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1. Introduction

It is generally agreed that a gravitational field exists, satifying Einstein’s equations of
general relativity, and that gravitational waves traveling at the speed of light also exist. The
observed orbital shrinkage of the double pulsar [Weisberg and Taylor, 2005] provides direct
evidence that the pulsar is emitting gravitational waves at the rate predicted by the theory.
The LIGO experiment now in operation is designed to detect kilohertz gravitational waves
from astronomical sources. LIGO has not yet detected a signal, but nobody doubts that

gravitational waves are in principle detectable.

This talk is concerned with a different question, whether it is in principle possible to
detect individual gravitons, or in other words, whether it is possible to detect the quantization
of the gravitational field. The words “in principle” are ambiguous. The meaning of “in
principle” depends on the rules of the game that we are playing. If we assert that detection
of a graviton is in principle impossible, this may have three meanings. Meaning (a): We can
prove a theorem asserting that detection of a graviton would contradict the laws of physics.
Meaning (b): We have examined a class of possible graviton detectors and demonstrated
that they cannot work. Meaning (c¢): We have examined a class of graviton detectors and
demonstrated that they cannot work in the environment provided by the real universe. We do
not claim to have answered the question of “in principle” detectability according to meaning
(a). In Section 3 we look at detectors with the LIGO design, detecting gravitational waves
by measuring their effects on the geometry of space-time, and conclude that they cannot
detect gravitons according to meaning (b). In Sections 4 and 5 we look at a different class of
detectors, observing the interactions of gravitons with individual atoms, and conclude that

they cannot detect gravitons according to meaning (c). In Sections 6 and 7 we look at a third
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class of detectors, observing the coherent transitions between graviton and photon states

induced by an extended classical magnetic field, and do not reach any definite conclusion.

This paper is a report of work in progress, not a finished product. It raises the question

of the observability of gravitons but does not answer it. There is much work still to do.

2. The Bohr-Rosenfeld Argument

Before looking in detail at graviton detectors, I want to discuss a general theoretical
question. In 1933 a famous paper by Niels Bohr and Leon Rosenfeld, [Bohr and Rosenfeld,
1933], was published in the proceedings of the Danish Academy of Sciences with the title,
“On the Question of the Measurability of the Electromagnetic Field Strengths”. An English
translation by Bryce de Witt, dated 1960, is in the library at the Institute for Advanced
Study in Princeton, bound in an elegant hard cover. This paper was a historic display of
Bohr’s way of thinking, expounded in long and convoluted German sentences. Rosenfeld was
almost driven crazy, writing and rewriting fourteen drafts before Bohr was finally satisfied
with it. The paper demonstrates, by a careful and detailed study of imaginary experiments,
that the electric and magnetic fields must be quantum fields with the commutation rela-
tions dictated by the theory of quantum electrodynamics. The field-strengths are assumed
to be measured by observing the motion of massive objects carrying charges and currents
with which the fields interact. The massive objects are subject to the rules of ordinary
quantum mechanics which set limits to the accuracy of simultaneous measurement of posi-
tions and velocities of the objects. Bohr and Rosenfeld show that the quantum-mechanical
limitation of measurement of the motion of the masses implies precisely the limitation of
measurement of the field-strengths imposed by quantum electrodynamics. In other words,
it is mathematically inconsistent to have a classical electromagnetic field interacting with a

quantum-mechanical measuring apparatus.

A typical result of the Bohr-Rosenfeld analysis is their equation (58),

AE,(P)AEL(Q) ~ hA(P,Q) - A(Q. P)|. (1)
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Here the left side is the product of the uncertainties of measurement of two averages of
the z-component of the electric field, averaged over two space-time regions P and Q. On the
right side, A(P, Q) is the double average over regions P and Q of the retarded electric field
produced in Q by a unit dipole charge in P. They deduce (1) from the standard Heisenberg
uncertainty relation obeyed by the measuring apparatus. The result (1) is precisely the
uncertainty relation implied by the commutation rules of quantum electrodynamics. Similar

results are found for other components of the electric and magnetic fields.

The question that I am asking is whether the argument of Bohr and Rosenfeld applies also
to the gravitational field. If the same argument applies, then the gravitational field must be a
quantum field and its quantum nature is in principle observable. However, a close inspection
of the Bohr-Rosenfeld argument reveals a crucial feature of their measurement apparatus that
makes it inapplicable to gravitational fields. In the last paragraph of Section 3 of the Bohr-
Rosenfeld paper, they write: “In order to disturb the electromagnetic field to be measured as
little as possible during the presence of the test body system, we shall imagine placed beside
each electric or magnetic component particle another exactly oppositely charged neutralizing
particle”. The neutralizing particles have the following function. Suppose we have a mass
carrying a charge or current J whose movement is observed in order to measure the local
electric or magnetic field. The movement of the charge or current J produces an additional
electromagnetic field that interferes with the field that we are trying to measure. So we must
compensate the additional field by adding a second mass, carrying the charge or current
—J and occupying the same volume as the first mass. The second mass is constrained
by a system of mechanical linkages and springs to follow the movement of the first mass
and cancels the fields generated by the first mass. This cancellation is an essential part
of the Bohr-Rosenfeld strategy. It is then immediately obvious that the strategy fails for
measurement of the gravitational field. The test-objects for measuring the gravitational field
are masses rather than charges, and there exist no negative masses that could compensate

the fields produced by positive masses.

The conclusion of this argument is that the Bohr-Rosenfeld analysis does not apply to

the gravitational field. This does not mean that the gravitational field cannot be quantized.
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It means only that the quantization of the gravitational field is not a logical consequence of
the quantum behavior of the measuring apparatus. The fact that the electromagnetic field

must be quantized does not imply that the gravitational field must be quantized.
3. Can LIGO Detect a Graviton?

In the LIGO experiment, if it is successful, we shall detect a classical gravitational wave,
not an individual quantum of gravity. A classical wave may be considered to be a coherent
superposition of a large number of gravitons. LIGO is supposed to detect a wave with a
strain amplitude f of the order of 107?!. According to [Landau and Lifshitz, 1975], page
370, the energy density of this wave is

E = (%/32rG)w” f2, (2)

where G is Newton’s constant of gravitation and w is the angular frequency. For a wave
with angular frequency 1 Kilohertz and amplitude 102!, Eq. (2) gives an energy density of
roughly 10710 ergs per cubic centimeter. A single graviton of a given angular frequency w
cannot be confined within a region with linear dimension smaller than the reduced wavelength
(¢/w). Therefore the energy density of a single graviton of this frequency is at most equal

to the energy of the graviton divided by the cube of its reduced wave-length, namely

E, = (hw/c?). (3)

For an angular frequency of 1 Kilohertz, the single graviton energy density is at most
3.107%" ergs per cubic centimeter. So any gravitational wave detectable by LIGO must
contain at least 3.10%" gravitons. This wave would be barely detectable by the existing
LIGO. For a LIGO apparatus to detect a single graviton, its sensitivity would have to be
improved by a factor of the order of 3.10%". Even this vast improvement of sensitivity would
probably not be sufficient, because the detection of weak signals is usually limited not only
by the sensitivity of the apparatus but also by the presence of background noise. But to
see whether detection of single gravitons is possible in principle, we disregard the problem
of background radiation and analyze the structure and operation of a super-sensitive LIGO

detector.



For a rough estimate of the sensitivity of a LIGO apparatus required to detect a single

graviton, we equate (2) with (3). This gives the strain f to be detected by the apparatus,

f = (32m)'2(Lyw/o), (4)

where L, is the Planck length

L, = (Gh/cH)? =14 x 1072 cm. (5)

The strain is derived from a measurement of the variation of distance between two masses
separated by a distance D. The variation of the measured distance is equal to fD, so long as
D does not exceed the reduced wave-length (c¢/w) of the graviton. For optimum detectability

we take D equal to (¢/w). Then the variation of distance is by (4)

6 = (32m)2L,. (6)

Up to a factor of order unity, the required precision of measurement of the separation
between the two masses is equal to the Planck length, and is independent of the frequency

of the graviton.

Is it possible in principle for a LIGO apparatus to measure distances between macroscopic
objects to Planck-length accuracy? The following simple arguments give a negative answer
to this question. First consider the case in which the objects are floating freely in space. The
Heisenberg uncertainty relation between position and momentum of freely floating objects

gives the lower bound

Ms? > BT, (7)

for the variation of distance §, where M is the mass of each object and T is the duration
of the measurement. Now 7" must be greater than the time (D/c) required to communicate

between the two masses. If J is equal to the Planck length, (5) and (7) imply

D < (GM/c?). (8)
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So the separation between the two objects is less than the Schwarzschild radius of each
of them, the negative gravitational potential pulling them together is greater than M¢?, and

they are bound to collapse into a black hole before the measurement can be completed.

We next consider the situation that arises when the two masses are clamped in position
by a rigid structure. In this case the precision of measurement of the distance between
the two objects is limited by quantum fluctuations of the rigid structure. We use a simple
dimensional argument to estimate the magnitude of the fluctuations. Let s be the velocity of
sound in the structure, let D be the separation between the objects, and let M be the mass
of the structure. There will be at least one mode of sound-vibration of the structure which
gives a displacement affecting the measurement of D. The mean-square quantum fluctuation
amplitude of the displacement in this mode will then be, up to a factor of order unity, at

least as large as the zero-point fluctuation,

52 > (hD/Ms). (9)

The duration of the measurement must be of the order of (D/c), the time it takes the
graviton to travel through the apparatus. This duration is shorter than the period (D/s) of
the sound-vibration, since s cannot exceed c. Therefore the uncertainty of the measurement
is at least equal to the instantaneous vibration-amplitude §. If the uncertainty is as small

as the Planck length (5), then (9) implies

(GM/c*) > (¢/s)D > D. (10)

Again we see that the separation between the two masses is smaller than the Schwarzchild
radius of the apparatus, so that the negative gravitational potential of the two masses is
greater than Mc? and the apparatus will collapse into a black hole. It appears that Nature
conspires to forbid any measurement of distance with error smaller than the Planck length.

And this prohibition implies that detection of single gravitons with an apparatus resembling

LIGO is impossible.

It is clear from Eq. (3) that we have a better chance of detecting a single graviton if

we raise the frequency into the optical range and use a different kind of detector. When



the frequency is of the order of 10'® Hertz or higher, a single graviton can kick an electron
out of an atom, and the electron can be detected by standard methods of atomic or particle
physics. We are then dealing with the gravito-electric effect, the gravitational analog of
the photo-electric effect which Einstein used in 1905, [Einstein, 1905], to infer the existence
of quanta of the electromagnetic field, the quanta which were later called photons. The
possibility of detecting individual gravitons in this way depends on two quantities, (a) the
cross-section for interaction of a graviton with an atom, and (b) the intensity of possible
natural or artificial sources of high-frequency gravitons. Most of this talk will be concerned

with estimating these two quantities.
4. Graviton Detectors

The simplest kind of graviton detector is an electron in an atom, which we may approx-
imate by considering the electron to be bound in a fixed non-relativistic potential V' (r). We
choose coordinate axes so that the z-axis is the direction of motion of a graviton. There
are then two orthogonal modes of linear polarization for the graviton, one with the wave-
amplitude proportional to xy, and the other with the amplitude proportional to (z* — y?).
We choose the z and y-axes so that they make angles of 45 degrees to the plane of polar-
ization of the graviton. Then the matrix element for the electron to absorb the graviton
and move from its ground state a to another state b is proportional to the mass-quadrupole

component,

Dy, = m/wgwy%dﬂ (11)

where m is the electron mass. Eq. (11) is the quadrupole approximation, which is valid
so long as the wave-length of the graviton is large compared with the size of the atom. The

total cross-section for absorption of the graviton by the electron is

o(w) = (An°Gw®[*) > " |Day|*6(By — E, — hw), (12)

where F, and FE, are the energies of the initial and final states. It is convenient to

consider a logarithmic average of the cross-section over all frequencies w,
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Sa = /a(w)dw/w. (13)

Integration of (12) gives the sum-rule

S, = 4n*L2Q, (14)

where the Planck length L, is given by (4), and

Q- / (20 0y + y0 /0 ), 2dr (15)

is a numerical factor of order unity. It is remarkable that the average cross-section (14)
is independent of the electron mass and of the nuclear charge. The same formula (14) holds

for the absorption of a graviton by a neutron or proton bound in a nuclear potential.

For simplicity we assume that the electron is in an s-state with a wave-function f(r)

which is a function of distance r from the nucleus. Then (15) becomes

Q= / AL (r)Pdr) /(3 / () 2dr). (15)

The inequality

/#[f’ + (3/2r) fdr > 0 (16)
implies that for any f(r)
Q > 3/4. (17)
On the other hand, if
f(r) =r""exp(-r/R), (18)

then



Q=1-(n/6). (19)

From (17) and (19) it appears that for any tightly-bound s-state @) will be close to unity.
The cross-section for absorption of a graviton by any kind of particle will be of the same

magnitude

AT? L2 = 4m°Gh/c® = 8 x 107% em?, (20)

spread over a range of graviton energies extending from the binding-energy of the particle
to a few times the binding-energy. For any macroscopic detector composed of ordinary
matter, the absorption cross-section will be of the order of 10*! square centimeters per

gram.
5. Thermal Graviton Generators

We have a splendid natural generator of thermal gravitons with energies in the kilovolt
range, producing far more gravitons than any artificial source is likely to generate. It is called
the sun. Stephen Weinberg long ago calculated [Weinberg, 1965] the graviton luminosity of
the sun, caused by gravitational bremsstrahlung in collisions of electrons and ions in the sun’s
core. A later calculation [Gould, 1985] corrected a mistake in Weinberg’s paper but does not
substantially change the result. For an electron-ion collision with energy F, the differential
cross-section p(w) for producing a graviton of energy hw is divergent at low energies, so that
the total cross-section has no meaning. The physically meaningful quantity is the integral

of the differential cross-section multiplied by the energy of the graviton,

/ p(w)hwdw = (320/9) Z*0*L2E, (21)

where « is the electromagnetic fine-structure constant and Z is the charge of the ion.
Including a similar contribution from electron-electron collisions, (21) gives a total graviton

luminosity of the sun

L, =79 Megawatts, (22)
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or about 10%* gravitons per second with energy in the kilovolt range. This gives a flux at

the earth of

F, = 4 x 10~* gravitons per cm? per second. (23)

If we imagine the whole mass of the earth to be used as a graviton detector, with the
cross-section (20) per electron and the flux (23), the counting-rate is 2.4 x 10~'7 per second.
If the experiment continues for the life-time of the sun, which is 5 billion years, the expected
total number of gravitons detected will be 4. The experiment barely succeeds, but in principle

it can detect gravitons.

According to [Gould, 1985], there exist in the universe sources of thermal gravitons
which are stronger than the sun, namely hot white dwarfs at the beginning of their lives,
and hot neutron stars. Gould estimates the graviton luminosities of a typical white dwarf
and a typical neutron star to be respectively 10* and 10'° times solar. Their luminosities
are roughly proportional to their central densities. But the life-times during which the stars
remain hot are shorter than the life-time of the sun, being of the order of tens of millions of
years for the white dwarf and tens of thousands of years for the neutron star. The life-time
output of gravitons will therefore be respectively 100 and 10° times solar. To stretch the
theoretical possibilities of detection to the limit, we may suppose the detector to have mass
equal to the sun and to be orbiting around the source of gravitons at a distance of 0.01
astronomical unit with an orbital period of 8 hours. Then the expected number of gravitons
detected will be of the order of 10'® for the white dwarf and 10'® for the neutron star. The
detection rate is roughly one per minute for the white dwarf and 3 x 10? per second for the
neutron star. The conclusion of this calculation is that graviton detection is in principle
possible, if we disregard the problem of discriminating the graviton signal from background

noise.

The most important source of background noise is probably the neutrinos emitted by the
sun or the white dwarf or the neutron star as the case may be. These neutrinos can mimic
graviton absorption events by ejecting electrons from atoms as a result of neutrino-electron

scattering. The neutrinos have higher energy than the gravitons, but only a small fraction of
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the neutrino energy may be transferred to the electron. From the sun, about 10'* neutrinos
are emitted for each graviton, and the cross-section for neutrino-electron scattering is about
10%° times the cross-section for graviton absorption, [see Fukugita and Yanagida, 2003].
Therefore there will be about 103! neutrino background events for each graviton absorption

event.

For white-dwarfs and neutron-stars the ratio of background to signal is even larger, since
neutrino production and scattering cross-sections increase with temperature more rapidly
than graviton production and absorption cross-sections. Without performing detailed cal-
culations, we can assert that for all thermal sources of gravitons the ratio of neutrino back-
ground to graviton signal will be of the order of 10** or greater. In all cases, the total
number of detected graviton events is vastly smaller than the square-root of the number of
background events. The graviton signal will be swamped by the statistical scatter of the

background noise.

Before jumping to conclusions about the detectability of gravitons, we must explore
possible ways in which the neutrino background events might be excluded. The first possible
way is to surround the detector with a shield thick enough to stop neutrinos but let gravitons
pass. If the shield is made of matter of ordinary density, its thickness must be of the order
10'° kilometers, and its mass is so large that it will collapse into a black hole. The second
possible way is to surround the graviton detector with neutrino detectors in anti-coincidence,
to catch the outgoing neutrino after each scattering event. This way fails for the same reason
as the shield. The neutrino detectors would need to be at least as massive as the shield.
The third possible way is to build a shield or a set of anti-coincidence detectors out of some
mythical material with super-high density. The known laws of physics give us no clue as
to how this might be done. We conclude that, if we are using known materials and known

physical processes, detection of thermal gravitons appears to be impossible.
6. Non-thermal Gravitons

It is possible to imagine various ways in which energetic objects such as pulsars may

emit non-thermal gravitons of high energy. One such way is a process first identified by
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[Gertsenshtein, 1961], the coherent mixing of photon and graviton states in the presence of
an extended classical magnetic field. The graviton emission from various celestial objects
resulting from the Gertsenshtein process was calculated by [Papini and Valluri, 1989]. Some

interestingly high graviton luminosities were predicted.

The Gertsenshtein process results from the interaction energy

(87G /) hi; Ty, (24)

between the gravitational field h;; and the energy-momentum tensor 7;; of the electro-
magnetic field. This interaction expresses the fact that electromagnetic fields have weight,
just like other forms of energy. Now suppose that h;; is the field of a graviton traveling in

the z direction and

T,; = (1/4m)(B, + b)(B; +b;), (25)

is the energy-momentum of the photon magnetic field b; superimposed on a fixed classical

magnetic field B;. Then the interaction (24) contains the term

I = (4G /c*)hyy Byby, (26)

bilinear in the graviton and photon fields. The effect of this bilinear term is to mix the
photon and graviton fields, so that a particle that is created as a photon may be transformed
into a graviton and vice versa. There is an oscillation between graviton and photon states,
just like the oscillation between neutrino states that causes neutrinos to change their flavors
while traveling between the sun and the earth. If a photon travels a distance D though a

uniform transverse magnetic field B, it will emerge as a graviton with probability

P = sin2(Gl/QBD/202) = sin?(B/L), (27)

with the mixing-length

L=(23/G"*B) (28)
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independent of wave-length. In all practical situations, D will be small compared with

L, so that

P = (GB*D?/4c%). (29)

The quadratic dependence of P on D makes this process interesting as a possible astro-

physical source of gravitons. The numerical value of L according to (28) is roughly

L = (10*/B), (30)

when L is measured in centimeters and B in Gauss.

We may also consider the Gertsenshtein process as the basis of a graviton detector
consisting of a hollow pipe of length D filled with a transverse magnetic field B. The
tube must be accurately pointed at a putative source of gravitons in the sky. At the far
end of the tube is a shield to block incident photons, and at the near end is a detector of
photons resulting from the conversion of gravitons on their way through the tube. If D is

one astronomical unit ( 10'* ¢cm), then (29) gives

P=10"*pB (31)

The field B must be very strong to obtain a reasonable rate of conversion of gravitons to
photons. A detector with the same design has been used in a real experiment to detect axions
that might be created by thermal processes in the core of the sun [Zioutas et al., 2005]. The
axion field is supposed to interact with the electromagnetic field with an interaction energy
similar to (26), but with a much larger coupling constant. The experimenters at CERN in
Switzerland are using a surplus magnet from the Large Hadron Collider project as an axion-
detector, pointing it at the sun and looking for kilovolt photons resulting from conversion of
axions into photons. The length of the magnet is 9 meters and the magnetic field is 9 x 10*

Gauss. They have not yet detected any axions.

The Gertsenshtein process does not require the classical magnetic field to be uniform.

For a non-uniform field, the conversion of photons to gravitons still occurs with probability

13



given by (27), if we replace the product BD by the integral of the transverse component of
B along the trajectory of the photons. Likewise, the conversion will not be disturbed by
a background gravitational field, even when the field is strong enough to curve the photon
trajectory, because the gravitational field acts in the same way on photons and gravitons.
In a curved space-time, the photons and the gravitons follow the same geodesic paths, and

the photon and graviton waves remain coherent.
7. Non-linear Electrodynamics

However, there is an important disturbing factor which was neglected in previous dis-
cussions of the Gertsenshtein process. The disturbing factor is the non-linearity of the elec-
tromagnetic field caused by quantum fluctuations of electron-positron pairs in the vacuum,
[Euler and Heisenberg, 1936; Wentzel, 1943]. The fourth-order term in the electromagnetic
field energy density is [Wentzel, 1943, page 190],

(/360 H?)[(E* — H*)? +7(E.H)?, (32)

where « is the fine-structure constant and

H, = (m*c®/eh) = 5.10"Gauss (33)

is the critical magnetic field at which electron-positron pair fluctuations become notice-

able.
When the field in (32) is divided into classical and photon components as in (25), there
is a term quadratic in both the classical and photon fields,
(o/360m* H?)(4(B.b)? + 7(B.e)?), (34)
where b and e are the magnetic and electric fields of the photon. From (34) it follows

that the photon velocity v is not equal to ¢ but is reduced by a fraction

g=1—(v/c) = (kaB?/360m*H?). (35)
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The coefficient £ is equal to 4 or 7 for a photon polarized with its magnetic field or its
electric field parallel to B. We consider the case k = 4, since that case is more favorable
to the Gertsenshtein process. Since the graviton field is not affected by the non-linear
electromagnetic interaction (32), the graviton velocity is precisely ¢, and the photon and

graviton waves will lose coherence after traveling for a distance

L. = (¢/gw) = (90n?cH? JaB*w) = (10*/B?w). (36)

If the propagation distance D is larger than L., the Gertsenshtein process fails and
the formula (29) for the photon-graviton conversion probability is incorrect. A necessary

condition for the Gertsenshtein process to operate is

DB%*w < 10%. (37)

Furthermore, even when the Gertsenshtein process is operating, the probability of photon-ii

graviton conversion according to (29) and (37) is

P < (10%/B%.2). (38)

We are interested in detecting astrophysical sources of gravitons with energies up to 100

kilovolts, which means frequencies up to 10*°. With w = 10%°; (37) and (38) become

D < (10%/B?%), P < (107/B?). (39)

We consider two situations in which (39) has important consequences. First, with typical
values for the magnetic field and linear dimension of a pulsar, B = 10'? and D = 10°, (39)
shows that the Gertsenshtein process fails by a wide margin. The calculations of the graviton
luminosity of pulsars in [Papini and Valluri, 1989] assume that the Gertsenshtein process
is producing high-energy gravitons. These calculations, and the high luminosities that they
predict, are therefore incorrect. Second, in the hollow pipe graviton detector which we

considered earlier, (39) shows that the Gertsenshtein process can operate with a modest
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field, B = 10° Gauss, and a pipe length D = 10 c¢m, but the probability of detection of
each graviton traveling through the pipe is only 107!, If the field is made stronger, the
length of the pipe must be shorter according to (39), and the probability of detecting a

graviton becomes even smaller.
8. Conclusions

Many papers have been published, for example [Eppley and Hannah, 1977; Page and
Geilker, 1981], claiming to demonstrate that the gravitational field must be quantized. What
these papers demonstrate is that a particular theory with a classical gravitational field inter-
acting with quantum-mechanical matter is inconsistent. Page and Geilker assume that the
classical gravitational field is generated by the expectation value of the energy-momentum
tensor of the matter in whichever quantum state the matter happens to be. They performed
an ingenious experiment to verify that this assumption in fact gives the wrong answer for a

measurement of the gravitational field in a real situation.

In this paper I am not advocating any particular theory of a classical gravitational field
existing in an otherwise quantum-mechanical world. T am raising two separate questions. I
am asking whether either one of two theoretical hypotheses may be experimentally testable.
One hypothesis is that gravity is a quantum field and gravitons exist. A second hypothesis is
that the gravitational field is a statistical concept like entropy or temperature, only defined
for gravitational effects of matter in bulk and not for effects of individual elementary particles.
If the second hypothesis is true, then the gravitational field is not a local field like the
electromagnetic field. The second hypothesis implies that the gravitational field at a point

in space-time does not exist, either as a classical or as a quantum field.

Now I assert that both of the two hypotheses may or may not be experimentally testable.
Analysis of the properties of graviton-detectors, following the methods of this paper, might
be able to throw light on both hypotheses. Three outcomes are logically possible. If a
graviton detector is possible and succeeds in detecting gravitons, then the first hypothesis is
true and the second is false. If a graviton detector is possible and fails to detect gravitons,

then the first hypothesis is false and the second is open. If a graviton detector is in principle
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impossible, then both hypotheses remain open. Even if their existence is not experimentally

testable, gravitons may still exist.

The conclusion of our analysis is that we are still a long way from settling the question
whether gravitons exist. But the question whether gravitons are in principle detectable is

also interesting and may be easier to decide.
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