £ € AP, A

respectively), (A.2) reduces to showing that 3 cf;ck; + cfpck =23 cipch,
) %

which is just the Jacobi-identity. This clearly implies that [X'?, 29] C X7+e,

Now let = Xe;® y* €29 (g = 1). Then 7' = 0(modw?). By definition,
Dy =dn — [, n], and, by the above paragraph, Dy € #9+1. To complete the
proof, we show that D#n= 0(modw?); i.e. t(e;) Dy =0 (x=1,...,7r). But
t(ey) dnt + di(e,)nt = ann* and, since i(e,)nt =0, i(e,)dn' =2 cin".
Since Dy =2 ¢;® {dn — clrw? Ag*}, i(e,) Dy = X e, ® {i(e,) dn — ciyn*}
=0. Q.E.D.

This Proposition easily implies that, over X, we have the exact sequence
of sheaves

(A.3) P 5 BNUUNNING .4 " e SN
In § 2, we have derived a sequence
(A4) 00,5732,

Our program will be completed by showing

Theorem: There exists a canonical isomorphism j: X 5 X% such that:

(1) T2 518 50 is evact

(ii) For o € H(X, £V, if Ao = Do — + [0,0], then the equation Ag =0
defines those G-structures on X which are locally equivalent to the given transitive
G-structure of finite type, provided that o is small.
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Proof: Let W = a/b, and let b(W) C gI(W) be the linear space generated
by the transformations {ad (b)} (b € b). Then the vector space gl(W)/b(W)is a
B-module, and X was the sheaf of germs of sections of 4 x 3 gl(W)/b(W).
Now, if EC H%(X,2) is & neighborhood of zero, we had interpreted the
elements in X as giving the G{4, B) structures on X = 4/B which were near
to the given structure. Let ¢ €.Z and let G(4, B) - Bg(s) - X be the cor-
responding G(4, B) structure. Then Bg(s) is differentiably equivalent to A,
and so we may think of Bgy(o) as being A with a different parallelism {e,(0)}
where e;(0) = e;. But this parallelism is not arbitrary, for there should exist
an action ¢ of B on the right on 4 so that the parallelism {e;(s)} is that which
results from the canonical G(4, B) structure on the quotient X, = Ao (B).
Let {w! (o)} be the dual parallelism to {e;(¢)}. Then the above condition is met
if the following equations are satisfied:

(i) [ea(a)’ eﬂ(a)] = Zczﬂey(o')

(ii} gea(c)wq(o') = 26&,6{)7(6) .
Indeed, (i) means that B acts on A on the right by an action ¢(B), and (ii)
guarantees that the parallelism {e;(s)} is the parallelism arising from the
G(4, B)-structure on 4/¢{B) = X,

But, and this is the whole point, if ¢ is sufficiently small, then there exists
a function £(0): 4 — Hom(a/b, a) such that w?(o)= &(0) - w® where w(g)
= (w'(0), ..., w"(0)) and @ = (@', ..., w") are the canonical forms associated
with respect to the G(4, B) structures on X, and X respectively. Then &(0)
is & section of S, and, from (i) and (ii), we see that £(o) is in fact a section
of X', This whole argument is reversible: Given a section & of X!, we may
define an element o of X' by the rule w(g;) = & - w such that (i) and (ii) will
be satisfied for the parallelism {e (o)} determined by w (a;). Then &(o,) = £ and
() = O, 80 that we in fact have an isomorphism of sheaves j: £ 5 2! (j(o)
= £(0)).

Now it is clear from (4.7) that (ii) in the Theorem is satisfied. Indeed, if

dw*{c) — %Zcﬁywﬁ(a) A ¥ (o) = —;—26‘:,(6} w?{o) A w*{g) and I dowt{c) -

— 2, w%{0) A 0¥ {(0) = %chq,(a) w*(0) A w?(g), the equation Aoc=0 is

just the same as saying that the structure functions cg, (o) and c¢,(0) are con-
stant.

It remains only to check (i). Now on 4 the sequence 5 2ol
described in § 4 is exact. Furthermore, there is a mapping of sheaves k : 7 - S0
obtained by sending a vector field 6 on X = 4/B into its “lift” on Bg= A4
with respect to the connexion determined by the G (4, B) structure. It is then
easy to see that the diagram

Lo 2, e
kt 1 1
7 % 5 D 5

is commutative, and this gives (i). Q. E. D.
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Corollary: Let X be a compact manifold on which there is a transitive G-
structure of finite type G — By -> X. Then there exists a strongly locally complete
germ of deformation of this structure.

The proof may now be done exactly as for a transitive I-structure.
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