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PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, II. 
(Local Study of the Period Mapping) 

By PHILLIP A. GRIFFITHS. 

II. 0. Introduction. (a) The purpose of this paper is to study the 
local behavior of the periods of integrals, as functions of the parameters, in 
a family of polarized algebraic manifolds. The present work is a continuatioln 
of "Periods of integrals on algebraic manifolds, I (Construction and prop- 
erties of the modular varieties)," referred to as I. 

Let us call two polarized algebraic manifolds V, V' of the same type if 
there is a polarization-preserving homeomorphism f: V-> V'. The totality 
of all possible period matrices Q for the periods of primitive q-fonms 
(O < q n dim V) on polarized algebraic manifolds of the same type 
forms an open complex manifold Dq D. These period matrix spaces D 
have been studied in I; they are all homogeneous complex manifolds of the 
form D = G/H where G is a real, simple Lie group and H C G is a compact 
subgroup. In many ways, these D are analogous to the Siegel upper half- 
spaces (= period nmatrix domain for 1-forms), but there are important 
differences. For example, D is generally not an Hermitian symmetric domain, 
and the classical theory of automorphic forms is replaced by attomorphic 
cohomology. 

If { V}t EAis a complex analytic family of polarized algebraic manifolds 
parametrized by a polycylinder A, then there is definied the period matrix 
mapping 4: A-> D b) d1 (t) = period matrix of the primitive q-forms on Vt. 
What we will do below is give the properties of -1. 

(b) We give now an outline of the results in this paper, which is divicded 
into three sections under the following headings: 

1. Local study of the period mapping; 
2. Complex torii associated with algebraic varieties; 
3. Examples of the local period mapping. 

The first main theorem, given in Section 1.(a), is that 1 is holomorphic. 

The idea is the following: Letting V = VO and v= [q 21] there is an em- 

bedding D C F, with F a flag manifold, and q>(t) is the flag [S?(t), . , Sv(t)] 
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806 PHILLIP A. GRIFFITHS. 

where Sr (t) -H H O(Vt) + * + EHoq-rrt(Vt) is a subspace of W =Hq(V, C)0. 
Using the Kodaria-Spencer-Kluranishi theory of deformations of complex 

structures ([18], [20], [24], and [25]), we prove that aSr (t) Sr(t). This 
implies that 4' is holomorphic. 

The proof of this result also gives a formula for the differential 
4: Tt (A) -> T.(t) (D). To give this formula, at t = 0, we remark that 
there is a factorization: 

To (A) > Tp(o) (D ) 
\s'~p / t 

Hi(V,?) 

where p is the Kodaira-Spencer infinitesimal deformation mapping [18]. 
To give ,u, we use the natural isomorphism: 

v 

T., (o) (D ) -2 IEom (Hoq-r,r ( V)., Hoq-r-1, r+1 ( V ) + ...+ HO, q ( V )) 
r=O 

Then, for 0 H' (V, ?), (A EHoq-r,r(V), j4(O) () = . EC Hoq-r-1lr+l(V) where 
- 0 is the cup product in cohomology (cf. Section 1. (b)). 

This computation of 'In* gives a practical method of determining when 
the periods give local moduli, and Section 3 is devoted to studying special cases. 
For example, if {Vt} EA is the Kluranishi family ([25]; in this case, p is 
the identity), then we find easily that J1* is injective if V is a non-hyper- 
elliptic Riemann surface (cf. Rauch [27]) or if the canonical bundle of V 
is trivial (cf. Kodaria [17] for K3 surfaces). Less trivially we find in 
3.(c)-3.(f) that J1* is injective if V is: (i) a non-singular surface V C P3 of 
degree at least 5; (ii) a general non-singular surface on an abelian variety; 
(iii) a cubic threefold. In 3. (g) we discuss examples when the period 
mapping degenerates. 

There is computational and geometric evidence that we might have: q1* 
is injective if V is a surface with ample canonical bundle. 

The study of J1* also points up a new phenomenon for periods of q-forms 
(q > 1). Recall that a point Q [S?, *, Sv] CD satisfies the Hodge 
bilinear relations [10]: 

{ Qtu > O. 
f2Qt&2 > 0. 

For q 1, there are no more relations, but, for q > 1, there are additional 
infinitesimal period relations which hold universally. If q 2, we have 
dUQtO Q 0, dQQtdX2 = 0. These relations are discussed in 1. (c) and have 
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the following geometric meaning: Letting K C G be the maximal compact 

subgroup, the fibering D G/IH > G/K has complex analytic fibres; 
7r is holomorphic only when H = K (this is generally true only when q 1). 
At each point Q E D, there is a G-invariant splitting: TQ (D) = VQ Hu, 
where VQ is the tangent space to the 7r-fibre through Q. Then JD*(Tt (A)) 
C ]H.(t) is the additional period relation. Geometric applications of this 
transversality theorem are given in Sections 1.(c) and 1.(d). 

Section 2 is devoted to complex torri, especially those torii arising from 
periods of 2p + 1-forms on an algebraic manifold V. Let EO be a real 2m- 
dimensional vector space, r c EO a fixed lattice, and E E?RC the com- 
plexification of ED. We let r* c E* be dual to r and, for S a subspace of 
E with S + S E, S n s o, we let ES E/S and set: { T(S) Es/r 

T(S) * S*/r*. 

This gives a pair of complex torii depending holomorphically on S. The 
Kodaira-Spencer mapping p and the period mnapping 1 are discussed for this 
family (2. (a)). Also we discuss how a skew-symmetric quadratic form on 
Eo induces a polarization on T(S)* (cf. 2. (c)); this is generally a q-convex 
polarization. 

For a family of polarized abelian varieties of dimension at least three, 
the periods of the 2-forms give the moduli (as well as the customary way of 
using periods of 1-forms). This gives an equivariant embedding of the 
Siegel space inito a non-symmetric domain, and allows us to determine the 
additional period relations in a simple case (cf. 2.(d)). 

Let now Eo H2p+1(V,R), r ===H2P+l(VT,Z). There seem to be two 
interesting choices of S: 

S, H P+k+l ,p-k (VF) 

{S2 ; HP+2k+1,p-2k ( V) 
k? 

We set Tp (V) =T(S1) *, Ap (V) T=(S2) *. Observe that, if D is the period 
matrix space for 2p + 1-forms, 1 (V) = [SO, * *, SP] with SP S, above. 

Thus there is a holomorphic family of torii 5 > D with ~'(4 (V)) 
= Tp (V); in particular, Tp (V) varies holomorphically with V, whereas 
AP (1V) does not. There are natural polarizations LT -> TP ( V), LA -> AP (V) . 
The torus AP (V) is Weil's Jacobian, and LA is positive, whereas LT is. 
generally q-convex. 
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In some sense the torii T. (V) and Ap (V) are not fundamentally different. 
To explain this, we remark that, for x E Tv (V), the tangent space splits: 
T= P$, 0 N,. where the curvature UT of LT is positive on P., and negative 
on N,. (This is analogous to the q-convex polarizations on the period matrix 
spaces D.) Then in 2. (e) we show that there is a real linear isomorphism 
t: Tv(V)--Al(V) such that: (i) $*(LA) LT; (ii) if E HO(O(LA)) is 
a holomorphic section, then the Coo section $8(6) of LT satisfies $* (6) ( P. 

0; and (iii) if o1, , o is a basis for No, then the mapping 
#_>*8(#)9lA. * Ao,q gives an isomorphism H0(O(LA)) Hq(O (LT)) 

Both torii are relevant to the study of algebraic p-cycles on V. Let 
ZO C V be one such and let Z C V be an algebraic p-cycle homologous to ZO. 
If p1, *,(tn is a basis for S1, we may define +(Z) E T(p(V) by +p(Z) f paZ, ) modulo periods, where or is a 2p + 1 chain with 

ao Z-ZO. Similarly, we may define f (Z) C Ap (V), and we show (2. (b)): 
(iv) (p and q are holomorphic, and the diagram 

Tv (V) 

{z} 4's 
AP (V) 

commutes; (v) if B is an algebraic parameter space for p-cycles Z, then 
0* (Tz (B)) C Po (Z) (this is the analogue of the infinitesimal period rela- 
tions for (D given above). 

From (ii), (iv), (v) it follows that +p(B) is an algebraic manifold 
(via the sections $6, 2 C HO (6 (LA))), and that + (B) varies holomorphically 
with V. 

The differential qp* (= O-) is computed cohomologically in a similar way 
to be (cf. Theorem (2. 25)). To write the infinitesimal equivalence relation 
determined by (p requires the duality theorem for general coherent sheaves. 

To conclude this introduction, let us give the main open problem. We 
consider both the period matrix mapping (: B -- >D and the p-cycle mapping 
4): B -> Tv (V)1; in each case, B is a suitable parameter space. Both mappings 
have a basic similarity. There are natural line bundles L -- D, LT -- Tp (V), 
each with q-convex polarizations (different q). Now both ( and p are holo- 
morphic, and they each satisfy additional period relations which imply that 
L I ( (B) and LT I 4 (B) are positive. The problem is to construct holo- 
morphic sections of L j @(B), LT I + (B) ; these sections would then be 
generalized autoomorphic forms, resp. theta functions. 
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In the case of LT I +(B), by using (i)-(v) above the holomorphic sec- 
tions are constructed from Hq(O(LT)), so the problem is done in this case. 
Now, by Section 4.(e) of I, there is automorphic cohomology in H9(0(L)); 
as in the classical case where D is a Cartan domain, this cohomology is closely 
related to L2(G) (D==G/H). Our problem is to turn Hq(O(L)) into 
sections of L I ?(B). 

II. 1. Local study of the period mapping. (a) Let {Vt}tEA be an 
analytic family of compact, Kdihler manifolds parametrized by a polycylinder 
AC CII'. To be precise, we assume given complex manifolds V, A together with 
a proper, constant maximal rank holomorphic mapping 7r: V -- and stuch 
that on each Vt = l (t), we have given a Kiihler metric o(t) which varies 
smoothly with t (cf. [3], [18]). We let V1 VO and remark that, if VO7 has 
a Kahler metric, we can always construct the smooth family (t) postulated 

above [19]. The data V -->A will generally be called an analytic fibre 
space. 

By passing to a smaller polycylinder if necessary, V -x A will be trivial as 
a Co family; i. e. we can find a fibre-preserving C- isomorphism 

VoXzA->V 
vo X A Vr 1' J,~~~~7r 

A = A 

Letting W -f Hq (VT, C), by using the Hodge decomposition 

H[q ( Vt,' C) = , Hiq-r,r Vt ) 
r 

and the isomorphism 

+:Hq(Vt, C) > Hv( V') C), 

-q1 we can define a point Q (t) ==[So(t), ,Sv(t)I (v [ 2 ]) in a flag 
manifold associated to WV by letting 

St-(t) - q,*{H_q(7Vt) + + Hq-r,( Vt). 

We remark that, whereas p is far from unique, cp is essentially unique. As 
was discussed in I. 1, Q (t) is an invariant way of giving the total period 
matrix of the harmonic q-forms on Vt. 

(1. 1) THEORLEM. Q?(t) is a holomorphic function of t. 
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Remark. We recall here the example in I. 2. (b) where the Plicker 
coordinates of an explicit Q (t) were shown to be holomorphic, whereas Q (t) 
was not in terms of the period matrices one most easily writes down. 

Proof. What we have to show is that each subspace S,(t) C W varies 
holomorphically with t. Here we view Sr (t) as a point Qr(t) in a Gr-assmnann 
mtanifold G(hrn W) where hr = hq0 + + hq-rr (cf. 1. 1. (d)). By Lemma 
(4.22) in I.4.(b), Tsr(t) (G(hr, W) ) -Hom(Sr(t), WI/Sr(t) ) and, by Pro- 
position (4. 27) there, we must show: 

(1. 2) aSr (t) C Sr(t), 

in the following sense: there is a smooth basis v,(t), * Vh,(t) for S.r(t) such 

that aJ) C Sr(t) for j= 1, ,hr and where t = (t1, , ti") = ,ta . 

To simplify the notation we assume that m = 1 so that A is a disc with 
coordinate t; it will suffice to prove that, for any smooth vector v(t) C Sr(t), 

(1. 3) at-t-0 C Sr S (0). at 
We need to go now into the structure equations for deformations of 

comnplex structure (cf. [20], [24]). First we coordinatize V by a covering 
Ua! of open polycylinders such that, in Ua, we have holomorphic coordinates 
(Za'1, , ,zn; t) with 7T(za1y, , zn& ; t) = t. This is possible by the implicit 
function theorem since r* has constant maximal rank. In Uaf n UB, we have 
t t aInd zj =fa6i(zfi1, * zn;t). Writing z-=fafi(zfi,t), we have: 

(1. 4) fa'Y (zy,, t) fafi(fpy (z^, t), t) ill Ua nup n u. 

By differentiation, we get from (1. 4) that, if 0a6 = E -- -- (zf,6 t) awe have 

Oa!fi+Oy= Oay in U.fn Ufifln U. Thus 0(t) =={Oaf6(t)} defines an element 
in H'(Vt, ?t) which is the Kodaira-Spenced mapping [18]: 

(1. 5) pt: Tt(A)-H' (IVt,?t). 

This mapping, which represents the infinitesimal variation of the complex 
structure, is of fundamental importance in local deformation theory ([3], 
[21]). For example, if pt is onto, the family { Vt}7 teA will be locally universal, 
and Vt will have dim H' (Vt, ?t) moduli locally. 

We now want to choose the C?? trivialization Vp: X X A -* V carefully. 
To begin with, we can assume that 4-1(Ua) = Wa X A where {Wa } is a 



INTEGRALS ON ALGEBRAIC MANIFOLDS, II. 811 

covering of VT7. Thus we can have Wa Ua l nIVO and then z, = (z',. * , zan) 
gives a holomorphic coordinate on Wa C V,. 

(1. 6) LEMMA. We can assume that P* (za) za o is of the form 
Ca(za, 2a;t) where Ca(za,2a;O) =za and C,(za,za,t) is holomorphic in t. 

Proof. This Lemma is implicit in [24], and we know of no elementary 
proof not involving the sort of estimates given here. In other words, Lemma 
(1. 6) is true for the Kuranishi family, and, by his universality theorem, will 
be true in general (cf. the remark following Proposition (1. 11)). 

It follows that, in Wa! n W6, Ca(z, t) = haop((z, t), t) where hap(g, t) 
is holomorphic in both variables. Furthermore, hap (g (z, 0), 0) = hap (zr, 0) 

fcp (zr) will be the transition functions on VI7. Write now: 

(1. 7) dga!j z a, 
k_ 

{dzak + Z , 4ga,7dza'} (1.7) ~~~~~~k=1 aZa hi1 

(1. 8) LEMMA. In (1. 7), the vector-valued form 

a 
4)a ( t) z E[aik ( t) a~ k dza! I k,I azak 

is a global tensor, which depends holomorphically on t, and which satisfies: 

(1. 9) X(t) [ PD(t) @(D(t)] O. 

Proof. By definition, we have gaji (t) =E 4)a 7k(t) d a From 
k4IZ t 

0=a2tai (t), we get (1.9) by using the definition of [, ]. The fact that 
(a ((t) =i (t) in ua n U, is seen as follows: 

kE aza k edIca }c ai j E f Cpk 

= 0hapJ 0C36k -D7 ___ha_ 

k4,m Aa azfimdi1md2pl ahaz blmdz 

agai _ a zaZak 
Oz mk4 ~azck OZ? 

The equality of the two terms in brackets { * is just the equation -a! =[D. 
This proves the Lemma. 

Note that c1(0) =0; we set 0 t(t)]= at 

(1. 10) LEMMA. The vector-valued form 0 satisfies a0 = 0, and 0 is the 
Doubeault class representing 0(O) po ( () in 1' (1V,0). 
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Proof. The fact that 00 = 0 follows from (1. 9) since 4D(t) = to + t... 

Now we let Oa=, i a ]t=O a0 -; 0a is a C- vector field in Ua and 
j at - ;ci 

_____i ak 
3,katz aza' 

a ( at k] t=o a 0 d2ak - O ai a 0 dck z-0. 

On the other hand, in ualnufC, ga(Z,t)=hc(p(z,t),t) so that 

__aj OhagJ aOCk - ho j 
at - k k at ] - at 

Using the fact that ga(z,O) za and ha (g6,O) =fa,(z:), this gives 

oa4 afcifj acpk OhcOJ It t=o - z z It t=o It t=on 

or Oa-6J a = Oat (0). By the definitioni of the Dolbeault at (z, ) Zp' 
isomorphism, 0 =po ( a ) c H1 (V,? ). 

To collect these results in a systematic statement, we let (od = dza1 
+?(Iakj(t)d2k and have: 

(1. 11) PROPOSITION. Let {Vt}tEAbe an analytic family of compact, 
complex manifolds given as an analytic fibre space V- zA. Relative to a 
suitable covering {Wa,} of V = VO, there exist a family of linearly indepen- 
dent 1-forms (oal(t), * . (,oan (t) defined in Wa and satisfying: 

(i) the wal(t) give the almost-complex structure on Vt; 
(ii) wa|j(t) depends holomorphically on t; 

(iii) Wai1(t) dzai + (Dca,-i(t) dk tvhe /Je \(t) X'Daj-J1i a Od2 dZak k 

is a vector-valued form depending holomorphically on t with b (0) 0; 

(iv) if A= EAa t E1To(A), )a ]t=o =p(A) EH1(V,? () is 
a=1 ata t 

the Kodaira-Spencer class (infinitesimal deformationz claiss). 

Remarks. The Frobenius integrability condition, 

diqjseo (19),as i el vn)e 

is equivalent to the equation (I. 9), as is easily verified. 
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It is also perhaps worth remarking that Proposition (1. 11) can be proved 
fairly easily in a special case, which will cover most of our examples. Namely, 
assume that there are no obstructions to finding deformations with a given 
class 0 C H' (V, ?) as tangent. Then the construction of [20] gives a family 
V'--A' such that p: T0(A') --H'(V,OE) is onto. It then follows from [21] 
that V' -- A' is holomorphically universal, the argument here being much 
simpler than Kuranishi's. Now the same argument as in the proof of Lemma 
(1. 6) will apply. 

With these preliminaries, we can prove Theorem (1. 1) by showing that 
(1. 3) holds. This amounts to the following: Given a harmonic (relative to 
(0) , gijdzid2i) (q -r, r) form on VI7, written locally as: 

i,j 

we have to find harmonic (q -r, r) forms cp(t) on Vt, relative to w(t) 
= gij(t)w) (t)wi (t), which satisfy: 
i,j 

(1.13) tp(t) ]to c Hq,o (Vo) + + Hq-r,r (Vo). 

By the fundamental continuity theorems of Kodarira-Spencer [19], we may 
assume that gij (t) is smooth as a function of z, 2, t; and that 

(1. 14) p(t) - . (t) w"(t) A . * AWiq-r(t) AWZii(t) A * AZ,,r 

where 0(1..jq-rj1..jr (t) is also smooth in z, 2, t. 
We now use (iii) in Proposition (1. 11) to write: cp(t) = 01 + tb2 + tc)3 

+ [2], where [2] are terms of order 2, ol is of type (q -r,r), 

Sb3 = 6Ick jS1)i..j- 
J+l*j.7 

(0) dzil A * . . A dziq-r A diii A . . . A dZk A A d2ir 
8 (8) 

isof type (q r+1,r 1 ),and: 

(1I 15) (1)2 > Okt84)j1...jq+ ... (?) dzil A . . . A dlik A A * diq-r A diii A . A dijr 
8(8 

is of type (q-r-1,r+ 1). From ihis it follows that ]t=o--0 modulo 

Hqo (VO) +- + Hq-r (Vo) and 

(1.16) ap(t)] t=o-P2 (Hqo? + + Hq-r,r at 
This proves (1. 13) and hence Theorem (1. 1). 

Remark. We let Q,r(t) C G (hr, W) be the subspace 
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Sr (t) Hq? ( Vt) + + Hq-rr (Vt) . 

Then, using Lemma (4. 2) ) in I. 4. (b), 

(1. 17) Tur(G(hr, W)) -- Hom (Hq,O +* + _flq-r,r flq-r-l,r+l + + ?foq) 

where Qr fQ (0) and Hq-ss Hq-s (VO) We want to use (1.15) and 

(1. 16) to compute the differential 

(1. 18) (Q2r)*: To(A)- --Hom(Hqfq,O + ?+Hq-r,r, Hq-r-l,r+l+. . ?+ Ho) 

To begin with, we have the isomorphism Hq-8,8 _- H8 (VJ f2q-8), while the 
pairing @0 f2q-8 _ Qq-8-1 gives 

(1. 19) H1 ( V, E) 0 H8 (V, fq-8) - H8+1 ( V~ q-8-1) 

In other words, by using cup product, a class 0 C H1 (V, 0) defines an element 
6 C Hom (Hq-8 88 Hq-8-l,8+l)1 

(1.20) PROPOSITION. The differential (Q )* in (1. 18) is given by 
(Q )*(X)=p(X), where AX To(A) and p(X) C H1(V,?) is the Kodaira- 
Spencer class. 

Proof. We have that (Q )*(t)=P= oa( )]t=o projected into W/Sr(0) 

Hq-r-l,r+l+. * .+HO,q. Thus, by (1.16), (S1 )*(a =(P02. On the 

other hand, since =a (t )]t p( ) by Lemma (1.10), we have that at at 
0 2 = 0 .0 ; i. e., 0 2 is the cup product (using differential forms) of 0 and (. 

This says precisely that (Q a p 

(1.21) COROLLARY. (Q )*{To(A)} lies in the subspace 

Hom (Hq-r,rl HB-r-l,r+l) C Hom (Hlq,O + . . ? +lq-r,r fHq-r-l,r+l + . . ? +HO,q) 

The mapping we want to consider is Q2(t) = [So(t), * n,Sv(t)] con- 
sidered as belonging to a flag manifold F. From the embedding: 

F C G(ho0 W) X. * X G (hv, W), 
v 

we have that Tq(F) C EHom(Sr, WV/Sr), where [, * Sv]. The 
r=O 

condition that (00, * , (v) with (r C bom (Sr, W/Sr) be a tangent vector in 
Tu (F) is that, for s < r, we have a commuting diagram: 
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Ss I Sr 

1+8 Ofr 

W/SS - W/Sr 

It follows then that 

v 
(1.22) T (F) - E Hom(Hq-r,r,Hq-r-l,r+l + + H? q). 

r=o 

Combining this with (1.20) and (1.21) we have: 

(1. 23) THEOREM. * (To(A)) lies in the subspace 

v 

E HoM (Hq-r,r, Hq-r-l,r+l) 
r=0 

of T0(F) given by (1.22). For ETo (A), pEHq-rr, we have 0 (A)X 
= p (A) * p, where p (A) E H' (V, 0) is the Kodaira-Spencer class and p(A) ( 
is the cup product (1. 19). 

Examples. (i) When q = 1, T0 (F) -1Hom(H" 0, H0"1); (ii) when q = 2, 
T? (F) -_ Hom (H2'0, H1"1 + H0'2) and Q* (To (A) ) lies in Hom (H2 0, H1l); 
(iii) when q = 3, 

Tu (F) Hom (H3'0, H21 + H' 2 +H0'3) 0 Hom (H21, H1"2 +H0'3) 

and f2*(To(A)) lies in Hom(H3'0,H2,1) 0 lHom(H21,HH'); and (iv) when 
q ==4, 

T0 (F) - Hom (H4'0, H3"+ H22 + H13 + 14) (D Hom (H3", H22 + H"3 + H04), 

and Q2* (To (A) ) lies in the subspace Hom (H4,0, H3"1) (0 Hom (H3", H2,2). 

(b) We assume now that we have a polarized family of algebraic mani- 
folds; i. e., over V we have given a line bundle S -* V such that the restric- 
tion Se V1 = Lt is positive in the sense of Kodaira [12]. In this cas we 
choose w (t) to be a curvature form representing the Chern class of Lt Vt 
([11]). It follows that, in cohomology, +8(0(t)) , where w on V Vo 
is the Kihler form. 

Recalling now the notions of Kiihler varieties as reviewed in I. 1. (c), 
it follows that p* preserves all the cohomology structure of Hq (V,C), except 
those notions dealing with type. In particular, p* {Hq ( Vt, C) 0} H Hq (IV, C) 0 
(= primitive cohomology in dimension q) and we may take W= Hq (V, C)0, 
S_(t) -p*{H0oqo(Vt) +. . . +HqHr,r(Vt)} and pursue the same develop- 
ment as in Section II.1. (a) above. The point Q (t) = [So (t), * * *, S, (t) I 
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will not only lie on a flag manifold F, but, in fact, Qi (t) will lie on the domain 
D C F given by the bilinear relations (1. 16) and (1. 17) of I.1. (d). In that 
section, D was called the period matrix space and its properties are given in 
part I. We recall that TQ(D) C TQ(F) is the subspace of To(F) in (1.22) 
given by: 

v 

(1.24) To (D) E HlomQ (Hoq-r,r, Hoq-r-l,r+l + +HO,q) 
r=O 

where, by definition, p C HomQ (HOqrr r, Horgq-r) if, and only if, 

(1.25) Q (o (t) ) C) + Q ($n 0 (t) ) O (d E Hoq-rqrr g E Hoq-r,r). 

Here, Q is the quadratic form on Hq(V,1C)0 given by (1.7) of I.1.(c). 
We let now H1(V,?),x, C H (V,1,) be those classes 0 satisfying 0-w O== 

in H2(V, ), where oC H1(V, i?1) is the K:ihler class. If 0 =p(A) for some 
AC To (A) then 0CH1(V,?),x,. In fact, H1(V, 0) , is just the subspace of 
H1 (V, 0) which infinitesimally preserve the polarization. If 0 C H1 (V, 0),, 
then 0. Hq (IV, C) 0 C Hq (V, C)0 and we have, in place of (1. 19), that: 

(1. 26) H1 (1V, E) ? (3 Hoq-rr- Hoq-r-l,r+l 

Having noted now the additional relations which appear when we con- 
sider a polarized family, we may give the main theorem, whose proof already 
follows from Theorems (1.1) and (1.23). 

(1.27) THEOREM. (i) The period matrix mapping Q: A-4 D given by 

Q(t) =[So(t), ,Sv(t)] where Sr(t) =Hoq?o(Vt) + * 4Hoq-rr(Vt) is 

holomorphic; (ii) Q* (To (A) ) C E HomQ (Hoq-r,r, Hoq-r-19r+1) C To (D) given 
r=o 

by (1. 24); and (iii) if c C Hoq-r,r and A C To(A) f 0*(A)c 5 p(A) p C EHoq-r-lr+l 
where p (A) C H1 (V, ?),, is the Kodaira-Spencer class and p (A) p is the cup 
product (1. 26). 

Examples of (ii). We give the analogues of the examples following 
Theorem (1. 23). When q = 1, To (D) - HomQ (H1'0, HO,') and there are 
no restrictions on Q*{To(A)}. When q = 2, TQ(D) -- lomQ(H2'0, Ho1', + H0'2) 
and 2* {To (A) } C lom (H290, Hol'l). When q 3, 

To (D) -- llomQ (H0, Ho2 + Ho' +HO3) 0D HomQ (Ho ' Ho' + 11) 

and 2*{To(A) C lHom(H30, H02l) 0E HomQ(H 2"1, Ho'12) 
We want to give now a cohomological condition in order that the periods 

should give local moduli. To do this, we observe that Hn-1 (V, f2l ? on) is the 
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dual space to H'(V,1,) and, if we let H' (V.,0)- C H1I-1(V,174?10Q) be the 
annihilator of f1' (V, 0) (,, then: 

(1.28) H?Z-' (1V. l J0 Qn) =, Hn-l (V, 1, gi ? n) /IH (V7,W f) 

is the dual space to H1 (V, 0) .,. We shall consider families { Vt}, , which are 
subfamilies of the Kuranishi univeral family ([25]); in practice, this will 
mean that A C H1 (V, 0)(, and p: To (A) ->H1 (V, ) is the identity mapping. 
The periods will be said to give local moduli if, for any such family, the 
differential i? of the period matrix mapping is of maximal rank. 

(1. 29) THEOREM. The periods of the primitive q-forms give local 
moduli if the cup product: 

V Pt 

(1. 30) H oq-r,r C) HOn-q+r+1,n-r-1 - > Hn-1 (1V, Q1 C) Qn) 
r=o 

is surfective. 

Proof. This follows simply by dualizing the condition that 

Q* V 
To (AZ\) 3, HoinQ (Hoq-r,r~, Hoq-r-l,r+1 r=0 

should be injective. 

Remarks. An important special case occurs when the canonical bundle 
K -->V is positive. Then any family preserves this polarization and so 
H' (V, (D) X H_ 1 (V, 0), )Hn-1 (V7 l 0 on) Hn-1 (V v 0 X n ) and (1. L30) 
becomes: 

v 
(1. 31) H foq-r,r 0 fon-q+r+l,n-r-1 . Hin- (1V, e1 ? Qnn)* 

7=0 

If we ignore polarizations, the condition that the periods of the q-forms 
give local moduli is that the cup product: 

v 
(1.32) EHq-r,r 0 fin-q+r+l,n-r-1 .> fHi-1 (V1 7 2, 0 Qg) 

r=0 

should be onto. 

7r 

(c) Let now V > B be a family of polarized algebraic manifolds 
where B is assumed simply connected. Then we can globally define the period 
mapping: 

Q: BAD 
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where D is the period matrix space for the primitive harmonic q-forms (cf. 
I.1.(d)). Conerning the domain D, we recall the following facts: 

(i) D is a homogeneous complex manifold; D = H\G where G is real, 
simple Lie group and H C G is a compact subgroup (I. 1, Theorem (1. 26)); 

(ii) The canonical bundle K-> D has a unique G-invariant p-convex 
polarization (I. 3.(c) and I. 4.(b), Theorem (4.8)); 

(iii) If K C G is the maximal compact subgroup and P = K\G, then 
(o 

the fibres in the fibering D- >P (given by H\G -- K\G) are compact, 
complex subvarieties of D. If we set Yx = )-(A), then p dim Y. and the 
canonical bundle K is negative on Yx (I. 4.(c) Theorem (4.41)); and 

(iv) For each Q C D, there is a unique G-invariant splitting: 

(1.33) To (D)= VsOHED , 

where Vg is the tangent space to the fibre of it passing through Q. The 
curvature form w of K is negative on VQ and positive on HQ, and the Levi 
form L (+) of an (m -p)-pseudo-convex exhaustion function 4 of D is 
positive on HQ (m dimD) (cf. I.4.(f), Proposition (4.66) and I.4.(d), 
Lemma (4.46)). 

(1.34) THEOREM. Let Q: B -> D be the holomorphic period mapping. 
Then, for t C B, 

Q * (Tt (B) ) C HQ (t). 

Thus K is a positive bundle on Q?(B) and d) I Q?(B) is a pseudo-convex func- 
tion. Furthermore, iD (B) is transverse to the compact subvarieties Yx in 
(iii) above. 

Proof. In keeping with the arguments of I. 4., we shall prove this result 
for 2-forms and 3-forms. For 2-forms, by (4.70) in I.4.(f), we have that 

(1.35) Ho (t) =Hom(Hf20 (Vt), Ho','(Vt)) 

for 3-forms, by (4. 73) in I. 4. (f) we see that: 

(1.36) TIQ(t) = Hom (H3,0 (7Vt), Hf2,1 (Vt) ) E HomQ (Ho2,1 (Vt), Ho12 (Vt) ) 
+ HomQ (H3,0 (Vt), H03 (1Vt)). 

From the examples following Theorem (1. 27), we see that, for 2-forms, 

(1. 35)' Q* (Tt (B) ) C llom (H20 (Vt),1 H021 (Vt)) 

and, for 3-forms, 
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(1. 36)' Q*(Tt(B)) C Hom(H3'0(Vt), H02'1(Vt)) ED HomQ(H02'1(Vt),HO' 2(1Vt)). 

Comparing (1. 35) with (1. 35)' and (1. 36) with (1. 36)' gives the theorem. 

Remarks. The condition Q,* (Tt (B) ) C HQ (t) can be phrased as a bilinear 
relation Q1(Q(t),dQ{(t)) 0. The family of subspaces HQ C T%(D) gives a 
non-integrable distribution in the complex tangent bundle; the tangent spaces 
to Q(B) give an integrable subdistribution, which means that relations of the 
form Q2(dn(t),dQ(t)) 0 hold (compare (1.36) and (1.36)'). Thus: - 

(1. 37) CONCLUSION. Let V be a polarized algebraic var-iety defined 
over a function field F. Then, if Q is the period matrix of V, Q satisfies the 
Hodge bilinear relations Q (Q, Q) = 0, Q (Q, Q7z) > 0 plus additional relations 
Q1 (Q, dQ) ==0 and Q2 (dQ, dn) =0, where dQ is defined over . 

It should be emphasized that these new relations are universal, as opposed, 

e. g., to the special (g 2(g ) relations satisfied by a curve of genus g, 

but not satisfied by the periods of the 1-forms of a general V having the Siegel 
space as period matrix domain. 

We shall now give these additional relations explicitly for periods of 
2-forms and 3-forms. These are the two cases discussed at length in I. 4. (b) 
and I.4.(c). 

Examples. (i) Let V be a polarized algebraic manifold and h -h2 (V), 
kc= holl(V) -h11(V) -1. Then there will be a (2h+ko) X (2h+lk) 
symmetric matrix Q and the period matrix space D will consist of all 
h X (2h +- l) matrices Q which satisfy: 

(1. 38) fgt >O 

(1. 39) PROPOSITION. The period matrix of V over a satisfies the 
additional bilinear relations: 

(1.40) J dnQtf2 0. 
df2Qd,QQt=o. 

Remark. We first observe that (1. 40) makes sense; if we replace Q 
by AO, then d(AQ)Qt(AQ) -dAQQtQtA +AdQQtQ7A A(dQQtQ)tA (by 
(1. 38)). By a similar calculation, we see that both equations in (1. 40) 
make sense on D. 

Proof. To prove the first relation in (1. 40), we have to show that, if 
A is any disc with parameter t and Q(t) the variable period matrix, then 
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of'(t)QQ(t) - O. If W H2(V,C)0, then Qi(t) gives a subspace St C W 
(St H2'0(Vt) ; cf. I.1.(a)) and Q'(t) gives the tangent to the curve (St) 

/7r1 (t) \ 
as follows: Write Q (t) = where the row vectors 7r,(t), ,7rh(t) 

\7rh (t) / 
give a basis for St. We then define a E: Homr(St, W/St) by sending 7ra(t) 

into -d7t( )(modulo St). 

By Corollary (1.21), a C Hom(H2'0(Vt),Ho0'1(Vt)) and then d(t() at ~~~~~~~~~~~dt 
C H20 (IVt) + Ho01'l (Vt) so that Q'(t) QQ (t) =0 as desired. 

The second condition in (1. 40) follows by taking the exterior derivative 
of dQ2Qt2 =O. 

(ii) As above, V is a polarized algebraic manifold and we let 2n 
=dimW where W=H3(1V,C)0, q=h021l (1V), n-q h3,0 (V) . To describe 
the period matrix space D, we are given a rational skew-symmetric matrix Q 

and we consider n X 2n matrices i = (0 ) where 0, is (n - q) X 2n. With 

A1 
equivalence relation Q, AQ where A =All 0 ) (A11 is (n - q) X (n -q)), 

A12 A22 
the bilinear relations giving D are: 

(1.41) 1 I on A-QQ 1> 0 

L V-1 ?zQto has signature (n - q, q). 

Here QN represents the space H3O0(V) C W and Q the space H3'0(V) + H02'1(V). 

(1. 42) PROPOSITION. The period matrix Q of V over 5 satisfies ilhe 
additional bilinear relations: 

dQlQti2 O 

(1.43) dQQt1= 0 

L dn2QtdzQ =0. 

The proof of this Proposition is basically the same as that of Proposition 
(1. 39). 

(d) As an application of Theorem (1. 34), we have: 

74 

(1.44) THEOREM. Let V-i >B be an analytic fibre space of polarized 
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algebraic manifolds where B is compact and simply connected. Then the 
period mapping I: B ->D is constant. 

Proof. Let +: D-->R be the exhaustion function for D, and f = 
If 6, y are tangent vectors of type (1, 0) to B, we claim that L (XV)(4/) 
=L(+p) (dI*(4),* (ry)) where L(VI) and L(+p) are the E. E. Levi forms. 
This is a straightforward computation using the fact that D is holomorphic. 
Since L(+p) > 0 on H,1(t) C T1(t) (D), it follows that L(VI) ? 0 and L(+) = 0 
if, and only if, + is constant (i.e., D* = 0). But a pseudo-convex function 
on a compact manifold is necessarily constant, which proves the theorem. 

II. 2. Complex torii associated with algebraic varieties. (a) We first 
discuss general complex torii. Let Eo be a real, 2m-dirnensional vector space 
with basis el, * * *, e2,, and let E = EO OR C be the complexification of E. 
Let B C G (m, E) be the open subset of all n-dimensional subspaces S C E 

7r 

with S n s = o. We construct a family of complex torii V o- B as 
follows: Over G (m, E) we let E -* G (m, E) be the holomorphic universal 
bundle with fibre Es E/S at S C G(m, E). Over B, the lattice r generated 
(over R) by e1,* , e,,. projects onto a lattice rs in Es, and we let 
Ts= Es/rs. In this wvay we get an analytic fibre space of complex torii 

7r 

V >B with 7r-1(S) =Tg. 

(2. 1) Example. Let {Vt}tE, be a family of polarized algebraic mani- 
folds of dimension n. We choose 0 < p ? n - 1 and let: Eo H2n-2p-1 (1V, R ); 
el* , e2M be free generators of H2n-2P-1 (V, Z) ; and E = H2n-2p-l (V, C). 
For t C A, we let St C E be the subspace given by: 

(2. 2) St = H2?-2p-10 (Vt) + . + I-p, n-p-l (Vt). 

Then St n t = 0 and so St C B. The resulting complex torus Ts, will be 
denoted by Tv (Vt). The mapping 4)p: A -* B given by Tp (t) = St is holo- 
morphic (Theorem (1. 1)), and so the torus T. (Vt) depends holomorphically 
on Vt. We shall see in Section II. 4 below that T. (V) is related to the 
algebraic p-cycles on V. 

We now look at some special cases of this construction: 

(i) p=n-1. Then E=fP(V,C) and S=H1'0(V). Thus EIS 
_Ho'1(V) and T,1,(V) -H0'1(V)1/H1(V,Z) is the Picar d var iety ([28]) 
of V. 

(ii) p 0. Then E IfJ2n-1(V,C) and S H,',11(V). Thus EIS 
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- H-ln (1V) and To (V) will be seen (Proposition (2. 16) ) to be the Albanese 
variety ([2]) of V. 

(iii) n =3,p 1. ThenE E H3((V,C) andS S H3'0(V)+H2'1(V). 
The torus T1 (V) _ H12 (TV) + H0O3 (V) / (V, Z) is not Weil's intermediate 
Jacobian unless H3'0(TV) 0 (cf. I.3.(b) and II.2.(e) below). 

Returning now to the general picture, we want to give local coordinates in 
2rn 

V - B. Fix S and choose a basis l,* , e. for S. Then ea= -1 7rpafep 
p=1 

where the 2m X m matrix (7rpay) has rank m. We may assume then that 
det(7rm+pc,) 740 and choose a basis 4e,* e, m for S so that 

(2.3) = _-7rpae : + em+a. 
,B=J 

Then e1, *, em project onto a basis for W/S and, from (2. 3), we get 
em+a 7 7rptae8 (S). Thus, if we identify W/S with Cm by using e1, , em,, 

then rs is generated by the 2m column vectors in the matrix (I, II) (11= (7rp)). 
Now the (- rpa) in (2.3) give local coordinates on B around S, and 

the complex torus Ts Cm/rs where rs is the lattice generated by the 2m 
column vectors in the matrix 

(2.4) Q (S) = (I, 1). 

7T 

This is the analytic space point of view: locally, V > B is a family of 
torii depending on m2 parameters 7r,p whose period matrix is given by (2. 4). 

The other point of view in deformations is to fix the real manifold and 
let the complex structure vary; we want to show how this works here. Let 
then R2m with basis f, * *,f2,m be fixed, let r be the lattice generated by 
fl1, * * *, f2m over Z, and let T be the real torus R2m/r. We let xl, ** ,X2m 

be the real linear coordinates on R2m dual to f,, , f 2. and define a (linear) 
complex structure on R2m by letting: 

(2. 5) dza = dxa + E 7raodxm+P 
P=1 

This gives then a complex structure on T and the resulting complex torus 
will have period matrix Q(S) given by (2.4); in other words, this is the 
torus Ts. 

Fix now SO with period matrix Qi(So) = (I,II) and let J (+frp) be a 
matrix close to zero. We define dza by (2. 5) and define: 
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(2. 6) dw'a= dx' + v( r+ ap) dxl+P. 

This gives a holomorphic family of torii centered at Ts, and we want to 
compute the Kodaira-Spencer mapping p (cf. (1. 5)). To do this we write: 

(2. 7) AgadwP dza + 4 4a (+) dV, 

and seek to determine 4>a(VI) (cf. (1. )). In terms of matrices, (2. 5), 
(2.6), and (2.7) give: 

A-~I + 4 _ 
A (H + %) H + (II. 

This reduces to give (I+L') 'I=(fl-HI). Now 1 1-1 A-' for some 
matrix A, so we get that: 

(I + ()*A +I ~I + 
or 

I (I?+)(I- 'IA) 

which gives the formula: 

(2.8) (*) = (I - IA)-- I =IA+ (IA )2+ . 

It follows then that 

(2.9) p Ay a df (A (f n)-I) 

In particular, p is an isomorphism. 

Remark. Assume that m 1 andr= V/-i. Then dz=dx1+\/-1 dX2 
and we write dw = dxl + adx2. Solving the equation Xdw = dz +- dz gives 
the reciprocal relations: 

(2. 10) oci( +a,,B 

Ilere, as a varies over the upper half-plane, /8 varies over the unit disc and 
vice-versa. The approach to moduli of elliptic curves writing dw dxl + cadx2 
(Im c > 0) is that of varying the lattice generated by 1, a in C; the approach 
given by writing Adw = dz + fldz (I , I <1) and keeping the lattice fixed 
is the one via quasi-conformal mapping. 

We now ask if the periods give local coordinates in the family V - B: 
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constructed above. Since, for each S E B, the mapping p: Ts(B) -* H'(Ts, ?) 
is an isomorphism (cf. (2. 9) ), the periods of the q-formns will give local 
coordinates on B if the cup product (1. 32) is onto. Actually, it will be the 
case that: 

(2.11) 0lHqOOHm-q+l,m-l > Hm-1 (T8, 01 ?Om) 3> 0. 

To see this, we observe that a basis for Hm-l (Ts, Q1 ? m) consists of forms 
dz?' a dzA ? di' where A (1, * * *, m), dzA dzl A. . A dzm, J= (ac,*, a.m-). 
dV' dal A A dzaq. But then, if say a ? q, 

, (dzl A *A dzq X {dza A dz-+l A. A dZm 0 dz}) +? dza dZA O d2-J 

so that 1i is onto in (2. 11). 
Of course, if q 1, (2. 11) reduces to 

(2. 12) H10 0O Hni,ni-l > Hm-1 (TS. 15 ? QOIt) 

and u is an isomorphism. This should be so since we are, in effect, using the 
periods of the holomorphic 1-forms to give the family V-> B. Using the 
notation of (2. 9), we have that (cf. Proposition (1. 20)) 

C Hom (1110, H0",) 

is given by: 

0* (a (dza) E, Ay Pdzz 
(2. 13) 1 

)(dz) =Ofor AX a. 

Thus it is clear that Q* is an isomorphism. 
7Tg 

(b) There is another family of torii V* >B which is constructed 
as follows: If S E B, we have an exact sequence 0 -- S -> E -* E/S -> 0 and 
its dual: 0 <- S* *-E* <- (E/S) 0. The lattice r gives a dual lattice 
r* C E* and r* projects onto a lattice rs* in S*. We set Ts' S*/rs* 

7r *-l (S) - 

To coordinate Ts*, we choose a basis l., , em for S and write 
2m 

w irpaep. We claim that Ts* ;C /Prs* where Cm are row-vectors and 
p=l 

rs' is the lattice generated by the rows of the 2m X m matrix II (7rpa). 
In fact, if ea* E St is dual to ea, then it will suffice to show that the projec- 
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tion ep* of ep* into Se satisfies ep' 7 * This amounts to the equality 
t1l 

<ep*, <> K < rpatOn @p> = irp,0. Thus proves: 
a=1 

(2. 14) PROPOSITION. To find the period matrix for Ts*, take a basis 
* m for S and form the 2m X m matrix <ep*, t> 7rp. Then the 

row vectors in this matr-ix generate a lattice in Cn, and the resulting complex 
torus is Ts*. 

(2. 15) Example. We follow the example (2. 1) where E H2n2p-l(V17 C) 
and S H2n-2p-10 (1) +. * + Hn4P8-P-P (V). The basis &, *, & for S 
means now that we take cohomology cases 4y, * ,emgiving a basis for S, 
and dual basis ei*y., e2m* means a free system of integral generators for 

the homology group H22p 1(V7, Z). The matrix <ep*, $a> $; , so that 
ej,' 

Ts*=Tp(V))* is the complex torus Cm/rP*(V), where r*(V) is the lattice 
generated by periods of <, * - *, t.- 

For example, when p = n-1, E = H1 (V, C), S H10 (17), ,* 
are a basis for the holomorphic 1-forms on V, and T, (V) * is Cm modulo 
the periods of the holomorphic 1-forms on V. This Tn_- (1V) * is what is 
usually called the Albanese variety of V. If we fix po C 17, the mapping 4: 

V- T,1 (V)* given by p (p) = (fei~ J . ' , m) is well-defined, and is 

the standard mapping of a variety into its Albanese variety. 

(2.16) PROPOSITION. The complex torni Tp(V) and T,p1(7V)* are 
naturally tsomorphic. 

Proof. Let E.=- HJ2n-2p-l (1, C) and 

Sp = H2n-2p-lo (17) + + HnJ-p,n-p- (1V) 

Then, by Poincare duality, 

Sp* - HP,P+l (1V) + + HO,2p+l (1V) - 

i. e. we have a natural isomorphism: 

(2.17) EP/S * - p_l. 

Under the isomorphism (2. 17), the lattices rsp and r*S, p l go into one aother, 
and so the corresponding complex torii are naturally isomorphic. Q. E. D. 

By using the isomorphism T0 (V) - T0_1 (V) *, we get a holomorphic 
mapping sb: 1-- T, (V), which is unique up to translation. This generalizes 

k 
as follows: Let ZO C V be a fixed algebratic p-cycle; i.e., ZO = njSj where 

j=1 
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the nj are integers and Sj C V is an irreducible p-dimensional subvariety. 
We let B(ZO) be the set of algebraic p-cycles Z which are homologous to ZO 
anad define 

(2. 18) : B (Zo) -> Tp (V), 

by the following method: Choose a basis i, * - * ' m for H2p+1,O + HP+1,P 
and write Z ZO- = C where C is a 2p + 1 chain. Then set 

(2.19) +(Z) -(fi . * f*nW) 

(2. 20) THEOREM. Let {Z4}IXBbe an algebraic family of effective sub- 
varieties with B non-singular. Set ZO- Zx= and define p: B-> Tv (V) by 
+(A) = (Z). Then p is holomorphic. 

Proof. We shall first treat the case where the Z4 are analytic submani- 
folds forming a continuous system in the sense of Kodaira [16]. Because 
the problem is local, we may assume that A is a polycylinder and A0 =0 is 
the origin. We recall that Kodaira [16] has defined the characteristic map: 

(2. 21) px: Tx() -> HI(Zx, 0(Nx)), 

where Nx -> Z is the normal bundle of Z4 in V. 

Now we can find an analytic fibre space Z -- A with 7r-1 (A) =4 Zx and 
and a holomorphic mapping F: Z-> V such that F is the identity on each 
Z4 [8]. In fact, we will have Z C V X A and F, 7r are induced by the projec- 
tions; we remark that Z * V X {A} = Zx X {A}. 

On Z there is an obvious chain (modulo cycles) Cx with AC> =Z- ZO; 
we simply take a curve yx C A connecting 0 and A, and let C>. U Zg. Then, 

letting Cx be the corresponding chain on V, we will have 

+(x) = (ef4iv *j' w) =i (xF*( .F)) 

There is perhaps the foundational question of in what sense is Cx a chain. 
However, such problems are much easier than similar questions which have 
been treated successfully in [23] and will not be dwelt on here. 

Now we let F* (ea) == w, we assume that A is a disc with coordinate A, 

and we shall examine how wrca(A) = varies with A. Recall that, on Z, 

o. is of type (p + r + 1, p-r) with r> O. Since dimZ== p + 1, we will 
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have 0, =0 unless r - 0. Assume then that wa - w is of type (p + 1, p); 
we can write (in many ways) X = k A dx +0c2 A dX. Analyzing types, we see 
that: 41' i1+V'2 where t1 is type (p,p) and q12 is type (p- 1,p+1); 
0/2 -771+772 where l is type (p+1,p -) and 2 is type (p,p). Since o 
is type (p + 1 p ), 2 A dA+ 7q2 A d= 0. It follows then that -q2 I Zx=O. 

Now 7r(() =fw= f(f (P)d +f+ (f (p2)dg. But (P2 ZC 

Cx~~~ ~ , 
oi (A) 

Z 

= q I ZC + I2 I Zc = O. Thus 7r(A)=f (J 1)d and so -d(-0. 

The general effective family will differ from the continuous system case 
in that the Zx may have singularities; these will cause no trouble in integrating 
smooth forms and so may be ignored. 

This completes our proof of Theorem (2. 20). 
Assume now that {ZX},jXEa is a continuous system and Z- Z0, N No. 

The differential 

4p*,: To (A&) -- >Hn-p-i,n-p (V) + ... + HO,2n- 2p-1 ( V) 

and we want to give a formula for 48. Actually, we will have a mapping 
ip: HO (Z, 0(N)) -> Hn-p-l,n-p (V) + . . . + HO2-2P-l (V) and then 4= p o 

where p = po is the characteristic mapping (2. 21). 
It is easier to give the dual mapping: 

(2. 22) ,* : HO (QV2P+1) + . . . + HP(2vP+1) HP(Z,& 7zP(N*)), 

where we have used HP+l+r,p-r (V) - HP-r (f2Vp+l+r). To do this, we make the 
following remark: Let 0 -> A'--* A -- A" -> 0 be an exact sequence of vector 
spaces with dim A = n, dim A" --p, dim A'= n -p. Then there is a 
canonical exact seqence 

(2. 23) A2 Ap A -Z->AP+1A A ' X0 APA" >. 

Applied to the exact sheaf sequence along Z: 0 --* (N*) > ?ZvIz1 >Q f2z1 -* 0, 
(2. 23) gives a sheaf mapping ?ZyvjP+1 e> ?PzP 0 (N*) O0 which gives in 
cohomology a diagram: 

rHP (Q7VP+1) 
(2. 24) 4, \+* 

HP(f7vIzP+l) - HP( 2zP(N*)) 

(2. 25) THEOREM. 
Sb p*q* where +, (Hp-r(f2Vp+r+l)) -0 for r > 0, 

y* HP(f2vP+1) --HP (nzP(N*)) is given in (2. 24) and p*: HP(QzP(N*)) 
To(a)* is the dual of the characteristic map (2.21). 
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Proof. Let $ be a class in H2p+1,0 + + IP+' P. Then 

O* (a ) > =aA <t (A) >]X=0 = aA( Jr ) ]x=o. From the proof of Theorem 

(2.20) we see that x= (o = 0 if E H 2p+1,0 + + HP+2p-1 So that 

we may suppose that t C HP+',P. Then we must show that: 

(2.26) a (C ' =)]x o=? <hI1 ()p( )> axk *x j ' ax 
where f* is given in (2. 24). 

We can choose local coordinates zl, . . ., zP; w1, . . *, Wn-p on V such that 
Z is given by wl - * * w"= 0. Locally, Zx will be given by wa = pa(Z, A) 

where Oa (z,A) is holomorphic in both variables and Oa (z, 0) = 0. Thus we 
can write Oa(z,A) =gCa(z)A+ [2] where [2] are terms of order 2 in A. The 

normal vector field p(-) ECI'(z) (cf. [16]). axk a=1 owa 
Locally, we can write 

p 
Y. Ea (z, w) dzld2Idwa + (2) 

a=1 

where dzl = dzl A A dzP and (2) are terms involving dwa A dwO. Then 

At(d) is a (p, p) -form on Z with values in N* given by 
n-v 

A E (z) dz1dzI 0 dwa 
CY=1 

where 6,,(z) =CY(z50). Thus we get that: 

(2. 27) ( ) 5 P ( A) > JZ{E4L,( (z) CL (z zlZ} 

where the expression in { . } is a (p, p) form on Z. 
On the other hand, let A be the polycylinder with coordinatss 

z, * *,zP,A) and define y: <-> V by 

y (z,A) A) (z, ** *, zP; p' (z A) * . . . n-p( Z, 

Then Cx is the union of images y(t) ond so C G is the sum of integrals 

But 5 {$a(z,4(z,A)) A b(z,A) }dzdzIdA. Then it is clear 
T(A) Y(A) Oa 

that - (f' )]X= is given by (2.27) since Ca(Z) 
- a=a (z,A) ) This 

completes the proof of the equality (2. 26) and, with it, Theorem (2. 25). 
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Exampples. (i) When p 0, Z= (xl, * *,Xk) and N= T,1(V) +- - 
+ Txk(V). We let Zvy' (xi, * , xk) be the sheaf of holomorphic 1-fornms 0 

with w (xj) 0, and let the continuous system be obtained by letting the 
points xj vary freely. The diagram (2. 24) becomes: 

C~~~~ 

HO (f2vl (xl, , -Xk) ) 

1 
(2. 28) ~~~HO (Q2V1) 

4, 
\+* 

HO (fivjIZ) TX1(V) e+ + TXk(V) 

I 
H1 (iV1 (Xi1) * * ,Xk)) . 

The mapping f" is simply the restriction of forms. If we choose the points 
x15 . . ., Xk (kI ? h"?) in a general manner, then H? (QVl' (X, . , Xk)) ) 0 
and so 4* is into, (p is onto. Thus, if V(k) - V o o V is the kc-fold 

kc 
symmetric product of V, the mapping 0: V(k) - To(V) given by +(x1, ,k) 

k Xij 
( * ,> tcy * )/(periods) is onto, and the dual tangent space to the 

j=l * 

fibre of ( through (xi, , Xk) is Hl(Q1(X1,, * *, Xk)), 

(ii) For p = n - 1, we let Z C V be a sufficiently ample prime divisor 
so that, in particular, Hn-i(V,2n[- Z]) =O H1(V, [Z]), [Z] being the 
line bundle determined by the divisor Z. Let {ZX1X B be the continuous 
system generated by Z (cf. [13]) and identify Txo(B) with HO(Z,O(N)). 
Then (2.24) becomes: 

0 

Hn-1 (nVn) 

Hn-1 (2Vn ZIZ) H"n-' (Z, 2zn-1 (N*)) 

(2. 29) 4, 
Hn (V, QVnE [Z] ) 

Hn (UT,n) 

0 
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Dualizing (2. 29) gives: 

(2. 30) 0OoC-H?(V,C7v[Z])- H?(Z,C7z(N) ) HI H(V, ) ->0, 

which is a piece of the exact cohomology sequence of 0 -> nv-> 7v[Z] -> z(N) 
-> 0. It follows that c: B -> Tn_ ((V) is onto and the fibre passing through 
Z is just the complete linear system Z 1 Thus we are quickly led to the 
standard structure theorems on the Picard variety of V ([13], [28]). 

When n = 1, these examples coincide and the tangent space of the 
fibre of b passing through (x1, * * *, x) is the complete linear system 
I X1 + Xk |; dualizing the sheaf sequences contains a proof of Abel's 
theorem for curves. 

(iii) In general, of course, p will not be onto; at most, we can have 
b*: Tx,,(B) > Hn-p-l,n-p..? 0. But it seems likely that this will not generally 

be possible. For example, let V be a threefold, Z C V a general curve, and 
QV2 (Z) the sheaf of holomorphic 2-forms on V vanishing on Z. There is 
some evidence that we can have Hl (QiV2 (Z)) = 0, and then (2. 24) becomes: 

0 

Hl (QiV2) 

(2. 31) , 
H' (Z, C7 (det N* )) > Hi (fV2 Iz) e- H' (Z, nzl (N* ) ) 0 

0\ 4. 
H2 (Q2V2 (Z)) 

Thus 0* will be injective if, and only if, ker ker 0 which seems to not be 
always possible. 

In general, to determine the fibres of c: B -> Tp (V) passing through 
Z c V, we will have to know the dual space of HP+1(i2vP+1(Z)), which points 
up the difficulty in finding the algebraic equivalence relation - such that 
Z Z' if, and only if, +(Z) =40(Z'). 

(c) We now put a polarization on the torii Ts* constructed in I. 2. (b) 
above. To do this, we let Q be a skew-symmetric form on Eo with matrix 
Q= Q (ep, e,) and such that Q-1 (qp,) is integral. We let BQ C B be those 
subspaces S C E which satisfy Q (S, S) = 0 as well as S n S = 0. 

(2. 32) PROPOSITION. For S C BQ, there exists a holomorphic line 
bundle L -> Ts* whose characteristic class is o = / 1, ha,jdza A dz, where 

the Hermitian matrix LT= (hxyf) is given by H- ( UQQto)-1. 
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2n, 

Proof. Let $1, * be a basis for S and write a E 7rapep. We 

form the m X 2m matrix Q = (7rap) and write Ts* =Cnl/rs* where rs* is 
the lattice in Cm generated by the 2m column vectors of Q. The condition 
Q(S,S)=O is now written ?2QtQ2 O (cf. I.1.(a)). We let 

Hi _S 1 QQtQf- 

so that H (Hi)-'. 
Every vector t C Cm can be written as a real linear combination of 

41n 
. . . n e2, and this gives an R isomorphism Cm =R2m such that d, corres- 

ponds to the p-th coordinate vector of R2m. Letting xl, x2m be the real 
coordinates on R2m and zl, , ztn be the complex coordinates, we have 

2m 

dza = Erra!pdxP. We remark that dxl, *, dx2,n give a basis for H' (Ts*, Z). 
p=l 

Write now dxP = qpadza + E 2 pad2". It follows that 
x az 

E (fpa7raCr + ipaWraa) =aP 

or, in matrix terms, '4 + *n = I. Thus ('1) ( )'. From fiQtQ O, 

we get 

() Q(tft) =Q? t\)=Q( V Hi) 

Taking inverses in this relation gives: 

(t ) Q-1 (*418) -\/ ? / Hl-l ) ( O_ -1 ff 0 

Thus tiQ-- = V-1 H and t4Q-l=0. 

Let now w = 1 V i hojdza A dz. Then 
a,f 

@ = V-i 7 hafzrapWfydxP A dxr V-i { , (tHff6 - tf1Q) pdxP A dxl}. 
p,c 

But 

V 1 (tQH&Q - tQHQ?) - V ( 1 tQtIQ"1*f + -\?V 1 t2t+Q-"1*2) 

(1t0tQ-l - tf2t*Q"142 + t&?t4PQ-1 tf2tiQ-I1Q-6) = Q-1. 

Thus =-E qp,dxPA dxT V1 h ha4dzcA dD8 and so toC H11(Ts*) 
P,a a,p n H2 (TS *, Z). The existence of L now follows from the Kodaira-Spencer 

version of the Lefschetz theorem [9]. 
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Bemark. The proof of Proposition (3. 10) in I. 3 shows that we may 
find a metric in L whose curvature form is w. Combing this with Proposition 
(2.32), we have: 

(2.33) COROLLARY. Suppose the Hermitian matrix V1- ?Qt has 
signature (q, n - q). Then L -- Ts* has a q-convex polarization (cf. I. 3 (C) ). 

Example. We continue on with the example (2. 1) (cf. (2.15) and 
(2.16)). Thus we let E=H2n-2P-1(V1,C) and 

S.=H2n-2p-1,0(V) + . . * +Hn-PmDP (V). 

By using the Lefschetz decomposition, we can find a bilinear form Q on E, 
such that Q (5, S) = 0, Q-1 is integral, and V/-1 Q(Hnp,n-pli fin-pvn-p-l) > 0. 

It will not in general be the case that \/-1 Q(S,S) > 0 (cf. I.3.(b), equa- 
tion (3. 4) ). 

(2. 34) PROPOSITION. (i) There is a natural line bundle L - Tp(V) 
with a q-convex polarization where q ? hP+',P. (ii) Let 4: B -- TP (V) be a 
holomorphic mapping such that 0* {Tx(B) } always lies in a translate of the 
subspace Hn-p-l,-p of E/S. Then the line bundle L is positive on +(B). 

Proof. (i) is clear from Corollary (2.33). To see (ii), we use the 
isomorphism Tp V)(1 T,p-l (1V) * and choose a basis ?<, * *, e for Sp-1 

- 2p+1,0(V) + + HP+1'sP(V) such that 41, * * , k give a basis for HP+',P 
and k+l, * * m- lie in H2p+1'0 + . . * + Hfp+2,p-1. Since Tn_p-1 (1V) * 

S"i-/Jr* ,n, it follows that the dual tangent space to Tp (V) at the origin 
is Sp and, by assumption, <H2P 1'0 ?*. * .+p+2 , p- Tx (B)> =0. The 
result now follows from the following easily verified fact: if H1 is a non- 
singular ilermitian matrix whose first q X q block is positive-definite, then 
the first q X q block of H1-l is positive definite. Q. E. D. 

By combining this Proposition with Theorem (2. 25), we get: 

(2.35) THEOREM. Let {ZX}XEB be an algebraic family of p dimen- 
sional subvarieties of V as in Theorem (2. 20). Then the line bundle 
L ->Tp (V) is positive on + (B), where 4: B--Tp (V) is the holomorphic 
mapping (2. 19). 

Remark. If there is at most one r ? 0 for which Hp+r+l,p-r (V) #0, it 
is easy to see that we may assume L -- Tp (V) is positive. Thus, for example, 
To (V) (Albanese variety) and T1(17(V) (Picard variety) have polarizations 
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in the usual sense. But so also does T1 (V) where V C P4 is a cubic threefold, 
since H3'0(V)= 0 and dim H2'1(V) - 5 in this case. 

One should compare this Theorem with Theorem (1. 34) in II. 1. (c) 
above; cf. the conclusion (1. 37). 

(d) We shall now discuss a relation between the family of torii 
7r 'i 

V* - B constructed in II. 2. (b) above and the higher order period 
relations given in the conclusion (1. 37). Having fixed the real vector space 
Eo with basis e1, - *, e,m and real linear coordinates xl, * * *, X2m this gives 
a fixed real torus E0/Lr where r = (e,,. , e2M)Z If SE B is a subspace 

2nm 

with basis 4 5< *, $, then a= I 7rapep and we define a complex structure 
p=1 

2m 

on T by setting dza = rira!pdxP (cf. the proof of Proposition (2. 32)). If 
p=1 

g 'm is a new basis for S, then a A ap = Aftrfpep and the 
P,p 

complex structure is then given by dwa= A,!pr&dxP= Aat.dzg; i. e. the 

complex torus Ts* depends only on the subspace S C B. 
As before we can write dx P (t,padza + tpadPa) where *' + [' = 1I2m 

so that (*il) (-)-' 

Now we let w - { qp,dxP A dxg} where Q-1 = (qp,) is an integral 
P9, 

skew-symmetric matrix. We let BQ be those S E B such that is of type 
(1,1) on Ts*. Then we have: 

2=1{ , qp,dxP A dxo} _ (t*Q-I)a:dZcl A dzfl 
(2. 34) P9 

_ _, 

+ V 1 { E (I1) cidzca A d2f} + i t A dzO 

where 

(2.35) Hi 

If o is of type (1, 1), then (t) Q-1(ijq) ( 0 -VJ\ H1)and 

so, taking inverses, ( Q) Q(tQtQ) = ( ? 1\ 1) (H= Hi). 

Thus we get (cf. Proposition (2. 32)): 

(2. 36) PROPOSITION. BQ consists of all S satisfying Q (S, S) 0. If 
Q is a period mattrix fo S5, then = \/1 { Yi (tH-l)afidza A dz } where 

a,1 
/ LQQtQ_ =H. 

12 
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Now we let W1=HI (T, C) and define: 

(_ 1) M-1 
(2.37) Q( (4 1) = (m-1) f 7 (ff E H 1(T, C)); 

we let W2- { E H2 (T, C), om-lp O} and define: 

t_1\rn-2p> 

(2.38) Q2-( (l ) ! W m-2 E W2) 
(m-2)! I 

If T = Ts* for some S satisfying 

(QQtQ 0 
(2.39) _ 

V 1 fQt& 2H>O, 

then W2 is the space of primitive classes and the inner products Ql, Q2 are 
the ones of the Hodge theory (cf. I.1.(c)). 

We now let B+Q be those S E BQ which satisfy (2. 39) and we let: 

(2.40) f A (S) H10 (Ts*) C W1, 
( ) B (S) H20 (Ts*) C W2. 

(2. 41) PROPOSITION. (i) Q1(A(S), A(S)) =0 and V-1 Q1(A(S), A(S)) 
> 0. (ii) Q2(B(S), B(S)) 0 and Q2(B(S), B(S)) > 0. 

Proof. These are the bilinear relations of Hodge [10]; the equations 
Q1(A(S),T(S)) O 0 and Q2(B(S),B(S)) O=0 follow simply by considera- 
tions of type. We shall verify the bilinear inequalities in a special case so 
as to check our signs. 

Suppose then that Q = (_ Im = - = dxc A dxm+l, and let 

dza dx'0 ? V- 1 dxm+a so that i2 = (I,- 1 I) and (2. 39) is satisfied. 

Then "p 1 dza Ade - dxc A dxm+a. Clearly V-1 Q1 (dz'l, dzl) =0 for 

co#I ? and 

V-1 Q(dza,dz a)== (r-) z! f AdzAdz (A w) m- 

2 rI ( \ dzc A dz) > 0. 
Ao aQ= 2 

Also, Q2 (dZddza Adz fid Adz) (<8,,u< A) O unless a-,y A and 
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Q2(dzaAdz ,d2aAd2l)= (m-2) ! .fT 

4fdJ(Va A ( d la) > 0. 

This completes the proof. 
We now let D1 C G (m, W1) be all subspaces A which satisfy: 

(2.42) {V -Q(A,A) >0 . 

Because of Proposition (2. 41), the mapping S-> A (S) of B+Q to D1 is a 
complex analytic isomorphism. 

We let D2 C G( (m(ml) W) be all subspaces B which satisfy: 

(2.43) Q2 (B, B) > O. 

Now W2 CA2W1 and, if A C D1, then by Proposition (2. 41), B(A) = A2A C W2 
and B (A) C D2; this gives a complex analytic mapping '1D: D1 -* D2. 

(2.44) THEOREM. If m > 2, the mapping b is a one-to-one embedding. 

Furthermore, there exists an algebraic subvariety Z C G( ( 2 ) W2) such 

that Ic (D1) =D2 n z. 
Proof. First we consider the mapping 4: G(m, W) - G( m(m 1) A2W) 2 ~ 

given by +)(A) ==A2A. If m>22 then 4 is one-to-one: If A1:7A2, there 
exists A E W* with <A, A1>#0, <A,A2> . Since m> 2, we can find 
, E W* with <t,Al>#O and AA,L#0. Then <A/AAjAAj>740 but 
<XA IxA2AA2> 0 so that cp(A1) #p(A2). Thus 1 is 1-1 and we have 
already seen (cf. (2. 11)) that 4.* is non-singular. 

Now let X1 C G(m, W1) be all A satisfying Q1(A,A) =0 and 

X2 C G( ( 2 , Wj) all B satisfying Q2(B,B) =0. We claim that 

+: G(m, W1) -* G(m(m2 ), X2W1) maps X1 into X2. To begin with, if 

Qi (A, A) =O and A n A = O, then A corresponds to a complex torus and so 
Q2(A2A, 2A) =0 by consideration of type. Thus Q2Q((A), +(A) ) is an 
analytic function on a connected variety and which vanishes on an open set; 
i.e. Q2(Q(A),cp(A)) 0. We have to show that +(A) =A2A C W2 C 2W1; 
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i. e. wm-i (A2A) =0 . But, if X,5 -qC A, Q, ($5 '1) =- (m-1) I~nw =O. and 

so em-l O0; i.e. wflL-l(A2A) -0. This shows that 0: X1-*X2. 

Suppose now that A E X1 and c (A) =A2A C D2; i.e. Q2((P(A), p(A)) 
> 0. We claim that A E D1; i. e. V-1 Q1(A,A) > 0. In fact, this can be 
checked by a direct computation. 

We now let G1 be all linear transformations T: W1 -* W1 which preserve 
co; Tw = w. Then det (T) = 1 and G1 is the complex group preserving Ql, 
since 

Q1. (T, T-) --( )lm-1)! ) TT-qm-l 

;(_11 T4T-q(TW) n-1 .Qi (t ). 

If G1 C G1 is the real group, then G1 preserves D1 and acts transitively there 
(G1-Sp(m,R) and Di _ Hm). 

We let G2 be the linear transformations M: W2 -* W2 which preserve Q2 

and G2 C G2 the real subgroup. Then G2 preserves D2 and acts transitively 
there (G2 SO(M(m_j),m2_j)) and D2 is a period matrix domain 
for 2-forms). 

If T c G1, then T induces A2T: A2W1 --*A2W, and A2T preserves W2 
(since Tw = w). Moreover, T preserves Q2 since 

Q2(A 2T( Aq), A2T(Qpt,AI)) - TT)2;T! ' T T wn-2 

-'- 
2 

' _A qO1pW,-2 ~Q2 (e A A ^+ 

Thus (: X1l->X2 is G1-equivariant and c(X1) is the G1-orbit of a poillt in 
X2 (where we consider G1 as a subgroup of G2 as above). This gives: 

(2. 45) THEOREM. 4 (D1) is the Gl-orbit of a point in D2, where 
G1 C G2 is a subgroup which preserves icD(D,). 

(e) We now discuss the relationship between the complex torii Tp,(V) 
and Weil's intermediate Jacobians A. (V) [28]. As in II. 2. (a) we let 
E = H2n2p1 ( V, R), rp = H2n-2P-1 (V, Z) (modulo torsion), and 

Ep Eo,p OR C = Hf2n-2p-l (V, C). 

The almost complex structure on V induces an automorphism 

C: H2n-2p1 (V, R) _ H2n-2p-1 (V ,R) 
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with C2= 1 ([29]). We let J. C E, be the + i eigenspaces of C. Then 
J nJp =0 and so: 

(2.46) Ap(V) = (Ep/Jp) modulo1r., 

gives a complex torus, which is Weil's p-th Jacobian [28]. Observe that: 

(2. 47) Jp * * * + Hn-p+2,n-p-3 + Hn-p,n-p-1 + Hn-p-2,n-p+l + . 

For example, if n = 3 and p = 1, J1 = H2,1 + H0O3 whereas 1 = H3 0 + H2,1 

(T1 (V) = (E1/S1) modulo r,). 
By Poincare duality, 

(Ep/Jp) -(* + Hn-p+l,n-p-2 + Hnp-l,n-p + Hn-p-3,n-p+2 + 

-~ (...+ HP-1,p+2 + HP+1"P + HP+3,p-2 J ) * 
= 

This proves, as in Proposition (2.16), that: 

(2.48) Ap (V) _ An1 (1V) *, 

where An0p1 ((V) J*n-p-l/rn-pl. As in Proposition (2. 14), to find 
Anp1 (V) * explicitly, we choose a basis w', * , for 

Jnp = (- + Hp+3,P-2 + HP+1,P + lp-l,p+2 + 

and free generators y1, , yint for H2p+1 (V, Z) = ,r*f l, and form the 
period matrix: 

(2. 49) 3p(V) = (Tpa), where Tpc, ' " 

Then the rows of p- = p (V) generate a lattice in C'n, and An_pj (V) * is Cm 
modulo this lattice. Using (2. 48) , the same method as used to define (2. 18) 
gives a mapping: 

(2. 50) P: B (ZO) - Ap ( V). 

Here, ZO C V is an algebraic p-eyele and B(ZO) parametrizes the algebraic 
p-cycles Z C V with Z - Zo. 

Now 

To (Ap ( V))* (EP/Jp) n-p_l 
- * + HP+3,p-2 + HP+",P + Hp-l,p12 +2 . 

The same proof as in Theorem (2.20) shows that: 

(2. 51) p* (HP+k+l,p-k) - 0unless k = 0. 
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This proves that *tTo (Ap (1V) 0 and A* (Hp+2k+1p-2k) -0 unless k == O, 
which gives: 

(2.52) PROPOSITION. The mapping / in (2.50) is holomorphic. The 
differential tt: To(B) -* T0(A:p(V)) is determined by 0*: HP+1P(V) 

T0(A (V))* and is given by the cohomology mapping q* in (2.24). 
We want now to discusss a polarization on Ap (V). This is the same pro- 

cedure as in Proposition (2. 32), because we observe that Q (Jn-p--n Jp_j) =0 
by type considerations. Thus there is a line bundle LA -. A,,,1, (1V) * - A_(V) 
whose characteristic class is w = /-i 7 c,idwa A diP:, where the Hermitian 

matrix K == (kJa) (V -t>Qi)-'. We claim that K > 0. This is because: 

J Hp+1+2k,p-2k j l-2l,P+1+ 
k I 

and V-1 Q (Hp+1+2k,p-2k' Hp-21,p+1+21) 0 for kc &4 1 while 

-\/ 1 Q (HP+1+2k,P-2k, Hp-2k,V+1+2k) > 0. 

For example, when p 1, 

V Q (H30, H0'3) <o, V Q (H21, H12) > 0, 
-i Q (H'1,2 H2,1) <0, -1Q (H0", H30) > 0. 

This proves: 

(2.53) PROPOSITION. The holomorphic line bundle LA --Ap(V) has 
a 0-convex polarization, and is consequently a positive line bundle. 

The main result is: 

(2. 54) THEOREM. There exists a real linear isomorphism e: Tp(V))-*Ap(V) 
such that: 

TV, (17) 

(i) B l4 commutes; 

AVp(V) 

(ii) if LT-> Tp (V) and LA -AAp (V) are the complex line bundles 
associated to the polarizations on Tp (V) and Ap (V), then e (LA) =LT; 

(iii) if # E _ H?(OAp(v) (LA)) is a holomorphic section of LA- A (V), 
then the C- section *t* of LT-> Tp (V) is holomorphic on +(B). 
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Proof. We let J., C (- * + Hp+3,p2 + HP+',P + ffp-l,p+2 + ) be 
the + i eigenspace of the operator C on HI2p+1 (1V, C) and &$ = H2p+1"0 + * * - 
+ HP+l'P. We may choose bases l, . ., (; )k+l1 *(,**no for S., and 
(P1 * 4J * ; (pk+l, * * )m for Jn-l such that: U= _ E HP+1,P for 1 C a? k, 
and 0a=4c or w = for k < c '?m. Let yi< *,72m be a basis for 

H2p+1 (V, Z) (modulo torsion) and Q= (7rpa) where 7rpa = J a (rpa) 

where rpa= 3 4. Then the rows of Q (respectively, Y) generate a lattice 

rT (respectively, rA) in Cm, and T. (1V) Cm/rT, Ap (1V) Cm/rA. Define 
$: Cm--*Cm by (zl,- * ,zm) = (w1, * nSm) where wa=za if -+a=4a, 
wa =z Pif i V '. This is a real linear isomorphism. 

If ep=( w, Wm) and fp= (44)1 . , ) then 

rT= (el, ,em)z and rA (fl< fm)z. But t(ep) =fp since 

Thus $: rT 4 rA and so $: Tp (V) -- Ap (V). 
By definition, if A E B and Z4 - Z aC, then 

4(X) (f(,. * . ., j@m) and VI() (fr 1 . . f m, 

But, as in the proof of Theorem (2. 20), Wa = O (=fPO if k < o ?m 
ex C 

so that 

' (A) -(fo, 1 . . fc. i'k ,0O) and 

Then it is clear that t0 (A) = i (A), which proves (i). 
Observe that (iii) follows from (i) and (ii), so that it will suffice to 

prove (ii). To do this, it will be enough to. show that $4((.) =4 iL, where 
(WA = C1 (LA) and WL C1 (LT) . 

We write the period matrices: 

Af Q5 f2.. ** ) 



840 PHILLIP A. GRIFFITHS. 

where the Q, correspond to the summands in S,n_ - l Hp+k+1,P`k and the 
k?0o 

, correspond to the summands in J,-1 - HP+1+2J,P-2 . By choosing our 

bases as above, we may assume that either D = , or Q, ,. Furthermore, 

tD/Q0,v 0 for u v and similarly for the ,. Letting H. = (it!DQt A)-' 

and K,L (jt, Q,)1, we have 

H=( ), K=( . 

O Hp+1 ? Kv+1 
where H, K if Q= Hlt, E tKA if DA E. 

Now write WA i( i k,L,cqfdW,A1 A divfl) and UT -i ( E hy,cfdz'a dAy ) 

where K. = (k, f) and H. -(h ,ta). Then * (dwca) dza if if 
and * (dwca) = dz if Q = x. Thus 

=*A i( Y, k,,dz' A dzfi + Y 7cfl1 zAc A dzfl) 

i ( E ci adzu A dz) T 

since Hs, /t if Q 
This completes the proof of Theorem (2. 54). 
(f) We want to give two applications of Theorem (2.54). First we 

observe: 

(2. 55) LEMMA. Let ZO C V be an effective p-cycle and {ZX}X IBan 
irr educible algebraic family of effective p-cycles with ZO =Zx4. Then the 
mapping b: B->Tp(V) given in (2.28) is continuous, hence holomorphic 
everywhere. 

This implies that +(B) C T,(V) is an analytic subvariety; in fact, q is 
a proper holomorphic mapping. 

(2. 56) PROPOSITION. +(B) is an algebraic subvariety of the analytic 
torus Tp(V). 

Proof. By Theorem (2. 54), the CX sections $t(O) of LTA-t> Tp(V) 
(t$EHO(OA(LAg)) will be holomorphic on +p(B); for y ? 3, these sections 
give a projective embedding of +(B). This proves the Proposition. 

Suppose now that { Vt}}t E Ais an analytic family of polarized alegbraic 
manifolds with A a polycylinder, V= VO. Let Zt C Vt be an effective 
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algebraic p-cycle, varying analytically with t, and {Zt.XI,(B I an irreducible 
algebraic family with Zt Zt,. 

(2. 57) PROPOSITION. The algebraic varieties ft(Bt) C Ap(Vt) vary 
holomorphically with t, even though the torii A,(Vt) don't. 

Proof. By Theorem (2. 54) cp(Bt) =gi(Bt), and 'k(Bt) C Tp(Vt) varies 
analytically with t since T. (Vt) does. 

The second application is more in the nature of a remark. What we 
want to do is draw a parallel between the period mappings D: B -> D/r (cf. 
IL. 1) and mapping (2. 18) 0: B-- Tp (V) associated with the p-cycles on V. 

Considering the torus T. (V), the tangent space at the origin is 
Y Hn-P-7-1,n+k (V), which we write as PO 0 No where 

Po Hn-p-2k-1,n-p+2k 

(2. 58) l 
c? 

l N > Hn-p-21,n-p+21+1 

This gives, at each point x E Tp (1), a translation-invariant splitting of the 
tangent space: 

(2.59) Tx=P* Nx. 

Since p* - _ Hp+2k+1,p-2k No* - E Hp+21p-2+1 it follows that the curvature 
7c?0> 1?0o 

form UT of LT-- Tp (V) is positive on P., and negative on Nx. Furthermore, 
for 4): B-*TP(V), 4)*: Tx (B) -> Po (x). This is the analogue of Theorem 
(1. 34); it says that the period-like mapping 4) satisfies infinitesimal (but 
not finite) period relations, and that LT I +(B) is positive. 

Now Theorem (2. 54) gives us holomorphic sections t* (0) of LT (B). 
In fact, we have: 

(2. 60) 5e* (0) I Pz = ? 

Unfortunately, this is misleading as regards the period mapping 4: B D/r. 
Let { Vt}jtEB be an algebraic family of polarized algebraic manifolds; here B 
may be complete or affine. Then L f (i (B) is positive (Theorem (1. 34)) and 
we may look for C- sections 0 of L -D/r such that a0 I 4* (Tt(B)) =0. 
Since 1*(Tt(B)) CH(t), by analogy with (2.60), we might look for C-' 
sections 0 with 

(2.61) H0=1 -. 

But the distribution x - PPx on T.p(V) is integrable, so that (2. 60) implies 
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no additional equations; whereas &2 -->Hu is not integrable and (2. 61) gives 
H0 I H + [H,H] + [H, [H,H] ] + = 0. If D is the period matrix space 

for holomorphic 2-forms, then Hu + [H, H] a = Tu (D) is the whole tangent 
space, so that 0 satisfying (2. 61) would be a holomorphic section of L -> D/r. 
Generally there are no such sections. 

A final application of Theorem (2. 54) concerns the cohomology groups 
Hr(O(LT)). Suppose that LT-> Tp(V) has a q-convex polarization and let 8 be 

2m a 
the Pffafian of Q-1 (if = z qp,,dxP A dx%, then t- dX1 A A dX2"l). 

Then we have proved (T. 3. (d), Proposition (3. 23) ) that Hr (0 (LT)) 0 for 
r#/q and dimHq(0(LT)) ==. Similarly, Hr(O(LA)) for r> 0 and 
dim HO (@ (LA) ) =. Let w1, * * *, Wm on Tp (TV) and op1,* * *, Om on Ap (V) 
have the same meaning as in the proof of Theorem (2. 54), and let 

- .a1 A A *A@q where d*(OYJ) - `. We define 4*: H0(O(LA)) ->H((LT)) 
by: 

(2. 62) t: #*(#9}- 

This makes sense, since wa1, * *q give a basis for No* (2. 58) and 
~*(k)j P0,o . Thus 8~*(9) 0(7ji1, ,-Wq) so that 

0 [6* (0)Z; A **A O*aWq] -0. 

It can be shown that t* in (2. 62) is an isomorphism. 

II. 3. Examples of the local period mapping. We want to discuss now 
the question of when the periods give local moduli. For analytic fibre spaces 

7r 

V - > / which are regular; i.e. dimpt(Tt(iX)) is constant, the period 
mapping Q2 will locally distinguish inequivalent subvarieties if either: 

(3. 1) the cup product (1. 30) is onto (cf. Theorem (1. 29)); or 

(3.2) the cup product: 

Hi ( V, 0) ,Hoq-r+lr-1 - Hoq-r,r 

is non-degenerate in the first factor (i. e., if -0 = 0 for all p E Hoq-r+1 r-l, then 
0=0 in H'(V,?>,). 

(a) Riemann surfaces. Let V be a compact Riemann surface of genus 
p > 1. Then it is well known that there exists an effectively parametrized, 

7r 
locally complete family V- >A with V-==VO, A a polycylinder in H'(V, 0H), 



INTEGRALS ON ALGEBRAIC MANIFOLDS, II. 843 

and with the Kodaira-Spencer mapping pO being the identity [20]. The cup 
product (1.30) then becomes (n q 1,r==0): 

(3.3) HO(V,Q2) 0 HO(V Q1) >HO(V,Q2). 

Thus ,u is onto if, and only if, the quadratic differentials are generated by 
Abelian differentials, and we have: 

(3. 4) NOETHER'S THEOREM. The mapping J1 is onto if p =2 or if 
p > 2 and V is non-hyperelliptic. 

Combining this with (3. 1), we get: 

(3. 5) PROPOSITION [27]. The periods give local coordinates in the 
moduli space if p = 2 or if p > 2 and V is non-hyperelliptic. 

Remarks. If V is hyperelliptic, then it is given by an affine equation 
2p+2 

y2 I (x - a,) in C2 with coordinates x, y. The abelian differentials are 
j=1 

generated by-, 
d x 

xP-1 -, and so these differentials generate a space of 

quadratic differentials with basis Oac = Xa (-) 2 ( 
a _ 2p-2). Thus, C 

y 
if p > 2, 2p -1 < 3p -3, ,u is not onto, and the differential f2* of the period 
mapping is singular at V (cf. [27]). If p = 2, iu is onto and Q2 is injective. 

We now outline a proof of (3. 4) in the non-hyperelliptic case. Let 
K-> V be the canonical bundle and I K P{HO(V,T 0 (K) )*} the associated 
complete linear system. Thus K I is a Pp1, and the hyperplane sections of the 
rational mapping /: V-I K are all of the form (w) where w E H0(V, 0(K)) 
is an Abelian differential. From the theory of algebraic curves [5], we recall: 

(i) V: VI -- Pp1 is a regular embedding; 

(ii) the general hyperplane section (w) meets V in 2p -2 points, any 
p-1 of which are linearly independent in P,_1. 

Let now v be a general Abelian differential with ( A) = A1 + * * ? A2p-2 

(Ai #4 Aj for i 74] j). Since any p - 1 points from (o) are independent, given 

Ai,+* * + Ai,-l contained in (w), we can find an abelian differential + 

with &(A ) =0, *. . ,(Ai2) =0, P(Aip1) # 0. Consider the exact sheaf 
sequence: 

(Jo 
2) 2,, OK2A22 -0, 
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which gives the cohomology diagram: 

o -> HO (K) - HO (K2) -K2A1, K2A2P-2 -> 1 (K) - O 

HO (K) 0 HO (K). 

Since Image (0 C Image t, we must prove: dim (Image 6) = 2p -3. 
Set Q=A2p-2 and, for any j with 1 < j<2p-3, write A1 Aop_2 

P1. PP-2AjR. Rp2Q. We may choose pj, -j with 

)j (Pi) = = )j (Pp 2) =O, )j (Aj) =/ O; 

-qj (R*) _ -j (Rp_2) O, -j (Aj) 0. 

Obviously then the elements ('pp,j) are linearly independent. This proves 
that dim (Image d) ? 2p -3, and Noether's theorem follows. 

(b) Special complex manifolds. A special complex manifold is a com- 
pact, complex Kahler manifold V whose canonical bundle K is trivial; thus 
there exists an everywhere non-zero holomorphic n-form ( on V. For reasons 
stemming from duality, these manifolds are frequently amendable to com- 
putation. Examples include Abelian varieties, hypersurfaces of degree n + 2 
in P.+,, and K3 surfaces [17]. 

(3. 6) PROPOSITION. The periods give local coordinates in the local 
moduli space of any special complex manifold V. 

Proof. If we are ignoring polarizations, this follows from the iso- 
morphism (cf. (1. 32)): 

HO (nVn) 
C) 
Hn-1(QV1) 31 Hn-1 (fQV1). 

If we have a polarized family, this follows from the isomorphism (cf. (1. 31)): 

HO (QVn) 0f Hn-I (2V') 0 > Hn-I (QV1) o. 

Remarkcs. We have actually shown that the periods of the holomorphic 
n-forms p give local coordinates in the moduli space. For K3 surfaces, this 
is due to Andreotti and Weil (cf. [6]). If dimfH2 (V, ) =dimH"-2 (V, 21) 

0, then V has dimfHI(V,0) = dimHnI(V,Y21) local moduli (cf. [20]). 

(c) Continuous systems and the period mapping. To determine the 
rank of the (local) period mapping Q, we come up against a multiplicative 
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problem in cohomology (cf. Theorem (1. 29)), which is generally difficult. 
However, many families {Vtlt,A of algebraic manifolds are given in nature 
as a- family of submanifolds of a fixed algebraic manifold W; e. g., using Chow 
varieties or subfamilies thereof. The proper notion here is that of a con- 
tinuous system [Vt]teA of submanifolds of an algebraic manifold W (cf. [16] 
and section II. 2. (b), the proof of Theorem (2. 20) ). In this case, the multi- 
plicative problem can be rephrased as a problem on linear systems which, in 
certain cases, can be solved. We shall now carry out this reduction. 

Let [Vj t E, be a continuous system of submanifolds Vt C W and let 
V== Vt0. If N ->V is the normnal bundle of V C W and T= T(W) I V, 
we have the exact sheaf sequence 

(3.7) O -(T) (N)O 

Assuming that HO (V, 0) =0, we have in cohomology 

( 3. 8 ) ?-- HO ( (T) )HOZ ( O (N) )> H1 (E 

To (A) 

Here X: To(A) ->HO(O(N)) is the characteristic map (cf. (2.21)) or 
infinitesimal displacement mapping. The continuous system [Vt]7 A, gives 
rise to an analytic fibre space {Vt}tE, (cf. the proof of Theorem (2.20)) 
and p: To(A) ->Hl1() is the Kodaira-Spencer mapping (1.5). 

(3. 9) PROPOSITION. The diff erential Q* of the period mlapping is non- 
singular if the product: 

(3. JO) HO (N)/IHO (T) $ HO (QVn) -- >HO(f2v'n(N)) IHO (jVn (T)) 

is non-degenerate in the first factor. 

Proof. From (3. 8), HO (N) /HO (T) is a subspace S C H1 (V, ?) and we 
have to prove that 

(3.11) S HO (2.Vn) ->H1 (i2Vn1) 

is non-degenerate in the first factor. 
Dualizing the sheaf sequence (3. 7) gives 0-> (N*) (T*) Q f2v1 -e 0 

and, in cohomology, 

(3. 12) Hn-1(0V0) -->Hn(N*) >Hn(T*). 

Applyirng Serre duality to (3. 12) gives 
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8 
(3. 13) O-? Ho(f2Vn (N) )/HO(f7Vn (T)) -> H1(iVn -1). 

Now let q C HO (N), o C Ho (QVn). Then - w E Hb(QVn(N)) and, from 
(3. 8), 8(n) *o C H1(QyVn-1). From this and (3.13) we observe: 8(qoi) 

It follows that, if - C1EHo(N), wE Ho(Qvn), and w co 0 in 

Ho (OTn (N) ) IHO (f2Vn (T) ) 2 

then 8Qr7 )=8Qi1) 6#0 in H1(Qvn-1) and so (3.11) is non-degenerate 
in the first factor. This proves Proposition (3. 9). 

(3.14) COROLLARY. If, in (3. 8), X is onto (the characteristic system 
is complete) and 8 is onto, and if (3. 10) is non-degenerate in the first factor, 
then the periods give local coordinates in the local moduli space for V. 

Remark. If x and 8 are onto, then V has the postulated number 
dimH1(V,0) of moduli (locally). 

(d) Surfaces in P,. What we shall prove is: 

(3. 15) THEOREM. Let V C P, be a non-singular surface of degree 
n ? 5. Then the periods of the holomorphic 2-forms give local moduli for V. 

Proof. Let P = P3 and E -> P be the hyperplane line bundle. If 

$ [$0, 61, L $j are homogeneous coordinates on P, then 40,1,4, 2, $ give a 
basis for H?(P, / (E)). Setting @ (E)4= X(E) O@ (E) fD 0(E) @ 0(E), 

4 
we recall the exact sequence 

V 1Zr 

(3.16) 0 > O(E)4 >0(T(P)) O, 

a where v(f) - (f&o, f$,., f$, ff3) and lr(00., 0, 02, 03) = E0j - -. We remark that 

the exactness of (3.16) is essentially Euler's theorem; -irv(f) = f ( 0 j 

and I$j 0 if g (A)=g () for A a non-zero complex number. 
j=O a06 
Suppose now that V C P is a non-singular surface given by F (60, 61, $2, &3) 

0 where P C HO (P, 0 (En) ) is a homogeneous polynomial of degree n. 
Set T=T(P) I V, H== E I V, N =Hn =normal bundle of v C P, and 
K = Hn-4 = canonical bundle of V (Proof. From (3. 7), K = (det N)(det T*) 
- HnH-4 by (3. 16) ). We record the usual exact sheaf sequences (cf. (3. 7) ): 
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r Ov -> 0v(T) - v (Hn) -> 0; 

(3.17) F r 
0 p- > Op(En) > Ov(Hn) ->0 

(r = restriction to V); 
we combine (3.16) and (3.17) into: 

0 0 

4, 4F 
(3. 18) 0V (H) I 0V (En) 

? ->) OV - v(T) - v (Hn) O4 

0 0 

(3. 19) LEMMA. If n > 4, the exact cohomology diagram of (3. 18) is: 

0 0 

C C 
4,v 4,F 

HI(0p(E)4)-HO(Ov(H)4) HOp(En) ) 

0 HO (04,(T) 4 ,(v(Hn) H- (ov) 0 

0 0 

Pr0oof. We have to show: (i) H1 (0v) - 0 H1 (0p (E-3)); (ii) HO (?v) 
=0; and (iii) S is onto. Since Hl (Op (E-k) )-0 for c > 0, (i) follows from 

F r 
the exact cohomology sequence of 0 -> 0p (E-4) -> 0p - v-> 0. As 
for (ii), K Hn-4 is positive and so 

dim HO (?) -- dim H2 (2V2 ? Ov1) - dim H1'2(v (K)) 

=dimH10(6v(K*)) -0 
(cf. [1]). 

We now prove (iii). Using H(O6v(H)) 0, we get 
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0 

HI' (Ov (Hn )) -> - 
(0) ->H' (O (T) ) 

H' (0v) 
V 

HI (O f (HI) . 

v 

It will suffice to show that H12 (OV) --> H2(Ov(H)4) is injective. Dualizing, 
we have 

0 0 

H'? (Ov (Hn-4) ) HO- (OV (Hn-5) 4) 

HO?(Op(En-4) HO (Op (En-5)4 

and, to show that v* is onto, we will show that q' is onto. Now 

p (Fo, F1, F2, F3) + O + = F l F ? 2 ? 3F3 

where Fo, F1, F2, F3 are forms of degree n - 5. From this it is clear that t 
is onto, and the Lemma is proved. 

Remark. If [Vt] t,A is the continuous system generated by V C P, then 
A is a polycylinder in HO (V, Ov (N)) and the Vt are obtained by perturbing 
the equation F ($) = 0 of V. In particular, the characteristic system is 
complete [16]. The statement that 8 is onto in Lemma (3.19) then implies 
that the analytic family {VttE,A contains all of the local moduli of V (cf. 
[21]). 

To prove Theorem (3.15), by Corollary (3.14) we must show that the 
product (cf. (3. 10) ): 

(320 H (6v (H8n) ) IHO (Ov (T) ) 0 HO (v6 (Hn-4)) 

< H? 6v (2n-4) ) IHO (v- (THn-4) ) 

is non-degenerate in the first factor. 
Let G(e) = G(e0e1,62,$3) CEHO(Ov(Hn+k)) be a form of degree n?+k. 

3 iF Then G (e) lies in HO (Ov(THI) ) if, anid only if, G = j where tbhe A($ 
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are forms of degree kc + 1. Thus, to prove that (3. 20) is non-degenerate in 
the first factor, we must show the following algebraic lemma: 

(3. 21) LEMMA. If G(t) is a form of degr-ee n such that 

GQ ==Aj - (Aj(t) homogeneous of degree n-3) 
J= oe 

for all forms Q of degree n-4, then G = , j j (qj() homogeneous of 
degree 1). 

Originally we had proved (3.21) if G(e) = 0n-P($1, 2,4,), so that 
Theorem (3. 15) held for "almost all " V. However, David Mumford pointed 
out that the following result of Macauley would give Lemma (3. 21), and 
hence Theorem (3.15). 

(3.22) THEOREM (Macauley [26]). Let Q0, * -,Q,Th be homogeneous 
polynomials in o,- * ',m of degrees r,, * ,r. such that V(Qo, -,Qm) 

en,)= m. Then those Q(t) such that Q ml C (Qo, Qm) are 
precisely (Qo,. . .,Qm) + mP- I where p- = (rj-1)-1. 

J=o 

Proof of Lemma (3.21). We take Qj==P so that r-=n-l. Then 

V (QO, Q1l Q2, Q3) e l, 2, e3) since F($) 0= is non-singular. The 
assumption in Lemma (3. 21) is that G mn-4 C (QO, Q, Q2, Q3), and, by 
Macauley's theorem, G E (Q0, Q1, Q2, Ql) + m3,,5. Since deg G n < 3n - 5, 

3 oF it follows that G C (Q0,1 Ql Q2, Q3); i.e., G(e) =Yq E 
J=0 Oj 

(e) Surfaces on Abelian varieties. Let A be an Abelian variety of 

dimension 3 and let R E Rj be the graded ring of theta functions. To be 
j=O 

explicit, we suppose that A has principal matrix Q o I) and period 

matrix Q- (1,2ZO) (tZo=Zo, ImZo > 0). Then A =C3/r where r is the 
lattice generated by the columns e1,- * , e6 of 0. If Wi, W2, w3 are coordi- 
nates on C3, a theta-function 6 (w) of degree n is given by an entire function 
O(w) on C3 which satisfies: 

(3.23) O(w+ea)e=0(w) (1_a_3), O 9(w + e3 C) = e -2T$inw- (w) ( 1 _- af 3 ). 
Of course, R - H0H(A,OA(En)) where E-->A is a suitable line bundle, and 
it is known that dim]?- n3 (cf. [4]). 

13 
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We remark now that if 4, 6 are theta functions of degree n, then the 

expression (4 a) - g --) is a theta-function of degree 2n. Given 6 E R1%, 
we define Io C RJ?f to be the linear span of all theta functions of the form 

4)06 a-t6 + 77 (4), 72 Rn), and we let: 8w a ow e 

(3.24) 14: Rn/( ) = E{ R Rn/(#) such that *Rn C Io)}. 

(3. 25) THEOREM. Let n ? 3 and 0 be a theta function of degree n 
such that t (w) =0 defines a non-singular surface V C A. Then there exists 
an analytic family {Vt}tE, where p, is an isomorphism (dim A - n3 + 2), 
and we let Q: A?-*D be the period matrix mapping. Then dim(keriQ*) 
= dim (I: Rn/ (6)). In particular, if Io: Rn/ (0) = 0, then the periods give 
local coordinates in the moduli space; and this is the case if A and 2 are 
both general. 

Proof. We set L =En so that L -- A has characteristic class 

n=nV/- 1{ (ImZO)aF1dwa!A diW} V-i { hafidwaAdivifi 
a,,B a,: 

Below we shall use several results about the cohomology of V in A, 
mostly dealing with the residue calculus, and which will be proved in a general 
context in Part III. The first of these (essentially the Lefschetz theorem) 
is that we have a diagram: 

0 0 

H (A,4Z) 4H1(A,OA) 

09 H'(V, Z) HI H(V, T) 

0 0 

so that Pic (A) -Pic (V). It follows (cf. II. 2. (b)) that the periods of the 
holomorphic 1-forms on V specify A uniquely. Having fixed A, what we have 
to measure is to what extent the periods of the 2-forms determine V (up to 
translation) in A. First we shall locate precisely the moduli of V. 

Let A, C H3 (= Siegel's upper half-space in genus 3) be a neighborhood 
of ZO (= period matrix of A) and choose a basis *1, * * *, N,+1 for R,n = Rn(A) 
such that 0 = ON+,, Then each Oj = Oj(w; Z) is a function on C8 X H, 
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and we let A2 C CN be a polycylinder around the origin with coordinates 
s-= (s, * . , sN). Set A =A 1 X A2 and write t C A as t== (Z, s). We define 
a family of surfaces {Vt}t,A as follows: For t= (Z,s), we let Az be the 
Abelian variety with period matrix (I,Z) and 

=s S?1l + * * * + SN6, + a. 

Then Vt C Az is defined by ts (Z, w) =0. 

(3. 26) PROPOSITION. The above family {Vt}j , gives the local moduli 
of V. 

Proof. It will suffice to show that p0: T0(A) ->H1(?v) is an iso- 
morphism (cf. [18], [21]). 

Let T tangent bundle of A, N L I V the normal bundle of V C A, 
and consider the diagram: 

o o 

OA (T * L*) OA 

( 3. 2 7) OA ( T) OA (L ) 

0 Ov - OHve 6(T) 0- v (N) O- . 

0 0 

(3. 28) LEMMA. The composite mtapping HIq(0A (T) )--*q+l (0A) 
given by 

Uq (OA (T)) 

Hq (0v (T) H q (0v (N)) 

Hq+ (OA ) 

vis the cup product with 0) C l (UA1), Where fo is the characteristic class of L. 

Proof. This is a general result, depending only on the fact that V C A 
is a hypersurface. Let {U}j be an open covering of A such that V n A is 
given by ft = O. If f,j -f/lfj, then d log f,j =--dfijlfij is the Oech cocycle 
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giving C H1 (0A2). Note that dfij dfAtf Choose C- (1,0) forms e 
f[i ti fi 

such that dlogf1j =a- j. Then {at,} gives the Dolbeault class of . Note 

that, if 4 f , then \ is a global (1,0) form with 8-= and such 

that X has a first order pole along V. 
Now we note that if 0 is a vector field on A along V, then 0 is a section 

of N since 0 fi 0 (fj fj) =fij( fj). It follows that, if 4C Hq(OA(T)) 
is given by a T-valued (0, q) form, then the image of p in Hq(Ov(N)) is 

given by 6 k=O(<- do >) =O'<ck, >. But 6<%(ky,> is a global L-valued 

(0, q) form and a (6<cp, ->) 6<cp, O>=> O (4o). It is now clear that 

t(q O) = b-w in H+1l(OA). Q.E.D. 
If we now form the cohomology diagram of (3. 27) and use that 

Hq (OA (L) =0 for q - 1, 2, we get: 

0 

0 C 0 

H0(OA(T)) HO(OA(L)) H1((A(T)) 0 

(3. 29) eo 4, 4,$1 4, 
0-> H0(0v(T)) He H(Ov(N)) - H1l(ov) H H1(Ov(T)) -> H'1(Ov(N)) 

0 0 

4' \Sfro 4, 4, \'fr 4, 
0 H1(OA) 0 HU2(OA) 

0 0 

For 0 == a EHCH (OA(T)), fo=0 ha4Oadiv,i by Lemma (3.28), and 

so 1o4& is an isomorphism (this is a well-known result in abelian varieties). 
It follows that: 

(3. 30) HO(Ov(N) )/IHO(Ov(T) )HO(6A(L) )/(') (via X in (3. 29)). 

For (D = a 0 di E Hl (OA (T) ) w&dp = - in the diagram (3. 29). 

It follows that 

ttH / (Ov E Hl (O (T) 0 \\ 
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i. e. 1%H1 (?v) C H' (OA (T)) is precisely the space of tangents to the deforma- 
tions of A which leave the polarization L -> A fixed. Since: 

H (@Tv) !--HI?(Ov(N) )/H?l(OV (T) ) + ttH (ov)) 

using (3. 30) and the above description of jtHl (?v), we get Proposition (3. 26). 
If %l: A -> D1 and Q2: A -> D2 are the period matrix mappings for the 

1-forms and 2-forms respectively, then (Q1) * is non-singular on Tzj(Ap), 
(01))* is zero on TO(A2) (A-Al X A2), and so dimr(ker 2*) =dim(ker(f22)*) 
on TO (A2) ; i. e., to get ker Q, we hold A fixed, let V vary in the complete 
linear system L| (cf. (3. 30)), and see how the mapping Q2 behaves. In 
particular, we should examine the cup product (3. 10); by (3. 10) and (3. 30), 
there is a linear mapping: 

(3. 31) t: HO(OA(L))/1() --> Hom(H0(Q2v2), H0(QV2(N))/H0O(V2(T))), 

and ker q ker (i22) *. To prove all but the statement about "general A and 
" in Theorem (3.25), it will suffice to show: 

(3. 32) PROPOSITION. Let 

(3. 33) n7: HO (OA (L) ) / () e- Hom (HO (O)A(L) ), HO (OA(L 2) )/I*) 

be given by cup product ( for 0,eECH`(OA(L))). Then kern 

~ker & where t is given by (3.31). 

Proof. Dualizing the exact cohomology sequence of 

O 15> A (L*) t Co T5 -- ' T , 
we get: 

R 
(3.O34) -H1 (QA3) <-HO (QV2) < H- (QA3(L)) -H O (QA3) *-O 

HO (Q2A2) . 

Here Io0(nA2) > H1(nA 3) is cup product with o C H1(QA1) ; this is an 

isomorphism ([29]). Also, if P C 110 (QA3 (L)), then is a rational 3- 

form on A with poles on V and R(c) is the residue of c. These facts will 
be discussed in Part TII. Thus HO (Q2V2)- H (Q2A2) G R {HO (QA3 (L) ) }; the 
periods of H0 (f2A2) are obviously constant, and so in (3. 31) all that is 
essential is: 
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33 : o (OA (L))/ () 

(-> Hom (R{HO (QA3 (L) ) }, HO (Q2V2 (N)/HO (Q2V2 (T))). 

Now if we dualize the cohomology diagram arising from 

o 0 

OA (L*2) QA1 (L*) 

OA (L*) QA1 

0 -0 v (N*) --> A IVI -> V'-0, 

o 0 

we get: 

o H1 (QA2) < H- (QA1) 

t t Hi (QV") -Ho (nV2 (N) )- HO (nV2(T) ) <-HO (Qvl) 

d 
(3.36) HO (QA3(L2)) -HO (QA2 (L)) 

HO (QA3 (L)) 

t 
0 

In (3. 36), H0(QA2(L)) = 2-forms on A with 1-st order pole along V, 

H0(QA3(L2)) -- 3-forms on A with 2-nd order poles along V, and d is the 
exterior derivative. Since w is an isomorphism, we see from (3. 36) that: 

(3.3,7) HO (Q2V2 (N) )/IHO (QV2 (T) ) 

-Ho (QA3 (L2f /#H0(QA3(L)) + d{HO (QA2 (L))} 

$1dW2dW3 - 2dw1dw3 + 3dW2dW3 O 2 
Let = 9, E (Q (L)). Then 

do # - _ U1a OOe2 _ O t$9de3 W3Oi dw1dW2dW3 
+ (dwl Aw + a2 a2 + -o3--W3) Owl Owthat, Owu +w 2orp) 

It f ollows that, unider the isomorphism 
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HO(n7zA3(Lk)) -HO(OA(Lk)), OH0(QA3(L)) + d{H0(&A2(L))} = I@. 

Using this in (3. 37), the mapping if in (3. 35) becomes precisely \ in (3. 33). 
In other words, by using suitable isomorphisms, the mapping sl in (3. 31) 
goes into -q in (3.33), and this proves Proposition (3.32). 

Now the proof of Proposition (3. 32) gives a natural isomorphism: 

(3.38) ker f* -I*: Rn/ (o) 

If for general t,Z there is (pC I*: R"/(tJ) C Rn/(t), ( =,O0; then for special 
0,Z we would have (ECI*: Rn/ () )#7L0. 

/z' 0 0 \ 
Specialize Z to (0 z2 Im Za > 0, so that A =C1 X C2 X C3 is a 

\0 0 Z3/ 
product of elliptic curves. Let 0O be the origin on Cc and Oca the 1-st order 
theta function with a simple zero at 0Oc. Let 0 =1n0203n and ( C Hom(Rn, I*). 
We want to show that 4 = cO is a multiple of 0. This would show that, for 
general Z, t, ker Q* i O. If p E I*: Rn, we have: 

(3.39) 7 q (01ff203)l{ 1 0a3o +201 03 +301 28W 02 
aw 1l23+, ow 0 ~0Ow 

for all - C ER?. Now ( is a sum of terms TjT2T3 where Ta is an n-th order theta 
function on C0a. Let U1g263 be a term in the sum for which g, has the lowest 
order zero at 01. For all 'q =ql72q23, it follows from (3. 39) that 677 has a 
zero of order n - 1 at 01. Since n 1 > 2, we can find 77 which doesn't 

vanish at 01 and so g, has a zero of order n-1 at 01. But then og is an 

elliptic function with a single pole; i. e. g =cloln. Continuing, we find that 
U123 = cO and this gives that ( = 0 (); in other words, I*: Rn/ (0) = 0. 

(f) Periods of 3-forms; cubic threefolds. We consider non-singular 
hypersurfaces in P P4. Let V be one such of degree n. Then all of 
H3(V,C) is primitive and we let So=H3'0(V), S1 H3'0(V) +jH2'1(V), 
W -H3(V,C), so that the period matrix of V is given by SO C S1 C W. 

If n?2, 2H3(V) =0 and V is rational. For n 3, H30(1V) =0 and 
dimH21 (1V) =5. 

(3. 40) THEOREM. There is a family {Vt}) with V =VO and such 
that p: T0 (A) ->-H1(?v) is an isomorphism (dimA 10). The differential 
of the period mapping Qfl2: To (A) -? D is injective. 

Proof. The exact cohomology diagram of (3. 18) is now: 



856 PHILLIP A. GRIFFITHS. 

o 0 

C C 

(3.41) H?(p(H) )5 > H?(OP(H3 

I 1 %.. 

0 O 4 H4,(T) H?(0v(N) H (ov) ?, 

0 0 

OF 
wher A(Qo- * (Q4) = Q Q~() are linlear forms, and F()= 0 

a!=O ta! 

defines V C P. Thus we have 8: HO?(Ov(N))/H?(Ov(T)) -H(E)v) and so 
we can give the local moduli of V by perturbing the equation of V C P. In 
order to apply Proposition (1. 20), we should examine the cup product 

(3.42) HO (Ov (N) ) IHO (v (T) ) 3 H1 (QV2) - HI (QV1) 

and show: 

(3. 43) PROPOSITION. The cup product (3. 42) is non-degenerate in the 
first factor. 

Proof. From the exact diagram 

0 

~21 f2pi (H-3) 

api 

O -- 0v (N*) op QIV vl QV1 nv 0 

0 

and Hq(Qpl) 0- HI+' (Qpl (H-3)) (q ==2, 3), we get 

0 - H2(OV1) H3(Ov(N*)) ->0. 

Dualizing this and using Q2v3 -Ov (H-2) gives: 

(3.44) 0 -> H (Ov (H) ) - H1 (Qv2) ->0. 
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Now HOl(O7v(H)) HO(Op(H)) and, if p E HO(O v(H)), then 02 is a F 2 
rational form on P with a 2-nd order pole along V where 

4 

t) , (- 1Y)& (do* . .* d&,. de4). 
a=O 

The mapping (3. 44) is given by sending ( into R (n-) where R is the r esidue 

operator (cf. Part III). 
Following the pattern of (d) and (e) above, and using (3. 41) and 

(3.44), the cup product (3.42) becomes: 

(3. 45) IY0(Op (H) )/ 1j (D HO (Op(H) H) oH (Op ( ) )/:4 
(3.45)~~~ 

where 
: 

= { Qc aF } and 44 iS to be determined. 
a!=o 0at 

The exact cohomology sequences of 

0 

DP2 

? - Qvl(N*) > DP I V2 QV22 0 (L H3), 

I 0 

0 

ip' (L*2) 

2p1 (L*) 

O Ov(N*2) oQpI v'l(N*) -+Qvl(N*) OQ, 

0 



858 PHILLIP A. GRIFFITHS. 

give: 

(3. 46) O > Hl (2V2) H2 (0V (N* )),O, 

0 0 

(3.47) 0 -> H2(Qvl (N*) eH3 (Ov(N 2) )- ,H3 (QpI vl(N*) ) 0 

H4(Op (N*3) ) H4(2p1(L*2)) 

Dualizing (3. 46) and (3. 47) gives 

(3.48) 0 0 
t I 

Q*_ H2(&V1) =H1(2V2(N)) <-H0(O12V3(N2)) < H3(2p 1vl(N*))* O 0. 
t d t 

HO(QP4(L3)) < - HO (QP3(L2)). 

It follows that H2 (f2V1) - H0 (QP4 (L3) )/dH0 (&2p3 (L2) ). Now HO (0 P4 (L3)) 
-HO (0P (H4) ), and the mapping H (Op (H4)) ->H2(OV1) is given by sending 
( into R (4" ), where R is the residue operator. Also, HO (f2p3 (L2)) = 3-forms 

with 2-nd order pole along V, and d is the exterior derivative. Thus, by 
(3. 48) H2 (QV1) -H (Op (H4) )/44 where: 

OF 
(3.49) 44 = {Q = Q?' deg Qa( 2}. 

Combining (3.45) and (3. 49), to prove Proposition (3. 43) we must show: 

4 "P 

If Q(t) is a cubic form such that QR =S, - (degSa==2) 
(3.50) 4 aF 

for all linear forms R, then Q = QO 
aCo 

This follows from Theorem (3. 22) where Qa = 
O 1 1, p = 5. This 

completes the proof of Proposition (3. 43). 

Remark. The torus T1 (1V) - W8/H3 ( V, Z) where Ws - H3 (1V, C) /H3'0 
+H-H2"1 (cf. II. 2. (a)) varies holomorphically with V. Furthermore, T1 (V) 
has a natural polarization (Proposition (2. 34)) and, by Theorem (3. 40), 
T1 (V) locally determines V. 
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(g) Examples where the period mapping is degenerate. From Theorem 
(2. 4) in I. 2. (c) it is fairly clear that, if {VIt} , is a family of birationally 
equivalent but biregularly distinct algebraic surfaces, then the period mapping 
Q: A -> D is constant. For instance: 

(3. 51) Example. Let V C P3 be a non-singular cubic surface. Then 
h2,0 (V) - 0, h"1l(V)1 = 7 and V is rational. The biregular moduli arise by 
perturbing the equation of V; there is a family {Vt} t, with V= VO, 
p,: To (A) -* H1 (?v) an isomorphism, and with dim A =4. In this family 
there are no periods. 

Less trivially we have: 

(3. 52) Example. We now give a surface V with the following prop- 
erties: 

(i) V is non-singular and H1'0 (V) = 0 = H2'0 (V) (thus V has no 
modular variety); 

(ii) V is non-ruled and is a minimal model, and so biregular moduli 
give birational moduli; and 

(iii) there is a family {Vt}l,, with dimA =6 and p: To(A) -H1(Ov) 
an injection. 

After doing this we shall show that V has transcendental moduli given 
(roughly) by periods of a Prym differential on V. 

To begin with, let T: P3-- P3 be the automorphism with matrix 

_ -1 ; thus T [e0, 1, &2, 3] =[o, i$,-_3,-ie4]. Now T4 =I 

and Thas the four fixed points [1, 0, 0,0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] 
(this checks the Lefschetz fixed point formula). However T2 [, el, 2, 4el] 

[- e, - e, 62,63] and so T2 has the 2 fixed lines C, = [eo l, 0, 01 

C2~~~~~~~~~~0 
[?, 

?,4 41 4 Let W be the standard quartic 1 = + ?24 + 43 ; T(W) = W and 
T has on W no fixed points. On W, T2 has the eight fixed points C0 W 

+ C2 -W. To study them we let eo# 0, x- = y =-, Z e2 So that 
to to to 

x4 + y4 + Z4 I Then 
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T(x, y, z) = (ix,-iy, -z) and T2(x, y, z) (-x, y, z). 

Thus the four finite fixed points of T2 on IV are given by x = 0, y = 0, z4 . 
Because of obvious symmetry, it will suffice to examine the single fixed point 
P = (0, 0, 1). On a neighborhood of P in W we introduce local coordinates 
by the parametrization (u, v) _> (u, v, - (u4 + V4) ). Then T2 (u, v) 
= (- u, - v) so that, in order to desingularize W/{I, T, T2, T3}, we must 
remove the eight isolated singular points arising from an identification 
(u,v) -u, -v). This is done by a simple dilation. 

To be explicit, we parametrize the singular point by (u, v) - (U2, UV, V2). 

Then i is one-to-one on equivalence classes (u, v) (- u, v), and so a 
neighborhood of p is isomorphic to a neighborhood of the origin on the 
quadric Q = { (p, q, r) : pr = q2}. 

Now we cover P1 with open sets UO, U1 with coordinates g in UO and 
1/C in U1; and we let H -> P1 be the standard line bundle formed from 

(Uo XC) U (Ul X C) by the identification: (C,A)- (-q, c) if, and only if, 
- =1 and A =Co. Thus L= H-2 is formed from (UO X C) U (U1 X C) by 

the equivalence relation: 

(3. 53) (g,A) - (, ) if, and only if, g = 1,A x= 

Using (3. 53), we define holomorphic functions fo, fl, f2 on L by: 

f0 (C, A) A fo(v O,) =,2c 

f 1l (g, A) AC fi Oq, 0) \ +q 

f2 (g, A) =x2 f2 (m ) =) c 

Then f = (fO, f , f 2) gives a mapping f: L -> Q which is biholomorphic out- 
side zero and with f (zero section) = (0, 0, 0). Using f we may replace a 
neighborhood of the singular point on Q by a tubular neighborhood of the zero 
section in L and, in this way, uniformize the singularity (u, v) (- u, - v). 

We let V be the surface obtained from Z= W/{I, T, T27, T3} by removing 
the singular points as above. Since H1'0(W) =0, H1'0(V) -0. We assert 
that H2'0(V) = 0. To see this, we observe that, on W, there is a non-vanishing 

regular2-form dxdy (idx) (- idy) regular 2-fornmi W= 3 .-Since Tw = ( () 3 = o, it follows that 

there is no holomorphic 2-form on Z or V. 
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We claim that, on V, K2 = I where K is the canonical bundle. Since 
T (t,2) = W2, it will suffice to show that o2 is non-singular along the exceptional 
curves which have replaced the singular points on Z. This is straightforward 
to verify. 

Let now E be the vector space generated by the monomials p= &aoelalea2e43a3 

with: 

(3 54) a0+al+a2+a3 4 
a, + 2a2 + 3a3 ?= (mod 4) . 

These are the monomials with Tpt =, , and there are 10 solutions to (3. 54). 
The number of effective parameters is 6, since the commutator group of T 
is all diagonal matrices and has dimension 4. By perturbing the equation 
of W with elements close to zero in E, and by desingularizing the factor 
surfaces Z as above, we construct a fainily {Vtt,E, (dim A== 6) of surfaces 
for which (i) and (iii) above are satisfied. 

Since K # 1, K2 =_ 1, V is not ruled. Furthermore, if C C V is an 
exceptional curve, the genus p (C) is given by: p (C) 1 (C2 + CK) -1 
-- (C02) -1, so that C is not of the first kind. Hence V is a minimal model 
and this proves (ii). 

Remark. It has been pointed out to me by F. Gherardelli that it is 
possible to give the moduli in the above example by periods of "generalized" 
integrals, and we now give this construction. 

Quite generally, over an algebraic manifold V, we consider a represen- 
tation p: 7ri(V) - C* and let L V= X,1(v) C be the associated line bundle, 
V being the universal covering of V. We may speak of the sheaf 4 (L) of 
locally constant sections of L, as well as the space Aq(L) of C- q-forms with 
values in L. Since L has constant transition functions, the exterior deriva- 
tive d operates on Aq (L) and, if Hda (L) are the resulting cohomology groups, 
we have deRham's theorem: 

3. 5,5,) Hq ((D (L) )Hdq (L).q 

On the other hand, we may consider the sheaf iP (L) of holomorphic p- 
forms with values in L, and also the space APq(L) of C- (p, q) forms with 
values in L. The operator a maps 0: AP q (L) -> APq+l (L) and, if HMP,q (L) 
are the resulting cohomology groups, we have Dolbeault's theorem: 
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(3. 56 ) Hq (QP (L) )-_ HF, q (L) . 

A relation between (3. 55) and (3. 56) arises when we have a Kiahler 
metric on V, as well as a locally constant metric in L. Then the theory of 
harmonic forms on Kdhler manifolds carries over verbatim (cf. [29]). Thus 
we have 

(3. 57) Hdq(L) H-5 8 (L); 
r+s=q 

and also the whole theory of primitive cohomology classes, etc. (cf. I. 1. (c)) 
goes through in this case. 

If, furthermore, p has integral values, then we may consider the sheaf 
+(L) of integral sections of L, and Hq (p (L) ) is a (complex) lattice in 
Hq ( (L)). In case the Kiihler metric is a Hodge metric, then the primitive 
cohomology space Hq (. (L)),, is defined rationally. 

The special case we are interested in is q = 2; then 

(3. 58) H2 (- (L) ) o =H20 (L) D H0O,2(L) ID HI1 1 (L) ; 

and so the complex structures define a subspace H2'0 (L) C H2 () (L) ) o-that 
is, a point in G (h, W), the Grassmann variety of h-planes (h dim H2'0 (L)) 
in W ==H2((L))o. Suppose that V is a surface and that L-L*; this is 
the case of the surface above where L = K is the canonical bundle. (There 
7r1 (V) =) Z2, K is associated to an integral representation of 7r, (V), and 
K K* since K2 =1.) Then the cup product H2(4(L) ) 0?H2(()(L) )0 
-*H4 (V, C) defines a rational, non-degenerate bilinear form Q on H2 (1 (L) ) O. 
This allows us to define, just as in I. 1. (c), the period matrix space D2 (L), 
and the general structure theory goes through. In this way we may now 
speak of the " generalized " periods, which are associated to the polarized 
surface V and the representation p of 7r, (V). 

If now {Vt7te, c is the local moduli space (assumed complete), then 
there is defined the period mapping Q2: A-->D2(L), which is holomorphic, 
and we may ask when Q gives local coordinates in A. 

Assuming H1 (1 (L)) 0, this will be the case if the cup product: 

(3. 59) HO (K L) X H' (Q1 (L) ) ElH (Q1 (K) ) 

is onto. What we claim is that, if V is the surface above and L K is the 
canonical bundle, then the cup product in (3. 59) is an isomorphism. In 
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this case, 

H' (1(L)) H=,=H(K) +H0"(K) czHO(fZl(K*))+H2'H0(?v) 0. 

In fact, 

H2'0 (K) ? H11 (K) H2,0 (K*) 0 H"1 (K) - Hi (01 (K)), 

so that the generalized periods do, in fact, give local moduli in this case. 
We close with the following remarks concerning V: 

(1) diml H2 (?v) -dim HO (1 (K) ) =dim HO (1 (K*) ) dim HO (?v) 
0 and so, by the Riemann-Roch theorem, dim H1 (?v) 10 = number of 

moduli of V. 

(2) From the classical theory of surfaces, it is known that V is bi- 
regularly equivalent to an Enriques surface; i.e. a surface in P3 with the 
equation 

x2y2z2 + w2x2y2 + w2y2Z2 + W2Z2X2 - vxyz q (x, y, z, Iv) 

where q(x, y, z, w) is a general quadratic form. The moduli of V are 
obtained by perturbing q, and there are the correct number (10) of para- 
meters ([15]). 
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