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POINCARÉ AND ALGEBRAIC GEOMETRY 

BY PHILLIP A. GRIFFITHS1 

ABSTRACT. A few of the contributions of Poincaré to algebraic geometry are 
described, with emphasis on his late work on normal functions. A very brief 
description of some recent works is also given. 

Although the subject of algebraic geometry was not one of Poincaré's 
major preoccupations, his work in the field showed characteristic insight and 
brilliance and certainly has had a lasting effect. I shall briefly describe his 
major contributions, with special emphasis on the two papers on normal 
functions which constituted Poincaré's last published mathematical work. 

In general I have tried to follow standard current notations. Unless 
mentioned to the contrary, homology and cohomology are with Q coeffi
cients. 

At the end there is a list of some of Poincaré's major papers in algebraic 
geometry together with the other bibliographical items referred to in the text. 

As will be clear from the discussion below, the decision to emphasize 
Poincaré's work on normal functions reflects my own particular interest. 

(a) Let me begin by recalling the period during which Poincaré worked. 
This was a particularly active time in algebraic geometry, especially for the 
study of algebraic surfaces. In the preceding thirty years, beginning with 
Riemann's thesis the theory of algebraic functions of one variable, or as we 
now know it, algebraic curves, had been developed by Riemann, Max 
Noether, and many others to the point where—aside from moduli questions 
—the theory had assumed much the form that we find it today. Beginning in 
the 1890's Poincaré's colleague, E. Picard, had begun his monumental work 
on transcendental algebraic geometry in higher dimensions, especially on 
surfaces, that among other things led to the Picard-Fuchs equation and 
Picard-Lefschetz transformation, the algebraic de Rham theorem for 
smoothly compactifiable affine varieties and subsequent theory of single and 
double integrals of the second kind on surfaces, and the Picard variety and 
Picard number. Meanwhile, in Italy the birational theory of algebraic surfaces 
was well underway in the work of Castelnuovo, Enriques, Severi (at a slightly 
later time), and the other members of the Italian school. 

It is clear that Poincaré was well abreast of these developments, and it 
seems to me that his own work in algebraic geometry was frequently in 
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response to this activity. For example, as will be explained below, his idea of 
normal functions was devised to give the first complete proof of one of the 
main results of Picard and Castelnuovo-Enriques, the theorem that the Picard 
variety of a surface has dimension equal to the irregularity. 

(b) Poincaré wrote a number of papers, several in collaboration with 
Picard, concerning abelian varieties and Jacobians of curves. As was char
acteristic of much of his work, several of these papers involved interaction 
between various branches of mathematics. For example, his studies on 
abelian functions led to the Cousin problems in several complex variables, 
and his work on translation-type surfaces in abelian varieties was instrumen
tal in the theory of webs about which Chern will speak. 

In algebraic geometry proper, at least two results from the area of abelian 
varieties and Jacobians are noteworthy. One is 

(1) Poincaré's complete reducibility theorem [5]: Given an abelian subvariety 
A' of an abelian variety A, there exists a finite covering 

~ IT 

A-+A 
and abelian subvariety A" c A such that 

A C*<IT-\A') XA". 

This is a clear forerunner of the modern version that states: the category of 
polarized Hodge structures / Q is semisimple. 

A second result concerns the Jacobian variety J of a smooth algebraic 
curve C of genus g. Recall that there is a holomorphic mapping u: C^>J 
defined by 

(2) u(p)-([P «!,..., f\) 
^Po JPo ' 

where p0 e C is a base point and «1} . . . , w is a basis for the holomorphic 
differentials on C. If Q denotes the set of all unordered ^-tuples of points 

/)=/>! + ••• +Pth 

it may be shown that Cd has a natural complex manifold structure to which 
the mapping (2) may be extended by the formation of abelian sums. Thus 

(3) u:Cd-*J 

is defined by 

u{px + • • • +pd) = 2 f wi, . . ., E f ' "g)-
\ i JPo i *>o ' 

DEFINITION. For 1 < d < g we define the subvariety Wd c J to be the image 
variety of the proper holomorphic mapping (3). 

Equivalently, Wd is the translation-type subvariety of / given by sums of d 
points on the curve w(C); i.e. 

The Jacobi inversion theorem states that 

(4) Wg = J. 

More precisely, f or d = g the mapping (3) is birational. 
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Next, if @ c / is the divisor of zeroes of Riemann's theta function, then 
Riemann's theorem is 

(5) ^ g _ 1 = 0 + K, 

where the right-hand side of (5) is translation of @ by the vector K of 
Riemann constants. 

Poincaré gave the following extension of (4) and (5) to all d < g: 
(6) POINCARÉ'S FORMULA [6]. If 0 G H\J) and wd E H^-^J) are the 

fundamental cohomology classes of ® and Wd respectively, then 

(7) wd = 9*-"/{g-d)\ 

When d = g this implies that 

u:Cg->J 

has degree one, and when d = g — 1 (7) gives that 

Riemann's theorem (5) is then a consequence of the fact that the Jacobian of 
a curve is a principally polarized abelian variety. 

It is perhaps worth pointing out that (6) could not have even been properly 
formulated before Poincaré's introduction of homology. This is also true of 
the next topic dealing with residues of double integrals. 

In a similar vein we also note that Picard's great work [3] on algebraic 
functions of two variables would not have been possible had not Poincaré 
concurrently developed the necessary topological concepts. 

(c) The next of Poincaré's investigations in algebraic geometry that I would 
like to discuss centers around what is now called the Poincaré residue 
operator. It is an elementary fact that, on the complex projective line P1 with 
linear coordinate z, the cohomology of the punctured sphere 

P1 - {al9 . . . , % } , 

av distinct, is described by rational differential forms having poles at the av. 
More precisely, if we set 

p(z) = I I {z - av) 
V— 1 

then every cohomology class is represented by a unique form 

w = q(z)dz/p(z), deg q(z) < N - 2, 

that has simple poles at the av. 
Motivated in part by his work on topology and in part by the aforemen

tioned project of Picard concerning periods of rational integrals on algebraic 
surfaces, Poincaré [7] considered rational forms 

( 8 ) u=q{x,yu^dy^ degq{x,y)<N_x 

on the projective plane P2. Here, (x, y) are affine coordinates, p(x, y) is an 
irreducible polynomial of degree N defining an algebraic curve Z>, and the 
degree restriction in (8) is equivalent to saying that co does not have a pole on 
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the line at infinity. Poincaré showed that the periods 

(9) ƒ ƒ co, T G / ^ ( P 2 - D\ 

are all of the form 

x Res co, y E HX(D\ 
' Y 

where 

(10) Res co = q dx/ (dp/dy) = -q ay/ (dp/dx) onp(x,y) = 0 

defines a differential called the Poincaré residue. Here y is a 1-cycle in 
D* = D \ (singular locus}, and the cycles T and y are related by T = r(y) 
where 

(11) *• :# , ( />*)->/^(P 2 -Z>) 

is the mapping that assigns to y the boundary of that part of the solid e-tube 
around D* that lies over y. 

Nowadays one considers the Poincaré residue sheaf sequence 

(12) 0 ^ ^ - > ^ ( Z ) ) ^ S ^ - 1 - ^ 0 

where A" is a smooth «-dimensional algebraic variety and D c X is a divisor 
that, for simplicity of explanation, we assume to be smooth. Poincaré's case 
corresponds to X = P2, and the mapping (10) 

co —» Res co 
is 

Res: H\Qrx{D)) -+ H\Q^l\ 

His results concerning the periods of double integrals (9) are encoded in the 
long exact cohomology sequence of (12), together with Poincaré-Lefschetz 
duality and Hodge theory. 

It is interesting to note that in his paper [7] on residues Poincaré raised the 
issue concerning periods 

(13) ƒƒ *Xf*£*. cleg q(x,y) < ( * + ! ) * - 3, 

whose integrand has a higher order pole along C. Contrary to the one 
variable case, by subtracting exact forms it is not always possible to reduce 
the order of pole of co to one, and Poincaré mused on but did not entirely 
come to grips with this fact. It is now easy to explain the reason why: For a 
smooth hypersurface D c Pw of degree N given in affine coordinates by 

p(xv . . . , xn) = 0, 

we consider the mapping on cohomology 

Res: H "(F1 - D) -> Hn~\D) 

dual to the "tube over cycle mapping" 

r:HH_x{D)^>Hjy-D) 
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encountered in the case n = 2 in (11). The rational «-forms 

q(x)dxlA' ' ' Adxn Q = — , deg q(x) < (k + \)n - (n + 1), 

have poles of order k + 1 along Z), and they generate a vector subspace 

It can be proved (cf. [8]) that f/*e images 

(14) R e s ^ - ^ ^ P " -£>) ) = F^n-x~k)H^{D) 

define the Hodge filtration on the primitive cohomology of D. 
This result, which generalizes to any sufficiently ample smooth divisor D in 

a smooth variety X, provides a useful link between the transcendental Hodge 
theory of D and the algebro-geometric notion of linear systems on X. 

(d) We now turn to Poincaré's magnificent works [9 and 10] on normal 
functions. As mentioned above, these papers appeared just before his prema
ture death while still at the height of his mathematical powers. Upon reading 
the last section of the second paper it is clear, at least with the benefit of 
hindsight, that he was "within e" of the Lefschetz (1,1) theorem, and indeed, 
as we shall see, his normal functions provided the tool for the proof of this 
famous result. 

We consider an algebraic family { C , } / e r of algebraic curves of which a 
general member is smooth. In practice, T will usually also be a curve, and we 
shall denote by tl9 . . . , tN the critical points for which the curves Cti, . . . , Ct 

are singular. For an important concrete example, we consider a smooth 
algebraic surface 5 c F and take { C , } , e r to be a general pencil of hyper-
plane sections. In coordinates one may think of the projection of S in a 
general P3 to be given by 

p(x,y, z) = 0 

in such a way that the curve Ct is the section by the plane 

(15) z = /. 

Associated to {C,} , G r is the family of Jacobian varieties 

f = U J(c,), 

where care must be taken to insert the generalized Jacobian of Ct over the 
critical points. When this is done we obtain a complex manifold § that is a 
fibre space 

(16) „: % -> T 

of commutative complex Lie groups. 
DEFINITION. A normal function v is a holomorphic cross-section 

t-*r(t)eJ(Ct) 

of the fibre space (16). 
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To see how such a normal function might arise we consider an algebraic 
curve D on S that meets each plane section (15) in points, and we write the 
intersection as 

£-c, = 2/>,(<) 
where 

Pi{t) = {xi{t\yi{t\t). 

We assume chosen a rationally varying set 

/ A qa(x,y,t)dx 
w « ( / ) =

 n (Y v A > « = 1, • • •, g = genus C„ 

of abelian differentials that are holomorphic and linearly independent on a 
general C„ and then the curve D defines a normal function vD by 

where p0 is a base point of the pencil. Intuitively speaking, normal functions 
represent an extension to curves varying algebraically on parameters of the 
theory of abelian integrals on a fixed curve. 

In this vein, a fundamental result is the following extension of the Jacobi 
inversion theorem (4): 

(18) PoiNCARÉ's EXISTENCE THEOREM. In case the fibre space (16) arises from 
a general pencil of curves on a surface, any normal function v arises from a 
global algebraic curve D on the surface•; i.e., v = vD. 

As we shall see below (cf. (19)), normal functions are essentially linear data 
(analogous to sections of vector bundles), and the conversion to a geometric 
object provided by (18) is indeed quite remarkable. 

For an application, we recall that the irregularity q of an algebraic surface 
is equal to number of linearly independent closed holomorphic 1-forms on 
the surface. Keep in mind also that the development being described occurred 
some 25 years before Hodge theory and the equality h°(ül

s) = hl(Os). Using 
(18) Poincaré gave the first complete proof of the existence of ooq algebrai
cally equivalent but linearly inequivalent curves on the surface, as follows: 
Using the complete reducibility theorem (1) we choose the coa(0 to be divided 
into two sets 

fixed part variable part 

where the first set consists of the restrictions to Ct of the holomorphic 1-forms 
on S (Picard proved that this restriction is injective), and where the remainder 
is a complementary set as furnished by (1). The periods of the fixed part are 
constant, and from this it follows that for any algebraic curve D on S the first 
q abelian sums 

2 f(°Wl(0 = c1,...,2 f ( 0 s W = c( 
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give a constant vector c = (cl5 . . . , cq). Moreover, we may vary the normal 
function by varying the constant vector c while leaving fixed the entries of 
vD(t) corresponding to the variable part. Appealing now to (18), Poincaré 
established the existence of oo* curves D{c) that are easily seen to be linearly 
inequivalent. 

(e) To illustrate the fertility of normal functions, we shall very briefly 
recount some of the developments that have occurred since Poinçaré's papers 
and shall mention a couple of rather general and seemingly difficult outstand
ing problems. 

The first and foremost development is the Lefschetz (1,1) theorem [12]. As 
above, on a smooth surface S we consider a general pencil {C,} of hyper-
plane sections. The following was proved by Lefschetz (cf. [11 and 13] for 
expository accounts): 

(19) To each normal function v these is associated a topological invariant, 
called its fundamental class 

r](v) G H2(S, Z); 

that has the following properties: 
(i) In case v = vD comes from an algebraic curve D on the surface, 

•n(vD) = ri(D) 

is the fundamental class of the curve; and 
(ii) a given class ÎJ G H\S, Z) is the fundamental class t)(v)for some normal 

function v if and only if, rj has Hodge type (1, 1). 
Denoting by Pic°(S) the ^-dimensional Picard variety of 5, the situation 

may be summarized by the following exact sequence: 

0 —> Pic°(S') -> {group of normal functions} 
( 2 0 ) ^H^(S,Z)^H^(S) 

where H^J^S, Z) is the primitive part of H\S, Z). 
The Lefschetz (1,1) theorem, which characterizes the fundamental classes 

of algebraic 1-cycles on S by their Hodge types, is an immediate corollary of 
(20) together with Poinçaré's existence theorem. 

The remaining developments that we shall describe deal with higher-dimen
sional varieties. To a smooth complex algebraic variety V we associate the 
following groups: 

Z " = (algebraic cycles of codimension nonV), 
U 
Z£ = (cycles homologous to zero), 

U 
Za = (cycles algebraically equivalent to zero}, 
U 
Zr" = (cycles rationally equivalent to zero}. 

The rtth intermediate Jacobian Jn(V) consists of the real torus 

H2n~\V, R)/H2n-\V, Z) 
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provided with the complex structure indicated by the following splitting of 
H2n'\V9 R) <8> C a H2n~\Vy Q into complex conjugate subspaces: 

[H2n-\V9 C) = H'(V) 0 H"(V\ 

I H'(V) = H2n-x\V) 0 • • . ®Hn>n~l(V)9 

{H"(V)=1T{V). 
Choosing a basis o>v . . . , cog for H"(V)*9 there is a mapping 

M : Z ; - * / " ( F ) 

given by 

(21) M(z) = ( / r < o „ . . . , / r W g ) 

where z 6 Z" is an algebraic «-cycle that is homologous to zero and T is a 
chain with 3r = z. For divisors on curves, (21) reduces to the usual abelian 
sums. An easy generalization of one-half of Abel's theorem implies that 

u(Zr
n) - 0, 

so that there is an induced mapping 

(22) u:ZÏ/Z;-+J"(V). 

For simplicity of notation we shall henceforth concentrate on the crucial 
case when 

dim V = 2m — 1, n = w, 

and we shall drop the superscript n (for example, one may think of algebraic 
curves on a threefold). As was the case for curves, one may speak of algebraic 
families { Vt)t^T whose general member is smooth, and also (with some care) 
of the associated family {J(Vt)}t(ET of intermediate Jacobians. Provided that 
the singularities of the Vt are not too bad it can be shown that, again as was 
the case for curves, we arrive at a holomorphic fibre space 

of commutative complex Lie groups with 

*- ' ( / ) -TO 
for t =h t J , . . . , tN a noncritical parameter point. 

Suppose now that X is a smooth 2m-dimensional variety and {Vt} is a 
general pencil of hyperplane sections. An algebraic w-cycle D on X is said to 
be primitive in case 

D-V,-Z, 

is homologous to zero on Vr There is then a corresponding normal function 
vD defined by 

«7,(0-«»(*,) e TO-
As is perhaps suggested by the formal nature of the exact sequence (20), the 
Lefschetz theorem (19) goes over pretty much verbatim, and we shall give in 
(23) below that part of the generalization of (20) that is relevant to our 
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purposes, referring to [14 and 15] for precise statements and details of the 
proof 

(23) 

f group of 1 
I normal functions J 

7fp
2-m(X,Z)-

A corollary of (23) is 
(24) A class -q G H*™m(X, Z) is the fundamental class of a normal function if, 

and only if TJ has Hodge type (m, m). 
In particular, what is missing for the construction of algebraic cycles is a 

generalization of Poincaré's existence theorem (18). 
Now Poincaré's existence theorem was given as a version of the Jacobi 

inversion theorem with dependence on parameters, but the latter entirely 
changes character in higher dimensions. For example, in [8] it is proved that 

(25) If V is a generic member of a sufficiently ample pencil {Vt} on X, and if 
m > 2, then the mapping 

(26) u:Za/Zr^J(V) 

is zero. 
A consequence is that the subgroup of invertible points in / ( V\ defined to 

be the image of the mapping (22), will be countable. That it is not always zero 
may be seen using (24) (cf. [8]). 

In general we shall use the notations 

/ 0 ( V) = image of the mapping (22) 
"continuous part" of the 
invertible subgroup of / ( V); 

e(v) = zh/za. 
(27) PROBLEM, (i) Is the group ©(F) finitely generated! 
(ii) Is the induced mapping 

u:&(V)^J(V)/J0(V) 

injective! 
If (ii) were true, then (i) would be a Mordell-Weil type question and would 

consequently seem to be more tractable. As it stands the above problem is 
probably too difficult, and so it might be profitable to try some special cases, 
such as a smooth quintic hypersurface in P4 or one of Clemens' double solids 
[16]. We remark that a normal function analogue of (27) is true (cf. [17]). 

Having commented on the apparent demise, in higher dimensions, of the 
Jacobi inversion theorem for sufficiently general varieties (however, cf. [18]), 
it may still be asked if the analogue of Poincaré's existence theorem could be 
established by some other method? According to (24), the assumption that an 
integral cohomology class has Hodge type (m, m) has at least led to the 
construction of a global analytic variety somewhere, namely the graph of the 
normal function v. Moreover, in case v = vD for some primitive algebraic 
w-cycle D it may be proved that the knowledge of v in a sense determines the 

•{" 
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hypersurfaces of sufficiently high degree that pass through D or a cycle 
homologous to it [13]. Unfortunately, as discussed at the end of [13] this 
construction does not seem likely to be of much help in constructing cycles. 
Perhaps more promising is the possibility of relating the infinitesimal proper
ties of vD to the geometry of Z>, and we shall briefly describe this recent 
development. 

As initial motivation, suppose that X c P^ is a smooth algebraic surface 
and D0 c X is a divisor of degree zero (e.g., the difference of lines from the 
two rulings of a quadric surface in P3). Write D0 = Z)0

+ — D^ as the 
difference of effective divisors and denote by o(D0) = D0

+ + Z)0~ the support 
of D0. If C E |0;r(âO| is a general section of A" by a hypersurface of degree d, 
then for d » 0 the divisors D^ • C are effective special divisors, and the 
variational theory of special linear systems (cf. Chapter 7 of [20]) shows that 
there are a priori conditions on the tangent spaces to the graph of vD. 
Moreover, in a very few cases these infinitesimal conditions may be used to 
single out the adjoint hypersurfaces of large degree that pass through one or 
more of the curves o(D) where D = D+ - D' is homologous to D0 and 
d e g £ + =deg/V(cf . [19]) . 

As another motivation, suppose that X c P5 is a smooth hypersurface of 
degree d that contains a 2-plane A sa P2. Then 

D = d- A - ( P 3 - X ) 

will be a primitive algebraic 2-cycle lying in X, and we may consider the 
normal function corresponding to the linear sections 

VH - H n Xy HE: P5*, 

of X. In (c) above we discussed how the holomorphic 1-forms on J(VH) can 
be represented, via the isomorphism 

HW(J{VB))~H'{VH), 

by residues of the form 

T> J ?(*) dx\ A dx2 A dx3 A dx4 \ 
Res — , deg q(x) < 2d - 5, 

V P(x) J 
where p(x) = 0 is the defining equation of VH n H. It is certainly plausible 
that the derivative of the individual integrals in (21) should "change char
acter" where the polynomial q(x) vanishes on the line A n VH. 

We shall now sketch the definition of an infinitesimal invariant ÔP of a 
normal function v and shall then give one illustrative result. Let { ^ } , e 5 b e a 
family of smooth varieties of dimension 2m — 1 and v(s) G J(VS) ( = Jm(Vs)) 
a normal function. Even in the case m = 1 of curves of genus g, the 
construction of 8v is somewhat complicated due to the fact that, even though 
the Siegel generalized upper-half-plane %g is a homogeneous complex mani
fold, the versai family of principally polarized abelian varieties over %g is not 
(otherwise, all theta divisors would look alike). Because the construction is 
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local we may assume that S c C^ is a polydisc and we may then naturally 
identify all the groups H2m~l(Vs, Z)/(torsion) with a fixed lattice Z2g having 
complexification 

C2g ^ H2m-l(y^ C ) = H'(VS) 0 H"(VS). 

Then H'(VS) c H2m~l(Vs, Ç) gives a holomorphically varyingg-plane 

A, C C2*, 

and we may consider the resulting map 

(28) <p:S^G(g,2g) 

given by q>(s) = As (when m = 1, <p(̂ ) is just the period matrix of Vs under 
the natural embedding %g c G(g, 2g)). Since /(F5) is the middle-dimen
sional intermediate Jacobian there is a natural identification 

H2m-l(V,C)/H'(Vs)^H'(Vs)*, 

and so the differential of (28) is given by 

(29) n : r , ( 5 ) - » H o m ( A s , A ? ) . 

We define 

s , c P(r,(5)) 
by the condition 

f e S , * > d e t « p , ( ö - 0 

where £ G P(7^(S)) is a tangent direction. Setting 

S - U 2, 
.ses 

the quotient spaces 

(30) C2Vspan{A„cp,(0A,} 

fit together to define a coherent sheaf 9 over the analytic variety S. The 
normal function is defined by giving 

K*) e z2g \ C*/A, 

for each s & S, and we choose an arbitrary lifting v(s) G Ç?8 of *>(*?)• Any 
other lifting is 

v(s) = i>(*) + À(*) + f (j) 

where A(̂ ) G A5 and £($) G Z2*. It follows that, at the point (s, £) G P(TS(S))9 

the projection of dv(s)/di; into the quotient space (30) depends only on t>, up 
to a scalar resulting from lifting £ to a tangent vector in TS(S). We define the 
infinitesimal invariant 

(31) fit? G H°(2, 9(1)) 

to be the resulting section of ^ 0 0(1), where 0(1) is the tautological line 
bundle over P(T(S)). The details and differential geometric motivation for 
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this construction may be found in [19], where also a proof of the following 
result may be found. 

Let C be a smooth curve and D = Z>+ + D ~ a fixed divisor of degree 
zero with support o(D) = D+ + D ~. For our family {Cs}ses we take the 
Kuranishi space (local moduli space) centered at CSo = C. Then there is a 
natural identification 

TSo(S) a H\C, 0 ) 

where 0 is the tangent sheaf of C. We note that 

PH!(C, 0) s* F3*"4 

is the embedding space for the bicanonical mapping 

<p2K:C-+PH\C,&), 

and it may be proved that (cf. [19]) 

2 , 0 - U <PIK(E) 
E(E\K\ 

where |AT| is the canonical linear series on C and <p2K(E) is the linear span of 
the points <p2A:(/?f) where E = px + • • • +P2g-2- We remark that if £ E 
P(TSo(S)) is in <p2K(E), then 

i f ° ( C , A - ( - £ ) ) c k e r ^ ( ö . 

Moreover, given co E H°(C, K( — E)) and any vector ƒ in the quotient space 
(30), the pairing (Q denoting the cup-product on Hl(C)) 

(32) e ( « , / ) 
is well defined since <p*(£) is a symmetric transformation, and consequently 

sPan{Av<P*(£)AJ = K' 
Suppose now we consider families of divisors Ds on Cs with Ds = D and 
denote by vD the resulting normal function. By what we just said, to know the 
value of the infinitesimal invariant (31) at s = s0 it will suffice to know the 
quantities 

ô(co, 8vD) at s = s0, 

where £ E <p2Ar(̂ ) a n d <*> €E H°(C, K( — E)). These quantities are evaluated in 
[19], and in particular the conditions that 

(33) e(<o, 8vD)=0 8its = s0 

are determined. Here we mention the two conclusions: 
(i) the geometric condition 

(34) (W) > o(Z>) 

implies (33), and 
(ii) if Ds is chosen arbitrarily subject to Ds = D, then (33) and (34) are 

equivalent. Thus, in a certain sense 8v gives an extension to a family of 
variable curves of the Brill-Noether matrix (cf. [20]) that plays the pivotal role 
in the theory of special divisors on a fixed curve. 
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Although somewhat complicated to describe, we have mentioned this result 
as perhaps indicating that Poincaré's concept of normal functions has signfi-
cance that may play a role in questions of current interest in algebraic 
geometry. 
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