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PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, I. 

(Construction and Properties of the Modular Varieties) 

By PHILLIP A. GRIFFITHS.* 

I. 0. Introduction. (a) The general problem we have in mind is to 
investigate the periods of integrals on an algebraic variety V defined over a 
function field 5. In practice, this will mean that we are given an algebraic 
family of algebraic varieties {Vt}tEB where the general member V = Vt of 
this family is an ordinary polarized, non-singular algebraic manifold, and 
we wish to study the behavior of the period matrix U (t) of Vt as a function 
of t. In order to discuss Q (t), we should think of the periods as a (not 
everywhere defined) mapping '1: B -> M where M, the modular variety asso- 
ciated to V, repersents the totality of inequivalent period matrices satisfying 
the bilinear relations imposed by the topological manifold underlying V. 

In this paper (Part I) we shall study the variety 111. Many of he 
classical results, which arise when V is a curve and M is the Siegel upper- 
half-space factored by the modular group, will go through. However, there 
are some striking differences which turn up, and which seem to be best 
explained by the presence of higher order period relations. 

In Part II we shall study the local properties of the period mapping 41 
and, in Part TTT, we shall look into the global behavior of '1. 

Some of these results have been announced in the Proceedings of the 
National Academy of Sciences (U. S. A.), Vol. 55 (5), 1303-1309; (6), 1392- 
1395, and Vol. 56 (2), 413-416. 

It is my pleasure to express gratitude to several colleagues who, through 
conversation and correspondence, have been of immense help in studying this 
question on periods of integrals. 

(b) We give now an outline of the results in this paper, which is 
divided into four sections under the following headings: 

1. Period matrices of compact Kiihler manifolds; 
2. Modular varieties of polarized algebraic manifolds; 

Received January 18, 1907. 
* Supported in part of Office of Naval Research Contract 3650(14). 

568 



INTEGRALS ON ALGEBRAIC MANIFOLDS, I. 569 

3. Some properties of the modular varieties: complex torii associated to 
the cohomology of an algebraic manifold; 

4. Further properties of the modular varieties. 

First, in Section 1, we invert the usual presentation of period matrices 
and view a period matrix Q as a point in a Grassmannian; this point being 
the subspace spanned by the rows of Q. Thus we associate to V the subspaces 
Hf-r,r (V) C Hq (V1, C); the local study of the period mapping is then essen- 
tially the study of the variation of the Hodge decomposition of the vector 
space Hq(V,C). In order to make the periods vary holomorphically with Vt. 
we use a filtration on Hq (1V, C) whose associated graded vector space is 
q 
Hq-r,rr(V). Thus, the period matrix space D (DgDq(V)) is defined to be 

r=o 
a domain on a flag manifold F consisting of points Q- = [SOp S1, . , S] where 
So C S, C * C S% C H ((V, C) and where the two RJiemann bilinear rela- 
tions oQtn o, QQtQ7 > 0 are satisfied. In case i u-0 (V) is the period 
matrix of V, Sr+I/S__ Hq-r,r(V). After some preliminaries on Kiihler 
varieties, we give in Section 1.(d) the precise definition of the period matrix 
domains D. In 1.(e) we show that this approach is equivalent, in the case 
of curves, to using the period matrix directly as a point in the Siegel upper 
half space. In Section 1. (g) it is shown that D is acted on transitively by a 
real, simple Lie group G and that the isotropy group H is compact; thus 
D _- H\G. Contrary to the case of curves, D need not be an Hermitian sym- 
metric space, but it will be so that D is an open domain on a homogeneous 
algebraic manifold X, where X is those flags Q2 satisfying 2Q t =- 0. These 
period matrix domains are discussed in a general Lie group theoretic manner 
in [7]. 

Now the complex structure, with polarization, of V does not give a unique 
period matrix Q (V) C D. This is because there will be polarization-preserving 
homeomorphisms of V which induce non-trivial action on HI' (V, C). Thus 
there will be defined an arithmetic subgroup r C G such that the modular 
variety M = D/P = H\G/r is an analytic space, and V defines a unique point 
'I'(V) CM . This modular variety is discussed in Sections 2. (a) and 2. (b). 

Suppose now that two polarized algebraic manifolds V, V' are in the 
same class if hPq (1V) hP'- (1V') and if there is a polarization-preserving 
homeomorphism f: V '. Then, in Section 2. (c), we prove (roughly) 
that 'I'(V) b=A'(1(V) if, and only if, the graph F cEH2ff(V X V', Z) is of type 
(n, n). This shows geometrically what it means that two varieties V and V' 
in the same class should have the same periods. 



570 PHILLIP A. GRIFFITHS. 

In Section 3 we discuss complex structures on the real torus 

H 2q+1 (V~, R) /H2q+1 (V., Z) . 

One such is given by Aq (V), which is Weil's intermediate Jacobian [12]. How- 
ever, Aq(V) does not vary holomorphically with V. The construction of the 
period matrix space D suggests another complex structure Tq(V) with the 
following properties: (i) To (V) = Ao (1V) is the Albanese variety and 
T.1-(V) A1(1(V) is the Picard variety; (ii) Tq(V) varies holomorphically 
with V (this will be proved in Part II); (iii) the polarization on V induces 
a p-convex polarization (cf. the definition in 3(e)) on Tq(V) ; (iv) Tq(V) 
with its polarization is functorial; and (v) the period matrix of the holo- 
morphic 1-forms Q (Tq (V)1) is the point in D2q+l corresponding to Q (V). 
This result is aproved in 3. (e) and 3. (d). The presence of the p-convex 
polarization on Tq(V) seems to be closely related to failure of the inversion 
theorem for intermediate cycles ([12], Section 27), which will be discussed 
in Part II. 

Section 4 contains the main properties of the period matrix domains D. 
We have chosen to use the periods of the 2-forms and 3-forms as being 
exemplary (cf. 4. (a) ), and most results are stated in general form but proved 
for these domains. The general argument will usually be evident. 

Of interest are the homogeneous line bundles L -> D; e. g., the canonical 
bundle K, which generalizes the canonical factor of automorphy, is one such. 
These bundles have G-invariant metries and the curvature is then a G- 
invariant form on D. Contrary to the classical case, there will generally be 
no positive bundles, and so, using K, the modular variety M must be con- 
sidered as an analytic space with a p-convex polarization. Also, instead of 
automorphic forms for D/r, we must now expect automorphic cohomolgy. 

The curvatures, which have been computed group-theoretically in [7], 
are computed explicitly in 4(b). These explicit results will be used thereafter 
in several instances. For example, we show in 4(d) that D has an exhaustion 
function + whose Levi form L (sb) has n -p positive eigenvalues, where 
KI-- D has a p-convex polarization. In fact, L (+) is essentially the curva- 
ture of K. 

One of the geometric reasons for this p-convex behavior is the presence 
in D of compact subvarieties. In 4. (c) we show that the fibres of the mapping 
H\G-- K\G (K maximal compact subgroup of G) give a family {YX}XEK\G 
of compact, complex submanifolds of D such that K on Yx is negative. 
Combining this with the pseudo-convex exhaustion of D and the Borel-Weil 
theorem for H\K, we show in 4. (d) that dim HP(D, O(K)) =- oo (p = dim HSK), 



INTEGRALS ON ALGEBRAIC MANIFOLDS, I. 571 

and that HP (D, 0 (K) ) can be expanded in a power series around YO H\K, 
which is a special case of a theorem of W. Schmid. 

To get information on M = D/r, we need the result of W. Schmnid that 
the absolutely integrable cohomology (l'-cohomology) H1P(K) is in some 
cases a non-empty Banach space. Then, in 4.(e) we prove essentially that 
the Poincare series in cohomology 0(p) = y(4) (4 E HlP(K)) converges 
to a P-automorphic cohomology class. 

To close this introduction, let us mention briefly what relevance these 
p-convex polarizations, automorphic cohmology, etc. have to the original 
problem. It will be shown in Part II that the image '1 (B) lies transversely 
to the family {YX} X E K\G and that K | @(B) is positive (0-convex polarization). 
What this means is that there are higher order period relations; i. e. relations 
of the form Q (d&2, 2) 0 on d2 over a which hold universally. By a sort 
of integration over the fibre, the automorphic cohomology should then give rise 
to automorphic forms, in the usual sense. These automorphic forms should 
then be related to fields of moduli, etc. 

I. 1. Period matrices of compact Kahler manifolds. (a) Let W be 
a complex vector space and e1,*,. , eb* a basis for the dual space W*. 
We want to coordinatize G (h, W), the Grassmanrn variety of h-planes through 
the origin in W. Let S E G (h, W) be such a subspace and f1, .* ., fh a basis 
for S. We consider the matrix Q2 = (7r,p) where 7rap <f., ep*>. Clearly 
Q has rank h and we assert that the h Xh minors 

7rlp, 7rlp h 

f2plP ... p(pi < 
. 

* < ph) 

7rAP. 7rhph 

give the Plucker coordinates of SE G(h, W). Indeed, let e1l , eb be the 
b 

basis of W dual to el,* . , eb*; then f = r,pep. It follows that 
p=l 

f A *A fh _ f2Pi-..P, ep, A * . . A epA 
P1< * <Ph 

so that the 2P,--Ph give the Plucker coordinates of S. 

h 
If we choose a new basis ,. . . ., Ah for S, then a, = Aapfp and 

h p~~~~~~~~~~~~~~~~=1 h 
<fr, ep*> Aa67rnp. Thus the matrix Q is changed into AO by this change 
of basis. In fact, if we let P (h, W) be the set of all h X b matrices of rank 
h, then 
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P(h, W) -> G(h, W) 

is a principal bundle with fibre GL (h) acting on the left. 
The group GL(b) GL(W) of automorphisms of W acts on G(h, W) 

by the rule TS T(S) where TE GL(b), SE G(h,W), and T(S) is the 
subspace with basis T(f1) T, T(fn). Let Tep tp,e,;then <T(fa), eu*> 

b 
= 7r,ptp, so that, under the action of GL(b), Q goes into QT where T = (tpa) 

p=l 

is the matrix of T. 
We remark that T acts on W* by the rule Tep* t,pe,3,. 
We suppose now that we are given a non-singular quadratic form Q: 

WV W -- C, which may be either symmetric or skew-symmetric. We let 
X C G(h, W) be the subvariety defined by XZ {S I Q (S, S) ==O}. This 
condition means that we should have Q (f,, fL) 0 for all , ,B. Letting 

b 
Q(ep, e.) =qp be the matrix for Q, we have that Q (fap,fO) > 7Tap7rO,qpu; 

so that the condition that S E X can be written: 

(1.1) Q2QtQ 2O (Q= (qp,) is the matrix of Q). 
If we let G C GL (b) be the orthogonal group for Q; 

G {T E GL (b) I Q (Te, Tf) Q (e, f) for e, f E W}, 

then G acts on G (h, W) and preserves X. In fact, the condition that T = (tpa) 
belongs to G is: 

(1.2) TQtT Q. 

If S E X is represented by the matrix Q satisfying (1. 1) then T (S) has 
matrix QT and (OT)Qt (T) Q to O so that T-SEX. 

(b) Let VTbe a compact Kihler manifold and Hr(V) Hr(V, C) W 
the r-th deRham cohomology group using differential forms with complex 
coefficients. We let -yi, . . *, b be an integral basis for the free part of 
Hr(VI,Z); we may consider y1, . ,yb as a basis for W*. 

For fixed p, q with p + q = r, the space HP'q = HPq ((V) of harmonic 
(p, q) forms is a subspace of W. Let l,- . . , J (h hP,q) be a basis for 
HPS,q and form the period matrix 

(1.3) Q-(Irap) = (irapf j )f 
h. . np 

| xh- * r 
(]b 
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h 

If we choose a new basis Aap w 8p I ACa I 07 O, for Hp,q, then Q is 

changed into AO. From the considerations in (a) above, we see that the 
Plucker coordinates of the period matrix Q are invariantly defined and these 
coordinates specify the subspace HPq C Hr(V). 

However, even as a point in the Grassmannian, the period matrix is 
not invariantly defined, because if we choose a new integral basis j[q * *,b, 
then 

b 

(1.4) I p 'YAUpyU 
0=1 

where A (Sap) is unimodular and Q goes into OA since 

In other words, thhe integral change of homology basis (1. 4) has the same 
effect on ? E G (h, W) as the transformation A = (Aap). 

In general, we shall call period matrices Q and 1 equivalent, written 
O-, if 

(1-5) -c AQA (AXE GL (h) , ESL (bp Z) 

cf. lodge [10], page 199. 
The conclusion of this discussion and that in section (a) is that the 

period matrices for periods of integrals on compact Kiihler manifolds should 
be considered as points in a Grassmann manifold G(h, W) taken modulo the 
action of a suitable discrete subgroup r. What we want is that the totality 
of all possible period matrices forms a complex manifold DP on which r acts 
properly discontinuously; in order to do this, we shall consider only the periods 
of the primitive harmonic differentials. After some preliminary considera- 
tions on Kiihler manifolds in (c), we shall give in section (d) the construc- 
tion of the period matrix space D. The group r and its action on D will be 
discussed in section I. 2. (a). 

(c) Since V is a compact Kihler manifold, there is a fundamental class 
to E H11 C H2 (V, C), and we may consider the real operator 

L: Hq(TV) E*Hq+2((V) defined by Lq ,w= (- EHq(Y)). 

We set Hq(V)0 kernel (Ln-g+1) { E Hq(V): On-q+lq1 O} where dim v 
n. The space Hq(V)) is called the space of primitive cohomology classes 

of degree q (q?n). 



5 74 PHILLIP A. GRIFFITHS. 

One of lodge's fundamental theorems gives the Lefschetz decomposition: 
For 0 < q < n, 

(1. 6) Hq (V) = LrHq-2r(V7) 0 
O-r_ [q/ 2] 

Now we may define a real quadratic form Q: Hq ( V) X Hq (V) 0 < C by 

(.) (7) ) = _)(q+l)l 2 ) n-qX HqnB ff(V) ). 

For q even, Q is symmetric and Q is alternating for q odd; in either case, 
Q is non singular. 

So far we have made no mention of the complex structure on V; the 
above are results which hold for the topological manifold V together with the 
class w. The complex structure induces an operator J: Hq (V) -* Hq (V) 
and we have the Hodge decomposition: 

(1. 8) Hg( V) N Hr,s (Hris = 7s,r) 
r+s=q 

where Hrn C Hq(V) is the subspace spanned by the cohomology classes of 
type (r, s). Here J Hr,ER is multiplication by ( /_1) r-s. 

Now the decompositions (1. 6) and (1. 8) are compatible so that, if we 
set r ((V) - LrHq-2r(V)o , Ho8,t {kernel of Ln-q+1 on Hist, s + t =q}, 
Hr_st - LrHos-r,t-r, we have, for 0 < q ? n, 

(1. 9) Hq(V) - Hrq (V)), 
o0r?[ql 2] 

(1. 10) Hq (V)o 0 Ho-R,t., 
s+t=q 

(1. 11) Hlst = Hr t, 

o=<rS [q/2] 

(1. 12) Hrq (TV) = Hr t'. 
s+t=q 

The connexion between the decompositions (1. 9)- (1. 12) and the quad- 
ratic form (1. 7) is the following: 

(1. 13) Q (H0o-r,r, H ORq-s) = 0 (r 7? s) 

(1. 14) Q (Hoq-r,r, 70Eq-r,r) > 0. 

Here (1. 13) means that Q (d,p ) 0 for t E Hoq-r,r, - E Ho1f8-8; and (1. 14) 
means that, if we choose a basis wl, * , fok for Hoq-r,r, then the matrix 

(1.15) Aa _ 1) q (_ 1) r+qQ ( av-= 

is Hermitian positive definite. 
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The relations (1. 13), (1. 14) are generalizations of the Riemann first 
and second bilinear relations. 

The classical reference for the above is Hodge [10], pages 178-201. We 
remark that Hodge's "effective " is our "primitive" since we shall use the 
adjective effective in another context. 

(d) What we want to do is to make the set of all possible period 
matrices for the primitive cohomology H,0q-r,r into a complex manifold D. 
Because of (a) and (b) we can expect that D should be a subset of a Grass- 
mannian; in effect, D wil be defined by the bilinear relations (1. 13), (1. 14). 

We now make this construction. Let W = Hq (V)O be the complex 
vector space with the bilinear form (1.7). By (1.10), Hq(V)o Bo84 

s+t=q 
and we set: Sr = H,qO + Hoq-ll + + Hoq-r,r t t [q-1/2]. Then 

So, S1, * * *, St forms an increasing sequence of subspaces of W; SO C Si C * - - 
C St C W. Let ho 0hoq,O + hihq,o0hoq-1,*. ht 7o,O + * * * + hoq-t-t 
so that hr = dim Hoq,O + * * + HEo-r,r. Let F F(hop . . ., ht, W) be the 
flag manifold of all nested sequences of subspaces S0 C C c St C W with 
dimSr= =hr. The point in F will be written as [S0,. * - ,St]. The lodge 
decomposition (1. 10) defines then a point Q2 = i2 (V) in F. 

Let G (h, W) be the Grassmann variety of h-planes in W. There is a 
natural embedding F C G = G(ho, W) X . . . X G(ht, W) defined by sending 
[S?,. . .,St] into (S0, * .,St) where SrC G(hr,W). We may think of Sr 
as the period matrix for the primitive harmonic (q -s, s) forms for s ? r. 
Thus Q (1V) [SO,. . ., St] C F may be thought of as a sequence of period 
matrices which determine and are determined by the Hodge decomposition 
(1. 10). 

The flag Qi(V) [SO, * * ,St] satisfies relations implied by (1. 13), 
(1. 14). The first of the relations is Q(SO,SO) ==0, Q(SO,SO) > 0. Given 
these relations, we may define S'/S0 as a subspace of S1 by: 

S1/S = {p C S Q (P, so) =0). 

Then we will have Q (SI/SO, S5/S0) =0, Q (St/S0,S l/SO) > 0. Continuing, 
we may summarize these relations by: 

(1. 16) Q (Sr/Sr-l, Sr/Sr-l) -0 for r #& q/2, 

(1. 17) Q (Sr/Sr-l, Sr/sr-1) > 0. 

Definition. D is the set of all flages [SO, * *, St] in F which satisfy the 
relations (1.16), (1.17). 

16 
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Definition. X is the set of all flags [S?, -,St] in F which satisfy 

(1. 16) written as: 

(1. 18) Q (Sr, Sr)= 0 for r#4 q/2. 

Clearly X is an algebraic subvariety of F and D C X is an open subset. 
We shall call D the period matrix space; it has been exhibited as an open 
subset of an algebraic manifold. 

The underlying vector space W has the bilinear form (1. 7), and we let: 

(1. 19) C= orthogonal group of the quadratic form Q given by (1. 7); 

(1. 20) G real linear transformations in G. 

Clearly G acts on X by T[SO, - *,St] [T(SO) * * ,T(St)]. The 
embedding F C G is equivariant with respect to this action. Furthermore, 
G acts on X and takes D into D by (1.16), (1.17). We shall see below that 
G acts transitively on X and G acts transitively on D. 

(e) As a first example, we consider a compact Riemann surface V 
of genus q. Then H1 (V, C) = W is a vector space of dimension 2q and the 
space of Abelian differentials H1,0 C W is a subspace of dimension q. The 
point in G (q, 2q) defined by H1'0 C W has as Plucker coordinates those of 
the usual period matrix of V. 

Let yi,, * , )Y2q be an integral basis for H1 (V, Z) which forms a canonical 
system of retrosections on the surface V; denote by I,* ,2q E H1 (V, Z) 

the dual basis. The matrix Q= (qp,), qpu= f5P A )P , will then be: 

Q ( Iq Iq) 

Let w1i * *, be a basis for H1'0 and set 7p = wa, = (7rap). The 

bilinear relations (1. 13), (1. 14) become (cf. (1.1)): 

(1. 21) nQtf2 0' 

(1. 22) l(QQtQ) > 0 

Write Q =- (E, F) where E, F are q X q matrices. The relations (1. 21), 
(1.22) become: 

(1.23) FtE+EtF 0, 
V 1(- FtR?+Et) >0. 
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The matrix E is non-singular, since if t,E = 0 for some vector 4, then 
0 < t[V/-1 (- FtR + Et1) ]( - 0. Thus Q r (E, F) -- (1, E-1F) (I, Z) . 

Now the set of q X q symmetric matrices Z X + -/- i Y with Y > 0 is 
Siegel's upper half space Hq in genus q, and we have shown: 

(1. 24) PROPOSITION. The period matrix space D for a compact Rie- 
mann surface of genus q is analytically isomorphic to the Siegel upper half 
space Hq. 

The group G is the 2q X 2q complex matrices T which satisfy TQtT= Q 

(cf. (1.2)) where Q=( 
0 Ig); thus O=Sp(q,C) is the complex sym- 

plectic group (cf. Chevalley [4], page 22). The automorphism group G of 
D -- Hq is the real symplectic group Sp (q) = Sp (q, R). 

In order to identify the action of G on D with the usual action of Sp (q) 
on Hq given by 

(1. 25) T(Z) = (AZ + B) (CZ + D)-1, T ( ); 
we define a mapping A: Sp(q) ->Sp(q) by 

(1.26) T >T =(a ) A T =Q C ) D 

Since T-1 = ( a A) A is the composition of the operations T-> T-1, 
A IA - ( ) D)> a D). We check that (TjT2) =T2T 

Now we calculate: 

UT (I D B) ((tD +ZtC) , (tB + VA)) 

(I, (tD + ZtC)-l (tB + ZtA) = (I, (AZ + B) (CZ + D)-1). 

This shows how the action of G on D corresponds, under the anti- 
automorphism , to the usual action (1. 25) of Sp (q) on Hq. 

It is well known that G acts transitively on D, considered as q-dimen- 
sional subspaces S C W satisfying Q (S, S) =0, Q (S, S) > 0, and the isotropy 
group H of a fixed SE D is the unitary group U(q), so that D is the coset 
space H\G U (q)\Sp (q). 

(f) As a second example, we consider a compact Kdhler surface V. 
Letting W = H2 (V, C)o be the primitive cohomology, the construction of the 
domain D in this case consists in looking at subspaces S C W, dimS - h -2 h, 
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which satisfy Q (S, S) =0, Q (S, S) > 0. A typical such subspace is H2'0 C W. 
If we write W = (H 20 0 H0'2) E Ho1'l where Ho1l' is the primitive co- 
homology of type; (1, 1), then H2'0 E H0,2 and Ho1"1 are both defined as real 
vector spaces; Q on H'2, 0 E10,2 is positive definite and Q on Ho1'1 is negative 
definite (index theorem). In general, if S C D, then S + S and R = (S + S)' 
are real subspaces on which Q is positive and negative respectively. 

Let k = dim Ho ll and b - 2h + k = dim W. Then the real -quadratic 
form Q has signature (2h, k) (= 2h positive and k negative signs) so that 
G 0 (2h, k) is the orthogonal group of a real, indefinite quadratic form. 
The group G is just the complex orthogonal group 0 (b, C). 

We claim that G acts transitively on D. To see this, let S C D and 
w . * *h be a basis for S. Then Q (wa, ,O) 0 and the Hermitian matrix 
A (XAg) given by A = Q(w, ) is positive definite. We may choose a 
new basis p1,* *, , h for S such that Q (pl, ) = 6. Such a basis will be 
called orthonormal. 

Let now R (SDS)I { E W Q Q(q,SES) O}. Then R is the 
complexification of a real vector space and we may choose a real basis gl,.* , 

for R such that Q (Ci,Qi) =-8j. Let -= 2 2 1 . Then 
l, ***qh; el ' 

, h; l,* ., gk gives a real basis for W relative to which 

Q has the matrix (I2& - 

Given SC D, we may choose {J/} {?}, {gi}, {\}, {0} as for S and 
define T: W- W by Tqa= =- Tea =a, Tgi gi. Then T C G and T(S) =, 
so that G acts transitively on D. 

A 

Observe that, by letting T'1 -+ g, we can assure that det T + 1 so 
that the identity component SO (2h, k) of G acts transitively on D. 

Suppose that SO C D is fixed and H = {T C G I TSo = S is the stability 
group of S,. Since T is real, TSO = SO and so T(So 0 SO) =- SO 0 SO. Because 
T preserves Q, T takes an orthonormal basis for SO into an orthonormal basis, 
and so T on SO 0 SO is of the form A 0) A where A is unitary. Also T acts 
as an isometry in R= (So ESO)I and so H_ U(h)X 0(k); in particular, 
H is compact. 

(g) The above examples obviously generalize to give the following: 

(1. 26) THEOREM. Let V be a compact Kdhler manifold and W 
_IT (1,C) the primitive cohomology in dimension q. We construct the 

period matrix space D of all possible Hodge decompositions of W satisfying 
the bilinear relations (1. 13), (1. 14) as in Section (d). Then the group G 
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of all real linear automorphisms of W preserving the quadratic form Q given 
by (1. 17) is a real simple Lie group which acts transitively on D. The 
isotropy subgroup of a fixed point QO C ED' is compact so that D is represented 
as the open homogeneous complex manifold H\G. 

Remark. As in the case of the periods of the 2-forms above, we see that 
the identity component of G acts transitively on D (in particular, D is 
connected). 

I. 2. Modular varieties of polarized algebraic manifolds. (a) The 
construction of I.1.(d) of the period matrix space D was based on the lodge 
decomposition of Hq (V, C). If we take a diffeomorphism f: V1 -*T V, and if f 
preserves the Kihler form w, then we should get equivalent points in D. 
Another way of saying this is that the period matrix (1. 3) is defined up 
to the equivalence (1. 5) which involves right multiplication by a matrix 
arising from a change of homology basis. 

To take this into account, we assume that V is polarized; i. e. there exists 
an analytic line bundle L -* V whose characteristic class is the Kihler form W. 
In this case, c C H"i' (v) n H2 (V, Z) is an integral class, the primitive 
cohomology Hq (V,, C)0 is defined over the rational numbers, and the quadratic 
forms (1. 7) are rational. 

2n 

Consider now the graded ring H* (V, Z) = Hq (V, Z). There is an 
q=0 

algebra A of operators on H* (V, Z); viz. the cohomology operations (cup 
product, primary operations, secondary operations when defined, etc.). We 
now consider the graded isomorphisms T*: H* (V, Z) -* H* (V, Z) which 

2n 

satisfy the following: (i) T* = T. is an automorphism of H* (V, Z) 
q=0 

2n 

= Hq (V, Z) commuting with A; and (ii) T2(Z) =w. The set of all 
q=o 

2n 

such T* forms a graded group A 7 = Aq, which we call the algebraic 
q=0 

automorphism group of H* (1V, Z). 
Now a homeomorphism fi: V -> V with f*t - induces T (f) * 1*. 

In this way we get a graded subgroup A* C A *; A* is the geometric auto- 
morphism group of H*(V,Z). We are unable to find much information in 
the literature on the position of A* in AX. If V is a curve or abelian variety, 
then A = AL. Results of C. T. C. Wall (Journal London Math. Soc., 39 
(1964), 131-140) indicate that, for simply-connected algebraic surfaces, A* 
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is essentially A. The reason for considering both A* and AV* is that A* 
contains the geometric information, whereas A* is defined algebraically. 

2n 

Let now T* =TqC AE . Then Tq: H2(V)0-> HQ(V)0 and T. pre- 
q=O 

serves the Lefschetz decomposition (1. 9) and the inner products (1. 7) 
obviously Tq need not preserve the Hodge decomposition (1. 10). It follows 
that, if D (_Dq) is the period matrix space for H1I?(V))o (cf. 1.(d) ), then A* 
and A* induce subgroups A and A of G, where G is the transitive group 
acting on D (cf. Theorem (1. 26)). Since the isotropy group H C G is 
compact, A and A are both discrete subgroups of G which act properly 
discontinuously on D. Thus D/A and D/A are both analytic spaces ([8]) 
and there is a mapping D/A -> D/A. We have: 

(2. 1) PROPOSITION. Given the topological manifold V and the line 
bundle L--1 V, we may construct: (i) the class .wC H2(V,Z) ; (ii) the primi- 
tive cohomology spaces and the quadratic forms (1. 7) ; (iii) the period matrix 
space D; and (iv) the discrete groups A and AV. 

Given a polarized algebraic structure on (V,L), there are defined points 
4A(V) C D/A and J? (V) C D/A. 

(b) It is traditional in moduli questions to have an arithmetic subgroup 
r c G and to let M D/r be the modular variety. This is primarily for the 
purpose of constructing automorphic forms, compactifying M, etc. (cf. the 
Borel-Baily article in Proc. Sym. on Pure Math., Vol. IX, Amer. Math Soc. 
(1966), 281-296). It seems as though A need not be an arithmetic sub- 
group of G; the reason is essentially that G does not take into account the 
cohomology operations on H* (V, Z). Let us give some examples: 

(i) If V is a compact Riemann surface of genus q ? 1, then V is 
automatically polarized. The period matrix space D is analytically equivalent 
to the Siegel upper half-space Hq= {q X q matrices Z such that tZ =Z, 

ImZ> O'}. The group G is Sp(q,R) acting by T*Z= (AZ+B) (CZ+D)-' 

T= (A D). For our purposes, we need only consider the Siegel modular 

group r C G of integral symplectic matrices (A A= r). 
The same is true if V is a normally polarized abelian variety and D is 

the period matrix space for the 1-forms. 
(ii) As as second example, let (V,L) be a polarized, simply-connected 

algebraic surface and D the domain of period matrices for the holomorphic 
2-forms on V. Then, if h=h2'0(V), k-=hl"(Vo) (so that b =2h?+k where 
b =dim H2(V),), 
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h2-h 
(2.2) D-_U(h)XJ(k)\0(2h,k), dimD= 2 h +lkh. 

The group AV is described as follows: Let .4y1, 4. ' be an integral 
b+1 

basis for H2 (V, Z) (there is no torsion) and write )-= dpfj ($j C Z). Let 

qij QQ i), p)=<pi U pi, V> and denote by AX the matrices T (tij) such 
that Tw t==, tTQT Q. If TC A&, then T induces a linear transformation 
T on H2(V)= {EcH2(V,C)I Q(, -) O}. The set of all such T gives 
Av, and A is an arithmetic subgroup of G. 

(iii) Let (V, L) be a normally polarized abelian variety and D the 
period matrix space for the holomorphic 2-forms. Then 

H2(V)0 C Hl(V1,C) AH'(V1,C) 
and 

H2,0 (V) -H1,?(V) A HI-0(V). 

If T2 C A2, then T2=-T1 A T1 where T1 C A1V. Letting r be all AS: H2 (V, Z) 
_> H2 (V, Z) with S (c) w, then P induces an arithmetic subgroup F c G 
(cf. example (ii) above) and A2 c r. However, A2 is much smaller than 
F and is not an arithmetic subgroup. 

The above examples illustrate two points: First, AV is always contained 
in an arithmetic subgroup F. Secondly, in case A is not an arithmetic sub- 
group, both G and D are too large; i.e., the operations in H* (V, Z) should 
be built into the definition of D. We shall not do this here but shall assume 
that, on some grounds, an arithmetic subgroup r C G with A C r has been 
selected and we let M = D/r be the modular variety. 

(2. 1 bis) PROPOSITION. M is an analytic space with finite invariant 
volume, and a polarized algebraic structure on (V, L) defines a unique point 
( (V) E M. 

(c) Suppose now that we have two polarzed algebraic manifolds (V, L) 
and (V', L'), of the same type, together with a polarization-preserving homeo- 
morphism: 

(2.3) f : V ->V', f*L) . 

Letting c C H2 (1V, Z) and c' C H2 (1V7, Z) be the characteristic classes of L, L', 
it follows that f * (o') = w. We note that the graph of f defines a homology 
class 

FE H2n(V X 17'Z) (dim V==~n). 
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We let MA D1/DA1 X X Dn/KAI where D. is the period matrix space 
n 

for the primitive q-forms on V and A = Aq is the geometric automorphism 
q=1 

group; M'A for (V1,L') is constructed similarly. From Proposition (2.1), 
it is clear that we have an isomorphism f*: MA-->MA. 

(2. 4) THEOREM. i4A(V) = 4A(V') if, and only if, the graph 
FEH2n (VTX V'Z) of f is of type (n,n). 

Proof. It is clear that DA (V)17-) =DA (V') if, and only if, with appropriate 
choices of cohomology bases the induced mapping 

(2.5) f*: Hq(VI, C)0> Hq(V, C)0 
preserves the Hodge decompositions (1. 10). Thus we have to show that f* in 
(2. 5) preserves the Hodge decompositions if, and only if, F E H2, (V X V', Z) 
is of type (n,n). 

By the general Kiinneth formula, 

H*(VT7C) 0H1*(V`7'C) -H*(V X VT`'C). 
Furthermore, if E Hn-q(V,C), VE Hq (VT',C), then 

(2.6) <P0,kF> =f ff*(l). 
g 

Let us prove (2. 6). Consider the mapping V X V- > V X V' where 
g(x,y)=(x,f(y));i.e.g= iXf. ThenF= g*t wheret&ECH4. (VXV,Z) 
is the diagonal; and so 

<p0 ,F>=<p0 X,gg*>=<g*(p0 A),A> K<?f > Af f 

where the last step uses well-known properties of the cup product. 
For Kiihler manifolds, we have the Kiinneth relation: 

(2.7) HP,q(VTX VI) EHp-r,-8(V)Hr8(TV') 
r,s 

where we notationally agree that HP,6 = 0 for p < 0 or p > n. Now 
F E H2n (V X V', Z) is of type (n, n) if, and only if, 

(2.8) <H2n-qq(VX V'),> O for q=7z?n. 

By (2.7), (2.8) is the same as 

(2. 9) <H 2n-q-0-8 HrVs(V) F> 0 for q &n. 

From (2.6) and (2.9), we see that F is of type (n,n) if, and only if, 
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(2.10) 4 [H2n-q-rq-8( ] A f*[Hr8s(V) ] 0 for q n and all r,s. 

In (2.10) there are three cases: 

(i) r?+s>n, 
(ii) r + s n, 

(iii) r ? s < n. 

Clearly (i) and (iii) are symmetric. In case (i), Hr,8(V') -r+8-nHn-8,n-r(V,') 

so that (2. 10) becomes: 

(2.11) 4 r+8-n [H2nq-r,-8(V)] Af*[THn-8,n-r(VT)] =0 for q=7n. 

Using the decomposition (1. 12), (2. 11) becomes: 

(2. 12 ) 6r+8-nH2n-q-Aq-s ( V) A f*Hn-8, n-r (TV) _ 0 for q # n. 

Now f *HP (I ') -HV,P (V) while we have 

n -pH Ap ( V) A HVP ( V) ~V for J#v 

(cf. Hodge [10], page 183). Thus (2.12) becomes: 

(2. 12) 
f{or+f-nH2n-q-rP0-8(V) Af*Hn-8,An-r(7') 

0 for q#n. 

Since 
H2n-q-r,Aq-s (1V) -AH2n-q-r-Aq-8-1 (1V) 0 

and 
f *nH-s, n-r ( VI) -wAf*Hn-8-/In-r-A ( VI)0 

(2.13) may be written as: 

(2. 14) f0 r+8+2,H2n--q-r-,Xq-8- (V) 0 A f*THn-8--,,n-r-, ( V') 0 

for q # n. Finally, (2. 14) may be written: 

(2. 15) Q (H2n= 0-r- ,,9-8- (V) o, f *Hn-8-,,,n-r- (VI) 0) O for q#7& n, 

where Q is the inner product (1. 7). By changing indices, (2.15) gives 

(2. 16) Q (Hn-r-t,n+t-8 ( V) 0f f *Hn-8,n-r (V') ) - 0 for t = 0'. 

Now (2. 16) makes sense in case (ii) and a similar argument to (2. 11)- 
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(2. 16) shows that: 

2.17T JThe homology class F is of type (n, n) if, and 
(2. * ') lonly if, (2. 16) holds for all r, s with r +sn. 
The subspace S C H2n-(r+8) (V)0 defined by Q (Hn-r-t,n+t-8 (V)O, S) = 0 for all 
t # 0 is precisely Hn-8s-r(V)O, so that we conclude: 

J The equation (2.16) holds if, and only if, 
(2.18) lf*Hn-89n-r(V')o Hn-8,n-r(V)0 for r + s_ n. 

Combining (2. 17) and (2. 18) gives our theorem. 
(d) As in section (c) above we let f: (V, L) -> (V', L') be a homeo- 

morphism of polarized pairs. For simplicity, we assume that A = = r 
and A' =A!= r'. If 4b(V) ==c(V'), and if a suitable version of the Eodge 
conjecture holds, then from Theorem (2. 4) we find that there will exist an 
algebraic cycle T C V X V' such that T F, F being the graph of ft If T 

I 

is effective, i. e., if T = njWn where nj > 0 and Wi are algebraic varieties, 
j=1 

then T will induce a birational correspondence T: V-- V'. 
The one case in which the Hodge conjecture holds is when V is a curve 

so that V X V' is a surface Z. We choose a system yi, * , yq; y, *1* * n y2q 

of retrosections for V and set y' * (ya). Then the homology class F of 
the graph of F is: 

q q 

(2.19) F =V+ V'+ Iya X 7 q+a q+a X 7tt 
O!=1 O!=1 

We note that the intersection number: 

(2.20) (F ) = 2 -2q. 

In this case, it is immediate that F is of type (1, 1) if the period matrices 
Z = (zcfi) and Z'== (z'ao) of V and V' are equal: Letting a, 0' be holo- 

morphic 1-forms on V, V' such that J z= = z, ' = Jrl/f 3 the holo- 
lyq+.8I * Y Q+, 

morphic 2-forms wa A co',O give a basis for H2'0 (V X V'). But 

C (O A / 'f = Z,6a - = a 0 

Now there will be a line bundle E -> Z = V X 1' with characteristic class 
F; i.e. the Poincare dual of cl(E) is F. From (2. 20), we get cl (E) . cl(E) 

2- 2q. The line bundle E ->Z is not unique but may be written as 

(2.21) E (', V)= E C E0 X Ev' 
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where E, is a line bundle in H' (V, O ) /H' (V, Z) =- Picard variety of V, and 
similarly for Ei'. Obviously we have: 

(2. 22) PROPOSITION. The existence of a holmorphic cross section of 
E (., X') for some X, V' is equivalent to finding a birational correspondenqce 
T: V--7V'. 

By the Torelli theorem (cf. [13]), a birational correspondence exists. 
Thus, for some X, i', HO (Z, / (E (X, A.))) ) )O. It is not hard to see that 
dim HO (Z, @ (E (), ='-))) 1 and H0(O(E(l., V'))) = 0 for general points X, 1'. 

Conversely, a direct proof that HO (/ (E (A, ))) 0 for some X, 1 ' 

would prove the Torelli theorem. 

I. 3. Some properties of the modular varieties; complex torii asso- 
ciated to the cGhomology of an algebraic manifold. (a) Let V be a 
polarized algebraic manifold, q 2m + 1 an odd integer, and Dq the period 
matrix space for the primitive q-forms on V (cf. I. 1 (d)). If 

2b = dim H2m+1 (1V, C) On 

and if ho = h2m+l,O hi 1 h02m , . **hm ho2m+l then b ho ++hm 
and 

(3.1) Dq U(ho) X . X U(hm)\Sp(b) H\G. 

For m = 0, D1 U (b)\Sp (b) Hb is a Siegel upper-half-space of genus 

,a 0 
b; we may assume that Q=( )where A= K ), 1= 821'* 18b 

and so r rA is a paramodular group. In this case the point JD (V) C M1 
D/Tr has the following intepretation: We consider the period matrix Q 

for the holomorphic 1-forms on V. Thus we have a basis )'P * , Pw for 

H1'0 (1V) and free generators /,i * , y2b for H1 (V1, Z), and we let 7ap = J 
so that f2 = (7rap). Then the columns of Q generate a lattice A in Cb, and 
A1 (V7)* Cb/A is a complex torus, called the Albanese v7riety of V. The 
relations (1. 13), (1. 14) become: 

(3.2) OQ 2O 
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where Q= (_ - ) is a skew symmetric integral matrix., We may write 

Q>-(A,Z) where, by (3.2), ZEHb. The mapping: Al(V)*->ZEHb/rA 
is well-defined and we have: 

(3. 3) PROPOSITION. The point (D (V) E Hb/rA is the period matrix of 
the Albanese variety A1(V)*. (The * is used because A1(V)* is duacl to the 
torus in which we shall be mainly interested.) 

(i) A1(V) * is a complex torus which depends holomorphically on V; 
(ii) a polarization on V induces one on A,(V)m; 
(iii) A1 (V) * is functorial; given a holomorphic mapping f: V -> V.', 

there is induced a holomorphic homomorphism f : A1(V)* 
-> A, (V') *; 

(iv) 4?(V) =b(A1(V)*) EM =Hb/rA; and 

(v) the mapping +p: V1*A1(V)* given by 

\ F/ 
is holomorphic and is universal, up to translations. 

Now property (v) is special for 1-forms, but we may ask, for general m., 
if the real torus T2+i1 (1V) = H2m+1 (V, R)/H2m+1(V,Z) can be given a com- 
plex structure such that (i)-(iv) are satisfied? The intermediate Jacobians 
A2+1 (1V) of Weil [14] are not entirely satisfactory; A2m+1 (V) does not 
depend holomorphically on V and (iv) is not satisfied. By suitably inter- 
preting (ii), we shall give an affirmative answer to this question; in Part II, 
we shall also generalize (v) and give the precise relation of our torii to the 
A2m+1 (V) . 

Remark. Actually, rather than generalizing the Albanese variety above, 
we shall generalize the construction of the dual torus, which is the Picard 
variety A1(V). The conditions (i)-(iv) above will be the same, with the 
arrow being reversed in (iii). 

To construct A1(V) we let W-=H'(V,C) and S C W be the subspace 
H1? (1V). Then S n s =o, and so the lattice H' (V, Z) C H' (V, R) projects 
onto a lattice A C Ws W/S. Thus A1 (V) = Ws/A is a complex torus, 
and it is this construction we shall generalize. 
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We reinark that, in the usual notation [9], Ws -- H1 (V, 0) and the 
mapping H1 (V, Z) -> H' (V1,) is the cohomology mapping arising from the 
sheaf sequence O >Z ---->o >O. 

(b) As an example, suppose that dim V = 3, that H3(V, C) =H3(V, C)O, 
and let W= 3(V,C). Define a bilinear form Q on W by: 

(3.4) Q_1A) (Vi) f p; for ' 'H3(,C). 

If S1-H3'0(V) and S2=H3'0(V) +?H2,1(V), then: 

{Q (S2, S2) = 0 

(35) Q (Sl, S1i) > ?' 

(Q (S21SI, 2/igl) < 0. 

(The change in sign in (3. 5) arises from ,,Iw2(,,371U;273 = 1Z;,1(0272(03Z73 

whereas Wlto2Z737j1Z72w3 =+ ,1, ,2z72W 373 ) 
We now let D be the flags [SI, S2] for which (3. 5) is satisfied. Let 

y,. *, y2n be an integral basis for H3 (1V, Z). For each Q C D we may define 
a complex torus T(Q) by: 

(3.6) T(Q) ={W/S2}modulo (y,, Q 2n)z, 

where (1,. . *,2n) Zis the lattice generated by y1, , *2n. 

In case Q =2 (V) is the point corresponding to V, we let T (a) -T3 (V). 
There is an obvious isomorphism D3- D, and the point Q (V) corresponding 
to V is (3(V). 

Corresponding to V there is another torus A3 (1V) where we set 
R- H2'1 + H0O3 and: 

(3. 7) A3((V) =={W/R}modulo (yl, y2n)Z 

This A3 (V) is Weil's intermediate Jacobian; observe that Q (R,R1) > 0, 
which is reason for the polarization on A3 (V). It is clear that T3(V) and 
A3(V) are different complex torii unless H3,0 - 0. If, e.g., V is a cubic 
threefold (h3,0 O, h2"-5), then they coincide. 

(3.8) PROPOSITION. A3(V) does not, in general, depend holomor- 
phically on V, whereas T3(V) does depend holomorphically on V. 

Remark. Clearly T3 (V) T3 (f2 (V) ) depends holomorphically on 
Q C D, and we shall prove in Part II, Section I(a) that Q2(V) = (D3(V) 
depends holomorphically on V. 
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We now give an example where T (Q) depends holomorphically on 0 
but A (2) does not; this example was suggested by Mattuck. 

Let C, C02, C3 be elliptic curves with holomorphic differentials W1, 0)2, W.3. 

We suppose that, on Cj, we have cycles y;l, y72 with (yjl, yj2) = + 1, 1, 

J i = ,r. Thus Im -r > 0 and Cj has period matrix (1, ;). We let 
- 

1 2 
1,2-3 7=C1 X C2 X C3 and o123 (1 26 6123 = ( W etc_ q_-w jV. Then 

(t (1 + 02 + (P3 is a Kihler metric on V, and a basis for the primitive forms 
in H + Ho2 is: 

W123n, W 129 (13)123., cl ( 02 -03 )p)2 ( 01 - 03 ), W3 ( 01 -02) 

The first four of these differentials form a reducible set of integrals (cf. lodge 

[10], page 201). We shall compute the period matrix Q of W123, 0123-, )123, 123 

on the cycles 

1 Y11 X Y21 X Y31, 02711 X 721 X 732, 03 7i1 X 722 X 731, 

'4711 X Y22 X Y32, O5Y12 X Y21 X Y31, 0672 X1Y21 X 732, 

07 712 X 722 X 731, 8 712 X 722 X 732- 

The period matrix of 02 will be a sum of Q plus a less interesting matrix. We 
have: 

1 Tr 72 73 T1T2 T173 T2T3 T1I2r3 

A 1 71 T2 73 FjT2 71T3 2T73 T1T2T3 

T1 72 Tr3 'r T2 T1T3 T2T3 1IT2T3 

L 1 T2 73 71T2 TIT3 T2T3 717273 

Subtracting the second row of Q from the first and dividing by (T1 -T2) gives: 

1O 0 0 T2 73 0 T2T3 

fi~ 1 71 72 73 T1T2 T1T3 T2T3 172T3 

Tl i:2 73 71'2 T1T3 T2T3 71T273 

Li T2 73 T172 T1T3 T29 -3 T1r2T3 

Subtracting i1 times the first row from the second gives: 

0 1 0 0 T2 T3 0 T2T3 

0 1 T2 T3 0 0 T2T3 0 

1T1 T2 T3 TIT2 T1T3 T2T3 TIT2T3 

' 
l T2 73 TI TI TI3 T2T3 71'T273 
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Similar reductions lead to the equivalent matrix: 

? 1 ? ? T2 T3 ?l T2T3 

1 0 T 0 2 73 0 02T3 0 

O O 1 O Ti ? T3 TjT3. 

~O O 0 1 0 Tl T2 7172J 

Letting T(Q) be the torus whose period matrix is 0, it is clear that T(Q) 
(and, by an easier computation, T(2) ) depends holomorphically on Ti, T2, T3. 

A similar computation shows that A (02) does not depend holomorphically 
on Tm, T2n T3: The period matrix of (123, 0123n (0i23i, *123 over the above eight 
cycles is: 

T T2 T3 71i2 71T3 T2T3 71T2T3 

T1 
T2 T3 

T1T2 T1T3 72T3 

Til2TS 7T2 3 71T2 Tj73 T2T3 ij1T2T3 

Tl T2 T3 1 l f 2 73 

Now: 7r 1 T2 T3 (I 1 T 1) (T2 T2 ) ( T3 -3); 1 T1 T2 T3 

1 fl T2 T3 

1 T2 73 T2T3 

1 72 7f3 T2T3 = 7-3 7 72) 2. 7r2 
7 2 T3 72T3 

( T2 T3 ) ( T2- ) 

1 T2 T3 T2T3 

1 T2 T3 T2T3 

Thus the two Plucker coordinates rl, 72 of &l have the ratio (T2 2) 

so that C2 does not depend holomorphically on 1rl, T2, T3. 

(c) We consider again the torus T3 (V), constructed above, as regards 
the properties (i) - (iv) listed below Proposition 3. 3. By Proposition 3. 8, 
(i) is satisfied and (iv) is also satisfied. Also, T3 (V) is functorial: given 
f: VT-*V', f :H3(,V7',C) ..> H3(VT,C), 

f* {H3O1 (V') + H2I, (T) } C H3,0 (V) + H2, (V), 

and f *{H3 (TV', Z) } C H3 (V, Z) so that we have induced f*: T3 (V') - T3 (V). 
So what remains is the question of polarizing T, (V). 

Definition. Let X be a complex manifold of dimension n. A q-convex 
polarization on X is given by a holomorphic line bundle L -- X which 
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has a metric whose characteristic class, computed from the curvature, is 
n 

= V-. 1 { I haf dza A dV} where H (hoe,f) is a non-singular Hermitian 
a.=1 

matrix with signature (n - q, q). 

Remark. If H has signature (n - q, q), then we can locally find 1-forms 
n 

wa =~~ Aa,gdzP such that: 
0=1 

n-q n 

(3.9) 'Y (Oa A {2E ,0ga ) (oP A' 0} 
a=1 P=n-q+l 

A o-convex polarization is just an ordinary polarization. By passing 
from L to the dual bundle L*, a q-convex polarization is equivalent to an 
(n - q) -convex polarization 

(3. 10) PROPOSITION. T3 (V) has a natural q-convex polarization where 
q 2,1. 

Proof. We choose an integral basis ',-* ',&2n for H3(V, Z) and a 
basis wl,* *,on for S2 H3'0(V) +H21((V) such that wl, * ,on- is a 

2n 

basis for H3'0 (1V). Write (a = sroepyP SO that Q = (7racp) is the period 
p=l 

matrix for o',. * * By (3. 5), we can find a rational skew-symmetric 
matrix Q with Q-1 integral and such that: 

(3. 1) nQtn - O; 

(3. 12) f2Qtf2 -/ t_ H,; 

where H1 is an Hermitian matrix of signature (n - q, q) whose first (n -- q) 
by (n - q) block is positive definite. 

Every vector E Cn can be written as a real linear combination of the 

/7rtp \ 
column vectors 41, *, *,2n (4p = * ) of Q, and this gives an isomor- 

\rnp/ 

morphism Cn -R2n with $p corresponding to the p-th coordinate vector of 
R2n. Letting xl,* . ..x2n be the real coordinates on R2n and zl, , zn the 

2n 

complex coordinates on Cn we have dza = E 7rapdxP. We remark that 
p=1 

dxl, .. , dx2n give a basis for H' (T3 (V), Z), where we are using the fact 
that T = T, (V) is Cn modulo the lattice (, 2 *, ')Zgenerated by a,,. 
In fact we have: 
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0 -S2 -*W -* W/S2 0 

-S2 <- W <_ (W/S2) 0. 

Now T3 (V) is W/S2 modulo the lattice in W, and the above torus Cn modulo 
(41n 

. . . 
2n)Z iS S2* modulo the dual lattice in W*. But Poincare duality 

gives a lattice-preserving isomorphism W/S2 S2*. 
n 

We may now write dx&P= 2aXPdza+? pd?r where 
a=1 

n 

E (+PaP7rvao + + P_WJaa < J80P; 
a=1 

i.e., if (+VaP), 

(3.13) (1)(2) I2n- 

Now let Q-1 (qpa) with qp, integral and set: = > qp,dxP A dxo. 

(3. 14) LEmMA. On T= T3(V), wgiven is = /-\i { E hoidzA Adz}, 

where H =-2tHE-1 and H1 is given by (3.12). 

Proof. 

=2 qp,dxP A dx' 
pOa 

I (i/,aPqp4fJpT) dza A dz' + ? (/Pqp&pyfi) dza A di' 

+ I (q,aPqp a,#- qfiPqploe,aI) dza A dz. 

From (3.11) and (3.12), we get: 

0 0 -V-1 H0 
(3.15S) (fl )Q(tntr2) -\/- 1 Hi 0 1 

Taking inverses of (3. 15) and using (3.13) gives: 

(3.16) (1:)Q-1 (*'i) ( 2 IO ) 

From (3. 16) it follows that w h 1- z hdzaA dA as desired. 

Since T is a compact KThler manifold and w E H"11 n H2(T, Z), there 
will exist a holomorphic line bundle L --> T whose characteristic class is w 

(cf. [9]). What we have to do is find L and a metric h in L whose curvature 

form Vi (Ologh)=o. 

17 
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We write R2n as Eo with standard basis e1, , e2n and define a bilinear 
form H(u,v) on EIJ by: 

n 
H(u, v) = . hafza(u)z(v), 

a'#=1 

where z' (u) is real linear in u and za (ep) 7rap. Since h1, = h,&, we have 
H(u, v) =H(v, u). We let H(z, v) =lHvi(z) =ihoz't(v) be a linear 
holomorphic function on E= Cn and set 

&v(z) ~e( 
-\- Hv (z) + H (v, v)) 2 4 

where e(a) - e20a. Denote by A the lattice (el, ,e2n)z. 

(3. 17) LEMMA. For u, v C A, we have: 

u+v (z) & u(z + v) (z)* 
Proof. If i V- 1, then 

&+V(z) {M(z + v)eV(z) }- 

e4H(z,u+v) +? H(u+v,u+v) - fH(z+v, u) 

= {H(u,u) +'H(z,v) - H(v,v)} 

e{4t H (v, ub) + H (u, v) 2 H(v,ul) } 

e{1- [H (u.b v) -H (v. ub)]} 

Thus we must show: 

(3.18) (H(u,v)- H(v,u)) 0 (1). 

2n 2n 

Write U 
= XPep, v = t6e, where AP, ga are integers. ThleI 

p=1 a-=l 

H(u, v) z h,47izp (ep) z (e,J)APuCP hXxCfxpirn(Jgpa 
and 

H( u, v) H(v, u.) u 'Y hc(Vap7Fl,- 7ra,(r7rpp 

Now 
' 

qpdxP A dx? = 01, 

V- { h.dzc' A dzfl} = V-i { : ha,q(wapdxP A ipdxOT) } 
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2 { I hafi (rapS7goc, -7raa-fp ) dxP A dXy}. 2 
Thus 

-{H(u,v) H(V, )} I Y qp, (AP4a A0gP) -=qpu"XPfO, o (1) 
4 p9,a p,a 

which proves (3. 18). 
Now we form the line bundle L = EO XA C by the equivalence relation: 

(z,A) - (z+ u,$u(z)X), 

where u E A. Because of Lemma (3. 17), this is an equivalence relation, and 
L T3 (1V) is a holomorphic line bundle. 

Let now h(z) =e= (- H(Z,Z)) e7rtH(zz)}. 

(3.19) LEMMA. h(z)- Iv(Z) I2h(z +v) for v y A. 

Proof. 

h (z) h (z + v)1 e{2 H (z, z) + H(z + v, z + v)} 

e{4 [H(z, v) + H(v, z) + H(v, v)}. 

On the other hand, 

I TV(Z) 12 e{ H(z, V) + 4H(v, v) + H(v, z) + H(v, v)}, 

which proves the lemma. 
If now p = (z, X) is a point in L, we set 2f P 112=h(z) I A 12. Then 

11 (z+v,V(Z)X) 2 h(z+v)vZ) 12 x 12 h(z) | A12 1 (z,A)2 so that 
we have a metric in L-*T3(V). Now 

-00 log h (z) t00 H(z, z) h=i{hcJ dz A d20}=, 
Ir a,f 

which proves that L -> T3 (1V) gives a q-convex polarization with q -h 

(d) Let now Eo be a real space with basis e1, * , e2,, and Q a skew- 
symmetric integral bilinear form on Eo. We let E E O?R C be the com- 
plexification of Eo. Consider flags 0 = [Sl, S2] where dim S n -q, 
dim S2 n and let D be the flags Q for which (3. 5) is satisfied. The proof 
of Proposition (3. 10) shows that, for each Q E D, there is naturally associated 
a complex torus T(Q) with q-convex polarization. Thus {T (Q) }2ED is an 
analytic family of q-convex polarized torii. 
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We let G =-Sp (Q) be the real symplectic group of Q. Then G acts 
transitively on D with isotropy group H = U (n - q) X U (q). The para- 
modular group rA acts properly discontinuously on D from the right, and 
M = D/rA is an analytic space. 

(3.20) THEOREM. Let V be a polarized algebraic manifold of dimen- 
sion n 3, with H3 (V, C) - H3 (V, C),O and q-h2 1. Then: 

(i) The torus T3 (V) ~= H3 (V, R) /H3 (V, Z) carries a complex struc- 
ture such that the polarization on V induces a q-convex polarization on T3 (V) 

(ii) T3(V), together with its polarization is fuunctorial; 

(iii) The period matrix space D3 for the 3-forms on V is isomorphic to 
D and, under this equivalence, T3 (V) is the torus corresponding to the point 
?(V) in D3; 

(iv) In particular, T3 (V) varies holomorphically with V. 

Remark. D U(n -q) X U(q)\Sp(n) where U(n -q) X U(q) is 
embedded in Sp (n) as follows: On R2n with real coordinates xl, . .X2n, 

we let w - dx'l A dxn+a. Then Sp (n) is the group of real linear trans- 
a=1 

formations which preserve w. Let now Za- Xa + iXn+a for 1 ? a ? n - q and 
z, x- iXn+ for n -q+ 1 ? p n. Then U(n-q) X U(q) preserves 

n-q n 
the Herimtian forms dzadPa and E dzOd. It follows that U (n - q) 

a'=I P=n-q+l 

X U(q) preserves w and this gives the embedding U(n -q) X U(q) C Sp(n). 
We note that the Siegel upper half space Hn U (n) \Sp (n). 

7T 

(3. 21) PROPOSITION. The differentiable fibering D > H., induced 
from the inclusion U(n-q) X U(q) C U(n), is not holomorphic if q > 0 
and is not anti-holomorphic if n -q > 0. 

Remark. This is the analogue of Proposition (3. 8), since the point 
7r ( () )) E Hn is the point corresponding to A3 (1). 

A group-theoretic proof, based upon the root structures, may be given; 
and this will be discussed in I. 4 below. However, by giving 7r geometrically, 
the Proposition will become clear. 

We can identify Hn with the n-dimensional subspaces S C E satisfying 
Q(S,S) O, -1 Q(S,S) > 0 (cf. (1.21) and (1.22)). Then 7r[S,,S2] 

(SI + S2/S1), so that 7r is holomorphic if S, -S and anti-holomorphic 
if S1 == 0. 
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To state the general theorem, which will have essentially the same proof 
as Theorem 3. 20, we let V be a polarized algebraic manifold of dimension n. 

For each m with m? [ 2 ] we set: 

rpm I dim H2m+1(1V, C); { k1 ho2m-2k,2k+l1 

rm pn q 

Furthermore, we set Dm D1 X D3 X * X D2m+l, where Dq is the period 
matrix space for the primitive q-forms. 

(3. 22) THEORFM. (i) To each 2 E D(.m) there is naturally associated 
a complex torus T(Q) with q-convex polarization where 

q pm r2 + pm4 * * *; 

(ii) If Om (V() = i *V), ** 4b2m+1 (YV) )E DMn, then there is a natural 
complex structure on T2m+1(V) - H2rn+l(VR)/H2m+l(V, Z) such that 
T2Mr,+j (VT) T (Qmj ( V) ) ; 

(iii) The complex torus T2 +1(V) varies holomorphically with V. 

Remark. Part (iii) will be proved in Part II below. 

We record here one property of the q-convex polarized torii T((Q). 

(3. 23) PROPOSITION. Let T = T(Q) and L -- T the line bundle with 
characteristic class w given by Lemma (3. 14). Then the sheaf cohomology 
groups Hr(T, (L)) 0 for r#4q and dimHq(T, (L))=P(Q), where 
P(Q) is the Pfaffian of Q. 

Proof. Let c have the form (3. 9) where dzl, , dzn are the holo- 
morphic 1-forms on T. Then, for any constants c1, c2, 

n-q n 
dS2 -=cjf )0"io' C2 E Wkfl 

(X=1 =n-q+l 

will give a KThler metric on T. We now use the argument of Theorem 7. 1, 
Section VII, of [6] to show that Hr(T, f(L)) =0 for r#q. By the 
Hirzebruch-Riemann-Roch theorem [9], we have then that 

(T L )sq dim Hgn(Tu 0 (L) ) T x S(T, a(L) ) C cTs(Tn L) 

where T (T, L) is the Todd genus of L ->T. Since all the Che-rn classes of T 
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are zero, T(T, L) =-! n while (o=n n! P(Q) dxl A * A dx2n. Thus 

T(T,L) = P(Q) and so dimHg(T, (L)) P(Q) as required. 

Remark. This generalizes a well-known result in Abelian functions (cf. 
Conforto [5], also [14]). For q 0, HO(T,(L)) is the vector space of 
entire functions t (z) defined on Eo and satisfying (z + y) =-4'(z)t)(z) for 
y C A. These are the theta-functions. For general q, the classes in Hq(T, ((L)) 
are given by C? differential forms: 

1 
(3.24) !-E-t (z, z)' dVi, 

where I (ac,, a, Gq) and d' = dFli A* A dZ?q, t (Z, Z)I is skew-symmetric 
in i,,* - aq, and such that: 

( 3. 2 5 ) 9 (z + -Y) I-$ (z) (z)I 

where 

El ?) I E aXa@Xa + 7r E ha x Ir E ha&j91... (a) .- a 
a UZlac 0( a,j 

"(a .q 

is the Laplacian of 6. 

These cohomology groups will be given a geometric interpretation in 
Part II below, where they will be shown to serve as sort of theta-functions 
for the intermediate cycles on V. 

I. 4. Some further properties of modular varieties. (a) We shall 
discuss some further properties of the period matix domains as constructed 
in I.1.(d). We shall work with two special cases, but the theorems will be 
true for all period matrix domains. To give these examples, we begin with 
a real n-dimensional vector space WO, defined over Q; WO will correspond 
to H2(V,R)o and H3(V,R)O in the two special cases. We let W be the 
complexification of WO and Q: WC T-V - C a non-singular, rational quadratic 
form. 

Case 1. Q is symmetric and D consists of all h-dimensional subspaces 
S C W which satisfy: 

a4.:1) fQ M S) O,0 
5Q(S,S) > =. 

We set Rs= (S E O)I {w Wj Q (S G S, w) =O}, and we assume that Q 
is negative definite on the real vector space underlying Rs. 
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As a coset space (cf. Theorem (1. 26) ), D SO (2h, 7)/U(h) X SO (c) 
where 2h + k = n; D is a period matrix space for the periods of holomorphic 
2-forms. 

If we let X be all S, C W satisfying Q (S, S) =0, then X is an algebraic 
subvariety of G(h, W) and D C X is an open set. 

Case 2. Q is skew-symmetric and D consists of all flags [S1, S2] where 
S1 C S2, dimS2 n, and: 

Q (S2, S2) =0, 
(4.2) V -1Q(S1,Si) >0, 

L 1 Q (S2/S1, S2/S1) <0; 
(cf. (3.2)). 

As a coset space, D U(n -q) X U(q)\Sp(n) where dimS=-n -q, 
although we recall (Proposition (3. 21) ) that D does not fibre holomorphically 
over H,=- U(n)\Sp(n). We let X be all flags [S1,S2] with Q(S2,S2) =0; 
then X is an algebraic subvariety of G(n-q, W) X G(n, W) and D C X is 
an open set. The domain D is a period matrix space for the periods of the 
3-forms. 

(4. 3) THEOREM. Let G= SO (Q, C) be the complex simple Lie group 
of all linear automorphisms of W which preserve Q. Then G acts transitively 
on X so that X is a rational, homogeneous algebraic manifold. The Lie group 
G of real transformations preserving Q is a real form of G and D C X is an 
open G-orbit with compact isotropy group. 

Proof. We shall prove this theorem in case D is the first type of domain 
listed above. The main step in the proof is: 

(4.4) LEMMA. Let SC W be an h-plane with Q(S,S) 0. Then 
we can choose a basis v1, , Vh; U1, * , Uh; W1, * *,Wk for W such that: 
(i) v1,- * *,vh is abasis for S, and (ii) the matrix of Q in this basis is 
'O Ih ?' 

Ih 0 ] 

Proof. Choose a basis vi< , vh for S, and complete this set of vectors 
to a basis vi, * * *, Vh; Z1, . . ., Zh+k for W. Then Q (va, v3) = 0 since Q (S, S) 

0. Because Q is non-singular, the h X (h + k) matrix qaep = Q (va, zp) 
has rank h; we may assume that (q) , has rank h. Suppose that 
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h h 

E qaflAp7 f=37y and let yy 2 Apyz. Then v1, ,vh; yi* yh; zh+1* Zk 

gives a basis for W relative to which Q has the matrix I *1. Let 

Xp ZA+p - Yq,h+pyp for 1 ? p _ k. Then Q (v., xp) qa,hp q?hp 0 

so that, relative to the basis v1 * , vh; yir * yh; X1, . . . Xk, Q has matrix 
'O 1h ? ' 

[I7 * j. The matrix Q (yeg, y6) is symmetric, so that we can let Q (ya, yp) 

h 
- Bap- B for some matrix B = (Bcnp). We let u, = y, + YBayvy. 

,Y=1 
Then Q (u, up) = Q (ya, yp) + Bc,a + Bp = 0 so that, relative to the basis 

'O Ih ?' 

Vl . . . , Vh; U1 *. . . Uh; X1, . . . Xk, Q has the matrix 0 ?7. By 

h 0 1h 0 

replacing xp by xp - E Q (up, xp)vp, the matrix of Q becomes 1h7 ? 0 

0 O Q1j 

Since Q1 is non-singular, we may choose then a basis v1, , vh; u1, ,h; 

'O Ih 0? 

Wi . . . * Wk such that the matrix of Q is [4 0 Oj as required. 
o o Iko 

Proof of Theorem 4. 3. If S, i C X, then we can choose bases v1, ,V; 

Ui1 * Uh; W1i . . . Wk and v1< *,*V*, * *. * h h; W1W **Wk corres- 
ponding to S and S respectively. Then T: W -- W defined by Tva, =vcy 

TUo Coja Twp = ip will be an element of G such that TS =. This shows 
that G acts transitively on X, and the theorem follows. 

(b) Over the Grassmann variety G(I, W) there is a canonical holo- 
morphic vector bundle F -- G(1, W) given as follows: The fibre Fs at an 
I-plane S C G(1, W) is the vector space S C W. There is a natural bundle 
mapping F -> W where W = G(1, W) X W is the trivial bundle, and we have 
the exact sequence: 

(4.5) FWEO, 

where Es = W/S. We observe that the line bundle L = det E is a positive 
bundle with dual bundle L* - det F. For example, let us prove: 
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(4. 6) PROPOSITION. The holomorphic sections of L give the Plicker 
coordinates on G(l, W). 

Proof. L= (detF)* (AIF)* Hlom(AIF,C). Let e1*,* ,en* give 
a basis for W* (cf. I. 1. (a)). Then, for pi, < < pz we define a section 
QP1 PI of L =lom (A'F,C) by: 

(4.7) QP1---.PI (f ) <f, e*p, A* A *e*p,>, 

where f C A zFg C Az W. In other words, if f = f, A ... A fz C AzFs (fi,** *, fzE S), 
then f= P1- ...P p(f) ep1 A A ep, so that the OP1---PI are exactly the 

Plucker coordinates on G(l, W). 

Remark. The bundles in (4. 5) are all homogeneous vector bundles [3]; 
i. e. the action of the linear group GL (W) lifts to bundle automorphisms. 

Let now D be a period matrix domain as constructed in I. 1. (d); then 
D is an open set on a homogeneous algebraic manifold X (cf. Theorem 4. 3). 
There is an equivariant embedding X C G(ho, W) X . . . X G(ht, W) which, 
in the two examples above, reduces to: 

(i) X C G(h, W); 
(ii) X C G(n-q, W) X G(n, W). 

From each of the factors G(hr, W), there is induced a homogeneous line 
bundle Lr -*X and we set L(cx0, *, at) -L_-o? L ?* * (>0Ltct. 

(4. 8) THEOREM. The homogeneous line bundle L(ax,, *a t) - D 
has a unique G-invariant p-convex polarization for a suitable integer p. The 
canonical bundle K-e D is a homogeneous bundle L(x0, * at) where each 
aCj < 0. 

Proof. Set L L (aco, at). Since D = H\G where H is compact, 
the line bundle L -> D carries a G-invariant metric which is unique up to a 
constant factor. The curvature of this metric will then give the G-invariant 
p-convex polarization. 

The rule for finding p in terms of the roots of G and H has been given 
in [7]. We shall give, for the period matrix domains of types 1 and 2 above, 
the explicit computation of the p-convex polarization and of the canonical 
bundle K. 

Remark. We observe that, if Z(H) is the center of H, then dimRZ(H) 
_t + 1 and the group Se of line bundles of the form L(c0,, a tXt) is 
Z G) . . . ED Z. (Clearly we have 

-f- 
t +1 
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L (Qo, , At) L (/30, - * , Pt) =L (?o + p0y, **,t + t).) 

The homogeneous algebraic manifold is of the form X B\G, where B C G 
contains a Borel subgroup P. The unipotent radical N of B will be an 
analytic subgroup of B and B/N _ H, the complexification of H ([3]). Given 
a character A of H, X extends to a holomorphic homomorphism A E Hom(H, C*), 
which then extends to AX E Hom (B, C*). This A then gives the homogeneous 
line bundle L = G XB C over X B\G (cf. [3]). In this way the character 
group x (H) parametrizes all homogeneous line bundles over X. But 
x(H) _ZGZ GZ, and so x(H)/ S is a finite group; in this sense, ? 

gives almost all line bundles over X. 

Example 1. In case 1, t =0 , H _ U(h) X SO (k), and x((H) _ Z. Thus 
the homogeneous line bundles in Y, over D are of the form Lc -> D where a 
is an integer. 

(4.9) PROPOSITION. The line bundle LAc >D (a < 0) has a p con- 
-2 h 

vex polarization where p = 2 In particular, the canonical bundle 
K - L-(h+k-1) has such a p-convex polarization. 

Proof. Choose a basis e1, *, en for W and let P be the space of h X n 
matrices Q = (7rcp) of rank h and satisfying 0QiQtQ7? = 0. As explained in 

7r 
I. 1. (a), P - ,X is a holomorphic principal bundle with group GL (h). 
Clearly P is the principal bundle of F-- X (cf. (4. 5) ), and so L-t 
=-=P XGL(h) C, where GL(h) operates on C by sending A into det(A)-1. 
A metric in L-1 is given by a positive real function f (Q) which satisfies 
l(A) =- I detA 2q(Q). One such +f (Q) is given by: 

(410) 4f (n) QPI ... Pn| 
P1< * <Pn 

This metric is invariant under a unitary charge of e1, , en, and so is 
invariant under the maximal compact subgroup M C G, but is not invariant 
under the full complex group G. 

For example, if h =- 1, then X is a quadric in P,,,1. The metric 
n 

/(n) =fr(7ri, *,n) = 7ra 12 exists on P,,, and the curvature form 

[6] w of vf((Q) is given by: 

a0 lo 
1 

(Q. 
w 
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On the open set rn -4 0, we let Zl = 7rox/7rn for 1 ?o a _ n. Then (2) 

n-I 
- 7rn12{ (z, z) + 1} where (z, z) = E z9'. Thus 

'x=1 

00 log ,(0?)=&log {(z, z) ? 1} =E hatidza AdVf 

where 

It follows that 

a'0 (ZP Z) + 1}2 {(zP Z) (eP e) (zP e) (eP Z) 

? (e )}:_ 1 (4's) + (t)t)}-(Z' z) + 1} (tt 

The conclusion is that w is negative on P1, hence is negative on X C P1. 
Obviously then the curvature form of the metric (4. 10) in L-1 -> X is, for 
general h, negative. This is consistent with the fact that L -> X is positive 
and serves to check the signs and notation. 

We now let P C P be those Q satisfying 12QtC2 -H(Q) > 0. Then 
P =ir-1 (D) and G acts as fibre-preserving automorphisms in P -> D. How- 
ever, G does not leave the metric (4. 10) invariant; to get a G-invariant 
metric we take: 

(4.11) iV(Q) det H (Q). 

Since, for TE G, H(Q) =QQtQ_TQt(f?T) =H(SH2T), +(Q) is a G- 
invariant metric in L-1 and 

(4.12) X -Wlog (det H) 

will be the G-invariant curvature in L-1. 

-2 h Now dimc D= + hk (2h + k=n) and we want to show that, 

if z1, , zn are local coordinates on D, then a) h.fidz A dz where 

(ha,gi) has signature (hk, 2 
We assume that e1, *, en have been chosen as a real basis for WO C W 

and such that the matrix of Q is Q=( 212 I) 2h +kl= =n. Then P 
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is those matrices Q = (A, B, C) with A and B each h X h, C an h X kc matrix, 
and with 

(4.13) n2Qtf2 AtA +BtB -CtC 0. 

On P we have that: 

(4.14) H((Q) Qt&=At +BtD- CtO>0. 

Since i (D2) and co are G-invariant, it will suffice to compute X at 
DO-= (I, -/ 1I, 0) so that H((2o) = 2I4. The reason we choose 20 is that 
the stability group H== {T E G SO (2h, k) : QOT.- &20} of 7r((20) E D is just 
U (h) X SO (k) C SO (2h) X SO (k) =K, the imbedding U (h) C SO (2h) 
being 

Now 7r(f2o) belongs to the Zarisski open set Q1X 7 0 on X, and we may 
choose the local holomorphic section Q (B, C) = (I, B, C) where B is close 
to \/-1I, C is close to 0, and, by (4.13), 

(4.15) I+BtB -CtC=0. 

By (4.14) we have that H(Q) H(B,C) is given by: 

(4.16) Hf(B, C) I + Bt -CtO > O. 

Writing B = (bofi) and C = (cap), we shall evaluate o as a differential form 
in dbafl, dcap, subject to the relations (4.15). 

Write now A-detH and H= (han) Then 

OiogA ==0 A O d0 OA. A OAA 

We have: 

O,Al dhap 
and 

, E &2A hap A &hxv, + , d/v Ahafi. 
{ a: a,h dha, 

Since H(Qio) = H(I, V-\ 1 I, 0) = 21, we want to evaluate O and 021 

at Ho= ( ) and then take a=2. The formulae are: 
n 
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hA ]Ho 
(o if jf X ,B 

hah if ***3*** ifjo: = 

(4. 17) * a A 

OhaoOhx] /o l 4,* ** a * **n if p . A,a I3, 
0 otherwise. 

Thus we get from (4. 17) that: 

Woo 00 log AIR. - 1z + A& no 

- -2 

* W ,Ahozo /\ hflf +1 ,. ahaf A Ohaa 0 0haa 

+ hah AA8 hhp? or: 
a,6 

(4. 18) W Q O= a + I A h o Mp A Apa + Ohfi A haa. 
a a=pa 

From (4.16), h,afi=3aS+ bacyf6,y - YCapc8p and so 
'y P 

h dbay A dba'y - , dcap A dcap, 8hafl A 8h8a -dbaj5A dbaj (at (2). 
7 ~~~~~p 

Thus, by this and (4. 1 8), 
1 dbay A dbaey - , dcap A di5ap} 

(4. 19) 
p 

+ {:dbcifiA dbcif} + Oha : Ah Ohaa- 
ac74s a 

By (4.15) we have 

E (dbrbfy + bo,db4y) - : (dcxpcpp + cctpdopa) = 0 
ly ~~~~~~~~p 

which, at QO (I, V-i I, 0), gives dbap + dbp = 0. Combining this with 

(4.19) gives: 

(4. 20) o 2 { dcap A djp- dbafl A dba}. 
p CKP 

Since the dcap give hk linearly independent 1-forms and the dbap (cc< 3) 
h2 -h 

gives 2 independent 1-forms, it follows from (4.20) that won, has signa- 

h- h 
ture (h/c, 2 ) as required. 

To complete the proof of Proposition 4.9, we need to show that K 
-L(h+k1-1) where K -* X is the canonical bundle. We let Y = G (h, W) and 

Q be the space of h X n matrices U = (rOp) of rank h. Then Q ->Y is a 
principal bundle with group GL (h) and we have: 
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PcQ 

x c Y, 

where P is {Q j nQQtQ ~0}. We let N->X be the normal bundle of X in Y. 
h. (h+l) h(h+l) 

(4.21) LEMMA. N* P XGL(h) C 2 where C 2 is the space of 
h X h symmetric matrices B and GL(h) acts by A(B) ABtA. 

Proof. We set B(Q) = QtQ1. Then tB(Q) -B(Q2) and B(S}) is a 
matrix-valued holomorphic function. Also B (As) = AB (Q) tA and B (I) =0 
defines P C Q. The normal bundle of P C Q is r1r (N), and the differentials 
in dB (Q) along B (Q2) = 0 give a holomorphic frame for the dual normal 
bundle 7r-1(N*) of P C Q. Now 

dB (A Q) = dAB (Q) tA + AdB (Q) tA + AB (Q) tdA 

h(h+l) 

so that, along P, dB(AQ) =AdB(Q)tA. It follows that N* -P XGL(h) C 2 

as claimed. 

(4.22) LEMMA. Let T(Y) -*> Y be the holomorphic tangent bundle of 
G(h,W). Then T(Y) --Hom(F,E) where E, F are given by (4.5). 

Proof. Let S E G (h, W;) we define a linear mapping 

Ts (Y) -lHom (Fs, Es) 

as follows: Given 0 E Ts (Y), choose a holomorphic curve St C G (h, W) with 
SO S and with tangent 0. If t E Fs C W, choose & E St with 4 = and 
we let: 

(4.23) 0($) = projection of ]t=o on Es W/S. at 
We claim that this gives the bundle isomorphism T (Y) _Hom (F, E). 

To begin with, choose v1 (t), , v (t) which give a basis for St and set 
h 

=a v (0). If u1 (t), , u (t) is another basis, then ua(t) = aac(t)vO(t) 
10=1 

and 

(4.24) amOuct(t)] h 
avfl(t) (4.24) at ]t=0 E. aq at] t=o modulo S, 

where aa,= ai,6(0). 

If hteh andh t ] o 
I 

t] I E uv ES thena E &, c(t) voi(t) ad It0 Y- aVa t= a=1 ~~Ci=1 at a= a 
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modulo S. From this and (4. 24), it follows that 06 ]t=O in W/S depends 

only on & = E S. Since (+ ?)t t?+gt it follows that 6 is linear, 
0E lHom(Fs, Es). 

The remaining steps necessary to check (4. 22) are routine and will be 
omitted. 

(4. 25) LEMMA. Let T== T(Y) I X. Then 

K= (det T) 0 (det N). 

Proof. This follows from the exact sequence: 

(4.26) T(X) -T N O. 

In fact, (4.26) gives detT K*?3 (detN) since K detT(X). 
We may now prove Proposition 4. 9. From (4. 22), 

det T = (det F*) h+k . (det E)h - L(2h+k) 

so that K (det N) 0 L-(2h+k). We claim that det N L(h+l)or, equivalently, 
det N* L-(h+1). Let e,o (ac ? /) be the h X h matrix with 1 in the as, 1 

and /3, a: slots, zeroes elsewhere. Then, if A E C GL(h), Aec*atA 

h 
=AaXXep and so A (AeatA) H{ hA+l} A eOa. From this and (4. 21), we 

a-',B a a a_Sp 

find detN*= L(h+l) as desired. 

Remark. For later use, we record here the following offshoot of Lemma 
(4.22). Let A C Cm be a neighborhood of the origin with coordinates 
t1*, tm and let P: A->G(h,W) be a CU mapping. Let St =(t) and 
let v1 (t) , V (t) be vectors, depending differentiably on t, and such that 
the v,(t) span St. 

(4.27) PROPOSITION. If a} (t) 0 modulo St for all t, then 1 is 

holomorphic. 
h 

Proof. Let t= &va(t) E St Fst. Then, by (4.23), 
0i=1 

be(at 
h 

t tav (tP) 

a p-rojected in W/St so that '1* (Tt) = 0 throughout A~. Thus 41 is hoiomo-rphic. 
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A direct argument in case m = 1, t E A C C is as follows: We waiit to 
h 

choose u(t) = a,a0p(t)vp(t) with det(a,xp(t)) O0 and t( ) =0. We are 

given that Eca,,(t)vf6(t). If we let aa,(t) be a solution of the 

differential equation: 

(4. 28) 8t + aaya(t) cy.6 (t) o , act6(0) .8.c; oc ) aa.6(t) 

then at ) (t) v wy (? ay(t) cay (t) vp (t) }O. 

We shall abbreviate (4.27) by saying: 

(4. 29) aSt C St implies that 1 (t) is holomorphic. 

Example 2. In this example, D_ U(n-q) X U(q)\Sp(n) and 
X C G(n-q,W) X G(n, W). 

(4.30) PROPOSITION. The line bundles L ( - ,- ,2) -- D have sig- 

nature (n(n + )q(n- q)) if al > 0, cc2> 0. In particular the canonical 

bundle K =L (-n, - n-1) has a p-convex polarization with p =q (n- q). 

Proof. We choose a real basis e1, , e2n for WO C W such that Q has 

matrix Q =( I 0ij) We let P be the (n X 2n) matrices i2 of rank n 

which satisfy 0Q1=Qt-2 0. Included in P is the open set P of thost 0 such 
that V- 1 7QtQ - H, where the Hermitian matrix HI has signature (n - q, q) 
and the first (n - q) X (n - q) block of H is positive definite. The group 
GL (n - q, q) of non-singular matrices 

A A21 A22) (A1l is (n-q) X (n- q) 

operates on P by A (Q) AAQ. Since 

V-1 (AnQtQti) AtA =(AllHlltll *) 

where H =--H, H)12 we see that P is invariant under GL (n - q, q). 
H21 H22 

Writing n= ( )1where Di is (n - q) X 2n, An (Al in, 1 ) It 

follows that GL(n-q,q)\P X and GL(n- q,q)\P D. The represen- 
tation A (det All) l (det A) a2 gives the line bundle L (a,., a2) -* X where 

L (a,, a2) P X GL(n-q,q) C. The positive real functions: 
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(4.31) +l (0) det (Hfl), 

(4. 32) +2 (f) --(_-l)q det (H) 
satisfy ipui(An) I det Al1 12*,1(Q), V2(Af2) = I detA 12,'2(0) and so give 
metrics in L (1, 0) and L (0, 1) respectively. We shall compute the curvatures 
w, and W2 of these metrics. Because of invariance under the group G = Sp (i) 
it will suffice to compute wl and W2 at 

2 - InV-1 In-_q ) 
QO (In>\ 0 O\ /- 1 I )a 

(4.33) LEMMA. For B near zero and C near( V O Iq 0 ) 

the holomorphic mapping &2(B, C) = I B ,C gives a holomorphic 

section of P -> D, provided that &2(B, C) Qt&7(B, C) -0. 

Proof. Writing =(l), the conditions (7701) 1 -Z #0 l, - #0 define 

a Zariski open set U containing ?0. If Q C U, we can find a square matrix A1 
such that A1Q7z1 (IqCl) where C1 is of size (n q) X (n + q). Then 

(A1 0 (1 In_Iq C11 
0 Iq/kf2! \D1 E1l 

Now 
I 0/ I C0 {I C10 
Di I Di El J 0 E2} 

and, since Ql... n =,, (E2)1.. q /=0. Thus we will have, for some A2c GL(q), 

(0 A2 )0 E2 ) (0 I jC) 

In summary, if Q C U, we can find A C GL (n - q, q) such that 

AQ=(I I ) 

and so AQ2 =-- Q(B, C). This proves the Lemma. 

Writing C=( ll C12) the relation OQtU -0 becomes: 
C21 C22 

rCil + C12tB t (Cil +Cl2tB) 
(4.34) C12 t (C21 + C22tB) 

C22 tC22. 

18 
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The matrix H (B, C) = - 1 {f2 (B, C) QtQ (B, C) } is given by: 

( t(o ( + 012tB) - (Cl1 +- C12tB) t021 + BtO22 - C12 (4.35) H V-i 
~~tC'12 - (C21 ? C22tR). tO22 -C22 

Write H =(Hl H12 and observe that H (52o) =2 I i) HO. For 

notation, we let HX= , A1l ~det(H1,), A2 ( 1)qdetH, and we 
O hnj 

agree on the ranges of indices 1 _ , /8 < n, 1 _ , j _ n q, n- q + 1 ?p, 
a _r n. We have to compute w1 =- log A1 and W2 =- log A2 at Q2o. 
We calculate: 

-OOA OA AOA 
?o2==-8logg 2 A ]Q?o A ]Q? 

- 1 h 02 A h ]H2 a1hOA 
A a,0 Oha,Ohx, A a,- a 

1 OA OA 
+?2 Iha) IHo ]Hoaha.A ahg-== (by (4.17)) 

{X,,u 

ha- ,O ahaa A Oh6p + Map Oho A Ohfi.6a -Y 00ho 
?76p haho aaAp hahp a a 

+ 'Y h~ Oh aao A Ohop 

which gives: 

(4.36) tO2= OhaaA 'haa hh Map A hpa-'008hac. 

Similarly, we have: 

(4. 37) = (h)2 ahii A Ohi + hY h Ohi A Ohjiz -hi . 

From (4.35), we have at Q2O: Ohij -V dci, Ohp V- l dcp, 
-hip i (V 1db,p - dcip), Ohpi - -idp, 

V-hi, 1 (, db,p A d-ip -dchp A dbip) d 

J6hij N/ 1 dc-ji, OhpJ (3 /-1 d-(,p~, Ohip 1- d-pjq, 

Ohpi = 1 (diip + V-1 dbip). From (4. 34) we have at QO: dcj- dcji, 
dcip dcpi- -/ 1 dbip, dcp( dcap. Combining gives: 
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2j( ~I dCaa A dcaa + I dij A dji + E dcp( A dcpo} 
a i#j P#T 

+ j z dCp A djpq + 2 E. dCip A d fi depc A dip -. dcip A d-pi; 
P,l i,p 1,p p,i 

that is: 

(4.38) =2 'Y, dcaa A dCaa + 2 E dcijA d1ij + 2 E dcp A dA p } 
a P< 

dcpi __ 

+ fI { ( -2 -\/2 dcip) A ( 2 2 dC-ip)} 
pi V 2 V2 

Similarly, 

@1 it z dCU A di-i + 2 i dcij A djjj} + E dcip A dcip 
(4. 39) i i<j i,p 

- { , dcpi A dctp + dcip A dcpj}. 
P,i 

Now we set Z (21, 2) = 1cc1 + 222. Then: 

(4c1, 22) c(21, ,2) + (a1 + 2c2) { Y dCip A dJjp} 
i,p 

(4.40) 22 C1 

+ 2-{ dcp A djp} + ( 22) dcpi A dp + dctp A dCpd}, 
2 2 ~~~~~~~~~~~~P,i 

where 

(21n a2) = {(al + a2) dci A dc, + a2 Y, dcpp A diPpp 
i p 

+ 2 (a1 + a2) dcj A dcz + 2a2 I dcp(, A dcp,} 
i<j P<ct 

is positive definite. Since 

2 2 2 

it will follow that Ct) (a1, a2) has signature ( ( ? ),q(n -q)) for a1,> O, 

a2 > 0 if we show that the matrix 

a, + 2a2 -1,--- 2 

11f 2 has signature (1,1). But a,1+2x2>0 and 

2 - 2 22 

det M 2V-M + ? 22 _-1a2 - 22 1 (+ 2) < O. 2 122=--~--~--4c2 <0 
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Tllis proves that L(- a,,- a2) has signature ( ( + ), q(n-q)) for 

,1 > 0, 22 > 0. 

The proof that K L (- n, -n-i) is similar to the argument in 
Example 1 and will be omitted. 

Remark. It can easily be checked that the possible signatures of the 
curvature forms of the bundles L (a1, c2) are: 

n(n + 1) q(n-q) ) ( n(n + 1)-_q(n -q), 2q (n -q)) 

(qj2n-q+1) nhq (n+q + 

(2q(n -q) + q(q+1) (n-q)(n-q+ 1) 
2 '2 

and the negatives of these. In particular, none of the bundles L (al, a2) is 
positive. 

(c) Let D H\G be a period matrix domain and K C G the maximal 
compact subgroup, YO = H\K the K-orbit of the origin in H\G. 

(4. 41) T:HEOREM. (i) YO C D is a compact complex submanifold and 
the family of analytic subvarieties {gYo} G gives a fibering of D with com- 
pact, complex analytic fibres, but with a generally non-holomorphic parameter 
space. (ii) If p = dim YO = dim H\K, then the canonical bundle K -> D 
has a p-convex polarization and K I YO is negative. 

Proof. A proof along group-theoretic lines has been indicated in [7]. 
However, we shall discuss the two examples as the explicit form of the compact 
subvarieties will be needed. 

Case 1. We consider D C G(h, W) as given by the relations (4.1). 
Recall that, for S C D, we had set Rs = (S 0 S)I, and we let: Xs {S' E D, 
Q (S', Rs) = O}. Obviously Xs C D is an analytic subvariety passing through 
S. We observe that S' E Xs if, and only if, 

(4.42) S' E) ' S E S =RsL. 

Thus, if Xs meets X5s, then Xs = s so that the subvarieties {Xs} give a 
fibering of D by complex analytic subvarieties. 

Now let S, C Xs so that Si E Si S 0 S. Then there exists ,T C G 
(-SO(2h,1k;R)) with T(S) =S1 Thus T: W- W and T(S 0 S) S D S 
so that T splits: T T1 E T2 where T1==T I S E Sp T2=-T I Rs. Further- 
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more T1 (S) = S1 so that, if Gs is the group of transformations T1: S 0 S 
-* SE) 0 induced by T: W -* W which are in G and which split, then Gs 
acts transitively on Xs. But Gs -_ SO (2h, R) is compact and so Xs C D is 
compact. Since K =SO (2h) X SO (k), H= U (h) X SO (k), it is clear that 
the varieties Xs are just the G-translates of H\K. Observe that 

2h(2h-1) h 2_-h dim,cH\K --'1{ 22 21. 

We now give Y0 in terms of period matrices: we follow the notation in 

the proof of Proposition 4. 9 so that Q =( 127 _ ) The origin has period 

matrix o = (I, - lI, 0) and we claim that Y0 are just the points with 
period matrixes i (A, B, 0), AtA + BtB - 0 (note that the relation 
AtA + Bt- > 0 is automatic). In fact, S 0 E S is the vector space with basis 
el' * , e2h and so RSA has basis e2h+l, . *, et,. Thus, Y0 consists of all sub- 

spaces S whose period matrix Q satisfies QQp =-0 where dp ( has a 

one in the 2h + p position. But QQ4p is the 2h + p-th column of Q, which 
proves our assertion. 

Referring to (4. 20), since Y0 is given by cp = 0, wQo restricted to the 
tangent space to Y0 is: 

(4.43) 2 dba Adba, 
aK0 

and so f Y0 is negative definite. Thus L-1 I Y0 is negative, as is K - L-(h+k-1). 

Remark. An intrinsic description of Y0 is the following. Let EO be a 
real 2h-dimensional vector space on which we have a positive quadratic form 
Q. If E= EolRC is the complexification of E, we let Y C G(h,E) be 
those h-dimensional subspaces R C E which satify Q (R, R) =0. Then 
Y0-Y Y SO (2h)/U (h). 

Case 2. We consider D C G(n -q, W) X G(n, W) given by the relations 

(4. 2). For S = [Sl, S2] C D, we set Rs Sl 0 S2/S1 where 

S2/S1 {vCS2 f Q(v,PS l) =0}. 

Then Q(Rs,Rs) =0 and V-1 Q(Rs,Rs) > 0 (cf. Proposition 3.21). We 
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let: Xs {S'E D f Rs = Rs,}. We claim that Xs C D is an analytic sub- 
variety passing through S. 

Let S'E Xs; S'= [Sl', S2'] Then Si' C Rs and V/-I Q (S1', S") > 0. 
We define Rs/Si' = {w E Rs I Q (w, Si') O} and claim that S2'= Si' G Rs/l1'. 
In fact, Rs = Rs Si' S2'/11= Si' ( RS/51S so that S2'/S1' Rs=Si' or 
52'S i'E 0 1/S9'. Thus S' EXs is uniquely given by S`' C Rs; i.e., 
Xs -- G (n - q, Rs). This shows that Xs is a complex subvariety, isomorphic 
to a Grassmannian G (n - q, Cn). 

The argument used for Case 1 shows that the group Gs of automorphisms 
of Xs induced by automorphisms in G acts transitively on X5s and is compact; 
Gs_ U(n) and Xs- U(n -q) X U(q)\U(n) =H\v. 

The mapping H\G -> K\G is the (non-holomorphic) mapping D -- 1H 
discussed in Proposition 3. 21 given by S -->Rs. 

Let now S be the point with period matrix 

V1-I n-q __ 

We want to parametrize the variety X5s, C D passing through SO. We let 
e= ea + -/ 1 e,n+(,; the vectors ta give a basis for Rs, and So corresponds 
to the (n - q) plane Si in RsO with basis 4<, * ,$&. Let S' C Xs, be a 
point close to SO; then S is given by an (n - q) plane Si' C RSO with Si' 
close to S,. We may assume then that S1' has a basis y * ,g where 

n 

=t t+ E bjp4p. Thus Si' has period matrix 
p=n-q+l 

Q1' (qB V - 1InA-q B) 
where B= (bip). 

Now Sl' determines uniquely S2' C G (n, W) such that S'= [Si', S2'], and 
the period matrix Q7' of S2' will be: 

.1, B ln-q 1B fl 
IX TIq y f/B 22/ 

Hllere Q2' should be the period matrix of S21/S1'; i. e. = 0. The 
condition S' E S2'/S1'- R= RS can be written: Q (Rs, Sl G S2/S1) O 

or - Qt ) 0, where 0?-(kZ). Finally we must have O7'Qt2'-O. 

The condition Q2'Qtnl'0 is: y-at V-i a- V-i t- 0. Since 

(In V-1In), then condition Q ,)Qt(j) 0 becomes: V-1 a- 
=0, V- 1I-- 0. This gives =--1I and y -a-1. Note 
that these equations give 
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+/1a+ -\/ _ 1 B-- _ 1 tB 0. 

The condition Q2'Qt'f2 = 0 gives: 

-_\1_ta--\1 lB+t-y+BtS=-' o, yta_8+at-+t8= o 

Thus 83=-V-lI, y -V- ,-ya-8 +?ty+t8=-O and the first 
condition is 

0, ta - i B?ty -V B -2V-1B-2V-1ta 
or a tB, y -=V1 tB. Consequently: 

I BV-/- 1 ) 
tB IV-ltB -\-il 

Now 

I 0t I B +V-1i V-lB 
vtB IJ\ tB I V -1 tB 

(I B V-/l V I -l B 
t0 tBB+I 2-\I ltB >/1 (tBB-I)J 

|I B -\/- iI /-B\ 

~ 0 1 2 V 1 tB +/1 (tBB -I), 
(tBB + I) (tBB -I) 

which puts Q' in the form given by Lemma (4. 33). Thus B = B, 

cl =V-1I, C12 ==-1B, C21 B + C22 V (tBB-I ) 2 
(tBB?+I)C2 (tBB?+1) 

Now, at B = 0, dcij = 0, dcip - 1 dbip, dcpi = 2 -1 dbip, dcp, 0. 
By (4.40), Ct)(2, a2) on the tangent space to Xs, at SO becomes: 

(4.44) (-a,) 'Y (dbip A dbip). 

For the canonical bundle, a = n so that K X Xs, is negative as desired. 

(d) Let D = H\G be a period matrix domain and E K -> D a fixed 
positive power of the canonical bundle. Then, by Theorem (4.41), E has a 
G-invariant p-convex polarization where p = dim Y0, YO = H\K. 

Given a discrete subgroup r C G, r acts properly discontinuously on D 
and the quotient space D/I = M is an analytic space. Furthermore, E/r 
= E -E M is a line bundle with p-convex polarization. Now then one is led 
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to expect that Hq(M, O(E) ) 0 for q p and that IP( (, O (E) ) should 
become large as v--0o (cf. Proposition 3.23). In case 31 is compact, this 
theorem on a7tomorphic cohomology has been proved in [7], an(l we nowi- 
prove it in the other extreme where r = {e}. 

(4.45) THEOREMI. Hq(D, O (E)) =0 for q > p and dimHP(D, 0 (E)) 
-oo. In fact, HP(D, O(E) ) can be "expanded in a power series around Y0." 

Proof. The following Lemma, due to W. Schmid, is crucial: 

(4.46) LEMMA. There exists an exhaustion function 0 on D such that 
the E. E. Levi form L(+) has everywhere n-p positive eigenvalues. 

Proof. Let D be a period matrix domain of type 1 or 2 (the general 
argument is similar). In the first case we consider the line bundle L-1-* D 
(cf. Proposition 4. 9) and in the second case L( 1, 1) -> D (cf. Proposi- 
tion 4. 30). In each case we have a principal bundle P -> D and metrics V/ (Q ) 
(Q E P) for the line bundles L-1, L (-1,-1). In case 1, I (Q ) =det (QQt(Q) 
and, in case 2, +(Q) =det(V- 1 &QQt%) * ( 1)qdet(V/1 fQto). 

Now D is covered by finitely many Zariski open sets Un,o and there exist 
holomorphic cross-sections ac: Ua -* P over Ua. We let AVa= -00?aa and 
b-a log 4a. Then the Levi form 8aq- =- 00 log a is the curvature in 
L-1, respectively L (- 1, 1). Thus D42=884. in Uan Upand = {4?a} 
is a G-invariant form with signature (n-p,p). 

Suppose now that z 0 Ua and {z4) C Ua is a sequence with Zn > Z. 
We claim that Oa (Zn) ->-oo as Zn z. For example, take D to be of type 1 
and Uc, to be given by 134 n 0. Then z has period matrix (A, B, C) with 
det(A) =- , and Zn= (An,Bn,Cn) ='I *n with det(An) #0. We may suppose 
that (An,Bn, Cn) - (A,B, C) so that det(An) ->0. Then aa (Zn) i- 2n 

= (I,An-1Bn,An-'Cn) and cp (Zn) - log mn(zn) where 

gi(Zn) =det(UnQtQn ) - I det(A.,) -2 det(*J'Qtfn,). 

Thus lim li (zn) + oo and so lim4a(z) =- oo as desired. 
Zn-- Z Zn > Z 

It follows that, if we set gbcr(z) =-oo for z ? Unr, +(z) = e(z) is a 

globally defined CO function on D. The Levi form 

L (0) -D4 - Y L (Oct) eOa(z) + > 00a A jopaeOe(z) a a 

-=(z)w+ (positive semi-definite form) 4> (z)>. 

Thus L (q) has everywhere at least n - p positive eigenvalues. 
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It remains to show that + (z) is an exhaustion function; i. e. the sets 
Dc = {z C D: + (z) < c} are relatively compact and U DC = D. This involves 

looking at p (z) near OD D D. Suppose that z C OD n Ua and let 
{zn} C Uoe be a sequence with Zn Looking again at the above example, 
we will have zn = (I, Bn', Cn') On with H =-- QnQWZ2 and Hn > 0. Since 
zn tends toward the boundary, HEn becomes singular so that det (Hn) -* 0. 
But q)cP (Zn) - log{det (Hn) } so that cpoc (Zn) + oo as zn -z. It now 
follows that +(z) is an exhaustion function. 

Now the extension by Andreotti-Grauert [1] of Theorem B gives: 

(4.47) Hq (D,3) =O for q > p and .3 any coherent sheaf over D. 

We now use the method of [6] to expand HP(D, 0(L) ) around YO C D. 
Let IA (E) C 0(E) be the sections of E vanishing to order u along YO; 
IA (E) =I A 00 0 (E) where I C OD is the ideal sheaf of YO. Then, if N -> Yo 
is the normal bundle and N*(CL) the u-th symmetric product of N*, we have: 

(4.48) 0--> ITh1+l(E) I >O(N*(A) E)-- . 

From (4.47) we have: 

(4.49) HP (I"+'(E) --- HP(I,(E)- HP (Oyo (N* (Af) E) 0+. 

This gives: 

(4.50) LEMMA. HP(D, ( (E)) has a decreasing filtration 

Fl, C HP(D, 0 (E)) 

and the associated graded module iS: E HP ( Y,,, ,yO (N*(C) ? E)). 
ju=O 

Now E I YO= jKv YO is a negative line bundle (cf. the proof of Proposi- 
tion (4. 9) ) while N-> YO is spanned by its global sections (cf. [7] ). Thus 
Hrr(Oyo(N*(A) (D)E) ) HP-r(Oy (E*0N(IL)0Ky)), and it follows [7] that 
Hrr(yo (N*(A)?3E) ) 0 for 0 _ r < p and dim HP(?Oy (N*(L) X E)) oo as 
,u- >oo. This completes the proof of Theorem 4. 45. 

Remark. It can be shown that dim HP( y0 (N*(I) ? E)) c=Cp + (lower 
order terms) where c > 0. 

(e) In the above discussions (cf. Theorems (3. 20) and (4. 8)) it has 
appeared that certain contructions in transcendental algebraic geometry lead 
naturally to varieties with a p-convex polarization, where p need not be zero 
as in the classical case. The cohomology groups in dimension p, instead of 
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being viewed as obstructions, then become primary objects of interest. This 
is, at least at first glance, an unfortunate state of affairs because it is not 
easy to see the geometric relevance of these groups. 

In this section we shall give further evidence that the cohomology groups 
are natural invariants and also give a possible geometric interpretation of 
them. Basically, what we want to prove is: 

(*) THEOREM. If r C G is a discrete group acting properly discon- 
tinuously on D, and if 4 C Hp (D, E) is an absolutely integrable cohomology 
class, then the Poincare series in cohomology: 

(4. 51) O(O) r Y ( 

converges to an automorphic cohomology class in HE(D/P, f(E)) (as above, 
E - Kv is a power of the canonical bundle). 

What we shall actually prove is something slightly weaker which will, 
however, interpret the cohomology as sections of a bundle. We proceed in 
several steps. 

(i) Let D = H\G be a period matrix space and YO- H\K. We let G be 
the complexification of G and consider the set of all subvarieties gY0 where 
gYO C D and g is in the complex group G. This makes sense since D C X 
and G acts on X (cf. Theorem 4. 3). In this way we get an analytic family 

{YxJ}XE,, of compact, complex submanifolds Yx C D (cf. [6], Section 111.2) 
whose parameter space 03 is an open complex manifold. If YO= Yx0,, then 
Txo ( 3) HO (Yo, 0 (N)), where N -* Yo is the holomorphic normal bundle. 
It is clear that G acts on 03; in fact, it is proved in [7] that D3 C RAG where 
K C G is the stabilizer of YK. In general, G does not act transitively on SB. 

7r 

Over J3 we may construct an analytic fibre space 0 - > 03 such that 
7r_1 (X) - Yx and such that there is a holomorphic mapping C: i -* D where 
(7r-1()) =Yx; (cf. [6], Theorem 3.1). We thus get a diagram: 

1k7r 

and we set E= -- (E). 

Over D3 we construct a holomorphic vector bundle aF > 3 with 
r1(X) HP(Yx,~ yx (E) ); clearly we have that OB(f) =R,P(E) where 
R (,P6() is the p-th dir-ect image sheaf of the proper, holomorphic mapping 

7r 
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-) 03 relative to the sheaf ff (E). This finally gives then a linear 
transformation: 

(4.52) 4: HP(D, f0(E) ) H?(D3, O(5r)) 

given by x E HP (Yx, Oyx(E)). More formally: t(p) 7r*i*(b) where 

co* (p) C HP ( SD, O0 (E) ) and 7r*6*Q () C HO (6, R (6)). 
We observe that t is G-equivariant and that the range of q is an infinite- 

dimensional subspace of HO(f3, 0(F)) (cf. Lemma (4.50)). It is via the 
mapping 4 that we interpret cohomology as holomorphic sections of a bundle. 

Remark. There is some evidence that t is an isomorphism. In fact, 
03 is an open set in an affine variety and may well be holomorphically convex. 
If this were the case, then, since R1q (6) 0 for q 7p, we would have, by 
the Leray spectral sequence: 

(4.53) HP(25)~,0v(E) ) -Ho (3 #C0s ( ) ) 

On the other hand, >- D is a holomophic fibering whose fibres seem 
to be Stein manifolds, and then it might follow that C*: HP(D, OD(E)) 
- HP( ), (i) ) is an isomorphism, in which case t would be. 

In any event, the kernel of t consists of the cohomology classes 
C HP(D,? (E)) which vanish to infinite order along YO, in the sense that 
CHP (Th (E) ) for all O> 0 (cf. 4. 49)) 

What we shall prove is: 

(4.53) THEOREM. If the cohomology class pE:HP(D, (E)) is abso- 

lutely integrable (cf. the definition below), then the Poincare series: 

(4.54) 0(4(b)) = ) 
yEr 

converges to a P-invariant section of a -* 03. 

Remark. If I' C P is any finite subset, then 

'Y y*,P) 
~ Y Y* O) 

-y Er, -y aEr,Y((), 

so that Theorem (*) gives Theorem (4.53). The converse is almost true; 
we need that t is injective plus the fact that the range of t is closed (in an 
appropriate topology). 

(ii) We want now to speak of what it means that cHq (D, (E)) 
should be absolutely integrable, or, more generally, should be in the analogue 
of the LP space. 
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In the line bundle E -> D there is a G-invariant metric and we take a 
G-invariant Hermitian metric in the holomorphic tangent bundle T of D. 
There is a pointwise inner product <0, > on the space Cq(E) of C? E-valued 
(0, q) forms (cf. [9]) and we let I c | <0, 0>. It is then clear how to 
define the space C,q(E) of measurable E-valued (0,q) forms q for which 
SI 0 IPdiJ < oo, where dk is the G-invariant volume element on D. CPq is a 
Banach space on which there is a densely defined unbounded operator 0. In 
fact, if Q (E) are the forms with compact support, then, for E C o(E) 

we let 11 0 IIP (I I Pdi) lIP, and C_q is the completion of 0Q (E) in this .D 
norm. Clearly a is defined on 0Q (E) and we let ZPq(E) C C"q (E) be the 
kernel of 0. 

There is a natural mapping: ZPq(E)fnCl 0(E) --*Hq(D, (E)) (via the 
Dolbeault theorem), and we shall say that a cohomology class is in LP if it 
appears in the range of the above cohomology classes. We let Hpq(E) be the 
LP-cohmology classes. 

Let us discuss square-integrable cohomology for a moment. On 0Qv(E) 

we can define an inner product (p, t) , <p, if>dM, and C2q (E) is the 
D 

Hilbert space completion of CQl(E) relative to (, ). The adjoint 0* of 0 is 
defined on CQ (E) and we define the Laplacian E -3* + 0*0. The operators 
Q, 0*, O are densely defined operators on C2v(E) (cf. [2], [11]), and we 
define the sqare integrable cohomology space: 

(4. 5 5) H2 q(E) = {p E C2 q(E) with p =O}; 

i. e., H2a (E) is the space of L2 harmonic forms. Since a harmonic form is 
CX (Weyl lemma), an L2 cohomology class in the sense of (4. 55) is also an 
L2 class in the way previously defined; in particular, there is a mapping 
H2 (E) -> Hq (D, j (E)). Note that H2 (E) is a unitary G-module. 

By using techniques in several complex variables and group represen- 
tations, together with the methods of [2] and curvature calculations, W. 
Schmid has proved (in his Berkeley thesis) the following important result: 

(*) THEOREM (W. Schmid). (a) The L -cohomology space H2q(E) = 0 
for q x p where E -> D has a p-convex polarization; and, more important, 
(b) H2P(E) is an irreducible unitary G-module and, as a K-module, H2P(E) 

is algebraically equivalent to (cf. Lemma (4. 50)): ,HP(Yo, Oyo(N*('Ij) O) E)). 

Remark. If gE G and x ED, then g*: Eg0 A g3 *qT Ex AqpT* is 
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given by g* - g-1 () g* where g-1: Eg0, -->E., and g* is the mapping on forms. 
In this way, g* (,) for E C CPq(E) is defined and 1I g* =1 1 - IIP, 
(g*p, g*q) p(, q) for p, q E C2q(E). 

The arguments which Schmid has used will prove: 

(4. 56) PROPOSITION. H,1P(E) is non-empty. In particular, there exists 
an infinite dimensional space of absolutely integrable classes in HP (D, 0 (E)) 
with e(p) #0, provided that E = Kv and v is large. 

Thus Theorem (4. 53) is not vacuous, although it is of course possible 
that 0(e(b)) =0 even though (b) # 0. However, at least when D/r is 
compact, we can show that the sections 0 (W (sb)) span the fibres of S. 3 
except, perhaps, on a proper subvariety of 13 (cf. [7]). 

To prove Theorem (4.53), we shall show: 

(4. 53)' THEOREM. Let :E CpG(D,E) nfZ1P(E) be a 8-closed form 

with I>P11, ={l k I|du< oo. Then (p)CHO(3, (f)) and the series 

E y* (e(b)) converges uniformly on compact sets to a r-invariant holo- 
yEr 
morphic section 0(t(P)) C HO(3, 0 (5)). 

(iii) We shall prove first that y*( (b)) converges pointwise to a 
ly Er 

section 0(()) of 5 - 3. To do this we let 

t?x* -HP(Yx, Oy,(E) )* -HO(Yx, Oyx (KXO E*)) 
be the dual space to the fibre gx (the - follows by the duality theorem). 
Then, for ~X E we shall show that >. <y< (,( ))x, 'x> converges abso- 

yEr 
lutely as a series of complex numbers. This will follow from: 

(4.57) PROPOSITION. E I?< y*(c(p))uV,x>j-Cjj1| where || chil1 
yEr 

e d/l, c depends only on V/, and r' c r is any finite subset. 

We need two Lemmas, the first of which is: 

(4. 58) LEMMA. Given a compact set C C D, there exists a number 
/3 (C) such that each point x E D meets at most ,B translates yC for y C r. 

Proof. It will suffice to prove that there are at most a finite number 
of y C r such that yC meets C. If this were false, there is a sequence {yn} C r 
of distinct elements such that y,C n C #L &. Choose yn C y,C n C and set 
yn ynXn for xn C C. By passing to a subsequence, we may suppose that 
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x, -> x for some x E C, and then, by passing again to a subsequence, we may 
assume that yn -> y for some y E C. Then we have yr - ysxn, xn * X, Yn -* y. 

Suppose y -7 yx for y C r; then, by proper discontinuity, there are 
neighborhoods N(x) and N(y) such that r{N(x)} does not meet N(y). 
So, in this case, we have a contradiction. 

If y=-yx for some y E r, we set Zn.-y-'ynxn - Xn= where &n y-1-y, is 
a sequence of distinct elements in r. Then we have zn = & x, - X. X Z- X. 
This again contradicts the proper discontinuity of r on D. 

Remark. By (4. 58), for any finite subset 12 c r, we have 

(4.59) A fIbfl=/3fDIsbIdli? >- z fJ d,. 

(4. 60) LEMMA. The dual of the restriction mappi'ng 
PX 

HP(D, 0 (E)) > HP(Yx\ oyx (E)) 

is of the form: 
a-x 

HO (Yxe, yx (Kx 0 E*)) >H, p(D,(KXE*)), 

where H,n-pP(. * ) is cohomology with compact support. 

Remark. This will give the formula: 

<px(0) n+X> < cx (QX)> = cAgXQ(fX), 

where 4 C HP(D, 0 (E) ) and fx E HO (Yx, Oyx (Kx? E*) ). 

Proof. This lemma is a special case of the situation 

(4. 61) Hq(D,OD(E) ) p> Hq (Y~ Oy (E) )p 

where Y C D is a compact submanifold, E -->D is a holomorphic bundle, 
and q is any integer. If dim Y - m, dim D = m + r, we shall show that 
the dual to (4.61) is: 

IJ 

(4.62) lm-q (Y. 0 (Ky f? E*)) >H0m+r-Q (D. C (KD 0 E*)) 

Suppose first that r - codim Y 1 and choose an open covering {U4!} 
of D such that Y n Ua is given by f, = 0, where fa is a holomorphic function 
in Ua. Then we choose Coo (1, 0) form @, in Ua such that d log fao - a-6 
and then {jd,} C will be the Dolbeault representative of a class in 
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H' (D, D1) which represents the Chern class of the line bundle determined 
by Y C D. Observe that we may assume that g has compact support; 
C Hel (D,A 7D1); this is in line with the fact that g is the dual cohomology 

class to Y C Hzm. (D, OD). 
Let now p C Hm-q (Y 6(Ky?C E*)) -H1,m-q (Y, O(E*)) and represent qt 

by a 8-closed (m, m - q) form on Y with values in E*. We choose a Co 
E*-valued (m, m - q) form & on D with compact support and with ql I Y the 

original ql . We let = - } be the global (1, 0) form with a first 

order pole on Y and set f (i) a (VI Aw). Then -(VI) is an E*-valued, 0-closed 
(m+1,m+1 -q) form and we have to show that ao(q) is C? and that, 
for (b C Hq(D, 0(E) ), 

(4.63) E OAu(q) f p()AfO. 

Now -(afr) =qi Aw + iAg (since Ow=) and so we have to see that 
dfAo is Co. Locally, we may choose coordinates z1, *, Z.+, on D such 

that dz d+ + (C? term), and Y is given by Zm+i 0. We can write 
Z_ ln+I 

X A d2, + t2 A dZm+l + q3, where p3 involves only dz1,* , dzm, 
dzy ***, dm and 0/'vanishes on Y. Then 

a~frw=ir1Ad;zm+l A dl2m+i d;zm+i Aw 1 A d Zm+1 + fs A ?Z+1 + (CG terms), 

and so 0 Aw is C? as required. 
To prove (4. 63), we have A or (1) - 0 A a(q A C) + d (O A V A (since 

=0 O) = ? d(OAq0A ). Thus, if B6 is the e-tube around Y, 

OA u^(') + -j- O A A 
dBe 

for any E > 0. Thus 

y A a(1p) + _Llim A +At fp(O) A O 
Now we observe the mapping -a in (4. 62) still exists so that (4. 64) 

holds even if Y is non-compact, provided that we take the compactly sup- 
ported cohomology H0m-q (Y, I (Ky?$JE*) ) (of course, it need not be true 
that H,mn-l (Y, 0 (Ky E*)) is still the dual space of Hq (Y, 0 (Ky? E*) ) ). 

Suppose then that Y Y1 n Y2 where Y1, Y2 are submanifolds of D, 
each of codimension one, and which meet transversely along Y. We assume 
that Y is compact, even though Y1 and Y2 need not be. Then we have: 
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p 
H,2(D~, 6(E) Hq(yl, 0(E)) e> HU (E) 

Hni-q(Y. 
6 
KO)$ cl2tY,I(KyO E3E) q-+12(Dn O(KD G E* ))) 

where a still satisfies (4. 63) so that a* is dual to p. In other words, Lemma 
(4.60) holds if Yx is a complete intersection of hypersurfaces on D. But 
we can easily see from Section I, 4. (c) that Yx is such a complete intersection; 
e.g., if Yxv Xs where D is of type 1 (cf. (4.42)), then Xs is defined by 
Q (S', R) 0, which is hk = codimen Xs equations (dim Rs = k, dim S'= h). 

Proof of Proposition (4. 57). We let ip = rx (ifx) where, by (4. 60), 4 is 
an (n - q) -form with support in a compact set C C D. Then 

Y(e(k) )X,+X> <PX (Y*cIj), A\x> <7*05, 4> 

fy*4Ay* A 4 (Ay(y*-t) 

Xy A y* +) J 4 Ay"i. 

This gives: 

I <Y*($(ck))x,lfrx>I = I f /Ay*-lId 

where a sup sup I y'1i,y. Combining this with (4. 59), we obtain: 

SI KY($GP))x, t,x> I- ?c3jp1, which proves Proposition (4.57). yEr, 
We now prove the uniform convergence on compact sets of 0( (4)). It 

will suffice to have: 

(4. 64) PROPOSITION. Let {fip} be a Coo section of the dual bundle 
5* t g3 and A0 E B3 be given. Then there exists a compact neighborhood U 
of A0 such that, given e > 0, we can find a finite subset I" C F with 
IY I <y* ($()))x,x> I <e for XE U. 

Proof. Let U be a sufficiently small compact neighborhood of Xo; the 
varieties Yx for A E U will then all lie in a compact neighborhood of Yx., C D. 
Moreover, for each AX U, let ,, (X) C Hon-P (D, 0 (K* ? E*)) be given by 
+f(A) ==-X(V/X'). Then there will be a compact set C C D such that all + (A) 
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have support in C. We let a = sup Ifr(A) I,; clearly a <0oo. Furthermore, 

we let ,8 be the number corresponding to C in Lemma (4. 58). 

Choose now a compact set d C D such that p Idpu <-x,- Let 

P'={yCE r such that yC n c+ }; i. e. r' is those y for which IC meets (C. 
As in Lemma (4. 58), we can prove that Iv is finite. Now for X E U, 

aEr1r, aEr-r, xc 
'VEP-F'~~~~~yIEPP d/, C' dy*1u\)Jd/ 

?cc z 1fkIdL? c3J'fi~,dP<E 
ly E -r C cD-C 

This proves Proposition (4. 64) and completes the proof of Theorem (4. 53). 

(f) In addition to Proposition (4. 27) (cf. (4. 29)), we want to record 
one other property of the period matrix domains to be used in Part II on the 
local study of the period mapping. Recall that a period matrix domain D is 
of the form D = H\G (cf. Theorem (1. 26)) where G is a real simple Lie 
group and H C G is a compact subgroup. If we let B - K\G where K C G 
is a maximal compact subgroup, then the fibering: 

7r 
(4.65) D -. BP 

given group theoretically by H\G --* K\G, is a fibering of the complex manifold 
D with compact, complex submanifolds of D as fibres (cf. Theorem (4.41)). 
However, even if B- K\G happens to carry a complex structure, the fibering 
(4. 65) is not an analytic fibre space; the holomorphic normal bundle N > YO 
is not trivial (cf. Proposition (3. 21)). 

(4. 66) PROPOSITION. (i) For each x C D, there is a unique G-invariant 
splitting of the holomorphic tangent space: 

Tx(D) - Vx O HZ, 

where V1, is the holomorphic tangent space to the compact subvariety YX 
passing through x. (ii) if t is the curvature in the canonical bundle, then 

H, is positive definite for each x C D. 

Proof. As usual, (4. 66) has a direct proof using the structure theory 
of Lie groups, but we shall check it on the two types of period matrix domains 
as the explicit forms of VZ and HZ, will be needed in Part II. 

19 
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Case 1 (cf. the proof of Theorem (4.41)). In this case, D C G(h, W) 
and, by Proposition (4. 22), 

Ts(D) C Hom(S,W/S). 

By using the quadratic relations (4. 1),- W S 0 Rs O S, and this splitting 
is preserved by G. Thus, W/S - Rs E) S and 

(4.67) Ts (D) C Hom (S, Rs EO 0) = Hom (S, Rs) 0 Hom (S, S). 

We claim that Ts (D) consists of all 0 C Hom (S, W/S) which satisfy: 

(4.68) Q (O M ),) + Q ($5 10 ) 0 (t, 4 ES). 

In fact, looking at the proof of Lemma (4. 22), we choose a curve {St} 
with S0 = S and tangent 0. Letting $t, Ct E St with & = 4, o g C, we have 

Q($t,t) =O0. By differentiation, we have Q ( aJIt0 t) + Q(tt I t=?) =? 

Since V($) =projection of -t=o in W/S and Q(S,S) =0, we get (4. 68). at 
By combining (4.67) and (4.68) we obtain: 

(4.69) Ts (D) -- Hom (S, Rs) 0 HomQ (S, S), 

where HomQ (5, S) is all 0 C Hom (S, S) with (4. 68) being satisfied. The 
G-invariant splitting (4. 69) gives the required decomposition where Vs 
=llomQ(S,S) and Hs Hom(S,Rs). The assertion about the curvature 
to of K is clear from (4.69), (4.43), and (4.20) (the dcap are dual to Hs 
and the dba,6 dual to Vs). 

Remark. In the actual case of periods when W = H2 (V1 C)0 for some 
algebraic manifold V, S -H2 0 (1V), S ~H0,2 (V), Rs- H1 l (V) o and (4. 69) 
becomes: 

(4. 70) T,(v) (D) _- Hom (H2 0, H1"o) 0l HomQ (H2'0 HO'2) 

Case 2. Now we have D C G(n -q,W) X G(n,W) and so 

Ts (D) C Hom (S1, W/S1) 0 Hom (S2, W/S2) . 

This is one general relation which defines the tangent space to the flag mani- 
fold in a proluct of Grassmannians; in this case, if 01 C Hom (S,, W/51) and 
02 C Hom (-2, W/52), then 02 will equal 0, as mappings in W/S. In other 
words, the following diagram commutes: 



INTEGRALS ON ALGEBRIAIC MANIFOLDS, I. 625 

91 
S1 - * W/S, 

(4.71) { 92 

S2 > W/S2. 

By using the quadratic relations (4.2), we have Q(0(), ) + Q(, 0 (g)) 
=0 where 0 is either 01 or 02. This is by the same reasoning which gave 
(4. 68). Also, we have a G-invariant splitting: W-=1 0 S 2/SD 0 S2/S1 0 91. 

For example, in the period matrix case, W = H3 (V, C)o and this splitting 
becomes W - H3,0 0 H2'10 0 H1' 20 0 H0'3 since S1=H3 0 and S2 H3'0 +H2"1. 

Let RS = S1 0 S2/S1. Then Hom (Si, RsI/S) is a summand of 
Hom(S1, W/S1) and we claim that, using the bilinear relation, Hom(S1, Rs/S,) 
determines Hom (S2/S1, ,) . This is because, given 0 C Hom (S2/51, S1) and 
eC S2/S1, gC Sl, we will have Q (0( ), g) + Q (t, 0(g) ) and, since Q (Si, S1) 
> 0, 0(e) is determined by knowing (g) for all EC Si. 

We may now describe Ts (D). Using the decomposition of W and (4. 71), 
we have: 

Tg(D) C {lHom(S1, S2/S1) 0 lHom(S2/S1, S2/S1) 0 Hom (S2, Si} 
o Hom (Si, RS/Si). 

Using then the bilinear relation, we have: 

) Tg (D) -- {Hom (S1, S2/S1) 0l HomQ (S2/'1,S/S1) 

(7 HomQ (S, Si1) } 0 Hoom (S1, Rs/S1), 

where the meaning of HomQ ( , ) is clear. Taking Hs = . *} and 
Vs Hom (S,, Re/S,) in (4. 72), we get the desired G-invariant decomposi- 
tion. In the case of perisods, (4. 73) becomes: 

(4.73) TD(v, (D) -- {Hom (H3 0, H02"1) 0 HomQ (H02" , Ho1 2) 

0 HomQ (H3 0, H0 3) } 0 Hom (H3,0 Ho1' 2). 
To check the curavture assertion, we follow the notations in the proof 

of Proposition (4. 30). Combining the relations dcjp = dcp - V1 dbjp 
which define Ts(D) (by (4. 34)) and the relation dctp + V- 1 dbip =0 which 
defines Hs (cf. just above (4.44)), we find by (4.40) that 

" I Hs=Q (a,, 2) + (al + 2 a2) { Y dcap A djip} 
i,p 

so that o I Hs is positive definite as required. 

UNIVERSITY of CALIFORNIA, BERKELEY, 

PRINCETON UNIVERSITY. 
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