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PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, I.
(Construction and Properties of the Modular Varieties)

By PHILLIP A. GRIFFITHS.*

1.0. Introduction. (a) The general problem we have in mind is to
investigate the periods of integrals on an algebraic variety V defined over a
function field &. In practice, this will mean that we are given an algebraic
family of algebraic varieties {V.}, ., where the general member V=7V, of
this family is an ordinary polarized, non-singular algebraic manifold, and
we wish to study the behavior of the period matrix Q(¢) of V, as a function
of ¢t. In order to discuss Q(¢), we should think of the periods as a (not
everywhere defined) mapping ®: B— M where M, the modular variety asso-
ciated to V, repersents the totality of inequivalent period matrices satisfying
the bilinear relations imposed by the topological manifold underlying V.

In this paper (Part I) we shall study the variety M. Many of he
classical results, which arise when V is a curve and M is the Siegel upper-
half-space factored by the modular group, will go through. However, there
are some striking differences which turn up, and which seem to be best
explained by the presence of higher order period relations.

In Part IT we shall study the local properties of the period mapping ®
and, in Part ITI, we shall look into the global behavior of ®.

Some of these results have been announced in the Proceedings of the
National Academy of Sciences (U.S.A.), Vol. 55 (5), 1303-1309; (6), 1392-
1395, and Vol. 56 (2), 413-416.

It is my pleasure to express gratitude to several colleagues who, through
conversation and correspondence, have been of immense help in studying this
question on periods of integrals.

(b) We give now an outline of the results in this paper, which is
divided into four sections under the following headings:

1. Period matrices of compact Kéhler manifolds;

2. Modular varieties of polarized algebraic manifolds;

Received January 18, 1967.
* Supported in part of Office of Naval Research Contract 3656 (14).
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3. Some properties of the modular varieties: complex torii associated to
the cohomology of an algebraic manifold;

4. Further properties of the modular varieties.

First, in Section 1, we invert the usual presentation of period matrices
and view a period matrix @ as a point in a Grassmannian; this point being
the subspace spanned by the rows of Q. Thus we associate to V the subspaces
Harr (V) C HY(V,C) ; the local study of the period mapping is then essen-
tially the study of the variation of the Hodge decomposition of the vector
space H1(V,C). In order to make the periods vary holomorphically with 7,
we use a filtration on He(V,C) whose associated graded vector space is

éﬂq"”(V). Thus, the period matriz space D (=Dy(V)) is defined to be
r=0

a domain on a flag manifold F consisting of points @ =[S, 81,- - -+, 8p] where
8, C8, C---C8, CHIV,C) and where the two Riemann bilinear rela-
tions QQ'Q =0, QQ!Q >0 are satisfied. In case Q=Q(V) is the period
matrix of V, Spi/Sr==Her" (V). After some preliminaries on Ké&hler
varieties, we give in Section 1.(d) the precise definition of the period matrix
domains D. In 1.(e) we show that this approach is equivalent, in the case
of curves, to using the period matrix directly as a point in the Siegel upper
half space. In Section 1.(g) it is shown that D is acted on transitively by a
real, simple Lie group G and that the isotropy group H is compact; thus
D= H\G. Contrary to the case of curves, D need not be an Hermitian sym-
metric space, but it will be so that D is an open domain on a homogeneous
algebraic manifold X, where X is those flags Q satisfying QQ!Q—=0. These
period matrix domains are discussed in a general Lie group theoretic manner
in [7].

Now the complex structure, with polarization, of ¥ does not give a unique
period matrix @ (V) € D. This is because there will be polarization-preserving
homeomorphisms of V which induce non-trivial action on H4(V,C). Thus
there will be defined an arithmetic subgroup I' C G such that the modular
variety M — D/T'= H\G/T is an analytic space, and V defines a unique point
®(V) e M. This modular variety is discussed in Sections 2.(a) and 2.(b).

Suppose now that two polarized algebraic manifolds ¥V, V’ are in the
same class if h»2(V) =h»2(V’) and if there is a polarization-preserving
homeomorphism f: ¥V—V’. Then, in Section 2.(c), we prove (roughly)
that ®(V) = ®(V”) if, and only if, the graph F€H,,(V X V’,Z) is of type
(n,n). This shows geometrically what it means that two varieties V and V’
in the same class should have the same periods.
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In Section 3 we discuss complex structures on the real torus
H*e(V,R) /H*(V,Z).

One such is given by 4,(V), which is Weil’s intermediate Jacobian [12]. How-
ever, A,(V) does not vary holomorphically with V. The construction of the
period matrix space D suggesfs another complex structure T4(V) with the
following properties: (i) T,(V)=A4,(V) is the Albanese wvariety and
Tns(V) =A41(V) is the Picard variety; (ii) Tq(V) varies holomorphically
with ¥ (this will be proved in Part II); (iii) the polarization on V induces
a p-convex polarization (cf. the definition in 3(c)) on Ty (V) ; (iv) Te(V)
with its polarization is functorial; and (v) the period matrix of the holo-
morphic 1-forms Q(T,(V)) is the point in D,q. corresponding to Q(V).
This result is aproved in 3.(c) and 38.(d). The presence of the p-convex
polarization on T4 (V) seems to be closely related to failure of the inversion
theorem for intermediate cycles ([12], Section 27), which will be discussed
in Part IT.

Section 4 contains the main properties of the period matrix domains D.
We have chosen to use the periods of the R-forms and 3-forms as being
exemplary (cf. 4.(a)), and most results are stated in general form but proved
for these domains. The general argument will usually be evident.

Of interest are the homogeneous line bundles L— D ; e.g., the canonical
bundle K, which generalizes the canonical factor of automorphy, is one such.
These bundles have G-invariant metrics and the curvature is then a G-
invariant form on D. Contrary to the classical case, there will generally be
no positive bundles, and so, using K, the modular variety M must be con-
sidered as an analytic space with a p-convex polarization. Also, instead of
automorphic forms for D/T, we must now expect automorphic cohomolgy.

The curvatures, which have been computed group-theoretically in [7],
are computed explicitly in 4(b). These explicit results will be used thereafter
in several instances. For example, we show in 4(d) that D has an exhaustion
function ¢ whose Levi form L(¢p) has n—p positive eigenvalues, where
K — D has a p-convex polarization. In fact, L(¢) is essentially the curva-
ture of K.

One of the geometric reasons for this p-convex behavior is the presence
in D of compact subvarieties. In 4.(c) we show that the fibres of the mapping
H\G— K\G (K — maximal compact subgroup of G) give a family {¥- Mer\a
of compact, complex submanifolds of D such that K on ¥y is negative.
Combining this with the pseudo-convex exhaustion of D and the Borel-Weil
theorem for H\K, we show in 4.(d) that dim H#(D, 6(K)) —co (p — dim H\K ),
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and that Hr(D,G(K)) can be expanded in a power series around ¥, = H\K,
which is a special case of a theorem of W. Schmid.

To get information on M = D/T, we need the result of W. Schmid that
the absolutely integrable cohomology (L*-cohomology) H,?(K) is in some
cases a non-empty Banach space. ‘Then, in 4.(e) we prove essentially that
the Potincaré series in cohomology 0(s) =2Py(qs) (¢ € Hir(K)) converges

ve

to a I-automorphic cohomology class.

To close this introduction, let us mention briefly what relevance these
p-convex polarizations, automorphic cohmology, etc. have to the original
problem. It will be shown in Part IT that the image ®(B) lies transversely
to the family {¥}, xa and that K | ®(B) is positive (0-convex polarization).
What this means is that there are higher order period relations; i.e. relations
of the form @ (dQ,2) =0 on dQ over &F which hold universally. By a sort
of integration over the fibre, the automorphic cohomology should then give rise
to automorphic forms, in the usual sense. These automorphic forms should
then be related to fields of moduli, etc.

L. 1. Period matrices of compact Kahler manifolds. (a) Let W be
a complex vector space and e,*,- - -,e,* a basis for the dual space W*.
We want to coordinatize G'(h, W), the Grassmann variety of h-planes through
the origin in W. Let S€ G(h, W) be such a subspace and fi,- - -,f a basis
for §. We consider the matrix Q= (wap) Where map — (fa, ¢p*>. Clearly
Q has rank & and we assert that the A X% minors

Tipy" " T Tapy
Qp,pp= . (pr <+ - <opn)

Thpy” " " Thpy

give the Pliicker coordinates of S€ G(h, W). Indeed, let e, - -, e, be the
b
basis of W dual to e,*,- - -, ey*; then fo— D 7apep. It follows that

p=1

flA' : 'Afh"__' 2 Qpypy eP1A' < Nep,
Mm<<pn

so that the Qp,...p, give the Pliicker coordinates of S.

n
If we choose a new basis 7,,- - -,74 for S, then fa=Aagfs and
B=1

h
oy ep*> =ﬁ2_1Aaﬁ1rﬂp. Thus the matrix Q is changed into AQ by this change

of basis. In fact, if we let P(h, W) be the set of all & X b matrices of rank
h, then
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P(h,W)—>G(h, W)

is a principal bundle with fibre GL (k) acting on the left.

The gwoup GL(b) = GL(W) of automorphisms of W acts on G (&, W)
by the rule T-S=7T(8) where T'€ GL(b), S€ G(h, W), and T(8) is the
subspace with basis T'(f1),- - -, T(fa). Let T'ep = X tpsto;then <T(fa), eo*>

b
= D\ maplpo 50 that, under the action of GL(b), Q goes into QT where T' = (%p0)
p=1

is the matrix of T

We remark that T acts on W* by the rule Tep* =3 topec™.

We suppose now that we are given a non-singular gquadratic form Q:
W X W—C, which may be either symmetric or skew-symmetric. We let
X C G(h, W) be the subvariety defined by X ={S|Q(S,8) =0}. This
condition means that we should have Q(fa, fg) =0 for all «,8. Letting
Q (ep, 5) = gpo be the matrix for @, we have that Q(fa,fg) = Eblvrapvrpgqpa;

pso=

so that the condition that S € X can be written:
(1.1) Q=0 (@ = (gps) is the matrix of Q).
If we let G C GL(b) be the orthogonal group for Q;
G={T € GL(b)| Q(Te, Tf) = Q(e,f) for e,f€ W},

then @ acts on G (h, W) and preserves X. In fact, the condition that 7' — (¢p0)
belongs to & is:

(1.2) TQIT —@.

If S€ X is represented by the matrix Q satisfying (1.1) then T'(S) has
matrix QT and (QT)Q(QT) =0Q!Q—0 so that T-S€ X.

(b) Let V be a compact Kihler manifold and H* (V) =H"(V,C) =W
the r-th deRham cohomology group using differential forms with complex
coefficients. We let y,,* * -,v, be an integral basis for the free part of
H,(V,Z) ; we may consider y,- - -,y as a basis for W*.

For fixed p, ¢ with p+ g=r, the space H»?— H»4(V) of harmonic
(p,q) forms is a subspace of W. Let o',- - -, 0" (h—h»?) be a basis for
H#4¢, and form the period matriz

fwl...fwl
v L%

(1.3) Q= (wap) = . . (7rap = j; (Da)o
. (4

(o ('w,,

v b
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h 3
Tf we choose a new basis ¢ =3 Aagwf, | Aag |40, for HP9, then Q is
B=1

changed into AQ. From the considerations in (a) above, we see that the
Pliicker coordinates of the period matrix Q are invariantly defined and these
coordinates specify the subspace H»¢ C H" (V).

However, even as a point in the Grassmannian, the period matrix is

not invariantly defined, because if we choose a new integral basis p1,* - *, po,
then
b
(1.4) o = ZIMPYU
o=

where A = (Agp) is unimodular and Q goes into QA since

J,

b .
0% = 2 (J wa))\qp.
p =1 Yo
In other words, thhe integral change of homology basis (1.4) has the same
effect on Q€ G'(h, W) as the transformation A — (Agp).

In general, we shall call period matrices Q@ and & equivalent, written

Q~a, if
(1.5) & — AQA (A€ GL(h),A€ SL(b,Z));

cf. Hodge [10], page 199.

The conclusion of this discussion and that in section (a) is that the
period matrices for periods of integrals on compact Kihler manifolds should
be considered as points in a Grassmann manifold G(h, W) taken modulo the
action of a suitable discrete subgroup I'. What we want is that the totality
of all possible period matrices forms a complex manifold D on which T acts
properly discontinuously ; in order to do this, we shall consider only the periods
of the primitive harmonic differentials. After some preliminary considera-
tions on Kéhler manifolds in (c), we shall give in section (d) the construc-
tion of the period matrix space D. The group I' and its action on D will be
discussed in section I.R2.(a).

(c) Since V is a compact Kihler manifold, there is a fundamental class
o€ H¥* C H*(V,C), and we may consider the real operator

L: Hy(V) = He*(V) defined by Ly—wn (n€ H1(V)).

We set HI(V),=kernel (L") ={n€ HY(V): o»%9—0} where dim V
=mn. The space H2(V), is called the space of primitive cohomology classes
of degree ¢ (¢=n).
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One of Hodge’s fundamental theorems gives the Lefschetz decomposition :
For 0 < g=mn,

(1.6) Hy(V)= 3 LH* (V).
0=r=lg/2]
Now we may define a real quadratic form Q:H(V), X H2(V),—> C by
N QEn = (— D [ oy (6m€ Ha(T)o).

For ¢ even, @ is symmetric and @ is alternating for ¢ odd; in either case,
@ is non singular.

So far we have made no mention of the complex structure on V; the
above are results which hold for the topological manifold V' together with the
class o. The complex structure induces an operator J: H2(V)—>H«(V)
and we have the Hodge decomposition :

(1.8) Ho(V) = 3 H7e (Hrs — Ao),
r+8=q

where Hm¢ C H1(V) is the subspace spanned by the cohomology classes of

type (r,s). Here J | Hrs is multiplication by (v —1)-=.

Now the decompositions (1.6) and (1.8) are compatible so that, if we
set H (V) =LrHw*(V),, Hy,»*= {kernel of L*¢! on H%!, s4t=gq},
H,8t = [L"H 3"t we have, for 0 < g=n,

(1.9) Hi(V)y= X Hx(V),
0=r=[g/2]

(1.10) Hi(V)o= 3 H,
8+t=q

(1.11) Het— 3 Hst,
0=r=[q/2]

(1.12) HA(V)= S H».

- 8+t=q

The connexion between the decompositions (1.9)-(1.12) and the quad-
ratic form (1.7) is the following:

(1.13) Q(Hyrr Hy»18) =0 (rs£43)

(1.14) Q(Hor, Toar) > 0.

Here (1.13) means that @ (&) =0 for £€ Hoomr, n€ Ho®»%¢; and (1.14)
means that, if we choose a basis o,* - +,o* for He@ ", then the matrix
(1.15) Aap = V—1)4(—1)7"Q (o)

is Hermitian positive definite.
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The relations (1.13), (1.14) are generalizations of the Riemann first
and second bilinear relations.

The classical reference for the above is Hodge [10], pages 178-201. We
remark that Hodge’s “effective” is our “primitive” since we shall use the
adjective effective in another context.

(d) What we want to do is to make the set of all possible period
matrices for the primitive cohomology H, %" into a complex manifold D.
Because of (a) and (b) we can expect that I should be a subset of a Grass-
mannian ; in effect, D will be defined by the bilinear relations (1.13), (1.14).

We now make this construction. Let W—=H?(V), be the complex
vector space with the bilinear form (1.7). By (1.10), Hi(V)o= X H**

8+t=q
and we set: S"T=H°+H@b 4. -4+ Har" t=[g—1/2]. Then
8°, 8%, - -, 8t forms an increasing sequence of subspaces of W; S°C S*C- - -

C 8t CW. Let ho="nme2° hy=~"~2° -+ het™Y+ « - hy=ho?® - - - | hoat?
so that h,=dim Hy2° - + -+ H@"". Let F=F(ho,* - *,h;, W) be the
flag manifold of all nested sequences of subspaces S°C - - - C St C W with
dim 8" =h,. The point in F will be written as [S°,- - -,8%]. The Hodge
decomposition (1.10) defines then a point &= (V) in F.

Let G(h, W) be the Grassmann variety of %-planes in W. There is a
natural embedding F C G = G (ho, W) X+ + - X G (hy, W) defined by sending
[8%- - -, 8] into (8°,- - -,8%) where Sr€ G(h,, W), We may think of Sr
as the period matriz for the primitive harmonic (q¢—s,s) forms for s =r.
Thus Q(V) =[8°- - -,8t] € F may be thought of as a sequence of period
matrices which determine and are determined by the Hodge decomposition
(1.10).

The flag Q(V)=[8°- - -, 8] satisfies relations implied by (1.13),
(1.14). The first of the relations is Q(S° 8°) =0, @ (8°8°) > 0. Given
these relations, we may define S%/S° as a subspace of S* by:

81/8°—={$ € 8*| Q(¢,5°) =0).

Then we will have @ (8*/8°81/8°) =0, Q(S*/8°,5/8°) > 0. Continuing,
we may summarize these relations by:

(L16) Q(87/8r1, 8r/8r1) — 0 for 54 q/2,
(1.17) Q(87/8m, §/5+1) > 0.

Definition. D is the set of all flages [8°,- - -, 8] in F which satisfy the
 relations (1.16), (1.17). '

16
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Definition. X is the set of all flags [S%- - -, 8t] in F which satisfy
(1.16) written as:
(1.18) Q(S,87) =0 for r=£4q/2.

Clearly X is an algebraic subvariety of F and D C X is an open subset.
We shall call D the period matriz space; it has been exhibited as an open

subset of an algebraic manifold.
The underlying vector space W has the bilinear form (1.7), and we let:

(1.19) G = orthogonal group of the quadratic form @ given by (1.7);
(1.20) G =real linear transformations in G.

Clearly G acts on X by T[8%- - -,8t]=[T(S°) - - -,T(S*)]. The
embedding F C G is equivariant with respect to this action. Furthermore,
G acts on X and takes D into D by (1.16), (1.17). We shall see below that
G acts transitively on X and G acts transitively on D.

(e) As a first example, we consider a compact Riemann surface V
of genus q. Then H*(V,C) = W is a vector space of dimension 2¢ and the
space of Abelian differentials H>* C W is a subspace of dimension ¢q. The
point in G'(g,2¢) defined by H“° C W has as Pliicker coordinates those of
the usual period matrix of V.

Let ys,+ + -, v2q be an integral basis for H,(V,Z) which forms a canonical
system of retrosections on the surface V; denote by v, - -,y%¢€ H*(V,Z)

the dual basis. The matrix Q@ — (gps), gpo— f 9°A4°, will then be:
Jv

(1, o)

Let o+ - -, w? be a basis for H>° and set map — } 0% Q= (map). The
<
bilinear relations (1.13), (1.14) become (cf. (1.1)):
(1.21) Q10 —0,

(1.22) V—1(2Q10) > 0.

Write @ — (B, F') where E, F are ¢ XX ¢ matrices. The relations (1.21),
(1.22) become:
—FtE 4 E'F —0,

(1.23) _ )
V—1(—Ftf 4 EF) > 0.
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The matrix E is non-singular, since if ?4E =0 for some vector £, then
0 < #[V—1(—FtE + BF)]E=0. Thus @ = (B, F)~(I,E*F)= (1,Z).
Now the set of ¢ X ¢ symmetric matrices Z =X 4 V—1Y with ¥ >0 is
Siegel’s upper half space Hy in genus ¢, and we have shown:

(1.24) ProrositioN. The period matriz space D for a compact Rie-
mann surface of genus q is analytically isomorphic to the Siegel upper half
space H,.

The group @ is the 2¢ X 2¢ complex matrices 7' which satisfy TQ*T =@

(cf. (1.2)) where Q=( 2 éq); thus G=2=Sp(q,C) is the complex sym-
- ta

plectic group (cf. Chevalley [4], page 22). The automorphism group G of
D = H, is the real symplectic group Sp(q) =Sp(¢,R).

In order to identify the action of @ on D with the usual action of Sp(q)
on H, given by

A B

(1.25) T(Z) = (AZ+B)(CZ+ D)7, T=(0 D);

we define a mapping " : Sp(q) = Sp(q) by
A D B A B

(1.26) T~—>T=(O A>, T=(0 D> .

) D —B\ .. . . 1
Since T = o 4 ) s the composition of the operations T'— T,

—_— /\ A b
‘g g>_><_g g) We check that (7,7,) = T,T,.
Now we calculate:

of —(1,2) ()= ((D+20),(B+2t4))

~ (L, (*D+2:C)*(*B+-2'4)) = (I, (AZ 4 B) (CZ + D)™).

This shows how the action of G on D corresponds, under the anti-
automorphism “, to the usual action (1.25) of Sp(q) on H,.

It is well known that G acts transitively on D, considered as g¢-dimen-
sional subspaces § C W satisfying @ (8, S) =0, Q(8,S) > 0, and the isotropy
group H of a fixed S € D is the unitary group U(q), so that D is the coset
space H\G =T (¢)\Sp(q).

(f) As a second example, we consider a compact Kihler surface V.
Letting W = H?*(V,C), be the primitive cohomology, the construction of the
domain D in this case consists in looking at subspaces § C W, dim8 = h — h2°,
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which satisfy Q (S, 8) =0, @ (S,S) > 0. A typical such subspace is H>° C W.
If we write W= (H>° @ H*?) @ H,"* where H,"* is the primitive co-
homology of type; (1,1), then H*° @ H*? and H,'* are both defined as real
vector spaces; Q on H2° @ H*? ig positive definite and @ on H,** is negative
definite (index theorem). In general, if S€ D, then S+ § and BR= (8§ 4 §)L
are real subspaces on which @ is positive and negative respectively.

Let k=dim H»* and b=2h -+ k=dim W. Then the real quadratic
form ¢ has signature (2h,%) (=2~ positive and %k negative signs) so that
G =0(2h,k) is the orthogonal group of a real, indefinite quadratic form.
The group @ is just the complex orthogonal group O(b,C).

We claim that G acts transitively on D. To see this, let S€ D and
o',+ + +,o" be a basis for S. Then @ (0% 0f) =0 and the Hermitian matrix
A= (Xep) given by Aag=Q (0% &F) is positive definite. We may choose a
new basis ¢*,- - -, ¢" for S such that Q (4% ¢f) = 8% Such a basis will be
called orthonormal.

Let now R=(S@®S)L={yecW|Q(y,S®S)=0}. Then R is the
complexification of a real vector space and we may choose a real basis £, - -, ¢

@__ Ta a__ qa
for R such that Q (%, ¢/) =—38;%. Let n*= qugb, &= :\/—_—%— . Then
nhe oty &y e 8 8, - -, LF gives a real basis for W relative to which
. Izh 0
@ has the matrix ( 0 —I, )

Given S€ D, we may choose {6} {3%}, {Ef}, {(3*}, {.é“} as for § and
define T: W—> W by Tiy® = 4, Té¥ — £, T¢i —¢i. Then T € G and T(S) = &,
so that G acts transitively on D.

Observe that, by letting T'¢* = == 31, we can assure that det 7= -1 so
that the identity component SO (2h, %) of G acts transitively on D.

Suppose that S, € D is fixed and H = {T € G | TSy = 8,} is the stability
group of 8. Since T is real, 'Sy =S, and so T'(S, ® S,) = S, @ S,. Because
T preserves @, T takes an orthonormal basis for 9, into an orthonormal basis,
and so T on S, @ S, is of the form 4 @ 4 where 4 is unitary. Also T acts
as an isometry in B = (S, @ S,)L and so H=U(h)X O(k); in particular,
H is compact.

(g) The above examples obviously generalize to give the following:

(1.26) TurorEM. Let V be a compact Kihler manifold and W
=H4(V,C), the primitive cohomology in dimension q. We construct the
period matriz space D of all possible Hodge decompositions of W satisfying
the bilinear relations (1.13), (1.14) as in Section (d). Then the group G
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of all real linear automorphisms of W preserving the quadratic form Q given
by (1.17) is a real simple Lie group which acts transitively on D. The
1sotropy subgroup of a fized point Qo € D is compact so that D is represented
as the open homogeneous complex manifold H\G.

Remark. As in the case of the periods of the 2-forms above, we see that
the identity component of G acts transitively on D (in particular, D is
connected).

I.2. Modular varieties of polarized algebraic manifolds. (a) The
construction of I.1.(d) of the period matrix space D was based on the Hodge
decomposition of H1(V,C). If we take a diffeomorphism f: V— V, and if f
preserves the Kiahler form o, then we should get equivalent points in D.
Another way of saying this is that the period matrix (1.3) is defined up
to the equivalence (1.5) which involves right multiplication by a matrix
arising from a change of homology basis.

To take this into account, we assume that V is polarized; i.e. there exists
an analytic line bundle L— V whose characteristic class is the Kihler form o.
In this case, 0 € HY*(V) N H2(V,Z) is an integral class, the primitive
cohomology H?(V,C), is defined over the rational numbers, and the quadratic
forms (1.7) are rational.

2n
Consider now the graded ring H*(V,Z) =X H?(V,Z). There is an
q=0

algebra A of operators on H*(V,Z); viz. the cohomology operations (cup
product, primary operations, secondary operations when defined, etc.). We
now consider the graded isomorphisms T,: H*(V,Z) — H*(V,Z) which

2n
satisfy the following: (i) Tw=3XT, is an automorphism of H*(V,Z)
q=0

2n
=X H4(V,Z) commuting with 4; and (ii) 7T,(w) —w. The set of all

q=0

2n
such T, forms a graded group A, =73 A, which we call the algebraic

=0

automorphism group of H*(V,Z). ’

Now a homeomorphism f: V—V with f*o =0 induces 7(f)4€ A,.
In this way we get a graded subgroup A, C A, ; A, is the geometric auto-
morphism group of H*(V,Z). We are unable to find much information in
the literature on the position of A, in A,. If ¥ is a curve or abelian variety,
then A= A,. Results of C. T. C. Wall (Journal London Math. Soc., 39
(1964), 131-140) indicate that, for simply-connected algebraic surfaces, A,
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is essentially M,. The reason for considering both A, and A, is that A,
contains the geometric information, whereas A, is defined algebraically.

2n
Let now T, =>T,€ A,. Then Ty: HY(V),— H4(V), and T, pre-
q=0

serves the Lefschetz decomposition (1.9) and the inner products (1.7);
obviously T, need not preserve the Hodge decomposition (1.10). It follows
that, if D (= D,) is the period matrix space for H4(V), (cf. 1.(d)), then A,
and A, induce subgroups A and A of G, where G is the transitive group
acting on D (cf. Theorem (1.26)). Since the isotropy group H C G is
compact, A and /M are both discrete subgroups of G which act properly
discontinuously on D. Thus D/A and D/ are both analytic spaces ([8])
and there is a mapping D/A—D/MA. We have:

(2.1) ProposiTION. Given the topological manifold V and the line
bundle L— V, we may construct: (i) the class w € H2(V,Z) ; (ii) the primi-
e cohomology spaces and the quadratic forms (1.7) ; (iii) the period matriz
space D; and (iv) the discrete groups A and A,

Given a polarized algebraic structure on (7, L), there are defined points
®A(V)€eD/A and @,(V) € D/ A,

(b) It is traditional in moduli questions to have an arithmetic subgroup
T C @ and to let M = D/T be the modular variety. This is primarily for the
purpose of constructing automorphic forms, compactifying M, etc. (cf. the
Borel-Baily article in Proc. Sym. on Pure Math., Vol. IX, Amer. Math Soc.
(1966), 281-296). It seems as though /& need not be an arithmetic sub-
group of (; the reason is essentially that G does not take into account the
cohomology operations on H*(V,Z). Let us give some examples:

(i) If V is a compact Riemann surface of genus ¢g=1, then V is
automatically polarized. The period matrix space D is analytically equivalent
to the Siegel upper half-space H,= {q X ¢ matrices Z such that 7 —2Z7,
ImZ > 0}. The group G is Sp(q, R) acting by T'-Z = (AZ + B) (CZ 4 D)-*
T= (g g) For our purposes, we need only consider the Siegel modular
group T C G of integral symplectic matrices (A=A =T).

The same is true if V is a normally polarized abelian variety and D is
the period matrix space for the 1-forms.

(ii) As as second example, let (V,L) be a polarized, simply-connected
algebraic surface and D the domain of period matrices for the holomorphic
2-forms on V. Then, if h=h%°(V), k= h**(V,) (so that b — 2% 4 & where
b=dim H*(V),),
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he—

h
—— + kh.

(2.2) D=U )X J(K)\O(2h, k), dimD—

The group M is described as follows: Let ¢',* * -, > be an integral
b+1

basis for H?(V,Z) (there is no torsion) and write o =X &¢7 (€ Z). Let
=1

qii = Q(¢%, 1) = <p? U @7, V> and denote by A, the matrices 7' = (#;) such
that To —o, tTQT — (. If T€ A, then T induces a linear transformation
T on H*(V)o={¢p€ H*(V,C)| Q(¢,0) =0}. The set of all such T gives
A, and A is an arithmetic subgroup of G.

(iii) Let (V,L) be a normally polarized abelian variety and D the
period matrix space for the holomorphic 2-forms. Then

H*(V), C HY(V,C) AH*(V,C)
and
H> (V) =H%" (V) AH*(V).

It T, € M, then Ty =T, AT, where T, € A,. Letting T be all §: H?(V,Z)
— H?*(V,Z) with §(v) —o, then T' induces an arithmetic subgroup T C G
(cf. example (ii) above) and A, CT. However, A, is much smaller than
I' and is not an arithmetic subgroup.

The above examples illustrate two points: First, M is always contained
in an arithmetic subgroup I'. Secondly, in case /A is not an arithmetic sub-
group, both G and D are too large; i.e., the operations in H*(V,Z) should
be built into the definition of D. We shall not do this here but shall assume
that, on some grounds, an arithmetic subgroup I' C & with A C T has been
selected and we let M = D/T be the modular variety.

(R.1bis) ProrosiTiON. M is an analytic space with finite invariant
volume, and a polarized algebraic structure on (V,L) defines a unique point
®(V)ec M.

(c) Suppose now that we have two polarzed algebraic manifolds (V,L)
and (V’,L’), of the same type, together with a polarization-preserving homeo-
morphism:

(2.3) f: V=7V, f*(L)=L.
Letting v € H*(V,Z) and o" € H*(V’,Z) be the characteristic classes of L, I,
it follows that f*(o’) =w. We note that the graph of f defines a homology

class
FeH,(VXV,Z) (dim V =mn).
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We let Ma=D,/A; X+ + * X Dy/A, where Dg is the period matrix space
for the primitive g-forms on V and A =3 A, is the geometric automorphism

g=1

group; M’s for (V’,L’) is constructed similarly. From Proposition (2.1),
it is clear that we have an isomorphism f*: Ma—> Ma.

(2.4) TuEOREM. @5s(V)==®s(V") if, and only if, the graph
FeH,(VXV,Z) of fis of type (n,n).

Proof. It is clear that ®a (V) = ®a(V”’) if, and only if, with appropriate
choices of cohomology bases the induced mapping

(.5) f*: H(V’,C),—> HY(V,C),

preserves the Hodge decompositions (1.10). Thus we have to show that f* in
(2.5) preserves the Hodge decompositions if, and only if, F € H,,(V X V', Z)
is of type (m,m).

By the general Kiinneth formula,

H*(V,C) QH*(V',C) =H*(V X V,C).
Furthermore, if ¢ € H*4(V,C), y€ HY(V’,C), then

(2.6) <¢®‘”’F>=fv $ATE(p).

Y
Let us prove (R.6). Consider the mapping VX V———V X V7’ where
g(z,y) = (,f(y));i.e. g=1 X f. Then F=g,A where A€ Hp (VX V,Z)
is the diagonal; and so

(B OY, F> — (b @, gud> — {g* ($ @Y, A> — (b D iy, A — fv A fEg,

where the last step uses well-known properties of the cup product.
For Kihler manifolds, we have the Kiinneth relation:

(2:7) Hpa(V X V') = S Horacs (V) @ Hrs (),

7,8

where we notationally agree that H#*=0 for p<<0 or p>mn. Now
Fe Hy(VXV,Z) is of type (n,n) if, and only if,

(2.8) KH™2(V X V'), Fy=0 for ¢=4n.
By (2.7), (2.8) is the same as

(2.9) (HAaras (V) Q Hrs(V'), Fy =0 for gs4n.
From (R.6) and (R.9), we see that F¥ is of type (n,n) if, and only if,
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(2.10) f [Henoras (VY] APF[H (V)] =0 for g=£n and all r,s.
14
In (R.10) there are three cases:
(1) r-4s>mn,
(ii) r-+s=mn,
(iii) rts<m.
Clearly (i) and (iii) are symmetric. In case (i), H"3(V’) = o'r+s-nHn-s:n-r(V”)
so that (2.10) becomes:
(2.11) f o[ Hen-aras (V)] AfE[Hromr(7)] =0  for qon.
v
Using the decomposition (1.12), (2.11) becomes:

(2:12) 3 f wrrenHmen,es (V) AfHEo (V) =0 for gon.

Now f*H,»(V’) =H,»(V) while we have

f W H (VY NHP(V) =0 for wotv
v

(cf. Hodge [10], page 183). Thus (2.12) becomes:

(2. 12) L wf+s-nH2n-q-r,“q-s(V) A f*Hn—s,“n—r(V/) =0 for gs4n.
Since

HZH-Q-r’MQ—s ( V) — M 2n-a-T-psq-8—pt ( V) R
and
f*Hn—s,Mn—r ( V/) — w'"‘f*H”'s_/“’"'r_/" ( V/) 0

(2.13) may be written as:

(2.14) j; W a5k () ) A FEE-s-nr- (T7) ) —

for g4n. Finally, (2.14) may be written:

(.15) Q (Hnar-was-k(V),, frHrs-wnr-p(V') ) =0 for gs4mn,
where ¢ is the inner product (1.7). By changing indices, (2.15) gives
(2.16) Q (Hrwr-tmst-s (V) fxHwsmr(V'),) — 0 for {40,

Now (2.16) makes sense in case (ii) and a similar argument to (2. 11)-
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(2.16) shows that:

(2.17) <{The homology class F is of type (n,n) if, and

only if, (2.16) holds for all r,s with r 4 s=n.
The subspace S C H*»+)(V), defined by @ (H»#mt-8(T),,§) =0 for all
{540 is precisely H* " 7(V),, so that we conclude:

(2.18) {The equation (2.16) holds if, and only if,
) feHsmr (V) o= Hr- 871 (V)4 for r 4 s=mn.
Combining (R.17) and (2.18) gives our theorem.

(d) As in section (c) above we let f: (V,L)— (V’,L’) be a homeo-
morphism of polarized pairs. For simplicity, we assume that A=A =T
and A=A =T1". If&(V)=®(V’), and if a suitable version of the Hodge
conjecture holds, then from Theorem (R.4) we find that there will exist an
algebraic cycle T C V X V” such that 7'~ F, F being the graph of f. If T
is effective, i.e., if T=j2l1ann where n; > 0 and W; are algebraic varieties,
then 7" will induce a birational correspondence T': V— V.

The one case in which the Hodge conjecture holds is when V is a curve
so that V X V’ is a surface Z. We choose a system vyi,* * *,vg;Vgr1,® © 5 Voq
of retrosections for ¥V and set Y« =7f4(ye). Then the homology class F of
the graph of F is:

q q
(2.19) F=V+ V' 4 Zye X ¥ aie— 2y X Ve
We note that the intersection number:
(2.20) (F-F)=2—2q.

In this case, it is immediate that ¥ is of type (1,1) if the period matrices
Z = (2ag) and Z’= (Z'ag) of V and 7’ are equal: Letting % o’f be holo-

0% =20 =1%'qg = (' o’B, the holo-
Va8 : Vs

morphic R-forms w*Aw'f give a basis for H2°(V X V’). But

morphic 1-forms on V, V’ such that J

jgm"‘/\w'ﬁ=z’3a——zaﬁ=0.

Now there will be a line bundle E— Z — V X V”’ with characteristic class
F; i.e. the Poincaré dual of ¢, (E) is F. From (2.20), we get ¢,(E) - ¢, (E)
—=2—2q. 'The line bundle E— Z is not unique but may be written as

(2.21) E(MN)=EQE, QEy
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where Ey, is a line bundle in H*(V, 0)/H*(V,Z) = Picard variety of V, and
similarly for E4s. Obviously we have:

(R.22) ProrositioN. The existence of a holmorphic cross section of
E(N\W) for some N, N is equivalent to finding a birational correspondence
T:V->7.

By the Torelli theorem (cf. [13]), a birational correspondence exists.
Thus, for some N, N, H°(Z, O (E(M%)))5£0. It is not hard to see that
dim H°(Z,0(E(MN))) =1 and H°(6(E(», N))) =0 for general points M, N,

Conversely, a direct proof that H°(O(E(M,N))) 40 for some », N
would prove the Torelli theorem.

1.3. Some properties of the modular varieties; complex torii asso-
ciated to the cohomology of an algebraic manifold. (a) Let 7V be a
polarized algebraic manifold, ¢—2m 41 an odd integer, and D, the period
matrix space for the primitive ¢-forms on V (cf. I.1(d)). If

2b = dim H*™(V,C),,
and if ho=h2m+1,o, h1=h02m,1’. RN hm= h02m+1,m’ then b = ho _|_ e . __I_ hm
and
(8.1) Dg="U(ho) X+ X U(hn)\Sp(b) = H\G.
For m =0, D, = U (b)\Sp(b) = H, is a Siegel upper-half-space of genus
A o 8 0
b; we may assume that Q=<—O A>Whe1‘e A=< " ), 1=8, 8] | &
0 &

and so I'="Ta is a paramodular group. In this case the point ® (V) € M,
= D,/T has the following intepretation: We consider the period matrix Q
for the holomorphic 1-forms on V7. Thus we have a basis ol,- - -, w? for

H>°(V) and free generators ys,- - *,yzp for H,(V,Z), and we let mop — J o®
yh

so that @ — (wap). Then the columns of Q generate a lattice A in C?, and
A, (V)*=CYA is a complex torus, called the Albanese veriety of V. The
relations (1.13), (1.14) become:

{QQ’Q=O

(3.2) Q1 > 0,



586 PHILLIP A. GRIFFITHS.

where Q = (_g 3) is a skew symmetric integral matrix.. We may write

Q~ (A,Z) where, by (8.2), Z€ H,. The mapping: 4,(V)*—>Z € H,/Ta
is well-defined and we have:

(8.3) ProrosirioN. The point ®(V) € Hy/Ta is the period mairiz of
the Albanese variety A, (V)*. (The * is used because A,(V)* is dual to the
torus in which we shall be mainly interested.)

(i) A.(V)* is a complex torus which depends holomorphically on V;

(ii) @ polarization on V induces one on A,(V)*;

(iii) A.(V)* is funclorial; given a holomorphic mapping f: V— V’,
there is induced a holomorphic homomorphism fu.: A,(V)*
—A4,(V")*;

(iv) (V) =2(4:(V)*) € My =H,/Ta; and

(v) the mapping : V—>A,(V)* given by

wo=(

w?

%
s holomorphic and is universal, up to translations.

Now property (v) is special for 1-forms, but we may ask, for general m,
if the real torus Tpm. (V) = H?m*(V,R)/H?****(V,Z) can be given a com-
plex structure such that (i)-(iv) are satisfied? The intermediate Jacobians
Aomia (V) of Weil [14] are not entirely satisfactory; Asmsi(V) does not
depend holomorphically on V and (iv) is not satisfied. By suitably inter-
preting (ii), we shall give an affirmative answer to this question; in Part II,
we shall also generalize (v) and give the precise relation of our torii to the
Aomsr (V).

Remark. Actually, rather than generalizing the Albanese variety above,
we shall generalize the construction of the dual torus, which is the Picard
variety 4;(V). The conditions (i)-(iv) above will be the same, with the
arrow being reversed in (iii).

To construct 4,(V) we let W—=H*(V,C) and S C W be the subspace
H**(V). Then §NS=0, and so the lattice H*(V,Z) C H*(V,R) projects
onto a lattice A C Wg—W/S. Thus 4,(V)=Wg/A is a complex torus,
and it is this construction we shall generalize.
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We remark that, in the usual notation [9], Wg=H*(V,0) and the
mapping H*(V,Z) — H*(V,0) is the cohomology mapping arising from the
sheaf sequence 0 >Z— 0 — 0*— 0.

(b) As an example, suppose that dim V = 8, that H3(V,C) = H*(V, C),,
and let W= H?3(V,C). Define a bilinear form @ on W by:

@0 Qe =—(YF) flervs tor gy (7,0).
If 8, — H*(V) and 8, — H**(V) - H2(V), then:
Q (82 82) =0

(8. Q(8:,8,) >0
Q(82/81,8:/8:) <0.
(The change in sign in (3.5) arises from '0?v’s's5%®® = — 0'8d'0*w%°0"

whereas 0'w’6%'w%"® = +} 05 0*6%%".)

We now let D be the flags [S;, 8] for which (8.5) is satisfied. Let
¥+ + -, v? be an integral basis for H*(V,Z). For each Q€ D we may define
a complex torus 7'(Q) by:

(3.6) T(Q) = {W/8:} modulo (v, - +,¥*") 5

where (y%,- - -, 9?"), is the lattice generated by v%,- - -, y*"

In case @ =Q (V) is the point corresponding to V, we let T(Q) = T'3(V).
There is an obvious isomorphism D; == D, and the point Q(V) corresponding
to V is @,(V).

Corresponding to V there is another torus As;(V) where we set
R=H*»'4 H% and:

(3.7) 45(V) = {W/E} modulo (y%- * -, ™).

This A3(V) is Weil’s intermediate Jacobian ; observe that Q(R,R) >0,
which is reason for the polarization on A4(V). It is clear that T (V) and
A3 (V) are different complex torii unless H3°—0. If, e.g., V is a cubic
threefold (h®*°=0, h®»*=5), then they coincide.

(3.8) ProrositioN. Ay(V) does mot, in general, depend holomor-
phically on V, whereas Ts(V) does depend holomorphically on V.

Eemark. Clearly T,(V)=T,(Q2(V)) depends holomorphically on
Q€ D, and we shall prove in Part II, Section I(a) that Q(V)— &,(V)
depends holomorphically on V.
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We now give an example where 7'(Q) depends holomorphically on @
but A (Q) does not; this example was suggested by Mattuck.
Let 0, O, U5 be elliptic curves with holomorphic differentials o', v®, o

We suppose that, on C;, we have cycles yj1, yi With (yj1, vi2) =+ 1, ol =1,
Vi1

j o/ =7, Thus Imr; >0 and C; has period matrix (1,7;). We let
Yiz
V = 01 X 02 X 03 and Wi23 =0)1(1)20)8, Wi23 =w1w2'(53, etC., ¢j= (Dj-(l-)'j. Then

o =¢1 | ¢z -+ ¢35 is a Kihler metric on V, and a basis for the primitive forms
in H30 ++ H,>! is:
W123, W123, W123, Wigs, W1 (4>2 - ¢'s); w2 (¢'1 - 4’3); [OF] (951 - ¢2) .

The first four of these differentials form a reducible set of integrals (cf. Hodge

[10], page 201). We shall compute the period matrix Q of 123, 123, O133, T2z
on the cycles

01 =Y11 X Y21 X Y81, O2=—7Y11 X Y21 X Y32, U3 =—7Y11 X Y22 X Y31

T4 == Y11 >< Y22 X Y32, 05 =—7Y12 X Y21 X Y31, 06— Y12 X Y21 X Y325

07 == Y12 X Ye2 X Y31, 08 = Y12 X Y22 X V32

The period matrix of Q will be a sum of Q plus a less interesting matrix. We
have:

Ty T2 Ty TiT2 TiTg T2T3 T1T273
-7:1 T2 T3 ?11' 2 F]_T 3 TaT3 ?172'1'3

T1 -772 T3 1"1_7—'2 T1T3 ?21‘3 1'1?27'3

jo}
I
[
.

Ty Te Tg TiTe TiTs T2Ts TiTeTs

Subtracting the second row of Q from the first and dividing by (r; —7,) gives:

0 1 0 0 T2 T3 0 T2T3

A 1 Ti T2 T3 TiT2 TiT ToT, T1T2T

Q 3 213 11273 .
1 T T2 T3 T1Te2 Ti1T3 T2T3 T1T2T3
1 7 75 Ty TiTe TTs ToTs TiTeTs

Subtracting 7, times the first row from the second gives:

1 O O T T3 0 ToT3
1 7 7 0 0 Torg 0

Ty Te Tg TiTe TiTg TeTz TiTeTs

O~

[ ==

TL Te Tg TiT1 TiTs TaTs TiTeTs
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Similar reductions lead to the equivalent matrix:

01 0 0 7, 3 O ToTs
Q. 0 7 74 0 O 715 O
0
0

01 0 7 0 =5 173 |

0 01 0 7 7 TiTo

Letting T(€) be the torus whose period matrix is €, it is clear that T (&)

(and, by an easier computation, T'(©2)) depends holomorphically on =, 75, 7s.
A similar computation shows that 4 (2) does not depend holomorphically

on 7y, 75, 73: The period matrix of wiss, wiss, wizs, wizs Over the above eight

cycles is:

1 7, 7o T3 TiTs TiT3 ToTz TiTaTs
Q 1 T1 ?2 ?3 T 1.“1'-2 T 1?3 ?2?3 1'1?2-1-"3
1= - - = - - = =
1 T1 T2 T3 T1T2 T1Tg TaT3 T1T2T3
1 Fl Fz T3 ?1F2 '_1’-11'3 ;21' 3 :A—’l’.r'gTa
1 v 72 13
1 T1 Fg Fg — —_ —_
Now: = B = (r—71) (ra—72) (s —73) ;
1 T1 T2 T3
1 :Fl ?2 T3
1 Te T3 TaoT3
= = )2
T2 = — — =(TZ__'T3)(1'2_‘T2) .
1 T2 T3 ToT3
1 ?2 T3 —1:27' 3

(rs—72)(rs —7s)

(11 —71)

Thus the two Pliicker coordinates y, 7, of Q; have the ratio

so that Q, does not depend holomorphically on =y, 74, 5.
(¢) We consider again the torus T'5(V), constructed above, as regards
the properties (i)-(iv) listed below Proposition 8.8. By Proposition 8.8,
(i) is satisfied and (iv) is also satisfied. Also, T5(V) is functorial: given
f: V>V, f* H¥(V’,C) - H3(V,C),
PHE®S (V) + H*A (V7)) C H%(V) + H*(V),
and f*{H*(V’,Z)} C H*(V,Z) so that we have induced f*: T;(V’) — T (V).

So what remains is the question of polarizing T3 (V).

Definition. Let X be a complex manifold of dimension n. A g-convex
polarization on X is given by a holomorphic line bundle L — X which
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has a metric whose characteristic class, computed from the curvature, is
o=1V—1{ ﬁ, hap dz* A d7P} where H = (heg) is a non-singular Hermitian
matrix with o;.izlllature (n—q,q).

Remark. 1f H has signature (n— g, ¢), then we can locally find 1-forms
m°‘=-§1Aa3dz5 such that:

R —q n
(3.9) e VI SetAm— 3 wfAwE).
a=1 B=n-g+1
A o-convex polarization is just an ordinary polarization. By passing
from L to the dual bundle L*, a g-convex polarization is equivalent to an
(n— q)-convex polarization

(8.10) PropositioN. T'3(V) has a natural q-convex polarization where
q=h>,

Proof. We choose an integral basis y%,- - -,v?* for H3(V,Z) and a
basis o', - -,0" for S,=H*°(V) 4 H2*(V) such that o', - -,0"? is a

2
basis for H®°(V). Write w“=—2narap«)7p 5o that Q= (wep) is the period
p=1

matrix for o',- - -,0% By (3.5), we can find a rational skew-symmetric
matrix ¢ with Q- integral and such that:

(3. 11) Q!0 =0;
(3.12) Q10— V—1H,;

where H, is an Hermitian matrix of signature (n— g, ¢) whose first (n-—¢q)
by (n—gq) block is positive definite.

Every vector £€ C» can be written as a real linear combination of the

7I'1p

column vectors &, + +, &y (&p = ( : ) ) of Q, and this gives an isomor-
Tnp

morphism €= R?" with & corresponding to the p-th coordinate vector of

R*". Letting 2*,- - -, 2% be the real coordinates on R?r and 2,- - -, 2" the

2n
complex coordinates on €», we have dz*= Y mepdz?. We remark that
p=1

dat, - -, da® give a basis for H*(T;(V),Z), where we are using the fact

that T'= T3 (V) is € modulo the lattice (&, - -, &), generated by &, - -, éon.
In fact we have:
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0>8, »W - W/8, —0
0« 8%« W* «— (W/8,)* «0.

Now Ts(V) is W/S, modulo the lattice in W, and the above torus €*» modulo
(€1,° * *, &)z is So* modulo the dual lattice in W*. But Poincaré duality
gives a lattice-preserving isomorphism W/S, == S,*.

We may now write dzf— 2 Yo? d2* -+ JoP 2% where
o=1

2 (YePTac 4 §*Tag) = 8o ;
Loy if ¥— (of),
(3.13) (W) (g ) — Iom.

Now let Q' = (gpo) With gp, integral and set: = gpodaP A dae.

(83.14) LeMMA. On T =Ty V), o given is o = V:p_;r{ > hagdz® A d2P},
where H = 2tH,"* and H, is given by (3.12). e

Proof.

o= @podzP A dz°

00
=23 (Ve Gpoyys”) d2® A d2f 4 3 (JaPqpopp”) d2* A d7P
+ (Ve Gpois” — Vs qpotpa”) dz® A d2P.

From (3.11) and (3.12), we get:

(3.15) Grecam =(_ 2, V).
Taking inverses of (8.15) and using (8.13) gives:
Vv—1
0 ~——H
' - Pl
(3.16) Q- (¥¥) — .
(t‘1’> —‘\/—2—1 g 0

From (8.16) it follows that o —V—1 Ehapdz“A dzP as desired.

Since T is a compact Kihler mamfold and o€ H** N H*(T,Z), there
will exist a holomorphic line bundle L—> T whose characteristic class is o
(ef. [9]). What we have to do is find L and a metric & in L whose curvature

form l/?— (801og h) = o.

1
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We write R?" as E, with standard basis e, - -, ¢, and define a bilinear
form H(u,v) on F, by:

H(u, v) — % hage® (u) 28 (v),

where 2%(u) is real linear in u and 2%(ep) =map. Since ko= gz, we have
H(u,v) =H(v,u). We let H(z,v) =H,(2) = X hapz*#(v) be a linear
holomorphic function on E, = C» and set

\/

§o(2) =e( v))
where e(a) = ¢27i*, Denote by A the lattice (el,~ ©t,an) g
(3.17) LEMMA. For u,v€ A, we have:
fuw(2) = &u(2+0) & (2).
Proof. 1f i=—/—1, then
fuw () {&(z+0) &(2) }

— oG H (s ut0) + L H v ut o) — (a4 v,0)
-—%H(u,u) —%H(z,v) —iﬂ(v,v)}
— oL H () + 5 H (w,) — L H(v,u))

=e{£[H(u,v) —H(v,u)]}.

Thus we must show:

(3.18) fI(H(u,v) —H(w,u))=0 (1).
2n 2n
Write w = 3 A\ep, v =23 {%, where A\, {7 are integers. Then
p=1 o=1

H(u,v) = 3 hagz®(ep) 28 (e6) \PLT = 3, hagrapmpolPA?
and
H(u,v) —H (v,u) = 3 hag(wapTpo — maoTpp) AL
B

Now

D QpoldaP Ada® — o = 01,1
0y

= V—1{ S hagdz® Ad3B} = \V—1 { 3 haj(rapda? ANpoda”) }
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7/
—1
— V{3 hap (g — maoipp) d? A da}.

Thus
HH (,0) —H (5,0} =3 S 000 (W —20) =S ool =0 (1),
pra s

which proves (3.18).
Now we form the line bundle L — E, X C by the equivalence relation:

(2,A) ~ (2 +u &u(2)N),

where w€ A. Because of Lemma (3.17), this is an equivalence relation, and
L— T3(V) is a holomorphic line bundle.

Let now h(z) =e(— —;—H(z, 2)) = emH @2},

(3.19) LeMMA. h(2) =|&(2)|?h(2+v) for vEA.
Proof.
() (24 0) " —e(L H(z2) 43 H(z 4,2+ 0)}

— (S [H(50) + H(5,2)] 4+ Ho,0)).

On the other hand,

| &(2) [P — ez H(z,0) + L H(v,0) + 2 H(v,2) + 1 H(v,0)),

which proves the lemma.
If now ¢= (2,A) is a point in L, we set || ¢ [2="h(z)|A[% Then
12+ 2,80 P =R (24 0) | &(2) 2| A [P = k() A [P=] (5 M) |* so that

we have a metric in L— T3(V). Now

L 09log h(2) =109 H (2,2) = { 3 hag d2® A dB} — o,
T B

which proves that L— T'3(V') gives a g-convex polarization with g — h®*.

(d) Let now E, be a real space with basis e,,* * *, €, and @ a skew-
symmetric integral bilinear form on F,. We let £ =F,QC be the com-
plexification of F, Consider flags Q@ —=1[8,,8,] where dimS,=n—g,
dim §; =n and let D be the flags @ for which (3.5) is satisfied. The proof
of Proposition (3.10) shows that, for each Q € D, there is naturally associated
a complex torus 7'(Q) with g-convex polarization. Thus {7'(Q)},,, is an
analytic family of ¢-convex polarized torii.
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We let G=Sp(Q) be the real symplectic group of @. Then G acts
transitively on D with isotropy group H=U(n—gq) X U(q). The para-
modular group Ta acts properly discontinuously on D from the right, and
M = D/Tx is an analytic space.

(8.20) TurorEM. Let V be a polarized algebraic manifold of dimen-
ston n =38, with H*(V,C) =H*(V,C),, and ¢=h>*. Then:

(i) The torus Ts(V) =H*(V,R)/H?(V,Z) carries a complex struc-
ture such that the polarization on V induces a q-convex polarization on T3 (V) ;

(i1) Ts(V), together with its polarization is functorial;

(iit) The period matriz space Dy for the 3-forms on V is isomorphic Lo
D and, under this equivalence, Ts (V) is the torus corresponding to the point
®(V) wn Dy,

(iv)  In particular, Ts(V) varies holomorphically with V.

Remark. D=U(n—q) X U(q)\Sp(n) where U(n—gq) X U(q) is
embedded in Sp(n) as follows: On R** with real coordinates ', - -, 2",
we let o= de*Adzn* Then Sp(n) is the group of real linear trans-

a=1
formations which preserve o. Let now 2% =a® 4 iz"*® for 1 = a=n—gq and
2P=gB—qgmB for n—q+1=pB=n. Then U(n—q) X U(g) preserves
the Herimtian forms 'fdzadza and % dzPdzP. Tt follows that U(n—gq)

a=1 =n—q+1

X U(q) preserves o and this gives the embedding U(n—¢q) X U(q) C Sp(n).
We note that the Siegel upper half space H, = U (n)\Sp(n).

™
(8.21) ProrosiTiON. The differentiable fibering D—> H,, induced
from the inclusion U(n—gq) X U(q) C U(n), s not holomorphic if ¢ >0
and 1s not anti-holomorphic if n—q > 0.

Remark. This is the analogue of Proposition (3.8), since the point
=(®(V)) € H, is the point corresponding to A;(V).

A group-theoretic proof, based upon the root structures, may be given;
and this will be discussed in I.4 below. However, by giving = geometrically,
the Proposition will become clear.

We can identify H, with the n-dimensional subspaces S C E satisfying
Q(8,8) =0, V—1Q(8,3) >0 (ct. (1.21) and (1.22)). Then «[8,8:]
= (814 8./8:), so that = is holomorphic if S; =G, and anti-holomorphic
if §;,=0.
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To state the general theorem, which will have essentially the same proof
as Theorem 3.20, we let V be a polarized algebraic manifold of dimension 7.

For each m with m — [ﬂ%] we set:

Pm =% dim H>"(V,C),;
qm= E hozm—2k,2k+1;
ksl
T'm = Pm— Qm.
Furthermore, we set D,,—D; X Dy X+ * * X Damsq1, where D, is the period
matrix space for the primitive g-forms.
(3.22) TueorEM. (i) To each Q€ Dy there is naturally associated
a complex torus T'(Q) with g-convex polarization where
§="Pn—"Tmz+ Pmae " ;

(i) If Qu(V) = (21(V)," * +, ®omus (V)) € Dy, then there is a natural
complex structure on Tap, (V) =H*'(V,R)/H**'(V,Z) such that
Tomea (V) =T (0n(V)) ;

(iii) The complex torus Tom. (V) varies holomorphically with V.
Remark. Part (iii) will be proved in Part II below.
We record here one property of the g-convex polarized torii 7(Q).

(8.23) ProrosiTioN. Let T'=7T(Q) and L— T the line bundle with
characteristic class o given by Lemma (3.14). Then the sheaf cohomology
groups H™(T,0(L)) =0 for r54q and dim H1(T,0(L)) = P(Q), where
P(Q) is the Pfaffian of Q.

Proof. Let o have the form (38.9) where dz',- - -, dz” are the holo-
morphic 1-forms on 7. Then, for any constants c,, c.,

n-q n
ds? =, R 0%*— ¢y > wPab
a=1 B=n-q+1

will give a Kéhler metric on 7. We now use the argument of Theorem 7.1,
Section VII, of [6] to show that H"(T,0(L)) =0 for r%gq. By the
Hirzebruch-Riemann-Roch theorem [9], we have then that

(—1)edim H(T,0(L)) =x(T,0(L)) =T (T, L)
where T' (T, L) is the T'odd genus of L—> T. Since all the Chern classes of T
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are zero, T (T, L) =7—7’1'—j;w" while o®— = n! P(Q)daiA- - -Ada*n, Thus

T(T,L) == P(Q) and so dim H¢(T,0(L)) =P(Q) as required.

Remark. This generalizes a well-known result in Abelian functions (cf.
Conforto [5], also [14]). For ¢=0, H°(T,O(L)) is the vector space of
entire functions ¢ (z) defined on £, and satisfying & (2 + v) = & (2)9(2) for
v € A. These are the theta-functions. For general g, the classes in H4(T, G(L))
are given by O~ differential forms:

1 _ -
(3.24) =a§ﬁ(z:z)1 dzl)
where I — (ay,* - -, ;) and dzZf = dz* A~ - - Adz%, 9 (z,%); is skew-symmetric
in o, -+, and such that:
(2 +v)1=4/(2)9(2)1
(3.25) 3 (08) =0,
where
_ 5 0 001 D Gy
(O8) =370+ % hag?? g —m azj haajﬂal...(‘;)...%

is the Laplactan of 9.

These cohomology groups will be given a geometric interpretation in
Part II below, where they will be shown to serve as sort of theta-functions
for the intermediate cycles on V.

1.4, Some further properties of modular varieties, (a) We shall
discuss some further properties of the period matix domains as constructed
in I.1.(d). We shall work with two special cases, but the theorems will be
true for all period matrix domains. To give these examples, we begin with
a real n-dimensional vector space W, defined over Q; W, will correspond
to H*(V,R), and H*(V,R), in the two special cases. We let W be the
complexification of W, and @ : W® W — € a non-singular, rational quadratic
form.

Case 1. @ is symmetric and D consists of all h-dimensional subspaces
§ C W which satisfy:
Q (S) S ) =0,
4.1 -
D 055 >0

We set Bs= (S @ 8)L={weW|Q(S DS, w) =0}, and we assume that Q
is negative definite on the real vector space underlying Rs.
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As a coset space (cf. Theorem (1.26)), D =80 (2h,k)/U (k)X SO (k)
where 2h 4k —=mn; D is a period matrix space for the periods of holomorphic

2-forms.
If we let X be all S C W satistying @ (S,8) =0, then X is an algebraic
subvariety of G (h, W) and D C X is an open set.

Case 2. @ is skew-symmetric and D consists of all flags [S;, S.] where
8, C 8z, dim S;=mn, and:

Q(Sz; 82) = O)
(4.2) V—1Q(8,8) >0,

V—1Q(8:/8:,8:/5:) <03
(cf. (3.2)).

As a coset space, D=U(n—q) X U(q)\Sp(n) where dimS;=n—g,
although we recall (Proposition (3.21)) that D does not fibre holomorphically
over H,, = U (n)\Sp(n). We let X be all flags [Sy,S.] with @ (8.,8:) =0;
then X is an algebraic subvariety of G(n—gq, W) X G(n, W) and D C X is
an open set. The domain D is a period matrix space for the periods of the
3-forms.

(4.3) TurEOREM. Let 6= _80(Q,C) be the complex simple Lie group
of all linear automorphisms of W which preserve Q. Then G acts transitively
on X so that X is a rational, homogeneous algebraic manifold. The Lie group
G of real transformations preserving @ is a real form of G and D C X 1s an
open G-orbit with compact isotropy group.

Proof. We shall prove this theorem in case D is the first type of domain
listed above. The main step in the proof is:

(4.4) Lemma. Let S CW be an h-plane with @ (S,8) =0. Then

we can choose o basis vy, * ,Vp; Ug,t  t,Up; Wittt , Wy for W osuch that:

(1) vy,- + -,vn ts abasis for S, and (il) the matriz of Q in this basis is
0 I, O
I, 0 0
0 0 I

Proof. Choose a basis v;,* - -, v, for S and complete this set of vectors

to a basis vy,* -, vn5 21,7+, 2.k for W. Then Q(ve, v5) =0 since Q (S, 9)
=0. Because ¢ is non-singular, the h X (k4 k) matrix gap=Q (va,2p)
has rank %; we may assume that (qag)iseg=n has rank h. Suppose that
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h h
> qapd gy = 8,% and let y, =ﬂ2 Agyzg. Then vy« « -, a5 Yu,* = 5 Yns Zhe1, "5 %
B:], =1

0o I, *

gives a basis for W relative to which @ has the matrix |I, * *|. Let
#* * *

Tp = Zpsp — %’ gsnpys for 1=p=Fk. Then Q(va¥p) = qanp— Janp=0
so that, relative to the basis vy,* * *,¥n} Y1,* * *»Yn} T1,° * *, Tk, § has matrix
0 I, 0
I, * * |. The matrix Q(ya, yg) is symmetric, so that we can let Q (ye, yp)
0 & &
h
—— Bag— Bgo for some matrix B= (Basg). We let ue=ya 4 X Bayty-
y=1
Then @ (ta, ug) = Q (Yo, yp) -+ Bap+ Bag=0 so that, relative to the basis

0 I, 0
Vi, t,Unj U, t c,Uni Zp,t t t,%x, @ has the matrix |I; 0 *|. By
0 * %
. 0 I, O
replacing zp by zp— X @ (up, 7p)vp, the matrix of @ becomes [I 0 0
A= 0 0 @
Since @, is non-singular, we may choose then a basis vy,* * -, vn; %s,* * *, Us;
0 I, O
wy,* * +,wy such that the matrix of Q is {I; 0 0] as required.
0 0 I

Proof of Theorem 4.3. If 8,8 € X, then we can choose bases vy,* « +, v
U, vy Upy Wi, o Wy and Dy, 0,0 Gy v, Uny Wy, v c, Wi COTTES-
ponding to S and S respectively. Then T': W— W defined by Twe= a,
Tuo = fia, Twp— p will be an element of G such that 'S =4S. This shows
that G acts transitively on X, and the theorem follows.

(b) Over the Grassmann variety G(I, W) there is a canonical holo-
morphic vector bundle F— G (I, W) given as follows: The fibre Fy at an
I-plane S € G(I, W) is the vector space S C W. There is a natural bundle
mapping F— W where W = G (I, W) X W is the trivial bundle, and we have
the exact sequence:

(4.5) 0>F->W—->E—DO,

where Eg— W/S. We observe that the line bundle L=detE is a positive
bundle with dual bundle L* =detF. For example, let us prove:
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(4.6) ProrosiTioN. The holomorphic sections of L give the Pliicker
coordinates on G (I, W).

Proof. L= (detF)*= (A'F)* =Hom(A'F,C). Let e,*,- - -, ¢,* give
a basis for W* (cf. I.1.(a)). Then, for p;,, < - - < p; We define a section
Qp,p, 0f L=Hom (AF,C) by:

(4.7) ‘QPr"Pt(f) =<f,e*p, A - “AeFp>,

where f € A'Fg C A'W. In other words,if f=7f,A- - -Afi€ AFg(fs, +,[1€8),
then f= 3 Qpp,(f)ep, A - ~Aep, so that the Qp...p, are exactly the
1< <p1

Pliicker coordinates on G (I, W).

Remark. The bundles in (4.5) are all homogeneous vector bundles [3] ;
i.e. the action of the linear group GL (W) lifts to bundle automorphisms.

Let now D be a period matrix domain as constructed in I.1.(d); then
D is an open set on a homogeneous algebraic manifold X (cf. Theorem 4.3).
There is an equivariant embedding X C G (ho, W) X - - + X G (hy, W) which,
in the two examples above, reduces to:

g (i) XCGh,W);
(i) XCG(n—qg, W) XG(nW).

From each of the factors G(h,, W), there is induced a homogeneous line
bundle L,— X and we set L(ag,- - *,a) =L*® - - - @ L%,

(4.8) TurorREM. The homogeneous line bundle L(ag,- + -, 0:) —> D
has a unique G-invariant p-convex polarization for a suitable integer p. The
canonical bundle K— D is a homogeneous bundle L(ao,- - -, ;) where each
aj < 0.

Proof. Set L=L(a,- * -,%). Since D= H\G where H is compact,
the line bundle L— D carries a G-invariant metric which is unique up to a
constant factor. The curvature of this metric will then give the G-invariant
p-convex polarization.

The rule for finding p in terms of the roots of ¢ and H has been given
in [V]. We shall give, for the period matrix domains of types 1 and 2 above,
the explicit computation of the p-convex polarization and of the canonical
bundle K.

Remark. We observe that, if Z(H) is the center of H, then dimgZ (H)
=1%¢-1 and the group & of line bundles of the form L(ap,- - -, @) is
ZD- - -@Z. (Clearly we have
;——V—_/

i1
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L(ao)' ) 'Jat)®L(180)' : '>18t)=L(a0+1803' ' '}at"l-:Bt)')

The homogeneous algebraic manifold is of the form X — B\G, where B C G
contains a Borel subgroup P. The unmipotent radical N of B will be an
analytic subgroup of B and B/N == H, the complexification of H ([3]). Given
a character A of H, A extends to a holomorphic homomorphism A € Hom(H, C*),
which then extends to A € Hom (B, C*). This A then gives the homogeneous
line bundle L=G X3 C over X =B\G (cf. [3]). In this way the character
group X(H) parametrizes all homogeneous line bundles over X. But
X(H)=Z®- - -@Z, and so x(H)/< is a finite group; in this sense, £
t11

gives almost all line bundles over X.

Erample 1. Incasel,t=0,H=U(h)X SO(k), and x(H) =Z. Thus
the homogeneous line bundles in & over D are of the form L*— D where «

is an integer.

(4.9) ProrositioN. The line bundle L*— D (a<0) has @ p con-

vex polarization where p=h“2_h. In particular, the canonical bundle

K = L-®%% has such a p-convex polarization.

Proof. Choose a basis e, - +, e, for W and let P be the space of h X n
matrices Q= (mep) of rank h and satisfying QQ!Q=0. As explained in

™
I.1.(a), P——— X is a holomorphic principal bundle with group GL(h).
Clearly P is the principal bundle of F—X (cf. (4.5)), and so L
=P Xerm €, where GL(h) operates on € by sending 4 into det(4)-.
A metric in L is given by a positive real function ¢ (Q) which satisfies
Yy (A4Q) =|det 4 |*y(2). One such ¢(Q) is given by:

(4.10) @)= X | Qpp, |t
< <pn

This metric is invariant under a unitary charge of e;,- - -, e, and so is
invariant under the mazimal compact subgroup M C G, but is not invariant

under the full complex group G.

For example, if h=1, then X is a quadric in P,;. The metric
U(Q) =y (s, * *,m) =§]wa}2 exists on P,,, and the curvature form
[6] o of ¢(Q) is given bgr-:1

o =—~00logy(Q).
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On the open set 7,540, we let 2*=my/m, for 1=a=mn. Then y(Q)
n-1

= | ma|?{(2,2) + 1} where (z,2) =3 2%2% Thus
=1

0910y (Q) =00 log { (2,2) + 1} = 3 hagde® A dzP
a8

where

haﬁ' 1— 3% } .

1
DR
It follows that

coT 1 T
gﬁhaﬁf P = (o) F1 {(%,2)(§€) — (%,8) (& 2)

+ (faf)}i{—(z"—z%q_—'l—}(f,f)-

The conclusion is that v is negative on P,_;, hence is negative on X C P,,.
Obviously then the curvature form of the metric (4.10) in L*— X is, for
general %, negative. This is consistent with the fact that L— X is positive
and serves to check the signs and notation.

We now let P C P be those Q satisfying QQ!Q=H(Q) > 0. Then
P—=a7(D) and G acts as fibre-preserving automorphisms in P— D. How-
ever, (¢ does not leave the metric (4.10) invariant; to get a G-invariant
metric we take:

(4.11) ¥(Q) = det H ().

Since, for T€ G, H(Q) =0QQ=0TQ*(QT) =H (QT), ¢y(Q) is a G-
invariant metric in L-* and

(4.12) w=—00log (det H)

will be the @G-invariant curvature in L-2.

Now dimcD=h22—h +hk (2h+k=mn) and we want to show that,
if 2%, - -,2" are local coordinates on D, then o =a§_1ha,;dz°‘ A dZ8 where
(heg) has signature (hk, hzz_h).

We assume that e;,- - -, e, have been chosen as a real basis for W, C W

Igh 0

and such that the matrix of @ is Q=< 0 7
— 1k

), 2h+k=mn. Then P
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is those matrices @ = (4, B, C) with A and B each & X k, ' an h X k matrix,
and with

(4.13) QQ!Q = AtA + BB —(CtC =0.
On P we have that:
(4.14) H(Q) =0Q!Q=A*A 4 B'B—('C > 0.

Since y(Q?) and o are G-invariant, it will suffice to compute o at
Qo= (I,V—11,0) so that H(Q,) =Rl The reason we choose Q, is that
the stability group H = {T' € G =80 (Rh, k) : QT ~Q,} of =(Q) € D is just
U(h)X 80 (k) C SO(2h) X 8O (k) =K, the imbedding U (k) C SO(2h)

being
. ¢ B
a-+18. (—,3 a)'
Now #(Q,) belongs to the Zariskt open set Q;...; 540 on X, and we may

choose the local holomorphic section Q(B,C) = (I,B,C) where B is close
to V—11, C is close to 0, and, by (4.13),

(4.15) I+ B'B— (0 =0.

By (4.14) we have that H(Q) =H (B, () is given by:
(4.16) H(B,C) =1+ BB—(tC > 0.

Writing B = (bag) and C = (cap), we shall evaluate o as a differential form
in dbag, dcap, subject to the relations (4.15).
Write now A—detH and H = (hag). Then

00A  9AAGA
BﬁlogA—ﬁ(*) N AT
We have:
- A =
A= ——0h
tgﬁahaﬁa o8
and

05A=2 A hag A, + S 0A Ohagp.
(X8 Dhapdhng “F hag

Since H(Qo) = H(I, V—11,0) = 21, we want to evaluate A and oA
Ohag Ohapdhng,

1 0
at H0=< . >and then take & —2. The formulae are:
0 &
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oA, (0 if azp,
Ohap ™ & bar b it a—B;
(4.17) A b b £ by if a=BA=p,aFEN,
—]Ho= —&- fa . é “&n if a—}’v’ﬁ-—'—)\)“#ﬂa
OhagdPns O1 otherw1se
Thus we get from (4.17) that:
- 0A/\3A
wﬁo=_0010gA]Qo=— ]Qo+ — 1o

=—31 X 0hea 3hﬁp 4+ 2 Ohapg A Wbpa—% > 00hoa
aZB a2B «

—]"‘ "11‘ 2 ahaa A ahﬁﬁ or:

o,
(4.18) ogy—=—121 3 00hea + &zﬂahaﬁ/\a'hm + 1S 0hao A dhoa
[ (2 o

From (4.16), hog==386% -+ baybgy— X Caplpp and so

v »
00_}1«1«1 = 2 dba»y /\ngy'— 2 dCap A d_szp, 0haﬂ A 571/—ﬁa = dbaﬁ A%ap (at Qo) .
itd p

Thus, by this and (4.18),

0, =— 3{ z Abay A dbary — 2 dcap A dCap}

(4.19)
+ 3 S dbap A dbag} + 1 S 0haa A Oha-
az4p []

By (4.15) we have
% (dbaybgy + by dbgy) — % (deaptpa + Capdcpa) =0
which, at Qo= (I, V—11,0), gives dbag + dbge=0. Combining this with
(4.19) gives:

(4.20) ogo—3{ S dcap A déap — 3, dbag A dbag)} -
p alp

Since the deap give hk linearly independent 1-forms and the dbag (2< B)

2

2

gives independent 1-forms, it follows from (4.20) that wg, has signa-

ture (hk ) as required.

To complete the proof of Proposition 4.9, we need to show that K
= L-®%1) where K— X is the canonical bundle. We let ¥ — G (k, W) and
Q be the space of & X n matrices @ = (wop) of rank k. Then Q—7Y is a
principal bundle with group GL(%) and we have:
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PCQ
%R
XcCy,
where P is {Q | 29?2 =0}. We let N— X be the normal bundle of X in Y.
h(h+1) h(h+1)

(4.21) LemmA. N*=P Xeray€C ? where C 2 is the space of
kX h symmetric matrices B and GL(h) acts by A(B)= AB*A.

Proof. We set B(Q) =00'Q. Then ‘B(Q) =B(Q) and B(Q) is a
matrix-valued holomorphic function. Also B(4Q) =AB(Q)!4 and B(Q) =0
defines P C 0. The normal bundle of P C Q is #~*(N), and the differentials
in dB(Q) along B(Q) =0 give a holomorphic frame for the dual normal
bundle »*(N*) of P C Q. Now

dB(AQ) — dAB(Q)*A + AdB(Q)*A + AB(Q)tdA

h(h+1)
so that, along P, dB(AQ) = AdB(Q)*A. It follows that N* =P Xgr) C 2
as claimed.

(4.22) LemMA. Let T(Y)— Y be the holomorphic tangent bundle of
G(h,W). Then T(Y) =Hom(F,E) where E, F are given by (4.5).

Proof. Let S€ G(h, W;) we define a linear mapping
T,g(Y) -> HOIn(Fs, E,g)

as follows: Given € Ts(Y), choose a holomorphic curve 8; C G(h, W) with
S8o=23 and with tangent 4. If £é€ Fy C W, choose &€S; with §—¢ and
we let:

(4.23) #(&) — projection of 2 ]t-o on Eg—W/S.

We claim that this gives the bundle 1somorph1sm T(Y) =Hom(F,E).
To begin with, choose v, (¢),- - -, v, () which give a basis for S; and set
h
Va=10e(0). If ui(?),- - -,us(t) is another basis, then ua(t) — X aap(t)vp(t)
f=

and
6ua(t)

(4.24) 1i= o-—é 61)3( )]t_o modulo 8,

where dog=— aaﬁ(O).

p— s 2 aét 0va
If E_az:léavae S, then $t=2$a(t)va(t) and ]t-O*——Zéa ot ]t'
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modulo S. From this and (4.24), it follows that ]t_o in W/8 depends

only on é=¢¢€8. Since (¢4¢) =&+ & it follows that 6 is linear,
6¢ HOm(Fg, E,s).

The remaining steps necessary to check (4.22) are routine and will be
omitted.

(4.25) LemMmA. Let T=T(Y)|X. Then
K= (detT) ® (detN).

Proof. This follows from the exact sequence:

(4.26) 0->T(X)>T—>N-0.

In fact, (4.26) gives detT = K*® (detN) since K =det T (X).
We may now prove Proposition 4.9. From (4.2%),

det T = (det F*) % (det E)* = L0

so that K — (det N) ® L-@*»_ We claim that det N = L®+Yor, equivalently,

det N* =L-™Y, Tet eag (¢ =p) be the & X h matrix with 1 in the «, 8
A O

and B, a slots, zeroes elsewhere. Then, if 4 = . | €GL(h), Aesgid
0 An

h
= AoAgeap and so AB(AeaﬂtA) = {TI A"} A tag. From this and (4.21), we
as, a= a=g
find det N* = L-®*+)) ag desired.

Remark. For later use, we record here the following offshoot of Lemma
(4.2%). Let A CC™ be a neighborhood of the origin with coordinates
¢, - -,t™ and let ®: A— G (h, W) be a ('* mapping. Let S;—®(¢) and
let v1(t),- - -, vs(t) be vectors, depending differentiably on ¢, and such that
the v (¢) span 8.

(4.27) Pr dva(t)
. OPOSITION. If 2

=0 modulo 8; for all ¢, then ® is

holomorphic.

h
Proof. Let ¢ =3 fava(t) € S;—=Fg,. Then, by (4.23),
=1

va (t)
atr

2 (355) (6) =St

projected in W/S; so that <I>*( ) = 0 throughout A. Thus ® is holomorphic,
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A direct argument in case m=1, t€ A CC is as follows: We want to
t
choose #a(t) = Eaaﬁ(t)?)ﬂ(t) with det(aep(t)) 550 and —z— Oua (1)

T =0. We are
i ( t) B=1

given that — S cap(t)vp(t). If we let aap(t) be a solution of the
h
differential equatwn:
(4.28) 0] 4 3t (1) c2p (1) —0, 1a8(0) =25
t
then (D) —z{"’“"‘ﬁ‘“ (1) + S ter () o (1)3(1)) = 0.

We shall abbreviate (4.27) by saying:
(4.29) 9S; C S, implies that ®(¢) is holomorphie.

Ezample 2. In this example, D=U(n—gq) X U(q)\Sp(n) and
XCG(n—gq, W) XG(nW).

(4.30) ProrositioN. The line bundles L(— a,— @) = D have sig-

(+)

bundle K = L(— n, —n—1) has a p-convez polarization with p—q(n—gq).

nature (n~——1=2 g(n—gq)) if a1 >0, az > 0. In particular the canonical

Proof. We choose a real basis ey, - -, e for Wo C W such that Q has

matrix Q=(_g {;’) We let P be the (n X 2n) matrices @ of rank n

which satisfy Q@@ —0. Included in P is the open set P of thost such
that V—1QQ?!Q — H, where the Hermitian matrix H has signature (n— g, g)
and the first (n—gq) X (n—gq) block of H is positive definite. The group
GL(n—gq, q) of non-singular matrices

4 0 .
A=(47 L) duis (1—g) X (1—0)
operates on P by 4(Q) =A4AQ. Since

7\ #
V—1 (AQQQtA) — AH'A — (AII-H;;.],tAll *>

where H =(Hu Hm) we see that P is invariant under GL(n—g¢q,q).
H21 H22
. - Ql . . A-IIQI
Writing Q_<02) where ©, is (n—¢q) X 2n, AQ_(A2101+A2202)' It

follows that GL(n—gq,¢)\P =X and GL(n—gq,q)\P =D. The represen-
tation 4 — (det 4,;)*(det 4)% gives the line bundle L(ay,®.) =X where
L(a;, ) =P Xarnn-qq C. The positive real functions:
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(4.31) ¥1(Q) = det (Hy),
(4.32) ¢:(Q) = (—1)?det(H),

satisfy y;(AQ) =|det Ay, |2y, (Q), ¥2(4Q) =|det 4 |°y,(Q) and so give
metrics in L(1,0) and L(0,1) respectively. We shall compute the curvatures
o1 and o, of these metrics. Because of invariance under the group G — Sp(7),
it will suffice to compute v, and w, at

V—11I,, 0 )
0 —V—1I,/"

V—11I,, 0 )
0 —V—11,/’

the holomorphic mapping Q(B,C) — (1’6"’ 1; IO ) gives @ holomorphic
q
section of P— D, provided that Q(B,(C)Q'Q(B,C) =0.

Qo=(In

(4.33) LeMwmA. For B near zero and C near(

Proof. Writing O — (;h) , the conditions (Q;)1-nq5%0, Q5% 0 define
2

a Zariski open set U containing Q,. If Q€ U, we can find a square matrix 4,
such that 4,0, = (I, 4C1) where C, is of size (n—gq) X (n4¢q). Then

(Al 0 >(Ql) - (In_q 01)
0 Iq 92 T .D1 El )
( I 0)( I 01>_ I 01>
—D, I/\D, E,) \0 E.
and, since Q;.., 40, (B;);1..¢5%0. Thus we will have, for some 4,€ GL(q),

I 0)<1 01>_IB0
0o 4. )N\0 E)"\o 1]7)

In summary, if Q€ U, we can find 4 € GL(n—gq,q) such that

I B
A”=(o I]0>

and so 42=Q(B,C). This proves the Lemma.

ow

Writing C =<g: g:), the relation QQ!Q — 0 becomes:
Ci1 + C1ptB =1 (C1; + C15%B)
(4.34) C12="1(Ca1 + C22'B)
Oy =1C,.

18
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The matrix H (B, () — V—1 {Q(B, C)Q!Q(B,()} is given by:
O + 0 tB) —_— (011 + OlztB) tc’g]_ + BtOZZ'— 0]2)
4.35) H=—V—1 (Cu 2 ~
.35 By (O O Oy O
Write H =(H11 le)amdl observe that H (Q,) =2(I”"q 0 )xHo. For
H, H 0 '—Iq
he 0
notation, we let Ho— | . , Ay —det(Hy,), Ay— (—1)2det H, and we
0 h
agree on the ranges of indices 1=a, B=n, 1=4, j=n—qg, n—qgF+1=p,
o=mn. We have to compute v, —=—0d0logA, and w,——0ddlogA, at Q.

We calculate:

—90A AA A DA
oy =—0010g Ay = — o, + 15l

1« oA
- {azﬁahaﬁah Lt Oy A O — h oy 1o O

1 0A =
t 3 S g e Al — (by (417))
1 -
aéﬁ hah Ohaa N 6h,3,g —|— E @haﬁ A ahﬂa % }?; 00hae

- 2 hah Ohaa N 3hgﬁ

which gives:

(4. 36) vy =2 Ohaa N 3haa —|— 2 3hap A 3hﬁa —_— 2 7 6ahaa
a @

Similarly, we have:

1 =
4.37 = Ohi; A by hig A Ohj; — > — .
( ) % (h )z i 0 +t§j 0 J 3h1 ;hﬂi aahii
From (4 1.35), we have at Q,: 6hﬁ———\/—1 dcyj, 6hpo—-—\/——1dc,,a,
6h@p = h— 1 ( V_ 1dbip _— dC{p), 3hp1 = \/— 1 dCPq;,

63h¢1; = \/— 1 (E dbip A dC-,,p —_— d&;p A dbip),
P
Oy = N —1 ez, Ohpo =\ —1 diop, Ohip =V — 1 déps,

Ohpi =V —1 (déip + V—1 dbip). From (4.84) we have at Qo: dey= dej,
dcip = dcpi— V/—1 dbsp, dcpy— dcgp. Combining gives:
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Wy == i{ 2 dcga A diaa -+ 2 dCﬁ A déij + 2 deg- A dépa}
« i7#] p#o

+ % 2 dei A dém -I— 2 2 dCip A déip -—; de«; A déip —_— E@ dCip A dépi;
P @p P Py

that is:
(4.38) 0y — 3 % dCaa AN déaa + 21_%010“ Adey -+ 25;16’,0 A dGpe)
S VI (B VR o))
Similarly,
o1 =3 D dei A dCis+ 2 3 dey A di} 4 2 deip A dlip
(4.39) @ i< ip

_— % { Ei dCP't A déip + dCi,p A dépi}.
I
Now we set (0, %) = oz01 + %05, Then:

(0, @) = (o1, #2) + (@ 4 Ra2) { Zpdcipf\déip}

(4.40)
"'I_ %2_{ 2 chiA dépi} + (“— % — az){ % de¢A déq,p + dcip A dépi},

where
b (1, %2) = F{ (o1 -+ @2) 2 deiA du + a2 X depp A dCpp
i ’
+ R (s + @2) X degi A deiy + R0z X depo A dEpo}
i< <o

is positive definite. Since

(n—9q) (f;—q-l—l) + q(qg-l) +q(n—q) ___,n(nz+l),

it will follow that w(ay, ) has signature (n_(_n_é-tl_), g(n—gq)) for a; >0,
o2 > 0 if we show that the matrix

M= has signature (1,1). But & + 2, >0 and

- 2
det 3 — "%/ ] +a22——%—a1a2—a22=——% % + ) <0.
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+1)

This proves that L(— a;,— @,) has signature ( n(n ,q(n—gq)) for

>0, a; > 0.
The proof that K=L(—n,—n—1) is similar to the argument in
Example 1 and will be omitted.

Remark. It can easily be checked that the possible signatures of the
curvature forms of the bundles L(a, @,) are:

CED n—g)), COFN yn—g),20(n—0)),

G en—g+1)," 5L (n+g+1)),
9(¢g+1) (n—q)(n—g+1)
+ 2 2 2 )7

(2¢(n—7q)

and the negatives of these. In particular, none of the bundles L(ay,a,) is
positive.

(¢) Let D==H\G be a period matrix domain and K C G the maximal
compact subgroup, ¥, = H\K the K-orbit of the origin in H\@G.

(4.41) TarEOREM. (i) Y, C D is a compact complex submanifold and
the family of analytic subvarieties {gY o}g€ o gwes o fibering of D with com-
pact, complex analytic fibres, but with a generally non-holomorphic parameter
space. (ii) If p=dim ¥y — dim H\K, then the canonical bundle K—> D
has a p-convex polarization and K | ¥, is negative.

Proof. A proof along group-theoretic lines has been indicated in [7].
However, we shall discuss the two examples as the explicit form of the compact
subvarieties will be needed.

Case 1. We consider D C G(h, W) as given by the relations (4.1).
Recall that, for S € D, we had set Ry= (S @ §)L, and we let: Xg={8’€ D,
@ (8, Ry) =0}. Obviously Xy C D is an analytic subvariety passing through
8. We observe that 8’ € Xg if, and only if,

(4.42) DT —=8d®S—=Ryl.

Thus, if Xy meets Xy, then Xg=Xg so that the subvarieties {Xs} give a
ﬁbermg of D by complex analytic subvarieties.

Now let 8;€ Xy so that §,® S, =8@S. Then there exists 7€ @
(=80(Rh,k;R)) with T(8) =8, Thus T: W—>W and T(S® S) =8 D S
so that T splits: =7, @ T, where I, =T |S@® S, To=T | Bs. Further-
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more 7', (8) =28, so that, if Gy is the group of transformations 7,: S @ S
—> S @® S induced by T': W— W which are in G and which split, then Gg
acts transitively on Xg. But Gg==SO(Rh,R) is compact and so Xy C D is
compact. Since K =80 (2h) X SO(k), H=U(h) X SO (k), it is clear that
the varieties Xg are just the G-translates of H\K. Observe that

2h(Rh—1) ht—h

dime H\E — ${"=" B ==

We now give ¥, in terms of period matrices: we follow the notation in
IZh 0

0 —1I
matrix Qo= (I, V—11,0) and we claim that ¥, are just the points with
period matrixes Q= (4,B,0), A!A - B!B=0 (note that the relation
AtA ++ B'B > 0 is automatic). In fact, S, @ S, is the vector space with basis

the proof of Proposition 4.9 so that ¢ =( ) The origin has period

€1, * *, 0oy and so Rg, has basis esp41,* © *, en. Thus, Y, consists of all sub-
0

spaces § whose period matrix Q satisfies QQ%, —0 where & = (1) has a
0

one in the 2h + p position. But QQ&, is the 2k + p-th column of Q, which
proves our assertion.

Referring to (4.20), since Y, is given by cap =0, wg, restricted to the
tangent space to ¥, is:

(4.43) — 13 dbag A dbag
alfB

and so o | Y, is negative definite. Thus L | ¥, is negative, as is K — L-(w%-1),

Remark. An intrinsic description of Y, is the following. Let E, be a
real Rh-dimensional vector space on which we have a positive quadratic form
Q. If E=FE,QgC is the complexification of E, we let ¥ C G(h, E) be
those h-dimensional subspaces B C F which satify Q(RB,R)=0. Then
Yo=Y =80(Rh)/U(h).

Case 2. We consider D C G(n—gq, W) X G(n, W) given by the relations
(4.2). For S=1[8,8.] €D, we set Ry=— =S, @ S,/S, where
Sg/sl= {7) E Sz l Q(/U, S-]_) =O}.

Then @ (Rs, Bg) =0 and V—1Q (Rs, Bg) >0 (cf. Proposition 3.21). We
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let: Xy={8"€ D| Ry=Rg}. We claim that Xy C D is an analytic sub-
variety passing through S.

Let 8’€ Xg; 8’=1[8,,8:"]. Then 8, C Ry and V—1Q(S8/,5,) > 0.
We define Rg/Sy’ = {w € Ry | Q(w, 8,’)=0} and claim that S;’—38,’ @ Rys/3,".
In fact, Ry=Rgy =28, ® 8//5/" =28, ® Ry/S, so that S,’/5, = Rg/8: or
8 =28, ® Rs/S,. Thus 8"€ Xy is uniquely given by S, C Rg; i.e.,
Xg==G(n—gq,Rg). This shows that X is a complex subvariety, isomorphic
to a Grassmannian G (n—q,C").

The argument used for Case 1 shows that the group G of automorphisms
of Xg induced by automorphisms in G acts transitively on Xg and is compact;
Gy=U(n) and Xy=U(n—¢q) X U(q)\U(n) = H\K.

The mapping H\G— K\G is the (non-holomorphic) mapping D— H,
discussed in Proposition 3.21 given by S — Ry.

Let now S be the point with period matrix

V=11, 0

(VT L)
We want to parametrize the variety Xg, C D passing through §,. We let
éo=¢a -+ V—1 en.a; the vectors &u give a basis for Rg, and S, corresponds
to the (n—gq) plane S, in Rg, with basis &,  « -,& Let §'€ Xg, be a
point close to S,; then § is given by an (n-—g¢) plane 8,/ C Rg, with S,
close to S;. We may assume then that §,” has a basis &, - -, &, Where
Li=& -+ é bipép. Thus S, has period matrix

p=n-g+1

Q' = (IneBV—11,.4V—1B)
where B = (b;p).

Now 8, determines uniquely Sy € G (n, W) such that 8’ = [8,’,5,’], and
the period matrix @ of S,” will be:

o (T B v—1I1,, V—1B (o
[e4 Iq Y 8 92/ ’
Here Q. should be the periqd matrix of S,//8,; i.e. Qz’Qt§1’= 0. The
condition 8," @ S.'/S, = Rs = Rg can be written: @ (Rs, 8, ® S.’/S,’) =0
or (Ql,> Q¢ (91)=0, where Qo=(91>. Finally we must have Q'Q:Q"—0.
Q, Q, ~ Q,
The condition Q,’Q*Q," =0 is: —y—8B—V—1a—V—1tB=0. Since
(5_)1): (In, V—11,), then condition (gl,)Q‘(Ql>= 0 becomes: V—1&—%5

Qs 2 Q,
=0, V—1I—8=0. This gives 8=-—V/—17 and y =—V\—1a. Note

that these equations give
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—y—8B—V—1a—\V—1'B
—vV—la+V—1B—V—1la—V—1B=0.
The condition Q'Q*Q =0 gives:
—V—1ta—\/—1B+4ty+ B8 =0, —yta—8 - aty + t§=0.
Thus §=—V—11I, y=—V—1a, —yla—38+ aly 4 !8=0 and the first
condition is

——\/—1ta—\/—1B+ty—\/—1B=—2V—1B—2V—1%
or a=——'B, y=—V—1!B. Consequently:

Q,=<_I BlV—1I \/_13).

Now
o (! 0( I B v—1I V—1B
N(tB 1) B I V—1tB —V1 )
I B V—1I V—1B
=(0 tBB+1 2V —1B \/—1(‘BB-—I))
I B v—1I V—1B
Ty ; V=L V—1(BB—I) |’
(*BB+1) (tBB—1I)
which puts @ in the form given by Lemma (4.33). Thus B=25B,
B _2V—11B _ V—1(*BB—1I)
011=\/‘_‘11, 012— V—lB; 021'—(tB‘B“—+_I>,022-— (tBB—I—- 1)

NOW, at B= 0, dCij = 0, dCip = \/—— 1 dbip, dei = 2\/-— 1 dbip, dcpo' =0,
By (4.40), o(ay, @) on the tangent space to X, at S, becomes:

(4: 44) (—-a1> 2 (dblp/\dl;m)

For the canonical bundle, @, —n so that K | X5, is negative as desired.

(d) Let D=H\G be a period matrix domain and E —=K?— D a fixed
positive power of the canonical bundle. Then, by Theorem (4.41), E has a
G-invariant p-convex polarization where p—dimY,, ¥,=H\K.

Given a discrete subgroup I C (, T acts properly discontinuously on D
and the quotient space D/T'=M is an analytic space. Furthermore, E/T
—E — M is a line bundle with p-convex polarization. Now then one is led



614 PHILLIP A. GRIFFITHS.

to expect that He(M,0(E)) =0 for g4 p and that H?(M,6(E)) should
become large as v—> o (cf. Proposition 3.23). In case M is compact, this
theorem on automorphic cohomology has been proved in [7], and we now
prove it in the other extreme where T' = {e}.

(4.45) TueoreM. H¢(D,0(E)) =0 for ¢ > p and dim H?(D,6(E))
—ow. In fact, H?(D,0(E)) can be “erpanded in a power series around Y ,.’

Proof. The following Lemma, due to W. Schmid, is crucial:

(4.46) LemMa. There erists an exhaustion function ¢ on D such that
the E. E. Levi form L(¢) has everywhere n—p positive eigenvalues.

Proof. Let D be a period matrix domain of type 1 or 2 (the general
argument is similar). In the first case we consider the line bundle L-*— D
(cf. Proposition 4.9) and in the second case L(—1,—1) = D (cf. Proposi-
tion 4.30). In each case we have a principal bundle P — D and metrics y ()
(Q € P) for the line bundles L-*, L(—1,—1). In case 1, y(Q) — det(QQ'Q)

and, in case 2, y(Q) = det(V—1Q,0'Q,) - (—1)2det(V—10QQ).

Now D is covered by finitely many Zariski open sets U« and there exist
holomorphic cross-sections oo: Ua—> P over Ua. We let ya=yo0a and
¢a ——1og Y. Then the Levi form 00 — — 00 log ya is the curvature in
L, respectively L(—1,1). Thus 83¢a=—200¢p in Ua N Ugand o= {30pa}
is a G-invariant form with signature (n—p, p).

Suppose now that z¢ Ua and {z,} C U« is a sequence with z,—z.
We claim that ¢a(2,) = —o as 2,—> 2. For example, take D to be of type 1
and Ua to be given by Q,..,5£0. Then 2z has period matrix (4, B,(C) with
det(4) =0, and z, = (A4n, By, Cs) = ¥, with det(4,) 0. We may suppose
that (An Ba,Cn) = (4,B,C) so that det(4,) >0. Then oo(2,) =0Qn
= (I, Ay*B,, 4,7C,) and ¢e(2n) = —1log ya(2,) where

Va(2n) = det (2,QQp) = | det(4,)|? det (¥aQ*¥F,).
Thus lim ya(2s) = + o and so lim ¢a(2s) =—c0 as desired.

2z

It follows that, if we set ¢a(2) =—o0 for 2¢ Us, ¢(2) =3 €% is a
globally defined C= function on D. The Levi form

L(¢) = 00¢ = = L(¢pa) % + 3 dpa A Dpare®s®
= ¢ (2)w + (positive semi-definite form) = ¢ (2)o.

Thus L(¢) has everywhere at least n — p positive eigenvalues.
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Tt remains to show that ¢(z) is an exhaustion function; i.e. the sets
D,— {z€ D: ¢$(z) < c} are relatively compact and |J D,=D. This involves
¢

looking at ¢(z) near dD=D—D. Suppose that z2€ 9D N Uas and let
{#,} C U« be a sequence with z,—> 2. Looking again_ at the above example,
we will have 2, = (I, B,,C,/) = Q, with H,—Q,0*Q, and H, > 0. Since
#, tends toward the boundary, H, becomes singular so that det(H,)— 0.
But ¢a(2z,) =—1log{det(H,)} so that ¢a(2,) >+ as z—>2z It now
follows that ¢(z) is an exhaustion function.

Now the extension by Andreotti-Grauert [1] of Theorem B gives:

(4.47) H4(D,d) =0 for ¢ >p and & any coherent sheaf over D.

We now use the method of [6] to expand H?(D, 0 (L)) around Y, C D.
Let I#(E) C 6(E) be the sections of E vanishing to order p along Y,;
Itn(E) =1+ ®e O(E) where I C 0p is the ideal sheaf of ¥,. Then, if N— Y,
is the normal bundle and N*® the u-th symmetric product of N*, we have:

(4.48) 0— I+ (E) = I(E) = Oy, (N*®W QE) — 0.

From (4.47) we have:

(4.49)  Hr(I#(E)) > Hr(I*(E)) > H?(Oy,(N*WQE)) - 0.

This gives:

(4.50) Lemuma. He(D, 0 (E)) has a decreasing filtration
F,C H*(D, 0(E))

and the associated graded module is: X H?(Y o, Oy, (N* W QE)).
u=0

Now E | Y= K" | Y, is a negative line bundle (cf. the proof of Proposi-
tion (4.9)) while N— Y, is spanned by its global sections (cf. [7]). Thus
Hr(0y,(N*WQE)) = Hr" (0y,(E*QN®®Ky)), and it follows [¥] that
Hr(0v,(N*WQ®E)) =0 for 0=r<p and dim H?(0y,(N*WQE)) > as
m—>co. This completes the proof of Theorem 4. 45.

Eemark. It can be shown that dim H?(Qy,(N*®WQE)) — cur + (lower
order terms) where ¢ > 0.

(e) In the above discussions (cf. Theorems (8.20) and (4.8)) it has
appeared that certain contructions in transcendental algebraic geometry lead
naturally to varieties with a p-convex polarization, where p need not be zero
as in the classical case. The cohomology groups in dimension p, instead of
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being viewed as obstructions, then become primary objects of interest. This
is, at least at first glance, an unfortunate state of affairs because it is mnot
easy to see the geometric relevance of these groups.

In this section we shall give further evidence that the cohomology groups
are natural invariants and also give a possible geometric interpretation of
them. Basically, what we want to prove is:

(*) TueorEM. If T' C G s a discrete group acting properly discon-
tinuously on D, and if ¢ € H?(D,E) is an absolutely integrable cohomology
class, then the Poincaré series in cohomology :

(4.51) 0(¢) =V§PV*(¢),

converges to an automorphic cohomology class in Ha(D/T,6(E)) (as above,
E — K" is a power of the canonical bundle).

What we shall actually prove is something slightly weaker which will,
however, interpret the cohomology as sections of a bundle. We proceed in
several steps.

(1) Let D= H\G be a period matrix space and ¥, = H\K. We let G be
the complexification of G and consider the set of all subvarieties g¥, where
9Y, C D and ¢ is in the complex group &. This makes sense since D C X
and G acts on X (cf. Theorem 4.3). In this way we get an analytic family
{¥2}, g Of compact, complex submanifolds ¥y C D (cf. [6], Section ITI.2)
whose parameter space B is an open complex manifold. If ¥,— Y, then
T, (B)=H°(Y,, O(N)), where N— Y, is the holomorphic normal bundle.
It is clear that G acts on @ ; in fact, it is proved in [7] that B C K\G where
K C G is the stabilizer of ¥,. In general, G does not act transitively on 3.

™
Over B we may construct an analytic fibre space 9 —— B such that
7~1(A) == ¥, and such that there is a holomorphic mapping &: D — D where
a(mt(N)) =Ty; (cf. [6], Theorem 3.1). We thus get a diagram:

o

D—>D
dr
3,

and we set E=a(E).

g
Over B we construct a holomorphic vector bundle F —— B with
0 '(A) = H?(Y»,0v,\(E)) ; clearly we have that Op(F) — R.?(E) where
E«7(€) is the p-th direct image sheaf of the proper, holomorphic mapping

w
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QD ——> B relative to the sheaf @9 (€). This finally gives then a linear
transformation :

(4.52) ¢ H*(D,0(E)) > H*(8B,0(F))

given by £(¢)r€ H?(Y», 0vy(E)). More formally: £(¢) =—mya*(¢p) where
&*(¢) € H?(D, 0, (€)) and mya*(¢) € H*(B, Ba?(E)).

We observe that £ is G-equivariant and that the range of ¢ is an infinite-
dimensional subspace of H°(#B,0(F)) (cf. Lemma (4.50)). It is via the
mapping ¢ that we interpret cohomology as holomorphic sections of a bundle.

Remark. There is some evidence that & is an isomorphism. In fact,
B is an open set in an affine variety and may well be holomorphically convex.
If this were the case, then, since RB2(€) =0 for ¢=%p, we would have, by
the Leray spectral sequence:

(4.53) H»(D,05(€)) =H*(B,08(F)).

On the other hand, © — D is a holomophic fibering whose fibres seem
to be Stein manifolds, and then it might follow that &*: H?(D, Op(E))
—> H?(D, 0, (€)) is an isomorphism, in which case & would be.

In any event, the kernel of ¢ consists of the cohomology classes
¢ € Ho(D,0(E)) which vanish to infinite order along Y,, in the sense that
¢ € Ho(I+(E)) for all u=0 (cf. 4.49)).

What we shall prove is:

(4.53) TurorEM. If the cohomology class ¢ € H?(D,0(E)) 1is abso-

lutely integrable (cf. the definition below), then the Poincaré series:
(4.54) 0(E(8)) = 37 (£(4)

converges to a T-invariant section of F — B.

Remark. If I/ CT is any finite subset, then
ECS 1) — 3 y*(E(4)),
vel yel

so that Theorem (*) gives Theorem (4.53). The converse is almost true;
we need that £ is injective plus the fact that the range of & is closed (in an
appropriate topology).

(ii) We want now to speak of what it means that ¢ € H1(D,0(E))
should be absolutely integrable, or, more generally, should be in the analogue
of the L? space.
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In the line bundle E— D there is a G-invariant metric and we take a
G-invariant Hermitian metric in the holomorphic tangent bundle T of D.
There is a pointwise inner product <¢, ¢ on the space C¢(E) of C~ E-valued
(0,¢) forms (cf. [9]) and we let | ¢ | =<, ¢>: It is then clear how to
define the space C,9(E) of measurable E-valued (0,¢q) forms ¢ for which
f| ¢ |pdp <o, where dp is the G-invariant volume element on D. Gt is a
Banach space on which there is a densely defined unbounded operator 8. In
fact, if C2(E) are the forms with compact support, then, for ¢€ C2(E)

we let || ¢ [lp=( jD | ¢ |2du)*/?, and C,e is the completion of C4(E) in this

norm. Clearly 4 is defined on C,2(E) and we let Z,9(E) C C,4(E) be the
kernel of .

There is a natural mapping: Z,9(E)N C¢(E) — He(D,0(E)) (via the
Dolbeault theorem), and we shall say that a cohomology class is in L7 if it
appears in the range of the above cohomology classes. We let H,2(E) be the
Lr-cohmology classes.

Let us discuss square-integrable cohomology for a moment. On C4(E)

we can define an inner product (¢,y) =J. {$,¢>dp, and C1(E) is the
D

Hilbert space completion of C,¢(E) relative to ( , ). The adjoint §* of  is
defined on C,2(E) and we define the Laplacian [ = 39* -+ 3*3. The operators
9, 9*, O are densely defined operators on C(E) (cf. [2], [11]), and we
define the sqare integrable cohomology space:

(4.55) H,(E) = {¢ € C,2(E) with O¢p—0);

i.e, Hy(E) is the space of L? harmonic forms. Since a harmonic form is
C= (Weyl lemma), an L* cohomology class in the sense of (4.55) is also an
L? class in the way previously defined; in particular, there is a mapping
H, 2 (E) - H¢(D, 0 (E)). Note that H,2(E) is a unitary G-module.

By using techniques in several complex variables and group represen-
tations, together with the methods of [2] and curvature calculations, W.
Schmid has proved (in his Berkeley thesis) the following important result:

(*) Tueorem (W. Schmid). (a) The L*-cohomology space H,4(E) = 0
for g5~p where E— D has a p-convex polarization; and, more important,
(b) H,?(E) s an irreducible unitary G-module and, as a K-module, H,» (E)

18 algebraically equivalent to (cf. Lemma (4.50)) : % He(Y,, 0v,(N*WQRE)).
L a0

Remark. 1If g€ G and z€ D, then g*: EM®A‘1T*N—>EW®A‘IT*Q is
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given by ¢g* = ¢ ® g* where g-*: Ey—> E, and §* is the mapping on forms.
In this way, g¢*(¢) for ¢€Cy2(E) is defined and |g*¢llo=1¢ s
(976 9%¢) = (¢, y) for ¢,y € C2(E).

The arguments which Schmid has used will prove:

(4.56) ProrositioN. H,?(E) is non-empty. In particular, there exists
an infinite dimensional space of absolutely integrable classes in H?(D,0(E))
with £(¢) 540, provided that E=K" and v is large.

Thus Theorem (4.53) is not vacuous, although it is of course possible
that 6(é(¢)) =0 even though £(¢) 540. However, at least when D/T is
compact, we can show that the sections §(£(¢)) span the fibres of F — B
except, perhaps, on a proper subvariety of B (cf. [7]).

To prove Theorem (4.53), we shall show:

(4.53)’ TumoreM. Let ¢ € C?(D,E) NZ2(E) be a d-closed form
with | ¢ ||1=J;) |¢|du<oo. Then £(¢) € H'(B,0(F)) and the series
’y%‘y* (6(9)) converges uniformly on compact sets to a T-invariant holo-
morphic section 6(&(¢)) € H'(B,0(F)).

(iii) We shall prove first that 3 y*(£(¢)) converges pointwise to a
section 0(£(¢)) of F—>B. To do tl:liesrwe let

I\* = H? (Y, Ov, (E))* = H°(Y), Or, (K\QE*))

be the dual space to the fibre &, (the = follows by the duality theorem).
Then, for y) € F\*, we shall show that 2 YE(E(h) )n, > converges abso-

lutely as a series of complex numbers. Th1s will follow from:
(4.57)  PropoSITION. eZP,IQ""‘(E(qb))A, v | =cll¢ls where | ¢,
. v

- ID | ¢ [dp, ¢ depends only on y, and T/ C T is any finite subset.

We need two Lemmas, the first of which is:

(4.58) LemMMA. Given a compact set C C D, there exists a number
B=RB(C) such that each point € D meets at most B translates yC for y € T

Proof. It will suffice to prove that there are at most a finite number
of y € T such that yO' meets 0. If this were false, there is a sequence {y,} C T
of distinct elements such that y,0'N C's4¢. Choose Yn € ynC N C and set
Yn=1n2n for z,€ 0. By passing to a subsequence, we may suppose that
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2y —> z for some z € C, and then, by passing again to a subsequence, we may
assume that y,—> y for some y € €. Then we have yn = ynZn, Tn—>T, Yn—> Y.

Suppose ys4yz for y€T; then, by proper discontinuity, there are
neighborhoods N (z) and N(y) such that T{N(z)} does not meet N(y).
So, in this case, we have a contradiction.

If y =yz for some y €T, we set 2, =y y, &y = &y Where & =y 'y, is
a sequence of distinct elements in I'. Then we have 2z, = &n, Tn—> @, 2, — 2.
This again contradicts the proper discontinuity of T' on D.

Remark. By (4.58), for any finite subset I/ C T, we have

(4.59) Blot—gf lsla=3 { ol
D vEI" Jy
(4.60) LEeMMA. The dual of the restriction mapping
pA

H?(D,0(E)) — H?(Y), O, (E))

1s of the form:
H® (Y, O, (K\® E*)) -—oxﬁHo””"(Dﬁ(K@E*)),

where H,»?(- - +) is cohomology with compact support.

Remark. This will give the formula:

<pn (), > =<, Ux(t//x)>=£)¢’\0x(%),
where ¢ € H?(D, 0(E)) and yy € H°(Yy, Oy, (Krx® E*)).

Proof. This lemma is a special case of the situation

(4.61) HY(D, 65 (E)) ——> Ho(¥, v (E)),

where ¥ C D is a compact submanifold, E— D is a holomorphic bundle,
and ¢ is any integer. If dimY —m, dim D —m + r, we shall show that
the dual to (4.61) is:

(4.62)  H™1(Y,0(Ky ®E*)) — > Hmr-1(D, 0 (Kp @ E*)).

Suppose first that r—codim ¥ — 1 and choose an open covering {Ua}
of D such that ¥ N Uq is given by fo — 0, where fo is a holomorphic function
in Ua. Then we choose C* (1,0) form & in U such that dlog fop=—Ea— &,
and then {94} =¢ will be the Dolbeault representative of a class in
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H*(D, Qp') which represents the Chern class of the line bundle determined
by Y CD. Observe that we may assume that { has compact support;
L€ HA(D,Qp') ; this is in line with the fact that ¢ is the dual cohomology
class to Y € Hom (D, D).

Let now y € H" (Y, 6 (Ky ® E*)) = H™m4(Y,0(E¥)) and represent y
by a d-closed (m,m—gq) form on Y with values in E*. We choose a O
E*-valued (m,m—gq) form ¢ on D with compact support and with y | ¥ the

original y. We let "’={$°"—jf];i} be the global (1,0) form with a first

order pole on ¥ and set o (y) —9(y Aw). Then o(y) is an E*-valued, d-closed
(m+4+1,m+1—¢q) form and we have to show that ¢(y) is C* and that,
for ¢ € H1(D, 6(E)),

4. 63 A — Ay,

(4.63) f onot)— [ p(6)ny

_ Now o(y) — W ho +y AL (since 5w=§) and so we have to see that
0y ANow is C°. Locally, we may choose coordinates 2i,- * *,%ms on D such
that o= dzm”

o~ + (C= term), and Y is given by 2zm; =0. We can write
+1
Oy = Y1 A dZmur + Yo A d2mis + s, Where 5 involves only dzy,- - -, dom,

dzi,- - -, dZy and ysvanishes on Y. Then
— d + A dz, + M+
MY Ao =y A M_}_ ¢3Adz_£ -+ (C= terms),
Zm+1 Zm+1

and s0 dy Ao is C* as required.
_ Toprove (4.63), we have ¢ Ao (y) —¢AI(YAL) — = d(pAYAL) (since
0¢p=0) =+d(pAyAg). Thus, if B, is the e-tube around ¥,

jD¢Aa(¢)=iﬁBgA¢Az
for any e > 0. Thus

J ero) —=tim [ grynr—f p(e)rv.

Now we observe the mapping o in (4.62) still exists so that (4.64)
holds even if ¥ is non-compact, provided that we take the compactly sup-
ported cohomology H,"4(Y,0(Ky®E*)) (of course, it need not be true
that H,m4(Y,0(Ky® E*)) is still the dual space of H (Y, 0(Ky®E*))).

Suppose then that ¥ =Y, N Y, where Y,, ¥, are submanifolds of D,
each of codimension one, and which meet transversely along Y. We assume
that Y is compact, even though ¥, and ¥, need not be. Then we have:
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p
HY(D, 0(E))— HY(Y, 6(E)) - H«(Y, 0(E)),

H-2(Y, O(Ky®EF) — H 1Yy, 0(Ky, ®E*)) — Hn-22(D, 0(Kp® E*)),

where o still satisfies (4.63) so that ¢ is dual to p. In other words, Lemma
(4.60) holds if Y is a complete intersection of hypersurfaces on D. But
we can easily see from Section I,4.(c) that X’ is such a complete intersection ;
e.g., if Yn=Xg where D is of type 1 (cf. (4.42)), then Xy is defined by
Q (8, R) =0, which is &k — codimen Xy equations (dim Rs=F, dim 8’—"h).

Proof of Proposition (4.57). We let y = ox(yn) Where, by (4.60), ¢ is
an (n— q)-form with support in a compact set ¢ C D. Then

FHF(E(D) ) > = <on (v¥9), > = <y* ¢, ¥
=‘£ Yip Ay = J;v*qb/\v(v*'ll/f)

- F(pAy¥-1y) = ’ %*-1
fo (o Ay*Y) chb/\v 2
This gives:

€@ =1 f ry*y]

<< t
= Jollyv]dn=a | |¢|dn

where o — sup | Y o= sup. | y*y |, Combining this with (4.59), we obtain:
we€ yey
ezrl *(E(P))nmrd> | = aB | ¢ |1, which proves Proposition (4.57).
v

We now prove the uniform convergence on compact sets of 6(£(¢)). It
will suffice to have:

(4.64) ProrositioN. Let {yn} be a C= section of the dual bundle
F*— B and A€ B be given. Then there exislts a compact neighborhood U
of Xo such that, given >0, we can find a finite subset I” C T with
3 JHE@ Iy | << for ac T

Proof. Let U be a sufficiently small compact neighborhood of A,; the
varieties ¥, for A € U will then all lie in a compact neighborhood of ¥, C D.
Moreover, for each A€ U, let y(A) € H?(D,0(K*®E*)) be given by
¢ (A) =aox(yr). Then there will be a compact set C C D such that all y(X)
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have support in 0. We let @ = sup | ¢ (M) |o; clearly @ <. Furthermore,
x €

AU
we let 8 be the number corresponding to €' in Lemma (4.58).

Choose now a compact set ¢ C D such that ,r |¢|dn< = Let
./ D-C o

IY= {y € T such that yC'N 054 ¢}; i.e. IV is those y for which yC' meets C.
As in Lemma (4.58), we can prove that IV is finite. Now for A€ U,

S nE@nn> 1= 3 [ o] 17| dp

< = 4 €
=« 3 flslan=as [ |oldu<

This proves Proposition (4.64) and completes the proof of Theorem (4.53).

(f) In addition to Proposition (4.27) (cf. (4.29)), we want to record
one other property of the period matrix domains to be used in Part IT on the
local study of the period mapping. Recall that a period matrix domain D is
of the form D= H\G (cf. Theorem (1.26)) where G is a real simple Lie
group and H C @ is a compact subgroup. If we let B— K\G where K C G
is a maximal compact subgroup, then the fibering:

ko

(4.65) D—-—B,

given group theoretically by H\G' — K\G, is a fibering of the complex manifold
D with compact, complex submanifolds of D as fibres (cf. Theorem (4.41)).
However, even if B— K\G happens to carry a complex structure, the fibering
(4.65) is not an analytic fibre space; the holomorphic normal bundle N— ¥,
is not trivial (cf. Proposition (3.21)).

(4.66) ProrosiTioN. (i) For each z € D, there is a unique G-invariant
splitting of the holomorphic tangent space:

Tw(D) =Vw@Hw,

where V, is the holomorphic tangent space to the compact subvariety ¥
passing through #. (ii) if o is the curvature in the canonical bundle, then
o | Hy, is positive definite for each z € D.

Proof. As usual, (4.66) has a direct proof using the structure theory
of Lie groups, but we shall check it on the two types of period matrix domains
as the explicit forms of V, and H, will be needed in Part II.

19
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Case1 (cf. the proof of Theorem (4.41)). In this case, D C G(h, W)
and, by Proposition (4.22),

Ts(D) C Hom(S,W/8).

By using the quadratic relations (4.1), W=S @® Ry @ S, and this splitting
is preserved by G. Thus, W/S =Ry @ S and
(4.67) Ts(D) C Hom (8, Ry ® S) = Hom (S, Rs) @ Hom(S, S).

We claim that T'g(D) consists of all § € Hom (S, W/S) which satisfy:

(4.68) Q(8(£€),0) +Q(£0(0)) =0 (&£L€8).

In fact, looking at the proof of Lemma (4.22), we choose a curve {S:}
with §,=2S and tangent 6. Letting &, & € S; with & =4¢, {,={, we have

Q (&, %) =0. By differentiation, we have Q(?g{t]t:o,;‘) + Q& %t]t:o) =0.

Since (&) = projection of ?;—; Jt= in W/8 and Q(S,8) =0, we get (4.68).
By combining (4.67) and (4.68) we obtain:

(4.69) Tg(D) == Hom (S, By) ® Home (S, S),

where Homg (S, S) is all §€ Hom(S,S) with (4.68) being satisfied. The
G-invariant splitting (4.69) gives the required decomposition where Vg
= Homg(8,8) and Hg=Hom(S,Rs). The assertion about the curvature
o of K is clear from (4.69), (4.43), and (4.20) (the dcap are dual to Hg
and the dbag dual to V).

Remark. In the actual case of periods when W=H?*(V,C), for some
algebraic manifold V, 8§ =H*°(V), S = H**(V), Rs=H*(V), and (4.69)
becomes:

(4.70) Tew) (D) = Hom (H>°, H“',) @ Homg (H>°, H?).
Case 2. Now we have D C G(n—gq, W) X G(n, W) and so
Ts(D) C Hom (8, W/8,) @ Hom (82, W/8,).

This is one general relation which defines the tangent space to the flag mani-
fold in a proluct of Grassmannians; in this case, if 6, € Hom (S, W/8,;) and
0, € Hom (S5, W/8;), then ¢, will equal 4, as mappings in W/S.. In other
words, the following diagram commutes:
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9
S, —— > W/8,

(4.71) l l
8

Sy———— W/S,.

By using the quadratic relations (4.2), we have Q(6(£),¢) 4+ Q(&6(8))
—0 where 9 is either 8, or #,. This is by the same reasoning which gave
(4.68). Also, we have a G-invariant splitting: W =28, & 8./S: @ S./8: ® S..
For example, in the period matrix case, W=H?*(V,C), and this splitting
becomes W = H3° @ H>', @ H¥2, @ H*3 since S;=H?3>°and S,=H3>°-4 H>*.

Let Ry=28,®S;/S;. Then Hom(8;,Rs/8;) is a summand of
Hom(8;, W/8,) and we claim that, using the bilinear relation, Hom(S:, Rs/S1)
determines Hom (S,/S1, ;). This is because, given § € Hom(8S./8:,5;) and
£€82/8,, £€ 81, we will have Q(8(£),¢) + @ (£06(L)) and, since Q(8y,5:)
>0, §(£) is determined by knowing 6(¢) for all £€ 8. . -

We may now describe T'g(D). Using the decomposition of W and (4.71),
we have:

Ts(D) C {Hom (81, S2/8:) ® Hom(82/81,8:/5:) ® Hom (82, S1)}
@ Hom (8,, Rg/8,).

Using then the bilinear relation, we have:

Ts(D) == {Hom (S, S2/S:) ® Home (8S5/8:,5:/51)

(4.72) _
@ Homg (81, 8:)} & Hom (S, Bg/S,:),

where the meaning of Homg(-,-) is clear. Taking Hg=—{- - -} and
Vs=Hom (8, Rg/S,) in (4.72), we.get the desired G-invariant decomposi-
tion. In the case of periods, (4.73) becomes:

Ty (D) = {Hom (H*°, H,>') @ Homgq (H,>*, Hs"?)

(4.73)
@ Homg (H*°, H**)} @ Hom (H>°, H,b?).

To check the curavture assertion, we follow the notations in the proof

of Proposition (4.30). Combining the relations deip — deps— V — 1 dbyp

which define Ts(D) (by (4.34)) and the relation de;p 4 V— 1 dbsp — 0 which
defines Hy (cf. just above (4.44)), we find by (4.40) that

o | Hy=¢ (a1, %) + (@ + 2a) { 12 deip A dip}
Y
so that o | Hg is positive definite as required.

UNIVERSITY of CALIFORNIA, BERKELEY,
PRINCETON UNIVERSITY.
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