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1.

There has recently been much interest, if not a tremendous amount of progress, in the
arithmetic theory of automorphic forms. In this lecture I would like to present the views
not of a number theorist but of a student of group representations on those of its problems
that he finds most fascinating. To be more precise, I want to formulate a series of questions
which the reader may, if he likes, take as conjectures. I prefer to regard them as working
hypotheses. They have already led to some interesting facts. Although they have stood up
for a fair length of time to the most careful scrutiny I could give, I am still not entirely easy
about them. Indeed even at the beginning in the course of the definitions, which I want to
make in complete generality, I am forced, for lack of time and technical competence, to make
various assumptions.

I should perhaps apologize for such a speculative lecture. However, there are some
interesting facts scattered amongst the questions. Moreover, the unsolved problems in group
representations arising from the theory of automorphic forms are much less technical than the
solved ones, and their significance can perhaps be more easily appreciated by the outsider.
Suppose G is a connected reductive algebraic group defined over a global field F , which

is then an algebraic number field or a function field in one variable over a finite field. Let
A(F ) be the adèle ring of F . The topological group GA(F ) is then locally compact with GF

as a discrete subgroup. The group GA(F ) acts on the functions on GF\GA(F ). In particular,
it acts on L2(GF\GA(F )). It should be possible, although I have not done so and it is not
important at this stage, to attach a precise meaning to the assertion that a given irreducible

Appears in Lectures in Modern Analysis and Applications III, C. T. Taam, ed., Springer Lecture Notes in
Mathematics 170, 1970, pp. 18–61.
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representation π of GA(F ) occurs in L
2(GF\GA(F )). If G is abelian it would mean that π is a

character of GF\GA(F ). If G is not abelian it would be true for at least those representations
which act on an irreducible invariant subspace of L2(GF )\GA(F ).

If G is GL(1) then to each such π one, following Hecke, associates an L-function. If G is
GL(2) then Hecke has also introduced, without explicitly mentioning group representations,
some L-functions. The problems I want to discuss center about the possibility of defining
L-functions for all such π and proving that they have the analytic properties we have grown
used to expecting of such functions. I shall also comment on the possible relations of these
new functions to Artin L-functions and the L-functions attached to algebraic varieties.

Given G I am going to introduce the complex analytic group ĜF . To each complex analytic

representation σ of ĜF and each π I want to attach an L-function L(s, σ, π). Let me say a
few words about the general way in which I want to form the function. The group GA(F ) is a
restricted direct product

∐
pGFp . The product is taken over the primes, finite and infinite,

of F . It is reasonable to expect although to my knowledge it has not been proved in general
that π can be represented as

⊗
p πp where πp is a unitary representation of GFp .

I would like to have first associated to any algebraic group G defined over Fp a complex

analytic group ĜFp and to any complex analytic representation σp of ĜFp and any unitary
representation πp of GFp a local L-function L(s, σp, πp) which, when p is non-archimedean,
would be of the form

n∏
i=1

1

1− αi|ϖp|s

where n is the degree of σp. Some of the αi may be zero. For p infinite it would be, basically, a
product of Γ-functions. The local L-function L(s, σp, πp) would depend only on the equivalence
classes of σp and πp. I would also like to have defined for every non-trivial additive character
ψFp of Fp a factor ε(s, σp, πp, ψFp) which, as a function of s, has the form aebs.

There would be a complex analytic homomorphism of ĜFp into ĜF determined up to an

inner automorphism of ĜF . Thus σ determines for each p a representation of σp of ĜFp . I
want to define

(A) L(s, σ, π) =
∏
p

L(s, σp, πp).

Of course it has to be shown that the product converges in a half-plane. We shall see how
to do this. Then we will want to prove that the function can be analytically continued
to a function meromorphic in the whole complex plane. Let ψF be a non-trivial character
of F\A(F ) and let ψFp be the restriction of ψF to Fp. We will want ε(s, σp, πp, ψFp) to be 1
for all but finitely many p. We will also want

ε(s, σ, π) =
∏
p

ε(s, σp, πp, ψFp)

to be independent of ψF . The functional equation should be

L(s, σ, π) = ε(s, σ, π)L(1− s, σ̃, π)

if σ̃ is the representation contragredient to σ.
We are asking for too much too soon. What we should try to do is to define the L(s, σp, πp)

and the ε(s, σp, πp, ψFp) when there is no ramification, verify that there is ramification at
only a finite number of primes, and show that if the product in (A) is taken only over the
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unramified primes it converges for Re s sufficiently large. As we learn how to prove the
functional equations we shall be able to make the definitions at the unramified primes. By the
way, we introduce the additive characters, whose appearance must appear rather mysterious,
only because we can indeed prove some things and know better than to leave them out.
What does unramified mean in our context? First of all for p to be unramified G will

have to be quasi-split over Fp and split over an unramified extension. In that case there is,
as we shall see, a canonical conjugacy class of maximal compact subgroups of GFp . For p
to be unramified, the restriction of πp to any one of these groups will have to contain the
identity representation. There is also a condition to be imposed on ψFp . Although it is not
very important I would like to mention it explicitly. If p is non-archimedean the largest ideal
of Fp on which ψFp is trivial will have to be OFp , the ring of integers in Fp. If Fp is R then
ψFp(x) will have to be e2πix and if Fp is C then ψFp(z) will have to be e4πi Re z. We want
ε(s, σp, πp, ψFp) to be 1 if p is unramified.

2.

The group ĜF can be identified for a connected reductive group over any field F . Take
first a quasi-split group G over F which splits over the Galois extension K. Choose a Borel
subgroup B of G which is defined over F and let T be a maximal torus of B which is also
defined over F . Let L be the group of rational characters of T . Write G as G0G1 where G0

is abelian and G1 is semi-simple. Then G0 ∩G1 is finite. If T 0 = G0 and T 1 = T ∩G1 then
T = T 0T 1. Let L0

+ be the group of rational characters of T 0 and let L0
− be the elements

of L0
+ which are 1 on T 0 ∩ T 1. Let L1

− be the group generated by the roots of T 1. If R is
any field let E1

R = L1
− ⊗Z R. The Weyl group Ω acts on L1

− and therefore on E1
R. Let (·, ·)

be a non-degenerate bilinear form on E1
C which is invariant under Ω. Suppose also that its

restriction to E1
R is positive definite. Let

L1
+ =

{
λ ∈ E1

C

∣∣∣∣ 2(λ, α)(α, α)
∈ Z for all roots α

}
.

Set L− = L0
− ⊕ L1

− and L+ = L0
+ ⊕ L1

+. We may regard L as a sublattice of L+. It will
contain L−.

Let α1, . . . , αℓ be the simple roots of T 1 with respect to B and let

(Aij) = 2
(αi, αj)

(αi, αi)

be the Cartan matrix. If σ belongs to G(K/F ) and λ belongs to L then σλ, where σλ(t) =
σ
(
λ(σ−1t)

)
, also belongs to L. Thus G(K/F ) acts on L. It also acts on L− and L+ and the

actions on these three lattices are consistent. Moreover the roots α1, . . . , αℓ are permuted
amongst themselves and the Cartan matrix is left invariant.

If R is any field containing Q let ER = L⊗Z R and let ÊR = HomR(ER, R). The lattices

L̂+ = Hom(L−,Z) = Hom(L0
−,Z)⊕ Hom(L1

−,Z) = L0
+ ⊕ L̂1

+

L̂ = Hom(L,Z)

L̂− = Hom(L+,Z) = Hom(L0
+,Z)⊕ Hom(L1

+,Z) = L̂0
− ⊕ L̂1

−

may be regarded as subgroups of ÊC. If E0
R = L0

− ⊗Z R then ER = E0
R ⊗ E1

R. With the

obvious definitions of Ê0
R and Ê1

R we have ÊR = Ê0
R ⊕ Ê1

R. Let (·, ·) also denote the form
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on Ê1
C adjoint to the given form on E1

C. To be precise if λ and µ belong to E1
C, if λ̂ and µ̂

belong to Ê1
C, and if ⟨η, λ̂⟩ = (η, λ) and ⟨η, µ̂⟩ = (η, µ) for all η in E1

C then (λ, µ) = (λ̂, µ̂).

If α is a root define its coroot α̂ in Ê1
C by the condition:

⟨λ, α̂⟩ = 2
(λ, α)

(α, α)

for all λ in E1
C. The coroots generate L̂1

−. Moreover

(α̂, β̂) = 4
(α, β)

(α, α)(β, β)

and

2
(α̂, β̂)

(α̂, α̂)
= 2

(α, β)

(β, β)

Thus the matrix

(Âij) =

(
2
(α̂i, α̂j)

(α̂i, α̂i)

)
is the transpose of (Aij). The linear transformation Ŝi of Ê

1
C defined by

Ŝi(α̂j) = α̂j − Âijα̂i = α̂j − Ajiα̂i

is contragredient to the linear transformation Si of Ê
1
C defined by

Si(αj) = αj − Aijαi.

Thus the group Ω̂ generated by
{
Ŝi

∣∣∣ 1 ⩽ i ⩽ ℓ
}

is canonically isomorphic to the finite

group Ω and, by a well-known theorem (cf. Chapter VII of [7]) (Âij) is the Cartan matrix

of a simply-connected complex group Ĝ1
+. Let B̂1

+ be a Borel subgroup of Ĝ1
+ and let T̂ 1

+

be a Cartan subgroup in B̂1
+. We identify the simple roots of T̂ 1

+ with respect to B̂1
+ with

α̂1, . . . , α̂ℓ and the free vector space over C with basis {α̂1, . . . , α̂ℓ} with Ê1
C. We may also

identify Ω and Ω̂. The roots of T̂ 1
+ are the vectors ωα̂i, ω ∈ Ω, 1 ⩽ i ⩽ ℓ. If ωαi = α then

ωα̂i = α̂ because

⟨λ, ωα̂i⟩ = ⟨ω−1λ, α̂i⟩ = 2
(ω−1λ, αi)

(αi, αi)
= 2

(λ, ωαi)

(ωαi, ωαi)
= 2

(λ, α)

(α, α)

Thus the roots of T̂ 1
+ are just the coroots. If λ belongs to Ê1

C then

2
(λ, α̂)

(α̂, α̂)
= ⟨α, λ⟩

so that

L̂1
+ =

{
λ ∈ Ê1

C

∣∣∣∣ 2 (λ, α̂)

(α̂, α̂)
∈ Z for all coroots α̂

}
and is therefore just the set of weights of T̂ 1

+.
Let

Ĝ0
+ = HomZ(L̂

0
+,C

∗).
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It is a reductive complex Lie group. Set Ĝ+ = Ĝ0
+ × Ĝ1

+. If T̂
0
+ = Ĝ0

+ and T̂+ = T̂ 0
+ × T̂ 1

+ then

L̂+ is the set of complex analytic characters of T̂+. If

Ẑ =
{
t ∈ T̂+

∣∣∣ λ(t) = 1 for all λ in L̂
}

then Ẑ is a normal subgroup of Ĝ+ and Ĝ = Ĝ+/Ẑ is also a complex Lie group. The

Galois group G(K/F ) acts in a natural fashion on L̂−, L̂, and L̂+. The action leaves the set

{α̂1, . . . , α̂ℓ} invariant. Of course, G(K/F ) acts naturally on Ĝ0
+. I want to define an action

on Ĝ1
+ and therefore an action on Ĝ+. Choose H1, . . . , Hℓ in the Lie algebra of T̂ 1

+ so that

λ(Hi) = ⟨αi, λ⟩

for all λ in L̂1
+. Choose root vectors X1, . . . , Xℓ belonging to the coroots α̂1, . . . , α̂ℓ and

root vectors Y1, . . . , Yℓ belonging to their negatives. Suppose [Xi, Yi] = Hi. If σ belongs
to G(K/F ) let σ(α̂i) = α̂σ(i). There is (cf. Chapter VII of [7]) a unique isomorphism σ of the

Lie algebra of Ĝ1
+ such that

σ(Hi) = Hσ(i), σ(Xi) = Xσ(i), σ(Yi) = Yσ(i).

These isomorphisms clearly determine an action of G(K/F ) on the Lie algebra and therefore

one on Ĝ1
+ itself. Since G(K/F ) leaves L invariant its action on Ĝ+ can be transferred to Ĝ.

If B̂ is the image of B̂+ = T̂ 0
+ × B̂1

+ and T̂ the image of T̂+ in Ĝ the action leaves B̂ and T̂

invariant. I want to define ĜF to be the semi-direct product Ĝ⋊G(K/F ).

However ĜF as defined depends upon the choice of B, T and X1, . . . , Xℓ and ĜF comes

provided with a Borel subgroup B̂ of its connected component, a Cartan subgroup T̂ of B̂,
and a one-to-one correspondence between the simple roots of T with respect to B and those

of T̂ with respect to B̂. Suppose G′ is another quasi-split group over F which is isomorphic
to G over K by means of an isomorphism φ such that φ−1σ(φ) is inner for all σ in G(K/F ),
B′ is a Borel subgroup of G′ defined over F , and T ′ is a Cartan subgroup of B′ also defined
over F . There is an inner automorphism ψ of G which is defined over K so that φψ takes

B to B′ and T to T ′. Then φψ determines an isomorphism of L̂ and L̂′ and a one-to-one
correspondence between {α1, . . . , αℓ} and {α′

1, . . . , α
′
ℓ} both of which depend only on φ and,

as is easily verified, commute with the action of G(K/F ). There is then a natural isomorphism

of Ĝ0
+ with (Ĝ0

+)
′ associated to φ. Moreover there is a unique isomorphism of Ĝ1

+ with (Ĝ1
+)

′

whose action on the Lie algebra takes Hi to H
′
i, Xi to X

′
i, and Yi to Y

′
i . The two together

define an isomorphism of Ĝ+ with Ĝ′
+. If we assume that αi corresponds to α

′
i, 1 ⩽ i ⩽ ℓ this

isomorphism takes Ẑ to Ẑ ′ and determines an isomorphism of Ĝ with Ĝ′ which commutes

with G(K/F ). This in turn determines an isomorphism φ̂ of Ĝ′
F with ĜF . In particular

taking G′ = G and φ to be the identity we see that ĜF is determined up to a canonical
isomorphism.
Suppose G is any reductive group over F , K is a Galois extension of F , G′ and G′′ are

quasi-split groups over F which split over K, and φ : G′ → G, ψ : G′′ → G are isomorphisms
defined over K such that φ−1σ(φ) and ψ−1σ(ψ) are inner for all σ in G(K/F ). Then

(ψ−1φ)−1σ(ψ−1φ) is also inner so that there is a canonical isomorphism of Ĝ′
F and Ĝ′′

F . We

are thus free to set ĜF = Ĝ′
F . Although ĜF depends on K, there is no need to stress this.

However we shall sometimes write ĜK/F instead of ĜF .



6 ROBERT P. LANGLANDS

3.

Although it is a rather simple case, it may be worthwhile to carry out the previous
construction when G is GL(n) and K = F . We take T to be the diagonal and B to be the
upper triangular matrices. Take G0 to be the group of non-zero scalar matrices and G1 is
SL(n). If λ belongs to L and

λ :

t1 0

0 tn

 −→ tm1
1 · · · tmn

n

with m1, . . . ,mn in Z we write λ = (m1, . . . ,mn). Thus L is identified with Zn. We may
identify ER with Rn and EC with Cn. If λ belongs to L0

+ and

λ : tI → tm

with m in Z we write λ =
(
m
n
, . . . , m

n

)
. Then L0

− which is a subgroup of both L and L0
+

consists of the elements (m, . . . ,m) with m in Z. The rank ℓ is n− 1 and

α1 = (1,−1, 0, . . . , 0)

α2 = (0, 1,−1, 0, . . . , 0)

...

αℓ = (0, . . . , 0, 1,−1)

Thus

L1
− =

 (m1, . . . ,mn) ∈ L

∣∣∣∣∣∣
n∑
i=1

mi = 0

.
and is the set of all (z1, . . . , zn) in EC for which

n∑
i=1

zi = 0.

The bilinear form on E1
C may be taken as the restriction of the form

(z, w) =
n∑
i=1

ziwi

on EC. Thus

L1
+ =

 (m1, . . . ,mn)

∣∣∣∣∣∣
n∑
i=1

mi = 0 and mi −mj ∈ Z

.
We may use the given bilinear form to identify ÊC with EC. Then the operation “̂”

leaves all lattices and all roots fixed. Thus Ĝ0
+ = Hom(L0

+,C). Any non-singular complex

scalar matrix tI defines an element of Ĝ0
+, namely, the homomorphism(

m

n
, . . . ,

m

n

)
−→ tm.
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We identify Ĝ0
+ with the group of scalar matrices. Let Ĝ1

+ be SL(n,C). There is a natural

map of Ĝ0
+ × Ĝ1

+ onto GL(n,C). It sends tI × A to tA. The kernel is easily seen to be Ẑ so

that ĜF is GL(n,C).

4.

To define the local L-functions, to prove that almost all primes are unramified, and to
prove that the product of the local L-functions over the unramified primes converges for Re s
sufficiently large we need some facts from the reduction theory for groups over local fields
(cf. [1]). Much progress has been made in that theory, but it is still incomplete. Unfortunately,
the particular facts we need do not seem to be in the literature. Very little is lost at this
stage if we just assume them. For the groups about which something definite can be said,
they are easily verified.
Suppose K is an unramified extension of the non-archimedean local field F and G is a

quasi-split group over F which splits over K. Let B be a Borel subgroup of G and T a
Cartan subgroup of B, both of which are defined over F . Let v be the valuation on K. It is
a homomorphism from K∗, the multiplicative group of K, onto Z whose kernel is the group

of units. If t belongs to TF , let v(t) in L̂ be defined by
〈
λ, v(t)

〉
= v
(
λ(t)

)
for all λ in L. If σ

belongs to G(K/F ), then〈
λ, σv(t)

〉
=
〈
σ−1λ, v(t)

〉
= v
(
σ−1
(
λ(σt)

))
= v
(
λ(t)

)
because σt = t and v(σ−1a) = v(a) for all a in K∗. Thus v is a homomorphism of TF into M̂ ,

the groups of invariants of G(K/F ) in L̂. It is in fact easily seen that it takes TF onto M̂ .
We assume the following lemma.

Lemma 1. There is a Chevalley lattice in the Lie algebra of G whose stabilizer UK is invariant
under G(K/F ) and is its own normalizer. Moreover, GK = BKUK, H

1
(
G(K/F ), UK

)
= 1,

and H1
(
G(K/F ), BK ∩ UK

)
= 1. If we choose two such Chevalley lattices with stabilizers

UK and U ′
K, respectively, then U

′
K is conjugate to UK in GK.

If g belongs to GK and σ belongs to G(K/F ), let gσ = σ−1(g). If g belongs to GF , we
may write it as g = bu with b in BK and u in UK . Then g

σ = bσuσ and uσu−1 = b−σb. By
the lemma, there is a v in BK ∩ UK such that uσu−1 = b−σb = vσv−1. Then b′ = bv belongs
to BF , u

′ = v−1u belongs to UF = GF ∩ UK , and g = b′u′. Thus, GF = BFUF .
If gUKg

−1 = U ′
K for some g in GK , then g

σUKg
−σ = U ′

K so that g−σg belongs to UK , which
is its own normalizer. By the lemma, there is u in UK such that g−σg = uσu−1. Then g1 = gu
lies in GF and g1UKg

−1
1 = U ′

K . Thus, UF and U ′
F are conjugate in GF .

Let Cc(GF , UF ) be the set of all compactly supported functions for GF such that f(gu) =
f(ug) = f(g) for all u in UF and all g in GF . It is an algebra under convolution. It is called
the Hecke algebra. If N is the unipotent radical of B let dn be a Haar measure on NF and

let d(bnb−1)
dn

= δ(b) if b belongs to BF . If λ belongs to M̂ , choose t in TF such that v(t) = λ.
If f belongs to Cc(GF , UF ), set

f̂(λ) = δ1/2(t)

{∫
NF∩UF

dn

}−1 ∫
NF

f(tn) dn.
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The group G(K/F ) acts on Ω. Let Ω0 be the group of invariant elements. It acts on M̂ . Let

A(M̂) be the group algebra of M̂ over C, and let Λ0(M̂) be the invariants of Ω0 in Λ(M̂).
We also assume the following lemma (cf. [12]).

Lemma 2. The map f → f̂ is an isomorphism of Cc(GF , UF ) and Λ0(M).

Suppose B is replaced by B1 and T by T1. Observe that T ≃ B/N and T1 ≃ B1/N1. If
u in GF takes B to B1, it takes N to N1 and defines a map from T to T1. This map does

not depend on u. It determines G(K/F ) invariant maps from L1 to L and from L̂ to L̂1 and

thus maps from M̂ to M̂1 and from Λ0(M̂) to Λ0(M̂1). Suppose f̂ goes to f̂1 and λ̂ goes to

λ̂1. If we choose, as we may, u in UF , then

f̂1(λ̂1) = f̂(λ̂) = δ1/2(t)

{∫
NF∩UF

dn

}−1 ∫
NF

f(tn) dn.

Let NF ∩UF = V . Denote the corresponding group associated to N1 by V1. Then uV u
−1 = V1.

Choose d(unu−1) = dn1. Since f(ugu
−1) = f(g), the expression on the right equals

δ1/2(utu−1)

{∫
V1

dn1

}−1 ∫
NF

f(utu−1unu−1) dn.

If utu−1 projects on t1 in T1, then δ(utu
−1) = δ(t1) and v(t1) = λ̂1. Moreover,∫

NF∩UF

dn =

∫
f(t1n1) dn1

and the diagram

Cc(GF , UF )

Λ0(M) Λ0(M1)

is commutative.
If gUFg

−1 = U ′
F , the map f → f ′ with f ′(h) = f(g−1hg) is an isomorphism of Cc(GF , UF )

with Cc(GF , U
′
F ). It does not depend on g. We can take g in BF . Then

f̂ ′(λ) = δ1/2(t)

{∫
NF∩U ′

F

dn

}−1 ∫
NF

f(g−1tng) dn.

Since g−1tng = t(t−1g−1tg)g−1ng, the second integral is equal to∫
NF

f(tg−1ng) dn.

Since

d(g−1ng)

dn
=

{∫
NF∩U ′

F

dn

}−1 ∫
NF∩UF

dn

we conclude that f̂ ′(λ̂) = f̂(λ̂) and that the diagram
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Cc(GF , UF ) Cc(GF , U
′
F )

Λ0(M̂)

is commutative.
I shall not explicitly mention the commutativity of these diagrams again. However, they

are important because they imply that the definitions to follow have the invariance properties
which are required if they are to have any sense.

If π is an irreducible unitary representation of GF on H whose restriction to UF contains
the identity representation, then

H0 =
{
x ∈ H

∣∣ π(u)x = x for all u in UF
}

is a one-dimensional subspace. If f belongs to Cc(GF , UF ), then

π(f) =

∫
G

f(g)π(g)dg

maps H0 into itself. The representation of Cc(GF , UF ) on H0 determines a homomorphism χ

of Cc(GF , UF ) or of Λ
0(M̂) into the ring of complex numbers and π is determined by χ. To

define the local L-functions, we study such homomorphisms. First of all, observe that, if χ is
associated to a unitary representation, then∣∣χ(f)∣∣ ⩽ ∫

GF

∣∣f(g)∣∣ dg.
Since Λ(M̂) is a finitely generated module over Λ0(M̂), any homomorphism of Λ0(M̂)

into C may be extended to a homomorphism of Λ(M̂) into C which will necessarily be of the
form

(B)
∑

f̂(λ)λ −→
∑

f̂(λ)λ(t)

for some t in T̂ . Conversely, given t the formula (B) determines a homomorphism χt of Λ
0(M̂)

into C. We shall show that χt1 = χt2 if and only if t1 × σF and t2 × σF , where σF is the

Frobenius substitution, are conjugate in ĜF . If t belongs to Ĝ and σ belongs to G(K/F ),

we shall abbreviate t× σ to tσ. It is known [4] that every semi-simple element of ĜF whose

projection on G(K/F ) is σF is conjugate to some tσF with t in T̂ . Thus, there is a one-to-
one correspondence between homomorphisms of the Hecke algebra into C and semi-simple

conjugacy classes in ĜF whose projection on G(K/F ) is σF .

If ρ is a complex analytic representation of ĜF and χt is the homomorphism of Λ0(M̂)
into C associated to π, we define the local L-function to be

L(s, ρ, π) =
1

det
(
I − ρ(tσF )|πF |s

)
if πF generates the maximal ideal of OF .

The group T̂ may be identified with HomZ(L̂,C
∗). The exact sequence

0 Z C C∗ 0
φ ψ

with φ(z) = 2πi
log|πF |z and ψ(z) = |πF |−z leads to the exact sequence
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0 L = HomZ(L̂,Z) EC = HomZ(L̂,C) T̂ 0
φ ψ

.

Let VC be the invariants of G(K/F ) in EC and let WC be the range of σF − 1. Then

EC = VC ⊕WC. If w belongs to WC and λ belongs to M̂ , then ⟨w, λ⟩ = 0 and, replacing t
by tψ(w) does not change χt. If w = σFv − v and ψ(v) = s, then

tψ(w)σF = ts−1σF (s)σF = s−1(tσF )s

is conjugate to tσF . Thus, we have to show that if t1 = ψ(v1) and t2 = ψ(v2) with v1 and v2
in VC, then t1σF and t2σF are conjugate if and only if χt1 = χt2 .

Some preliminary remarks are necessary. We also have a decomposition ÊC = V̂C ⊕ ŴC

and M̂ = L̂ ∩ V̂C. Let Q̂ be the elements of V̂C obtained by projecting the positive coroots

on V̂C. If S is an orbit of G(K/F ) in the set of positive coroots, every element in S has the

same projection on V̂C. Since
∑

α̂∈S α̂ belongs to V̂C, the projection must be

1

n(S)

∑
α̂∈S

α̂

if n(S) is the number of elements in S. Let S1, . . . , Sm be the orbits of G(K/F ) in {α̂1, . . . , α̂ℓ}
and set

β̂i =
1

n(Si)

∑
α̂∈Si

α̂.

Every element of Q̂ is a linear combination of β̂1, . . . , β̂m with non-negative coefficients. Notice

that if ω belongs to Ω0 and ω acts trivially on M̂ , then ω leaves each βi fixed and therefore
takes positive roots to positive roots. Thus, it is 1. If we extend the inner product in any

way from Ê1
R to ÊR and set

Ĉ =
{
x ∈ V̂R

∣∣∣ (β̂i, x) ⩾ 0, 1 ⩽ i ⩽ m
}

and

D̂ =
{
x ∈ ÊR

∣∣∣ (α̂i, x) ⩾ 0, 1 ⩽ i ⩽ ℓ
}
,

then Ĉ = D̂ ∩ V̂R. Consequently, no two elements of Ĉ belong to the same orbit of Ω0.

Let ĝi be the subalgebra of the Lie algebra of Ĝ generated by the root vectors belonging to

the coroots in Si and their negatives. It is fixed by G(K/F ). Let Ĝi be the corresponding

analytic group and let T̂i = T̂ ∩ Ĝi. Let µi be the unique element of the Weyl group of T̂i
which takes every positive root to a negative root. If σ belongs to G(K/F ), then σ(µi) has

the same property, so that σ(µi) = µi. Let w be any element in the normalizer of T̂ whose

image in Ω̂ is µi. Then wσF (w
−1) lies in T̂ . Its image in T̂ /ψ(WC) is independent of w. I

claim that this image is 1. To see this write ĝi as a direct sum
∑ni

k=1 ĝik of simple algebras.

If [K : F ] = n the stabilizer of ĝi1 is
{
σjni

F

∣∣∣ 0 ⩽ j ⩽ n
ni

}
. We may suppose that

ĝik = σk−1
F (ĝi1).

If Ĝik is the analytic subgroup of Ĝ with Lie algebra ĝik, choose w1 in the normalizer of T̂ ∩Ĝi1

so that w1 takes the positive roots of ĝi1 to the negative roots. We may choose w to be



PROBLEMS IN THE THEORY OF AUTOMORPHIC FORMS 11∏ni−1
k=0 σ

k
F (w1). Then

wσF (w
−1) =

(
w1σF (w

−1
1 )
)(
σF (w1)σ

2
F (w

−1
1 )
)
· · ·
(
σni−1
F (w1)σ

ni
F (w−1

1 )
)

= w1σ
ni
F (w−1

1 )

The Dynkin diagram of ĝi1 is connected and the stabilizer of ĝi1 in G(K/F ) acts transitively
on it. This means that it is of type A1 or A2.
In the first case the diagram reduces to a point and the action of the stabilizer must be

trivial, so that w1 = σni
F (w1). In the second case SL(3,C) is the simply-connected covering

group of Gi1; we may choose the covering map to be such that T̂ ∩ Ĝi1 is the image of the
diagonal matrices and σni

F corresponds to the automorphism

A→

0 0 1
0 −1 0
1 0 0

 tA
−1

0 0 1
0 −1 0
1 0 0


of SL(3,C). We may take w1 to be the image of0 0 1

0 −1 0
1 0 0

.
Then σni

F (w1) = w1.

The Weyl group element µi acts on V̂ as the reflection in the hyperplane perpendicular to

βi. Thus µ1, . . . , µm generate Ω0. If ω belongs to Ω0, choose w in the normalizer of T̂ whose

image in Ω is ω. The image of wσF (w
−1) in T̂ /ψ(WC) depends only on ω. Call it δω. Then

δω1ω2 = w1w2σF (w
−1
2 w−1

1 ) = w1

(
w2σF (w

−1
2 )
)
w−1

1

(
w1σF (w

−1
1 )
)
= ω1(δω1)δω1 .

Since δω is 1 on a set of generators, this relation shows that it is identically 1.
Returning to the original problem, we show first that if χt1 = χt2 there is an ω in Ω0 such

that ω(w1) = t2. Then, if w lies in the normalizer of T̂ in Ĝ and its image in Ω is ω, we will
have w(t1σF )w

−1 = t2wσF (w
−1)σF . Since wσF (w

−1) lies in ψ(WC), the element on the right
is conjugate to t2σF .

If t belongs to T̂ , let χt also denote the homomorphism∑
f̂(λ)λ→

∑
f̂(λ)λ(t)

of Λ(M̂) into C. If there were no ω such that ω(t1) = t2, there would be an f̂ in Λ(M̂) such
that

χt2(f̂) ̸= χω(t1)(f̂)

for all ω in Ω0. Let ∏(
X − ω(f̂)

)
=

n∑
k=0

f̂kX
k.

Each f̂k belongs to Λ0(M̂). Applying χt1 and χt2 , we find that∏
ω

(
X − χω(t1)(f̂)

)
=

n∑
k=0

χt1(f̂k)X
k =

n∑
k=0

χt2(f̂k)X
k =

∏
ω

(
X − χω(t2)(f̂)

)
.
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The polynomial on the right has χt2(f̂) as a root, but that on the left does not. This is a
contradiction.

If t1σF and t2σF are conjugate, then for every representation ρ of ĜF

trace ρ(t1σF ) = trace ρ(t2σF ).

Let ρ act on X and if λ belongs to M̂ , let tλ be the trace of ρ(σF ) on

Xλ =
{
x ∈ X

∣∣∣ ρ(t)x = λ(t)x for all t in T̂
}
.

If t belongs to ψ(WC), then λ(t) = 1. If ω belongs to Ω0 and w in the normalizer of T has
image ω in Ω, then Xωλ = ρ(w)Xλ. Then tωλ is the trace of w−1σFw = w−1σF (w)σF on Xλ.
Since λ

(
w−1σF (w)

)
= 1, we have tωλ = tλ and

trace ρ(tσF ) =
∑
λ∈Ĉ

tλ

 ∑
µ∈S(λ)

µ(t)


if S(λ) is the orbit of λ. If

f̂ρ =
∑
λ∈Ĉ

tλ
∑
µ∈S(λ)

µ

then f̂ρ belongs to Λ0(M̂) and

trace ρ(tσF ) = χt(f̂ρ).

All we need to show is that the elements f̂ρ generate Λ0(M̂) as a vector space. This is an

easy induction argument because every λ in Ĉ is the highest weight of a representation of ĜF

whose restriction to Ĝ is irreducible.

5.

If t belongs to T̂ , there is a unique function ϕt on GF which satisfies ϕt(ug) = ϕt(gu) = ϕt(g)
for all u in UF and all g in GF and is such that

χt(f) =

∫
GF

ϕt(g)f(g) dg

for all f in Cc(GF , UF ). A formula for ϕt, valid under very general assumptions, has been
found by I. G. MacDonald. However, because of the present state of reduction theory, his
assumptions do not cover the cases in which we are interested. I am going to assume that
the obvious generalization of his theorem is valid. In stating it we may as well suppose that t
belongs to ψ(VC).

Let N̂ be the unipotent radical of B̂, let n̂ be its Lie algebra, and let τ be the representation

of T̂ ×G(K/F ) on n̂. If t belongs to ψ(VC) , consider the function θt on M̂ defined by

θt(λ) = c|πF |−⟨ρ,λ⟩
∑
ω∈Ω0

det
(
I − |πF |τ−1

(
ω(t)σF

))
det
(
I − τ−1

(
ω(t)σF

)) λ−1
(
ω(t)

)
.
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If n(β̂) is the number of positive roots projection onto β̂ in Q̂,

c =
∏
β∈Q

{
1− |πF |n(β̂)⟨ρ,β̂⟩

1− |πF |n(β)(⟨ρ,β⟩+1)

}
.

As it stands, θt(λ) makes sense only when none of the eigenvalues of τ
(
ω(t)σ

)
F are 1 for any

ω in Ω0. However, using the results of Kostant [8], we can write it in a form which makes

sense for all t. Let ρ̂ be one-half the sum of the positive coroots. It belongs to V̂ . If λ belongs

to M̂ and λ+ ρ̂ is non-singular, that is (λ+ ρ̂, β̂) ̸= 0 for all β̂ in Q̂, let ω in Ω0 take λ+ ρ̂ to

Ĉ and let χλ be sgnω times the character of the representation of ĜF with highest weight
ω(λ+ ρ̂)− ρ̂. If λ+ ρ̂ is singular, let χλ ≡ 0. If

det
(
I − |πF |τ−1(tσF )

)
=
∑
µ∈M̂

bµµ(t)

then
θt(λ) = c|πF |−⟨ρ,λ⟩

∑
µ∈M̂

bµχµ−λ
(
(tσF )

)
.

Clearly bµ is 0 unless

µ = −
∑
α̂∈S

α̂

where S is a subset of the set of positive coroots invariant under G(K/F ). If U is the collection
of such µ, then { ρ̂+ µ | µ ∈M } is invariant under Ω0. Suppose ρ̂+ µ is non-singular and

belongs to Ĉ. Since ⟨αi, ρ̂⟩ = 1 and ⟨αi, µ⟩ is integral, for 1 ⩽ i ⩽ ℓ, µ itself must belong to

Ĉ. This can only happen if µ is 0. Thus if bµ ̸= 0 either ρ̂+ µ is singular or ρ̂+ µ belongs to

the orbit of ρ̂ and χµ(g) ≡ ±1 on ĜF . As a consequence θt(0) is independent of t. Choose t0
such that β̂i(t0) = |πF |−⟨ρ,β̂i⟩ for 1 ⩽ i ⩽ m. The eigenvalues of τ

(
ω(t0)σF

)
are the numbers

ζ|πF |−⟨ρ,ω−1β̂⟩ where β̂ belongs to Q and ζ is an n(β̂)-th root of unity. If ω ̸= 1 there is a β̂i
such that ω−1β̂ = −β̂i for some β in Q. Then ⟨ρ, ω−1β̂⟩ = −⟨ρ, β̂i⟩ = −1 and τ

(
ω(t0)σF

)
has

|πF | is an eigenvalue. Thus

θt0(0) = c
det
(
I − |πf |τ−1(t0σF )

)
det
(
I − τ−1(t0σF )

) = 1.

We are going to assume that if t belongs to ψ(VC), a belongs to TF , and λ = v(a), then

ϕt(a) = θt(λ).

If ∣∣χt(f)∣∣ ⩽ ∫
GF

∣∣f(g)∣∣ dg
for all f in Cc(GF , UF ) then ϕt is bounded. I want to show that if ϕt is bounded, λ belongs

to L̂, λ in D̂ belongs to the orbit of λ under Ω, and t lies in ψ(VC), then∣∣λ(t)∣∣ ⩽ |πF |−⟨ρ,λ⟩.

Let t = ψ(v). Then v is not determined by t but Re v is and∣∣λ(t)∣∣ = |πF |−Re⟨v,λ⟩.
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We will show that if ϕt is bounded then Re⟨v, λ⟩ ⩽ ⟨ρ, λ⟩ for all λ in ÊR. If ω belongs to Ω0

and Reωv lies in Ĉ then Re⟨ωv, ωλ⟩ = Re⟨v, λ⟩. With no loss of generality, we may suppose

that v lies in C, the analogue of Ĉ. Then, as is well-known,

Re⟨v, λ⟩ ⩽ Re⟨v, λ⟩
and we may as well assume that λ = λ. We want to show that Re⟨v, λ⟩ ⩽ ⟨ρ, λ⟩ for all λ
in D̂. Since ρ and v both belong to VC, it is sufficient to verify it for λ in Ĉ. Let Ĉ0 be

the interior of Ĉ. The set of λ in Ĉ for which the assertion is true is closed, convex, and

positively homogeneous. Therefore, if it contains M̂ ∩ Ĉ0, it is Ĉ.
Let S be the set of simple coroots α̂ for which Re⟨v, α̂⟩ = 0. Let Σ0 be the positive coroots

which are linear combinations of the elements of S and let Σ+ be the other positive coroots.
If n̂0 is the span of the root vectors associated to the coroots in Σ0 and n̂+ is the span of
the root vectors associated to the coroots in Σ+, then τ breaks up into the direct sum of a

representation τ0 on n̂0 and a representation τ+ on n̂+. Let Ĥ be the analytic subgroup of ĜF

whose Lie algebra is generated by the root vectors associated to the coroots of Σ0 and their
negatives and let Θ0 be the subgroup of Ω0 consisting of those elements with representatives

in Ĥ. If ω belongs to Ω0 and Reωv = Re v, then ω belongs to Θ0. If Reωv ̸= Re v, then

Re⟨ωv, λ⟩ < Re⟨v, λ⟩ for λ in M̂ ∩ Ĉ0. Write λ = λ1 + λ2 where λ1 is a linear combination of
the coroots in S and λ2 is orthogonal to these roots. If s = ψ(u) with u in VC, consider

θ′s(λ) = c|πF |⟨u−ρ,λ2⟩
det
(
I − |πF |τ−1

+ (sσF )
)

det
(
I − τ−1

+ (sσF )
)
∑

Θ0

det
(
I − |πF |τ−1

0 (sσF )
)

det
(
I − τ−1

0 (sσF )
) |πF |⟨ωu−ρ,λ1⟩

.
The function θ′s is not necessarily defined for all s. However, the preceding discussion, applied

to Ĥ rather than Ĝ, shows that it is defined at t and that θ′t(0) ̸= 0. A simple application of
l’Hospital’s rule shows that, as a function of λ, θ′t is the product of |πF |⟨v−ρ,λ⟩ and a linear
combination of products of polynomials and purely imaginary exponentials in λ1. Thus, it
does not vanish identically in any open cone.
Set θ′′t = θt − θ′t. It is a linear combination of products of polynomials in λ and an

exponential |πF |⟨ωv−ρ,λ⟩ with Reωv ̸= Re v. Thus, if λ belongs to the interior of Ĉ,

lim
n→−∞

|πF |⟨ρ−v,nλ⟩θ′′t (nλ) = 0

and

lim
n→−∞

|πF |⟨ρ−v,nλ⟩θt(nλ) = lim
n→−∞

|πF |⟨ρ−v,nλ⟩θ′t(nλ).

If ⟨ρ, λ⟩ is less than Re⟨v, λ⟩ for some λ in Ĉ, then ⟨ρ, λ⟩ is less than Re⟨v, λ⟩ for a λ in Ĉ
for which θ′t(nλ) does not vanish identically as a function of n. Since ϕt is bounded,

lim
n→−∞

|πF |⟨ρ−v,nλ⟩θ′t(nλ) = 0.

But |πF |⟨ρ−v,nλ⟩θ′t(nλ) is a function of the form
q∑

k=0

φk(n)n
k

where φk(n) is a linear combination of purely imaginary exponentials eixn. It is easy to see
that it cannot approach 0 as n approaches −∞.
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6.

Suppose G is a group defined over the global field F . There is a quasi-split group G′ over F
and an isomorphism φ : G→ G′ defined over a Galois extension K of F such that, for every
σ in G(K/F ), aσ = φσφ−1 is an inner automorphism of G′. We assume that there is a lattice
gOF

over OF in the Lie algebra of G′ such that OKgOF
is a Chevalley lattice.

If p is a finite prime of K and P is a prime of K dividing p, the group G over Fp is obtained

from G′ by twisting by the restriction a of the cocycle {aσ} to G(KP/Fp). Let G
′
be the

adjoint group of G′. If U
′
KP

is the stabilizer of the lattice OKP
G0F then, for almost all p,

a takes values in U
′
KP

. If KP/Fp is also unramified, then G is quasi-split over Fp because

H1
(
G(KP/Fp), U

′
Kp

)
= {1}. Let S be the set of those p, unramified in K, for which a takes

values in U
′
KP

. Let G act on a vector space X over F and let XOF
be a lattice in XF . Let

UFp be the stabilizer of OFpXOF
in GFp and let U ′

Fp
be the stabilizer of OFpgOF

in G′
Fp
. Then

φ(UFp) = U ′
Fp

for almost all p. If p is also in S, choose u in U
′
Fp

so that φσφ−1 = Aduσu−1 for

all σ in G(KP/Fp). Then φ
−1Adu is defined over F and φ−1Adu(U ′

Fp
) = UFp . Consequently,

UFp is one of the compact subgroups of the fourth paragraph.
To show that almost all p are unramified, all we need do is observe that if π occurs

in L2(GF\GZ(F )), whatever the precise meaning of this is to be, and π =
⊗

p πp, then for
almost all p, the restriction of πp to UFp contains the trivial representation.

If p is unramified let the homomorphism of Cc(GFp , UFp) associated to πp be χtp . To show
that the product of the local L-function converges in a half plane it would be enough to show
that there is a positive constant a such that for all unramified p every eigenvalue of ρ(tpσFp)
is bounded by |πp|−a. We may suppose that σFp(tp) = tp. If n = [K : F ], then (tpσFp)

n = tnp
so that we need only show that the eigenvalues of ρ(tp) are bounded by |πp|−a. This we did
in the previous paragraph.

7.

Once the definitions are made we can begin to pose questions. My hope is that these
questions have affirmative answers. The first question is the one initially posed.

Question 1. Is it possible to define the local L-functions L(s, ρ, π) and the local factors
ε(s, ρ, π, ψF ) at the ramified primes so that if F is a global field π =

⊗
πp, and

L(s, ρ, π) =
∏
p

L(s, ρp, πp)

then L(s, ρ, π) is meromorphic in the entire complex plane with only a finite number of poles
and satisfies the functional equation

L(s, ρ, π) = ε(s, ρ, π)L(1− s, ρ̃, π)

and

ε(s, ρ, π) =
∏
p

ε(s, ρp, πp, ψFp).

The theory of Eisenstein series can be used [9] to give some novel instances in which this
question has, in part, an affirmative answer. However, that theory does not suggest any

method of attacking the general problem. If G = GL(n) then ĜF = GL(n,C). The work of
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Godement and earlier writers allows one to hope that the methods of Hecke and Tate can,
once the representation theory of the general linear group over a local field is understood, be
used to answer the first question when G = GL(n) and ρ is the standard representation of
GL(n,C). The idea which led Artin to the general reciprocity law suggests that we try to
answer it in general by answering a further series of questions. For the sake of precision, but
not clarity, I write them down in an order opposite to that in which they suggest themselves.
If G is defined over the local field F let Ω(GF ) be the set of equivalence classes of irreducible
unitary representations of GF .

Question 2. Suppose G and G′ are defined over the local field F , G is quasi-split and G′

is obtained from G by an inner twisting. Then ĜF = Ĝ′
F . Is there a correspondence R

whose domain is Ω(G′
F ) and whose range is contained in Ω(GF ) such that if π = R(π′) then

L(s, ρ, π) = L(s, ρ, π′) for every representation ρ of ĜF?

Notice that R is not required to be a function. I do not know whether or not to expect
that

ε(s, ρ, π, ψF ) = ε(s, ρ, π′, ψF ).

One should, but I have not yet done so, look carefully at this question when F is the field of
real numbers. For this one will of course need the work of Harish-Chandra.

Supposing that the second question has an affirmative answer, one can formulate a global
version.

Question 3. 1 Suppose that G and G′ are defined over the global field F , G is quasi-split,
and G′ is obtained from G by an inner twisting. Suppose π′ =

⊗
p π

′
p occurs in L

2(G′
F\G′

A(F )).

Choose for each p a representation πp of GFp such that πp = R(π′
p). Does π =

⊗
p πp occur in

L2(GF\GA(F ))?

Affirmative evidence is contained in papers of Eichler [3] and Shimizu [16] when G = GL(2)
and G′ is the group of invertible elements in a quaternion algebra. Jacquet [16], whose work
is not yet complete, is obtaining very general results for these groups.

Question 4. Suppose G and G′ are two quasi-split groups over the local field F . Let G split
over K and let G′ split over K ′ with K ⊆ K ′. Let ψ be the natural map G(K ′/F ) → G(K/F ).

Suppose φ is a complex analytic homomorphism from Ĝ′
K′/F to ĜK/F which makes

Ĝ′
K′/F G(K ′/F )

ĜK/F G(K/F )

φ ψ

commutative. Is there a correspondence Rφ with domain Ω(G′
F ) whose range is contained

in Ω(GF ) such that if π = Rφπ
′, then, for every representation ρ of ĜF and every non-trivial

additive character ψF , L(s, ρ, π) = L(s, ρ ◦ φ, π′) and ε(s, ρ, π, ψF ) = ε(s, ρ ◦ φ, π′, ψF )?

The correspondence Rφ should of course be functorial and, in an unramified situation, if π′

is associated to the conjugacy class t′ × σ′
F , then π should be associated to φ(t′ × σ′

F ). I have
not yet had a chance to look carefully at this question when F is the field of real numbers.

1The question, in this crude form, does not always have an affirmative answer (cf. [6]). The proper question
is certainly more subtle but not basically different.
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The question has a global form.

Question 5. Suppose G and G′ are two quasi-split groups over the global field F . Let G split
over K and let G′ split over K ′ with K ⊆ K ′. Suppose φ is a complex analytic homomorphism

from Ĝ′
K′/F to ĜK/F which makes

Ĝ′
K′/F G(K ′/F )

ĜK/F G(K/F )

φ

commutative. If P′ is a prime of K ′, let P = P′ ∩K and let p = P′ ∩F . Then φ determines

a homomorphism φp : Ĝ
′
K′

P′/Fp
→ ĜKP/Fp which makes

Ĝ′
K′

P′/Fp
G(K ′

P′/Fp)

ĜKP/Fp G(KP/Fp)

commutative. If π′ =
⊗

π′
p occurs in L2(G′

F\F ′
A(F )) choose for each p a πp = Rφp(π

′
p). If

π =
⊗

p πp does π occur in L2(GF\GA(F ))?

An affirmative answer to the third and fifth questions would allow us to solve the first
question by examining automorphic forms on the general linear groups.
It is probably worthwhile to point out the difficulty of the fifth question by giving some

examples. Take G′ = {1}, G = GL(1), K ′ any Galois extension of F and K = F . The
assertion that, in this case, the last two questions have affirmative answers is the Artin
reciprocity law.

Suppose G is quasi-split and G′ = T . We may identify Ĝ′
F with T̂ × G(K/F ) which is

contained in ĜF . Thus we take K
′ = K. Let φ be the imbedding. In this case π′ is a character

of G′
F\G′

A(F ). The fourth question is, with certain reservations, answered affirmatively by the
theory of induced representations. The fifth question is, with similar reservations, answered by
the theory of Eisenstein series. The reservations are not important. I only want to point out
that the theory of Eisenstein series is a prerequisite to the solution of these problems. With

G as before, take G′′ = {1} and K ′′ = K so that Ĝ′′
F = G(K/F ). Let ψ take σ in G(K/F )

to σ to ĜF . There is only one choice of π′′. The associated space of automorphic forms on
GF\FA(F ) should be the space of automorphic forms associated to the trivial character of
G′
F\G′

A(F ). For this character all the reservations apply. I point out that the space associated

to π′′ is not the obvious one. It is not the space of constant functions. To prove its existence
will require the theory of Eisenstein series.

TakeG = GL(2) and letG′ be the multiplicative group of a separable quadratic extensionK ′

of F . Take K = F . Then Ĝ′
F is a semi-direct product (C∗ ×C∗) ⋊ G(K ′/F ). If σ is the



18 ROBERT P. LANGLANDS

non-trivial element of G(K ′/F ), then σ
(
(t1, t2)

)
= (t2, t1). Let φ be defined by

φ : (t1, t2) −→
(
t1 0
0 t2

)

φ : σ −→
(
0 1
1 0

)
.

The existence of Rφ in the local case is a known fact (see for example [6]) in the theory of
representations of GL(2, F ). An affirmative answer to the fifth question can be given by
means of the Hecke theory [6] and by other means [15].
Let E be a separable extension of F and let G be the group over F obtained from GL(2)

over D by restriction of scalars. Let G′ be GL(2) over F and let K ′ = K be any Galois

extension containing E. Let X be the homogeneous space G(K/E)\G(K/F ). Then ĜF is
the semi-direct product of

∏
x∈X GL(2,C) and G(K/F ). If σ belongs to G(K/F ), then

σ

∏
x∈X

Ax

σ−1 =
∏
x∈X

Bx

with Bx = Axσ. Define φ by

φ(A× σ)

∏
x∈X

A

× σ.

Although not much is known about the fifth question in this case, the paper [2] of Doi and
Naganuma is encouraging.
Suppose G and K are given. Let G′ = {1} and let K ′ be any Galois extension of F

containing K. If F is a local field, the fourth question asks that, to every homomorphism φ

of G(K ′/F ) into ĜF which makes

G(K ′/F ) ĜF

G(K/F )

φ

commutative, there be associated at least one irreducible unitary representation of GF . If
F is global, the fifth question asks that to φ there be associated a presentation of GA(F )

occurring in L2(GF\GA(F )).
The L-functions we have introduced have been so defined that they include the Artin

L-functions. However, Weil [17] has generalized the notion of an Artin L-function. The
preceding observations suggest a relation between the generalized Artin L-function and the
L-functions of this paper. Weil’s definition requires the introduction of some locally compact
groups—the Weil groups. If F is a local field, let CF be the multiplicative group of F . If F
is a global field, let CF be the idèle class group. If K is a Galois extension of F , the Weil
group WK/F is an extension

1 CK WK/F G(K/F ) 1
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of G(K/F ) by CK . There is a canonical homomorphism τK/F of WK/F onto CF . If F is a
global field, P a prime of K, and p = F ∩P, there is a homomorphism αp : WKP/Fp → WK/F ,
determined up to an inner automorphism. If σ is a representation of WK/F , the class
of σp = σ ◦ αp is independent of αp. By a representation σ of WK/F we understand a
finite-dimensional complex representation such that σ(w) is semi-simple for all w in WK/F .

If F is a local field and ψF a non-trivial additive character of F , then for any representation σ
of WK/F we can define (cf. [11]) a local L-function L(s, σ) and a factor ε(s, σ, ψF ). If F is a
global field and σ is a representation of WK/F , the associated L-function is

L(s, σ) =
∏
p

L(s, σp).

The product is taken over all primes, including the archimedean ones. If ψF is a non-trivial
character of F\A(F ), then ε(s, σp, ψFp) is 1 for almost all p,

ε(s, σ) =
∏
p

ε(s, σp, ψFp)

is independent of ψF , and
L(s, σ) = ε(s, σ)L(1− s, σ̃)

if σ̃ is contragredient to σ.

Question 6. Suppose G is quasi-split over the local field F and splits over the Galois

extension K. Let ÛF be a maximal compact subgroup of ĜF . Let K ′ be a Galois extension

of F which contains K and let φ be a homomorphism of WK′/F into ÛF which makes

WK′/F G(K ′/F )

ÛF G(K/F )

φ

commutative. Is there an irreducible unitary representation π(φ) of GF such that, for every

representation σ of ĜF , L
(
s, σ, π(φ)

)
= L(s, σ ◦ φ) and ε

(
s, σ, π(φ), ψF

)
= ε(s, σ ◦ φ, ψF )?

Changing φ by an inner automorphism ÛF will not change π(φ), or at least not its
equivalence class. If F is non-archimedean and K ′/F is unramified, the composition of v, the
valuation on F , and τK′/F defines a homomorphism ω of WK/F onto Z. If u = t× σF belongs

to ÛF , we could define φ by
φ(w) = uω(w).

Then π(φ) would be the representation associated to the homomorphism χt of the Hecke
algebra into C.

We can also ask the question globally.

Question 7. Suppose G is quasi-split over the global field F and splits over K. Let K ′ be a

Galois extension of F containing K and let φ be a homomorphism of WK′/F into ÛF which
makes

WK′/F G(K ′/F )

ÛF G(K/F )

φ
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commutative. If P′ is a prime of K ′ and p = P′∩F , then φp = φ◦αp takes WK′
P′/Fp into ÛFp.

If π(φ) =
⊗

p π(φp), does π(φ) occur in L2(GF\GA(F ))?

Both questions have affirmative answers if G is abelian [10] and the correspondence φ→
π(φ) is surjective. In this case our L-functions are all generalized Artin L-functions. If
G = GL(2) and K = F , it appears that the Hecke theory can be used to give an affirmative
answer to both questions if it is assumed that certain of the generalized Artin L-functions
have the expected analytic properties. If all goes well, the details will appear in [6].

I would like very much to end this series of questions with some reasonably precise questions
about the relation of the L-functions of this paper to those associated to non-singular algebraic
varieties. Unfortunately, I am not competent to do so. Since it may be of interest, I would like
to ask one question about the L-functions associated to elliptic curves. If C is defined over a
local field F of characteristic zero, I am going to associate to it a representation π(C/F ) of
GL(2, F ). If C is defined over a global field F which is also characteristic zero, then for each

prime p, π(C/Fp) is defined. Does π =
⊗

p π(C/Fp) occur in L
2
(
GL(2, F )\GL

(
2,A(F )

))
?

If so, L(s, σ, π), with σ the standard representation of GL(2,C), whose analytic properties are
known [6] will be one of the L-functions associated to the elliptic curve. There are examples
on which the question can be tested. I hope to comment on them in [6].
To define π(C/F ), I use the result of Serre [14]. Suppose that F is non-archimedean and

the j-invariant of C is integral. Take any prime ℓ different from the characteristic of the
residue field and consider the ℓ-adic representation. There is a finite Galois extension K of F
such that, if A is the maximal unramified extension of K, the ℓ-adic representation can be
regarded as a representation of G(A/F ). There is a homomorphism of WK/F into G(A/F ).
The ℓ-adic representation of G(A/F ) determines a representation φ of WK/F in GL(2, R),
where R is a finitely generated subfield of the ℓ-adic field Qℓ. Let σ be an isomorphism of R
with a subfield of C. Then

ψ : w →
∣∣τK/F (w)∣∣1/2φσ(w)

is a representation of WK/F in a maximal compact subgroup of GL(2,C). Let π(C/F ) be
the representation π(ψ) of Question 6. If C has good reduction, the class of ψ is independent
of ℓ and σ. I do not know if this is so in general. It does not matter, because we do not
demand that π(C/F ) be uniquely determined by C.

If the j-invariant is not integral, the ℓ-adic representation can be put in the form

σ →
(
χ1(σ) ∗
0 χ2(σ)

)
where χ1 and χ2 are two representations of the Galois group of the algebraic closure of F in the
multiplicative group of Qℓ. If A is the maximal abelian extension of F , then χ1 and χ2 may
be regarded as representations of G(A/F ). There is a canonical map of F ∗, the multiplicative
group of F , into G(A/F ). Therefore χ1 and χ2 define characters µ1 and µ2 of F ∗ that
take values in Q∗ and satisfy µ1µ2(x) = µ1µ

−1
2 (x) = |x|−1. In, for example, [6], there is

associated to the pair of generalized characters x→ |x|1/2µ1(x) and x→ |x|1/2µ2(x) a unitary
representation of GL(2, F ), a so-called special representation. This we take as π(C/F ).
If F is C, take π(C/F ) to be the representation of GL(2,C) associated to the map

s→

(
z
|z| 0

0 z
|z|

)



PROBLEMS IN THE THEORY OF AUTOMORPHIC FORMS 21

of C∗ = WC/C into GL(2,C) by Question 6. The index of C∗ in WC/R is two. The
representation of WC/R induced from the character z → 1

|z| of C
∗ has degree 2. If F = R,

let π(C/F ) be the representation of GL(2,R) associated to the induced representation by
Question 6.

8.

I would like to finish up with some comments on the relation of the L-functions of this
paper to Ramanujan’s conjecture and its generalizations. Suppose π =

⊗
πp occurs in the

space of cusp forms. The most general form of Ramanujan’s conjecture would be that for
all p the character of πp is a tempered distribution [5]. However, neither the notion of a
character nor that of a tempered distribution has been defined for non-archimedean fields. A
weaker question is whether or not at all unramified non-archimedean primes the conjugacy

class in ĜF associated to πp meets ÛF (cf. [13]). If this is so, it should be reflected in the
behavior of the L-functions.
Suppose, to remove all ramification, that G is a Chevalley group and that K = F = Q.

Suppose also that each πp is unramified. If p is non-archimedean, there is associated to πp a

conjugacy class {tp} in GQ. We may take tp in T̂ . The conjecture is that, for all λ in L̂,∣∣λ(tp)∣∣ = 1.

Since there is no ramification at ∞, one can, as in [9], associate to π∞ a semi-simple conjugacy

class {X∞} in the Lie algebra of ĜQ. We may take X∞ in the Lie algebra of T̂ . The conjecture

at ∞ is that, for λ in L̂,
Reλ(X∞) = 0.

If σ is a complex analytic representation of ĜQ, let m(λ) be the multiplicity with which λ
occurs in σ. Then

L(s, σ, π) =
∏
λ

π− (s+λ(X∞))
2 Γ

(
s+ λ(X∞)

2

)∏
p

1

1− λ(tp)

ps


m(λ)

.

If the conjecture is true, L(s, σ, π) is analytic to the right of Re s = 1 for all σ.
Let F be any non-archimedean local field and G any quasi-split group over F which splits

over an unramified extension field. If f belongs to Cc(GF , UF ), let f
∗(g) = f(g−1). If f̂ and f̂ ∗

are the images of f and f ∗ in Λ0(M), then f̂ ∗(λ) is the complex conjugate of f̂(−λ). If t

belongs to T̂ , define t∗ by the condition that λ(t∗) = λ(t−1) for all λ in L̂. The complex
conjugate of χt(t

∗) is ∑
f̂(−λ)λ(t) =

∑
f̂(λ)λ(t∗) = χt∗(f).

If χt is the homomorphism associated to a unitary representation, then χt(f
∗) is the complex

conjugate of χt(t) for all f so that t× σF is conjugate to t∗ × σF and for any representation ρ

of ĜF , the complex conjugate of trace ρ(t× σF ) is trace ρ̃(t× σF ) if ρ̃ is the contragredient
of ρ. In the case under consideration, when K = F this means that trace ρ(tp) is the complex
conjugate of trace ρ̃(tp). A similar argument can be applied at the infinite prime to show
that the eigenvalues of ρ(X∞) are the complex conjugates of the eigenvalues of ρ̃(X∞).
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Suppose L(s, σ, π) is analytic to the right of Re s = 1 for all σ. Since the Γ-function has
no zeros,

(C)
∏
λ

∏
p

1

1− λ(tp)

ps


m(λ)

is also. Let σ be ρ⊗ ρ̃. Then the logarithm of this Dirichlet series is∑
p

∞∑
n=1

1

n

traceσn(tp)

pns
.

Since
traceσn(tp) = trace ρn(tp) trace ρ̃

n(tp) =
∣∣trace ρn(tp)∣∣2

the series for the logarithm has positive coefficients. Thus, the original series does too. By
Landau’s theorem, it converges absolutely for Re s > 1 and so does the series for its logarithm.
In particular,

det

(
1− σ(tp)

ps

)
does not vanish for Re s > 1 so that the eigenvalues of σ(tp) are all less than or equal to p in
absolute value. If λ is a weight, choose ρ such that mλ occurs in ρ. Then (mλ)(tp) = λ(tp)

m

is an eigenvalue of ρ(tp) and λ(tp)
m
is an eigenvalue of ρ̃, so that

∣∣λ(tp)∣∣2m is an eigenvalue of
σ and ∣∣λ(tp)∣∣ ⩽ p

1
2m

for all m and all λ. Thus,
∣∣λ(tp)∣∣ ⩽ 1 for all λ. Replacing λ by −λ, we see that

∣∣λ(tp)∣∣ = 1
for all λ. Since the function defined by (C) cannot vanish for Re s > 1 when σ = ρ⊗ ρ̃, the
function ∏

λ

Γ

(
s+ λ(X∞)

2

)m(λ)

must be analytic for Re s > 1. This implies that

Reλ(X∞) ⩾ −1

if m(λ) > 0. The same argument as before leads to the conclusion that Reλ(X∞) = 0 for all
λ.

Granted the generalizations of Ramanujan’s conjecture, one can ask about the asymptotic
distribution of the conjugacy classes {tp}. I can make no guesses about the answer. In
general, it is not possible to compute the eigenvalues of the Hecke operators in an elementary
fashion. Thus, Question 7 cannot be expected to lead by itself to elementary reciprocity laws.
However, when the groups GFp at the infinite primes are abelian or compact, these eigenvalues
should have an elementary meaning. Thus, Question 7, together with some information
on the range of the correspondences of Question 3, may eventually lead to elementary, but
extremely complicated, reciprocity laws. At the present it is impossible even to speculate.
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