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Introduction

The trace class problem was for some years a rather embarrassing unsolved problem in the
theory of automorphic forms. Although the absence of a solution did not seriously obstruct
progress, it did undesirably, and in the general view unnecessarily, complicate the statements
of various results, especially in the context of the trace formula. Fortunately, it has recently
been solved by W. Müller in [TC].

If G is a reductive Lie group and Γ an algebraic subgroup then we may introduce the space
L2(Γ\G), on which G acts by right translation, and then the sum L2

d(Γ\G) of all irreducible
invariant subspaces of L2(Γ\G). Let Rd be the representation of G on L2

d(Γ\G). A weak
form of Müller’s result is that if f is a smooth compactly supported function on G then Rd(f)
is of trace class.

The proof proceeds in two steps. The theory of Eisenstein series provides a decomposition
of L2

d(Γ\G) into subspaces indexed by associate classes of parabolic subgroups. Thus the
trace class problem reduces to a collection of problems, one for each class {P} of associate
parabolic subgroups. For the class G the problem is easy. The first step in Müller’s analysis is
to solve it for classes of maximal proper parabolic subgroups using a variant of an argument
that H. Donnelly [EE] had used in the special case that the rank of Γ is one. The second
step is to deduce the result in general from this special case by exploiting the construction
within the theory of Eisenstein series of the entire discrete spectrum by iterated residues.

Donnelly’s methods are based on classical techniques of the spectral theory of differential
operators. In this paper, we offer an alternative approach to the first step; it combines some of
J. Arthur’s basic early results on the trace formula, but none of the difficult later work, with
a simple estimate based on a differential inequality. Although the argument is relatively old,
dating to discussions with Arthur in September of 1983, it is not long and is perhaps more in
the spirit of the rest of Müller’s proof. As it stands, the precise result on the estimation of
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eigenvalues is weaker than his, for the reason indicated in the Appendix, but it is not clear
whether this will ultimately matter. Since I begin with Arthur’s papers, I have to restrict
myself to adele groups, or, if one prefers, to congruence subgroups, but the method is, in fact,
completely general. To simplify the notation, I take the group G to be semisimple.

Elements of the trace formula

The trace formula as it appears in the papers of Arthur is an equality between two infinite
sums, the terms of each sum undergoing several avatars as the formula is repeatedly refined for
applications. For the present purposes, we need only one side of the formula, the χ-expansion.
Although our technique is inspired by the fine expansion of the papers [FD I] and [FD II],
we need very little of the difficult analysis of these two papers and the papers [PW] and [IP]
that preceded them; so we begin with a review of the coarse χ-expansion of [TF II], and then
in the following section treat more fully those parts of the fine expansion that we need.
Recall ([TF II], §3) that the parameters χ that occur in the χ-expansions are classes of

pairs, (M,ρ), where M is the Levi factor of a parabolic subgroup over Q and ρ is a cuspidal
automorphic representation of M(A)1. The coarse χ-expansion is a sum,

(1.1)
∑
χ

JT
χ (f),

where

(1.2) JT
χ (f) =

∑
P

1

n(A)

∫
ΠG(M)

tr
(
MT

P (π)χ · IP (π, f)χ
)
dπ.

The notation is taken from §1 and §3 of [TF I] and §3 of [TF II], where the expansion appears
as Theorem 3.2, so that the sum is over standard parabolic subgroups P containing one
of the Levi factors in χ. As in the final paragraph of §1 of [TF I] the symbol A denotes a
split component of P ; the integer n(A) is also defined in that paragraph as the number of
chambers in the Lie algebra of A.
The operators MT

P (π)χ will be described precisely later, at least for the cases of concern
to us. What has to be stressed now is that the double sum over χ and P obtained upon
substitution of (1.2) in (1.1) continues to converge if the integrand is replaced by a trace
class norm,

(1.3)
∥∥∥MT

P (π)χ · IP (π, f)χ
∥∥∥
1
.

The operator IP (π, f)χ is introduced in §3 of [TF I] and is the operator associated to the
function f in the induced representation on HP (π)χ. If X1, . . . , Xd is a basis for the Lie
algebra of G(R) orthonormal with respect to a positive form, Q, invariant under the given,
fixed maximal compact subgroup, K, of G(R), if D is a positive constant, and if

∆1 = D −
d∑

i=1

X2
i ,

then the operators IP (π,∆
−n
1 )χ are defined for any positive integer n, and the double sum

in (1.3) continues to converge when f is replaced by the product of ∆−n
1 with the characteristic

function of an open compact subgroup of G(Af ), provided that n is sufficiently large.
Since (∆1ϕ, ϕ) ⩾ D(ϕ, ϕ) for all ϕ, the definition of the operator ∆−n

1 presents no problems.
The smaller n can be taken, the better are the estimates. I take the n determined by the
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procedure of [TF I] and [TF II] that is reviewed in the Appendix, although the estimates are
then quite poor in comparison with those obtained from other techniques (§3 of [TC]). This
is a serious defect, but I make no attempt to remedy it. The number D is so chosen that
D−Q(ρP ) > 0 for all P , the element ρP being defined in the usual way (cf. p. 918 of [TF I]).

Whatever n is, denote ∆−n
1 by ∆. The assertion with which we begin is that

(1.4)
∑
χ

∑
P

1

n(A)

∫
Π(M)

∥∥∥MT
P (π)χ,K0 · IP (π,∆)χ,K0

∥∥∥
1
dπ

is finite. This is Theorem 3.1 of [TF II]. Since K0 will be fixed we drop it from the notation.
Moreover, χ will also often be fixed, and then it too will be dropped from the notation, to
appear again when necessary.

The quadratic form, Q, appearing in the definition of ∆ can be so chosen that the operator
IP (π,∆) acts as a scalar on isotypical subspaces for the maximal compact subgroup K. Since
these subspaces are invariant under the operator MT

P (π), the product that appears in (1.4) is
then easy to deal with. Indeed, various minor points will be easier to deal with if we take, as
is customary, the form to be the negative of the Killing form on the Lie algebra of K and to
be the Killing form itself on the orthogonal complement of that algebra.

Only those χ for which the Levi factor is that of a maximal parabolic subgroup will be of
concern to us, and for these the operator MT

P (π) (the subscripts have been suppressed) can
be calculated rather simply in terms of the intertwining operators appearing in the functional
equation of the Eisenstein series.
Suppose that P is a maximal (proper) parabolic subgroup whose Levi factor appears in

one of the pairs defining χ. As Lemma 4.1 of [TF II] makes clear, the truncation operator of
Arthur applied to Eisenstein series associated to cusp forms on the Levi factors of maximal
parabolic subgroups is the truncation denoted by a double prime in [ES]. The general
inner-product formula of §4 of [TF II] reduces to the formulas on p. 135 of [ES].
If we denote the Eisenstein series E(x, ϕζ) of §3 of [TF I] by E(x, ϕ, ζ) then the inner-

product formula for

(1.5)

∫
G(Q)\G(A)

ΛTE(x, ϕ, λ)E(x, ψ, µ) dx

is, for λ unequal to ±µ, the sum of

1

⟨λ+ µ, β⟩

{
e⟨λ+µ,T ⟩(ϕ, ψ)− e−⟨λ+µ,T ⟩(M(λ)ϕ,M(µ)ψ

)}
and

1

⟨λ− µ, β⟩

{
e⟨λ−µ,T ⟩(ϕ,M(µ)ψ

)
− e−⟨λ−µ,T ⟩(M(λ)ϕ, ψ

)}
.

The notation is an obvious mixture of that of [ES] and that of Lemma 4.2 of [TF II]. Moreover,
β has been so chosen that the volume that otherwise appears as a factor in the formula of
that lemma disappears. Since the parabolic subgroup P is maximal, we may, and shall, treat
λ, µ, and T as real or complex numbers.

If µ is taken equal to λ = σ + iτ the formula becomes the sum of

1

2σ

{
e2σT (ϕ, ψ)− e−2σT

(
M(λ)ϕ,M(λ)ψ

)}
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and
1

2iτ

{
e2iτT

(
ϕ,M(λ)ψ

)
− e−2iτT

(
M(λ)ϕ, ψ

)}
.

If σ is taken to be 0 so that λ is purely imaginary the second term remains meaningful
provided that τ is not 0. Taking the limit of the first term as σ approaches 0, we see that it
becomes

i
(
Θ−1(τ)Θ′(τ)ϕ, ψ

)
+ 2T (ϕ, ψ),

if Θ(τ) is the unitary operator M(iτ) and the prime denotes differentiation with respect to
the real variable τ .

It is, however, better to take

Θ(τ) = e−2iτTM(iτ),

for then the inner-product formula becomes

(1.6) −
{
1

i

(
Θ−1(τ)Θ′(τ)ϕ, ψ

)
+

1

2iτ

(
Θ(τ)ϕ, ψ

)
−
(
ϕ,Θ(τ)ψ

)}
.

(Observe that there seems to be an error of sign in the corresponding formula on p. 145
of [ES]. It does not affect the argument.)

Since Θ(τ) is a unitary operator it is given by

Θ(τ) = eiθ(τ),

with θ(τ) hermitian. If we make the dependence of Θ or of θ on π and χ explicit, we obtain
the formula

(1.7) MT
P (π, τ) =MT

P (πiτ )χ = −1

i
Θ−1

π (τ)χΘ
′
π(τ)χ −

1

τ
sin
(
θπ(τ)χ

)
,

but it will seldom be necessary to deal with such an accumulation of subscripts. Observe
that the measure dπ that appears in (1.4) is, apart from a constant that has no importance
here, simply dτ .

We now have the first fact that we need. It is a reformulation of the convergence of (1.4),
but in a weakened form, since the sum is taken over standard maximal parabolic subgroups
and over cuspidal representations π of M(A) modulo the action of ia∗. As in §3 of [TF I] we
denote an orbit of ia∗ by ΠP (M), but to conform with [ES], from which the formula for (1.5)
is taken, it is understood that we choose in each orbit the representative π that is trivial on
the connected component of A(R). Set

IP (πiτ ,∆) = IP (π, τ,∆).

Assertion A. The sum∑
χ

∑
P

1

n(A)

∑
ΠP (M)

∫ ∞

−∞

∥∥∥∥∥
{
1

i
Θ−1

π (τ)χΘ
′
π(τ)χ +

1

τ
sin
(
θπ(τ)χ

)}
· IP (π,∆)

∥∥∥∥∥
1

dτ

is finite, as is ∑
χ

∑
Π(G)

∥∥∥MT
G(π)χ · π(∆)χ

∥∥∥
1
.
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Observe that IP (π) is simply π when π is a representation of G(A) itself. If P = G and π
is cuspidal then MT

G(π) is the identity. If π is a representation on square-integrable but
noncuspidal automorphic forms, MT

P (π) is also readily calculated.
Suppose that Φ is the residue of E(·, ϕ, ·) at λ and Ψ the residue of E(·, ψ, ·) at µ. Taking

the residue of the formula for (1.5) at λ and then the residue of the result, treated of course
as a function of the complex-conjugate variable, we obtain first

− 1

⟨λ+ µ, β⟩
e⟨λ+µ,T ⟩(m(λ)ϕ,M(µ)ψ

)
− 1

⟨λ− µ, β⟩
e⟨λ−µ,T ⟩(m(λ)ϕ, ψ

)
,

and then, recalling that λ and µ are necessarily real and positive, our second assertion.

Assertion B. The integral ∫
G(Q)\G(A)

ΛTΦ(x)Ψ(x)

is equal to (
m(λ)ϕ, ψ

)
− 1

λ+ µ
e−(λ+µ)T

(
m(λ)ϕ,m(µ)ψ

)
.

We have denoted the residue of M at λ and µ by a lower-case letter. We have, moreover,
again treated λ, µ, and T as real numbers. Since ΛT is a projection that converges weakly to
the identity as T approaches infinity, the first term in the difference is a hermitian form that
dominates the second.

There is a final assertion to be verified, a simple form of the first.

Assertion C. Suppose P is a proper maximal parabolic, then∑
χ

1

n(A)

∑
ΠP (M)

∫ ∞

−∞

∥∥IP (π, τ,∆)χ
∥∥
1
dπ

is finite.

Like Theorem 3.1 of [TF II], this assertion is deduced from the finiteness of

(1.8)
∑
χ

1

n(A)

∑
ΠP (M)

∫ ∞

−∞
tr
(
IP (π, τ, f)χ

)
dπ,

for a sufficiently smooth function f with compact support. This finiteness is verified by
observing that the expression (1.8) is obtained by integrating the kernel of an integral operator
on a compact manifold over the diagonal. Since the argument will be more than familiar to
anyone with some acquaintance with the trace formula, I omit it.

Statement of lemma and its consequences

The principal assertion to be proved in this paper can be formulated as follows.

Proposition. The sum of tr
(
σ(∆)χ

)
over all classes χ attached to maximal proper parabolic

subgroups and all representations σ occurring discretely in the space L2
(
G(Q)\G(A)

)
is

finite.

Observe that the sum in question is a sum of positive terms, so that the proposition asserts
that it converges absolutely. Since, as on p. 109 of [TF II],

σ(f) = σ(∆−n
1 )σ(∆n

1 ⋆ f),
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we conclude that if f is at least 2n times continuously differentiable, then the assertion of the
proposition remains valid for σ(f) in place of σ(∆). This is the claim of the Introduction.

The proposition will be deduced from the three assertions of the first section, supplemented
by an elementary analytical lemma. Observe to begin that the operator MT

P (π, τ) is, by its
very definition, positive definite. To simplify the discussion, it will be convenient to take its
restriction to the sum of the isotypical subspaces associated to a finite collection of irreducible
representations of K and to a finite collection of π, but without any explicit indication in the
notation. We may, however, whenever it is convenient, pass to the limit over an increasing
sequence of collections that exhausts the set of all irreducible representations. The estimates
we establish are uniform and therefore valid in the limit. The proofs, however, are less clumsy
if carried out in a finite number of dimensions.
Choose orthonormal basis vectors Φj = Φj(π, τ) that are simultaneous eigenvectors for

IP (π, τ,∆) and Θπ(τ) with eigenvalues δj(τ) and e
iθj(τ) respectively. If Φ ⋆ Ψ denotes the

operator
Υ → (Υ,Ψ)Φ,

then,

(2.1) MT
P (π, τ) = −

∑
j

{
θ′j(τ)Φj ⋆ Φj +

1

i
(Φ′

j ⋆ Φj + Φj ⋆ Φ
′
j) +

sin
(
θj(τ)

)
τ

Φj ⋆ Φj

}
.

The eigenvectors and eigenvalues, although continuous functions of τ , may not be everywhere
differentiable, but they are piecewise differentiable and that suffices. Formulas involving
derivatives are understood to be valid where those derivatives exist.
Applying the operator Φ′

j ⋆ Φj +Φj ⋆ Φ
′
j to Φk and then taking the inner product of the

result with Φk, we obviously obtain 0 for k ̸= j, whereas for k = j we obtain

(Φ′
j,Φj) + (Φj,Φ

′
j),

which is also equal to 0. Hence the diagonal terms of the matrix of (2.1) are

(2.2) −θ′j(τ)−
sin
(
θj(τ)

)
τ

.

They are positive. To obtain those of the matrix that appears in (1.4) one multiplies by δj(τ).
Since the trace of any matrix is less than or equal to its trace class norm, we conclude that
the sum over χ, P , and j of

−
∫

δj(τ)

(
θ′j(τ) +

sin
(
θj(τ)

)
τ

)
dτ

is finite. Each term is of course positive.
We now state an elementary lemma that is central to our method; it will be proved in the

following section. The number ϖ that appears is the area of the circle of radius 1.

Lemma. Let θ(τ) and b(τ) be two continuous functions on the interval [α, β], β ⩾ α ⩾ 0,
both functions being piecewise differentiable. Suppose that b(τ) ⩾ 0 and that

b(τ) ⩾ θ′(τ) +
sin
(
θ(τ)

)
τ

⩾ −b(τ).
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Then ∫ β

α

∣∣θ′(τ)∣∣ dτ ⩽ 6

∫ β

0

b(τ) dτ +ϖ

and ∫ β

α

∣∣∣∣∣sin
(
θ(τ)

)
τ

∣∣∣∣∣ dτ ⩽ 7

∫ β

0

b(τ) dτ +ϖ.

The lemma immediately implies the analogous assertion for an interval [−α,−β]. We
deduce the next claim from the lemma.

Assertion D. If P is a maximal proper parabolic subgroup then∑
χ

∑
ΠP (M)

∫ ∞

−∞
tr

{
−1

i
Θ−1

π (τ)χΘ
′
π(τ)χ · IP (π, τ,∆)χ

}
dτ

converges absolutely.

The absolute convergence of this expression is equivalent to that of∑
χ

∑
ΠP (M)

∫ ∞

−∞
tr

{
1

τ
sin
(
θπ(τ)χ

)
· IP (π, τ,∆)χ

}
dτ.

Because of Assertion C it is sufficient to treat the integral from −1 to 1. Our choice of ∆
and standard facts about infinitesimal characters (see, for example, §8.6 of [RT]), imply that
the numbers δj(τ) are of the form (ϵj + ατ 2)−n, with α independent of π and ϵj ⩾ 1. Hence,
on the interval [−1, 1], estimates with δj(τ) are equivalent to estimates with (ϵj)

−n. This
observation enables us to employ the lemma to infer that∫ 1

−1

∣∣∣∣∣tr
{
1

τ
sin
(
θπ(τ)χ

)
· IP (π, τ,∆)χ

}∣∣∣∣∣ dτ
is, apart from a factor that depends on α alone, less than or equal to the sum of

7

∫ 1

−1

∥∥∥∥∥
{
1

i
Θ−1

π (τ)χΘ
′
π(τ)χ +

1

τ
sin
(
θπ(τ)χ

)}
· IP (π, τ,∆)χ

∥∥∥∥∥
1

dτ

and
ϖ tr

{
IP (π, τ,∆)χ

}
.

That the sum of the first expression over ΠP (M) and χ is finite is a consequence of the
first part of Assertion A; for the second expression the sum over the same set is finite as a
consequence of the second part of Assertion A applied to the group M .

The result is that the sum over χ, but of course only those χ associated to maximal proper
parabolic subgroups, of either of the following two expressions is absolutely convergent. The
outer summation in the first is over standard maximal proper parabolic subgroups.

1

2ϖ

∑
P

∑
ΠP (M)

−1

n(A)

∫ ∞

−∞
tr

{
1

τ
sin
(
θπ(τ)χ

)
· IP (π, τ,∆)

}
dτ.(2.3)

∑
Π(G)

tr
{
MT

G(σ)χ · σ(∆)χ

}
(2.4)
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In the second expression, we have replaced π by σ in order to compare the two sums more
conveniently. The factor 1/2ϖ has been introduced in the first for the same reasons. We
evaluate the integrals by deforming the contour, observing that absolute convergence means,
in particular, that the expression (2.3) continues to converge when the integrands are replaced
by their absolute values.

−i∞

i∞
Each of the integrals is of the form∫ ∞

−∞
tr

{
1

iτ
Θπ(τ) · IP (π, τ,∆)− 1

iτ
Θπ(−τ) · IP (π,−τ,∆)

}
dτ.

They are evaluated by first deforming the contour to that of the diagram, on which
both terms of the integrand converge, and then changing the variable for the second
integrand, replacing τ by −τ . The result is an integral over a contour with the
bulge on the other side. It is deformed to the previous contour, leaving a residue of

tr
(
Mπ(0) · IP (π,∆)

)
.

Applying the second part of Assertion A to the group M we see that the sum
of this expression over ΠP (M) and P is absolutely convergent, and, hence, of no
further interest to us here.

The two integrals that remain now have the same integrand and are taken over
the same contour. We may combine them into one, and move the contour over to
the right. We take the final contour to be a vertical line a little to the right of ρP . Assertions
A and C imply readily that the sum over ΠP (M) and χ of these integrals is absolutely
convergent, so that they too are of no further interest. This leaves the residues. They arise
only for parabolic subgroups conjugate to their own opposites.

If P is conjugate to its own opposite then n(A) = 2 and the combined integrand is equal to

−1

2z
Θπ(z).

Thus each pole between 0 and ρP yields a residue

(2.5) tr

{
e−2λT

2λ
mπ(λ) · IP (πλ,∆)

}
The terms in (2.3) are labeled by π and by χ, but χ must be the class defined by the

pair (π,M). The parameters σ and χ in (2.4) together determine a maximal parabolic P ,
a representation π in ΠP (M), and a λ between 0 and ρP , such that χ is the class of (π,M)
and the space HG(σ)χ appearing on p. 926 of [TF I] is the set of residues of Eisenstein series
attached to π and P at λ. We may add the term attached to σ and χ to that attached to π,
P , λ, and χ to obtain a sum over λ, π, P , and χ. Once the sum over λ has been carried out,
the remaining triple sum is absolutely convergent, but we cannot assert, without a closer
examination of its terms, that the quadruple sum itself is absolutely convergent.

To compute

(2.6) tr
{
MT

G(σ)χ · σ(∆)χ

}
for the σ associated to π and λ we use the formula of Assertion B, taking µ = λ. Choose an
orthonormal basis {ϕj} of HP (π)χ consisting of simultaneous eigenfunctions for mπ(λ) and

IP (π,∆). Let the eigenvalue of mπ(λ) for the eigenvector ϕj be aj. Then
{

1√
aj
ϕj

∣∣∣ aj ̸= 0
}



RANK-ONE RESIDUES OF EISENSTEIN SERIES 9

(more precisely, the residues at λ of the Eisenstein series associated to these vectors) can be
taken as an orthonormal basis of HG(σ)χ.

The contribution of the terms
1

aj

(
mπ(λ) · IP (πλ,∆)ϕj, ϕj

)
is tr

{
σ(∆)χ

}
, a positive number. The contribution of the second part of the formula of

Assertion B is for similar reasons given by

−e
−2λT

2λ
tr
{
mπ(λ) · IP (π, λ)

}
,

although now only one of the two factors mπ(λ) has been removed by the denominators of
the orthonormal basis. This cancels the contribution (2.5), and the conclusion is that∑

χ

∑
Π(G)

tr
{
σ(∆)χ

}
is finite, so that the proposition is proved.

Proof of lemma

Since there are no longer any representations to deal with, we abandon in this section the
symbol ϖ, replacing it by π. It is convenient to replace θ(τ) by θ(τ) + π. The hypothesis
then becomes

b(τ) ⩾ θ′(τ)−
sin
(
θ(τ)

)
τ

⩾ −b(τ),
but the conclusion is unaltered.

The set of τ ∈ [α, β] for which ∣∣∣∣∣sin
(
θ(τ)

)
τ

∣∣∣∣∣ > 2b(τ)

is the union of a finite number of intervals open except perhaps at the points α and β. We
number them from right to left as B1, . . . , Br. The complement is a finite number of closed
subintervals A0, . . . , Ar that we also enumerate from right to left, taking A0 to be empty if
β ∈ B1 and Ar to be empty if α ∈ Br.
On any of the intervals Ai we have∣∣∣∣∣sin

(
θ(τ)

)
τ

∣∣∣∣∣ ⩽ 2b(τ),
∣∣θ′(τ)∣∣ ⩽ 3b(τ).

Hence

(3.1)
r+1∑
1

∫
Ai

∣∣θ′(τ)∣∣ dτ ⩽ 3

∫ 1

0

b(τ) dτ.

In particular, if r = 0 the inequality of the lemma is certainly valid.
On any of the intervals Bi the function sin

(
θ(τ)

)
/τ is of constant sign. If it is positive we

have

θ′(τ) ⩾
sin
(
θ(τ)

)
2τ

;
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otherwise

θ′(τ) ⩽
sin
(
θ(τ)

)
2τ

.

In either case, θ′(τ) and sin
(
θ(τ)

)
are of equal and constant sign on Bi.

If θ is any number let θ be congruent to θ modulo 2πZ and satisfy −π ⩽ θ ⩽ π. We shall
show by induction on r that if φ0 = θ(β) then

(3.2)
r∑

i=1

∫
Bi

∣∣θ′(τ)∣∣ dτ ⩽ |φ0|+
r−1∑
i=0

∫
Ai

b(τ) dτ

The lemma follows immediately from (3.1) and (3.2). We may suppose that φ0 = φ0.
Let the value of θ at the lower end of Bi be ψi and at the upper end be φi. Since sin

(
θ(τ)

)
and θ′(τ) are of constant sign on the interval, we have∫

Bi

∣∣θ′(τ)∣∣ dτ = |φi − ψi|.

We observe first of all that we may suppose that A0 is empty or reduces to a point, because

φ0 − φ1 =

∫
A0

θ′(τ) dτ,

so that

|φ1| ⩽ |φ1| ⩽ |φ0|+
∫
A0

∣∣θ′(τ)∣∣ dτ,
and the inequality (3.2) therefore a consequence of

(3.3)
r∑

i=1

∫
Bi

∣∣θ′(τ)∣∣ dτ ⩽ |φ1|+
r−1∑
i=1

∫
Ai

∣∣θ′(τ)∣∣ dτ.
Since sin

(
θ(τ)

)
is of constant sign on Bi, we have |φi − ψi| = |φi − ψi| = |φi| − |ψi| and

|φi| ⩾ |ψi|. Consequently
(3.4) |φi − ψi| ⩽ |φi|,
so that (3.3) is clear for r = 1. To complete the induction we need only show that for r > 1,

(3.5) |φ1 − ψ1| ⩽ |φ1| − |φ2|+
∫
A1

∣∣θ′(τ)∣∣ dτ.
There are three possibilities to consider. Suppose first of all that θ(τ) assumes the value

2nπ on A1 with n ∈ Z. Then

|φ2| ⩽ |φ2 − 2nπ| ⩽
∫
A1

∣∣θ′(τ)∣∣ dτ,
and (3.5) follows from (3.4). To deal with the remaining cases, we use the relation

|φ1 − ψ1| = |φ1| − |ψ1| =
(
|φ1| − |φ2|

)
+
(
|φ2 − ψ1|

)
.

If φ2 and ψ1 have the same sign, then∣∣∣|φ2| − |ψ1|
∣∣∣ = |φ2 − ψ1| ⩽ |φ2 − ψ1| ⩽

∫
A1

∣∣θ′(τ)∣∣ dτ,
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so that (3.5) is valid. Suppose they have opposite signs and θ(τ) does not assume a value
in 2πZ on A1. If |ψ1| ⩾ |φ2| then |φ1 − ψ1| ⩽ |φ1| − |φ2|, and (3.5) is immediate. If this
inequality does not obtain then in passing from the value ψ1 to the value φ2 on A1 the
function θ must take on a value ψ such that ψ = −φ2 and sign(ψ) = sign(ψ1). Hence,∣∣∣|φ2| − |ψ1|

∣∣∣ = ∣∣∣|ψ| − |ψ1|
∣∣∣ = |ψ − ψ1| ⩽

∫
A1

∣∣θ′(τ)∣∣ dτ.
Appendix

For orientation I review the procedure of Arthur’s papers to see what value one obtains for
the integer n appearing in (1.4), although this is unnecessary for our present purposes. It is
easier to start from the final step in §3 of [TF II]. There is an integer r2, that has yet to be
defined, and n is so chosen that the equation

∆n
1g = δ + h,

implies that g has continuous derivatives up to order r2 if the function, or perhaps better
distribution, h is infinitely differentiable and δ is a delta-function at some point. Applying
the elliptic regularity theorem and the Sobolev embedding theorems (Th. 20.1 and Cor. 6.1
of [PDE]), we obtain 2n− d ⩾ r2 +

d
2
or, as a possibility,

n =

[
r2
2

]
+

[
3d

4

]
,

if we regard δ as lying in the space W−d, d being the dimension of G. Square brackets denote
the smallest integer greater than or equal to a given real number. The same considerations
imply that the integer r0 introduced in §4 of [TF I] may be taken to be

r0 = 2

[
3d

4

]
+ 1.

The δ-function at the identity on K is a sum of the characters,

δ =
∑
σ

dσχσ.

If this were an expansion valid in the space of measures on K, the K-finite functions in any
one of the usual function spaces on G would be dense in that space. It is not, but if ∆2 is
the analogue for K of ∆1 and if ℓ is such that

2ℓ > dim(K)

then ∑
σ

∆−ℓ
2 dσχσ

converges in the mean-square and therefore in the space of measures. Then ℓ0 = 2ℓ is the
integer introduced in §4 of [TF I] that appears in the definition of r2 in §3 of [TF II] and can
be taken to be dim(K) + 1.

r2 = r0 + ℓ0 +
∑
i

deg(Yi)
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An inspection of the proof of Theorem 3.2 of [TF II] makes it clear that to take the sum
of the degrees of the Yi is exaggerated; the maximum suffices and it is the rank rk(G) of G.
The conclusion is that we may take

n = 2 + 2

[
3d

4

]
+
[(
dim(K) + rk(G)

)/
2
]
.

This should be compared with Cor. 3.15 of [TC].
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