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RECENT DEVELOPMENTS IN IODGE THEORY :
A DISCUSSION OF TECHNIQUES AND RESULTS

By PHILLIP GRIFFITHS and WILFRIED SCHMID

[nTRODUCTION. In this paper, we shall review several recent
developments in Hodge theory, as applied to the study of the
cohomology of algebraic varieties. In some sense, we are continuing
the report [21] of the first author. in which the then eurrent work
in Hodge theory was discussed without proof and a number of open
pmhlcms were raised. Here we shall be concerned primarily with
methods of proof, i.e. understanding in as transparent terms as possible
the techniques utilized in this recent work in Hodge theors. We shall
also present some results. due to the second author [41], which have
just now been published, and shall bring up to date the status of
the prohlems raised in [21].

One of the recent developments we shall discuss is Deligne’s theory
of mived Hodge structures ( [12], [13], [14] ). In this work, Deligne
extends classical Hodge theory first to open, smooth varieties [13].-
then to complete, singular varieties [14]. and finally to general
varieties, also in [14]. The heuristic reasoning explaining why such a
theory should be possible is given in [12].

Deligne's technique is to use resolution of singularities [20], in
order to be able in each case to write the cohomology of the varicty
in question as being derived from the cohomology of ihler mani-
folds by homological algebra. Typically this process gives the
cohomology of the variety as the abutment of a spectral sequence
whose 7, or K, term is the cohomology of smooth projective vaa ety
Thus the B, or £, term has o Hodge structire, and i order for this
structure to survive as a Hodge structurc on A, inducing the
desired mixed Hodge structure on the cohomology of the variety.
it is necessary that the spectral sequence degenerates. IFollowing a
diseussion of the formalism of Hodge structures and mixed Hodge
structures in §1, we have in §2(a). §4 and §500) presented several

typical degeneration arguments in as direet a manner as we could
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in §4 we construct the mixed Hodge structure on the cohomology
of the simplest singular complete varieties, namely those having only
normal crossings as singularities. Here the main reason for the various
degeneration theorems canbe clearly isolated. The result in §4 stops
far short of proving the existence of a mixed Hodge structure on the
cohomology of a general singular variety [14]. However, it is the
method by which one most frequently calculates this mixed Hodge
structure (cf. [10], for instance), once it is known to exist.

In §5, we have reproved the main result in the open case{13] from
a more analytic and less homological point of view. Our main ideg
is, instead of using the customary de Rham complex of C'® forms
on & compact Kiihler manifold, to utilize a larger complex containing
LA-forms with certain precise types of singularities, and where the
Gysin map can be given on the form level preserving the Hodge
filtration. This complex is discussed in §2(b), where it is pointed out
that the introduction of singular forms is necessary in order to have
such a Gysin map on the form level. Operating inside this complex
allows us to see clearly the differentials in the relevant spectral
sequence in the open case, and to conclude the degeneracy result
from the principle of two types (§§5(d), (e)).

Section 6 is devoted to some applications of Deligne’s theory,
Mirst in §6(a), we give his “theorem on the fixed part”, which is the
main tool in Deligne’s study of the moduli of Hodge struetures.
Then, in §6(b), we give a direct proof of an interesting resuit from
{13], concerning meromorphic differentiai forms on algebraic varie-
ties; and finally we discuss an application of mixed Hodge structures
to intermediate Jacobians in §6(c).

The second technique which we shall explore in some depth is the
use of hyperbolic complex analysis, as it applies to variaticn of Hodge
structure, Hyperbolic complex analysis is the study of the influence
uf megative curvaiure on holomorphic mappings. The eclassifying
gpaces for variation of Hodge structure are negatively curved,
relative to the holomorphic maps which might arise in algebraic
geometry (cf. [11], [25], and §3(a), (b)), and sc it is natura] to
apply the general philosophy in this case,
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Following a discussion of the basic AAlfors lemma and its variants
in §7(a), we have given Borel’s proof of the quasi-unipotence of the
Picard- Lefschetlz transformation in §7(b}; this should illustrate in a.
simple fashion the power of the method.

Perhaps the most penetrating use of the philosophy of hyperboiic
complex analysis oceurs in the Nevanlinna theory [24], which affords
a gcllae:l‘a.l mechanism for analyzing the singularities of a holomorphic
mapping. Following a preliminary result from Nevanlinna theory
in §8(a), we have used this technique to give rather simple, geome-
tric proofs of Borel's extension th;enrem [5]in §8(b), and of the Riemann
exlension theorem for variation of Hodge structure {19} in §8(c).

A final recent development we shall discuss is the work by the
second author [41] and joint work by him and Clemens [10], concern-
ing the asymptotic behavior of the Hodge structures on the
cohomology groups of an algebraie variety as it acquires singularities.
In §9(a}, we have used the theorem on regqular singular points (§3(c)},
together with.the Ahifors lemma, to give an alternate proof of the
first theorem from [41]. This result, the nilpotent orbil theorem,
reduces the case of a general degeneration of Hodge structure to the
study of a special kind of nilpolent orbit in a classifying space for
variation of Hodge structure. It seems possible to use Nevanlinna
theory in place of the theorem on regular singular points to prove
the same result, but we have not pursued this here.

The second main theorem from [41], the §L,-0rbit theorem, gives a
detailed and somewhat technical deseription of the nilpotent orbits
which can come up when a one-paramster family of Hodge struefures
degenerates. The proof depends heavily on Lie theory. In §8(b},
s ting the theorem, we deseribe the observations which

besides

originally led to the proof, as well as to the statement, of the thecrem.
Home applications of these two theorems will be mentioned in §10;

we also summarize joint results of Clemens and the second author

about the topology of a degenerating family of projective mani folds,

which again are partly based on the two thecrems.
W

problems and conjectures contained in the report {21] of the first

conclude with an appendix, reviewing the eurrent status of the

author,
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1. Basic definitions. (a) Hodge structures. Let Hy be a finite
dimensional real vector space, containing a lattice H,, and leg
H = Hyp# g C be its complexification,
(1.1} Derivimios. ‘A Hodge structure of weight m'on H consists
of a direct sum decomposition
H = @ H", with H? = H?4

ptg=m ¥
(Barring denotes complex conjugation.)

Remark.  The prototypical example is the decomposition aecor-
ding to Hodge type of the m-th complex cohomology group of 4
compact Kihler manifold. In this case, m, p, ¢ = 0; however, it will
be convenient to admit also negative values for m, p, and ¢. For
example, the Hodge structure of Tate T'(1) is defined by

Hy=Z,Hy =R, H=C,m—=—2 and H=H"1"1,

For any two Hodge structures H, H', both of weight m, the direct
sum H @ H' carries an obvious Hodge structure, also of weight m,
Similarly, it # and H’ have possibly different weights m and m’,

He H', Hom (H, H'), \?H, H*

imherit Hodge structures of weights m -+ m', m'—m, pm, and —m,
respectively: A ¢ Hom(H, H’) has Hodge type (p, q) if A (H™)
c (H'Y "o *for all », s; in particular, this definition applies to H*
= Hom(H, C), with C carrying the trivial Hodge structure of weight
0; H @ H' can be identified with Hom (H*, H'), and ©”H induces a
Hodge structure on its subspace APH.

(1.2) DeriNirioN. A linear map ¢: H — H' between vector spaces
with Hodge structures will be called a morphism (of Hodge structures)
if it is defined over Q, relative to lhe laltices H,, H'y, and if ¢ (H™?)
c(H"Y | for all p, q. More generally, ¢ is a morphism of type (r, r} if
again it is defined over Q, and if it has type (r, r) when viewed as an
element of Hom (H, H'). '

As a trivial, but nevertheless important, observation we note
that a morphism of type (r, } must vanish unless the weights m and
m' of H and H' satisfy m' =m -+ 2r.
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To each Hodge structure H =@, ., H*? of weight m one
associates the Hodge filtration

H>...5>FP~15F? 5F?*+15 . 50 with FP =@, , H"" % (1.8)
It may be convenient to visualize the definition by means of the

picture below:

e JFm-p+l
— . ch ! ) £ 1 A-_E b
f T 1
(+le—1) (2, 1) (p—1lg+1) (p—2¢+2)

The Hodge filtration determines the Hodge structure completely,

since

HP4 — F? 0 F1 (1.4)

Conversely, a descending filtration {F?} of H arises as the Hodge
filtration of some Hodge structure of weight m if and only if

=
F? @ Fnr+l —5 H, forall p. (1.5)

Thus one has a 1:1 correspondence between Hodge structures and
Hodge filtrations, i.e. filtrations satisfying (1.5).

In terms of this latter description, a linear map »: H — H', which
shall be defined over Q, becomes a morphism of type (r, r} exactly
when it preserves the Hodge filtration, with a shift by r; in other
words, when

o(F?) c F'?*r, for all p. (1.6)

Now let o be a morphism of type (r, r), v a vector in F?*"n Im 9.
By decomposing a vector in the inverse image of v according to

Hodge type, one finds that » lies in the image of FP. Thus:

a morphism of Hodge structures of type (r, r) preserves the
Hodge filtrations strictly, with a shift by r, in the sense that
o(FP) = F'?*" 0 Im ¢, for all p. (1.7)

@ H” and a bilinear

We consider a Hodge structure H
: pry=m
form Q on H, which shall be defined over Q. Also, ¢) shall be
symmetric if m is even, skew if m is odd.
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(1.8)  DerinitioN. The Hodge structure is polarized by ¢ if

QUHPT, HP ) — 0 unless p = ¢q', q = p',

(V=1""Q(v, 2) >0 for v e H™ v £ 0,

Apparently, the polarization form ¢ must be nondegenerate

The Weil operator (': H — H of the Hodge structure is defined by

'y = (-\/f:-_i]p LS

In terms of the Hodge filtration and the Weil operator, the twq

conditions in (1.8) become equivalent to

Q(F?, Fm-pt1y .
@ (Cv,v) = 0

0 |

for v £ 0.

The example we have in mind is the Hodge bilinear form on the
primitive part of the cohomology of a smooth, projective variety |

over C, as will be discussed below.

It should be mentioned that the operations of tensor product
Hom, exterior produet, and duality can also be performed in thc;
context of polarized Hodge structures. For example, if ¢ and Q' are
polarization forms for Hodge structures H and H’, then the induced
bilinear form on H & H' polarizes the product Hodge structure,

(b} Mived Hodge structures. The symbols H, Hyg, H, shall have
the same meaning as in the previous section., ‘

(1.11) DrrNirioN, ‘4 mived Hodge structure’ on H consists of
two filtrations,

Oc...cW, ,cW,cW,,,c..cH

the ‘weight fillration’ which shall be defined over Q. and

Ho..oFr 15 FP5 Pl 50
the ‘Hodge filtration’, such that the filtration induced by the latter on
Grm(. W ‘.) = W/ W, _, defines a Hodge structure of weight m, for each
m (the induced filtration on Gr,(W,) is given by

FoGru(Wy) ) = Wy 0 F2[W,,_; n F?).,

for v € H?. (1.9) *

(1.10)
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The notion of a mixed Hodge structure contains that

REMARK.
as Hodge filtration

of & Hodge structure of weight m as a special case;
one takes the Hodge filtration in the old sense, and the weight
fltration is defined by Wy =H, W, _=0.

According to the definition of a mixed Hodge structure, only
the successive quotients of the weight filtration have direct sum
Jecompositions according to Hodge type. However, the following
lemma of Deligne [13] provides a more subtle global decomposition
of H. For any pair of integers (p, q), we consider the subspace

Pa= (FP a W, )0 (FIn Wy, + FloW, et
4 Pt W s el

IPe — [@? but one does have the
congryence [™? = I*? mod W, ,_.. as will {c-_llow from the proof of
lemma (1.12) below. T'his congruence 74 = [P mod W, ,,_, explains
why every mixed Hodge structure with a weight filtration of length
two splits over R, into a sum of two Hodge structures of pure weight.
This splitting, of course, may be incompatible with the rational
structure. As soon as the weight filtration has length greater than
o, a “‘general” mixed Hodge structure will not split over R.

It is certainly not the case that

tw
(1.12) Lemma. (cf. Lemma 1.2.8 of [13].) Under the projection

W= Gra(Wi) I™ awith p + @ = m, maps isomorphically onto the
Hodge subspace Gr, (W )77 Moreover,
W = @ppeam 170

and
IP = '@\';w ED., %,
Proor. In view of (1.5), the definition of a mixed Hodge structure
amounts to the following :
given any v € W, andintegers p, ¢, with p +q=m +1,
one can write v = v’ + " -+ u, such that v'e FPn W,
v eFn W,, and ue W,,_,; this decomposition is unique

(*)

modulo W,,_,.

In order to prove the first assertion of thelemma, we fix m, p, ¢,
subject to m — p + ¢, and x €Gry{ W, )"% Then « can be represented
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by some voe F? o W,, and also by some u,ec F4 W,. Both a,re..fl'

unique upto W, _,, and », = %, - w,, for some w,e W <ty
1 mee i i 0 o 0 m—1

induction on k, starting with & = 0, we shall find vectors
nef® o W,

) s
e Wy

wmeF W, +F1in W, ,+Fi—2n Wo-g+ .o+ Fiti-tq Wm—a '.

which will be unique up to W,, ., such that v, represents % and y,

-2+ wy. For k=0, this has been done (F?*1c F1 1), If v, Uy, w,

ate 2y 1 ey - [ 3o " . . # =t i
have been picked, we apply (*) to wy: we write wy = w, + W + Wy, B

' s P o~ T = TPk - T
with w. e FF 0 W, _,_,, w,eF v Wiy Wp €W M2

uniquely modulo IW,,_,_,. The vectors Wpppy Vpgy = Y — W, Up, =
u; + wy then have the desired properties. For large enough f,
W, 1-p=0; henceo has a unique representative in /77, We may

deduce that
]Vm = u"m - I.@ {GB Prg=m pr.-,r)._

and thus W, =@, . I"7. As for the last statement of the lemma,
the sum of the /*7is now known to be direct, Also,-one containment
is obvious, We consider some » € F7, and we let m be the least integer
forwhich v e W,. The image of v in Gr,(W.,) has Hodge components
of type (i, m—i), with ¢ = p, because v F? n W,. Subtracting off

components in the spaces I~ with i > p, we can push v into
W,,—;. Continuing ‘with descending induction on m, we find that
v ED;.,®, I'", as was to be shown.

A morphism between two mixed Hodge structures {H, W,,
{H', W,,, F'?} is a rationally defined linear map ¢: H > H', such
that o(W,) c W,, and o(FF) ¢ F'?. More generaily, a rationally
defined linear map ¢: H—+H' will be called a morphism of mixed
Hodge structures of type (r, ) if o (W,) € Wi, o, 9 (F?) c F'?**, for
all p and m. In this case, the induced mapping

P Grm{ ”v-h) T Grm + Qr( IV—;)

becomes a morphism of type (r, ) relative to the two Hod ge structures
of weights m and m +

2r, respectively.

By

il

aijeisg

L R

St e

itk
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(1.18) Lrmma. A morphism of type (r, r) between mized H.adge
structures is strict with respect to both the weight and Hodge filtrations,
with the appropriate shift in indices. More precisely, o(W,) =
Woie, 0 Imo,(F?) = F? "0 Img.
Proo¥. The definition of the subspaces I™? immediately gives
the containments o(I?7) c I'P*"¢*7 Now let v € W,y N Img,

so that v = p(u) for some u € H. According to (1.12),
— Pa with u?? e [P,
% zp'q u™? with w

Then o(u??) € I'"*77*7, and v = X, ¢ (u?) € Wy, ., Again appealing
to (1.12), we deduce that @(u™?) = 0, unless p 4 g < m. Hence

s @( T um) e o(W,).

The case of the Hodge filtration is treated similarly.

(1.14) Lemma. Let o: H— H' be a morphism of mived Hodge
structures of type (r,r). Then the induced Hodge and weight filtrations
put mizved Hodge structure both on the kernel and the cokernel.

Proor. As for the kernel, given v € ker ¢ 0 W, and any integer
p, we must exhibit vectors
veker g W, n F?, v"ekeron W, n F" ?* we kerogn W, _4,
such that v = 2" 4+ 7" + u, and these must be uniquely determined
modulo ker ¢ n W,,_,. The uniqueness already follows from the
corresponding statement about H. Also, there do existu’'e W, n F7,
u' e W,, 0 F*~2%1 such that v =’ + %’ mod W,,_,. Since g(v) = 0,
we conclude that o(w'),o(w") € W', ., _,. By appealing to (1.12)
and decomposing %' into its components in the subspaces I*‘c H,
we can find u; € W,_,n F?, so that ¢(u') = o(u). Similarly,
o(u")= o(uy) for some uj & W,,_, 0 F™~P+1, The vectors v’ = u'—uy,
¥'=u" — uj, w =v—v — 7" have the desired properties. In order
to prove the assertion about the cokernel, one only has to check one
nontrivial fact: if wue W, n F?, v e W, n F™ ¥ and if
u+veW, 1 + Ime, then u, ve W,,_, + Im p. Using (1.12), this
can be done, in a manner similar to the argument above. Details
are left to the reader.
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(1.15)  ComoLiary. Let (H*, d) be a finite dimensional comples
with a mized Hodge structure, and such that the differenital d is

morphism of mixed Hodge structures of lype (r,7), for somer. They -

the induced filtrations on the cohomology defermine a mived Hodge

structure.

Aga final remark, whose verification is left to the reader, we want
to add the

(1.16) OpservarioN: Let 0+ H' -+ H — H" -0 be an exact
sequence of vector spaces. If two.filtrations {W;} and {F”} for H
induce mixed Hodge structures on both H' and H”, then they
determine a mixed Hodge structure on H itself.

2. Classical Hodge theory.
fold. TLet V be a compacet, complex manifold of dimension n, and
A*(V) the de Rham complex of C forms on v. The decomposition

(a) The cohomology of a Kihler mani-

into type
AMV) = @y, 4™(V)

refleets the complex structure on V, and via de Rham's theorem hasg
implications in the cohomology H*(V, C). However, not very much
is known about this unless V' is Kihler, or at least nearly Kihler,
In this case, there are two main sources for the many profound
implications which the complex structure plus the Kihler metric
have in the coholomogy, and we shall briefly discuss these,

Suppose that dsj, = X, g; dz dz; is a Kiihler metric with funda-

—1 i
mental (1,1)-form w = ‘/T Z;; 9 dz; )\ dz.  The operators

L: AXV) - 45 4(P)

A: AX(V) > 4F-¥V)
are defined by L(p)= w A9 and A= adjoint of L= + *[*
where *: A¥(V) — A*~¥(V)is the duality or “star” operator.

Letting

P: A V) - AXY)

i

i
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pe given by P(p) = (k—n) ¢, the eommutation relations
(L, A] = P
(P, L] = 2L
[P, A]= — 2A

(2.1)

exactly say that we have a Lie algebra homemorphism
p: 8l (2) — End (4%(V)),

given by

plE,L) = L

plE_)=A

p(H) = P,
where B, = (33, BE_ =%, and H = (}_}) are the usual basis
elements for 3[(2). The first main source for the structure on
H*(V) arises from the commutation relation

[ps A] =0
where A = dd* + d*d is the Laplacian associated to ds? . Letting
H*V) = {p € A*(V): Ap = 0} be the harmonic forms, the Hodge
theorem [44]

R
H¥V) ——> Hp(V)
together with (2.2) tells us that p induces a representation

31(2) — End (H*(V)) (2.4)

Pt

on the cchomology level, Applying the standard facts about repre-
sentations of 3 [ (2) to ps, one obtains first the so-called Hard Lefschetz
theorem

Lk HYHV) —> H*H(V), (2.4)

and secondly the Lefschetz decomposition

! Here we are adopting the viewpoint of Chern [7] (see also [46]), where the
proofs of our statements can be found. Alternate sources are [45] or [47].
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Hi( Vy=@ d<k<l2] Lt!ﬂ_%( V). (2-5]
where
R+
P* (V) = ker {H"""( V) — H T EHY( 1)} (2.6)

is the primitive part of (n — k)th cohomology group.

We shall briefly discuss an application of (2.4) and {2.5) to prove
degeneration of a spectral sequence; the argument is due to Blanchard
" and Deligne.,

Let X be a Kiihler manifold (possibly non-compact), § a complex

manifold, and
fi X =8

a smooth, proper holomorphic mapping.”” The Theorem of Leray
[17] gives a spectral sequence {E,} with

Ept = HP(8, R, (C))

B, = H¥X)

where the direet image sheaf R}(C) comes from the presheaf

U— H¥f (), C).
The theorem asserts that £, = F

-
To prove this, we remark that the Kiihler metric on X induces
operators L, A on the direct image sheaves £7(C) which commute
with the differentials in the spectral sequence. In particular, the hard
Lefschetz Theorem (2.4) and Lefschetz decomposition (2.5) become

I*: RiH(C) —> R2FHC)
R} (C) =@, L* P;*(C),
where Pi7% = ker {L¥*!: B} ¥C) - RE**"?%. We shall check that
d, = 0, the proof that the higher d, = 0 being the same. Using
the Lefschetz decomposition, it will suffice to show that d, = 0 on
P?=¥C). Now in the diagram

2 f: X —» 8 is a differential fibre bundle whose fibres are compact Kahler mani-
folds; ef. § 3 for further discussion.
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k41

HP(S, PE5(C)) — HP(S, BEH+%C))

e L

LEHL
HP (S, RyF-Y(C)) e—> HPT¥(S, RHC)),

the bottom row is injective by Hard Lefschetz and the top row is
gero by the definition of primitivity. Thus d, = 0.
-The second main source for the structure on H*(V')is the relation
Ay = 287 (2.7)
petween the Laplacians for d a.n-d 3. It follows from (2.7) that
[A,m,,) =0 (2.8)
where m, ;: A¥(V)— APYV) is the projection onto the space of (p, q)'—l
forms. Using (2.8) and the isomorphism
A V)= H¥(V, C),
we obtain the Hodge decomposition

Hm( V' C) e @ }IP-Q{ l,’}’

PHq=m
HM(V) = HP(V)
where HM(V) = {o € AP0: dyp = 0 }{dA* n AP}

In particular, H™(V, C) has a Hodge structure of weight m. Note
that the Lefschetz decomposition is topological, whereas the Hodge
decomposition reflects the complex stracture (or the moduli) of V.

Let us assume for the moment that the Kihler metric dsi-isinduced

. by a projective embedding of V. In this case, the Kiihler operator L,

on the cohomology level, is defined over Q. Since the fundamental
form & has Hodge type (1,1), L turns out to be a morphism of Hodge
structures of type (1,1). From this, one can deduce that the Hodge
structure of H™(V, C) restricts to a Hodge structure on the subspace
P™(V, C). The Hodge bilinear form

Q: P"(V,C) x PNV, C)—>C

* This identity is equivalent to the metric being Kihlerian.
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is defined by
mim—1)

Aol = (— 1) = F [ " AgAs,

v

if g, o € A™(V) represent [¢], [¥] e P"(V). According to the Hodge. 3

Riemann bilinear relations [45],
QUP™V) o H¥(V), P™V)n H"(V)} =0
unless p = g', ¢ = »’, and
(W =1)P"1Q(c, )>0 if ¢ € P™(V) n HM(V), ¢+ 0.
Hence:
the Hodge bilinear form ¢ polarizes the Hodge structure
on the primitive part of the cohomology groups
1{a)).
There are two applications of {2.7) we want to mention. Define
the Hodge filtration on the de Rham complex by

(ef.

FrA¥(V) = @ A"*(V).

i=p

(2.10) Lemsa, The exterior derivaiive d is sirict wilth respect to the ;

Hodge filtration on A*(V). In other words, if o € FPAMV) and p=dn
for some n = A¥ (V), then n can be chosen to lie in FPA¥( V).

FProor.
89, — 0, and o==dn=p,= dn'+ 39" for some 7, 9"
by
as to d4A*(V) .

5 where ¢
i, where i,

as A =
Since &,= A;

{2.7), the harmonic space for 8 is orthogonal to 24%(V}), as well

Thus tho d-harmonic vart of @, is zers, and so ¢,=

i*(V). Then o —dyje FPTLAMT), and we may

continue inductively.

Using the general m

echanism of the speciral sequence of a filtered
complex, the Flodge filtration on the de Rham complex gives rise

to the Hodge — de Rham sepeciral squence {#} with

ri

B, = HY(A%(V),

¥

— I* Vv
By, = Hpp(V).

(2.9)

Write ¢ = g, + ¢ where ¢’ g F?#1 A%(V). Then dp=0= -
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Lemma 2.10 is equivalent to the degeneration assertion
B =B, (2.11)
and implies the Dolbeaull isomorphism
HPY(V) = HU(V, Q7). (2.12)

1t also implies that the filtration on H*(V, C) induced by the
fitration FPA*(V) on the O forms is just the usual Hodge filtration.

The second application of (2.7) which we want to mention is
the following

(2.13) Lemma. If ¢ € APYV)is an exact form, then we have both

¢ = O’ for some v' & A", with 3y’ = 0; and
g = én"for some 7" € APV with 9q" = 0.

Proor.
where ':rlr" =
the orthogonal complement of the harmonic space [44]).
o' has type (p — 1, ); and 2y’ = 0, since [3*, 3] = 0 = [G,, 3].

The d-cohomology class of ¢ is zero, and thus ¢ = d»'
8% G ¢, and @, is the Green’= operator for 3 (@, = A7' on
Now

The use of Lemma 2.13 comes up in the principle of two types:
If [¢] € H™V, C) can be represented by ¢’ e A77(V), and also by
o' e AV (V) with p’ # p", then[p] = 0. In practice, we may have
a “secondary’’ cohomological construction which involves writing
a cocycle as a coboundary, doing some manipulation, and then
arriving at & cohomology class. This class may turn out to be zero,
using (2.13) and the principle of two types.
reasoning which underlies the degeneration arguments for the various

It is this heuristic

spectral sequences discussed in §§4, 5 below.

(b) Seme commenis about the Gysin mapping. Let V be a
compact Kihler manifold, and Dc V a smooth divisor. Applying

Poincaré duality to the homology mapping

1
H,(D) — H,(V)

induced by the inclusion D ¢ V, one obtains the Gysin map
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b
HYD) —— HI%(V).

Sinee both the Poincaré duality isomorphisms and ¢ are morphismg |
of Hodge structures (of appropriate types), y is also a morphism, of
type (1,1). We shall give a method for computing v on the form
level; as it turns out, this cannot be done in the complex of =

forms, if one wants to preserve the Hodge filtration. The computation

will be useful in §5. In fact, the proof of the degeneration of the
spectral sequence used in putting a mixed Hodge structure on the -

eochomology of an open variety will-follow from an obvious extensioy
of our computation of y on the form level.
(1)

DEFINITION OF GGYSIN MAPPING. Let [ D] be the holomorphie

line bundle associated to D, o & I'(V, @[D]) a holomorphic section
with (¢) = D and || the length function with respect to a fibre |

metric for [D] — V. Define

— e 8 log 2
# 2wy —.1 glal ]

V=1

27

w=5q= dalog ol {

w is a C*(1, 1)-form on V, which represents the dual cohomology ;

class c,([D]) (ef. §0 of [24]). If D is locally given by f = 0, then
1 df P

fl} - L}'Tr_'\‘ = 1 f
where f is a C'*(1, 0) form.
DEeriNiTION.
complex AX(V — D) generated by A*(V) and 7.9
A form g9 € 4*(log< D>) may be (non-uniquely) written as
p=aA7q+8, (2.16)
where a, B A*(V). The restriction « |, is not ambiguous, however.
Hence we may define R: A*(log (D)) - A*~ (D) by

(2.14)

(2.15) |

A*(log (D) is the sub-complex of the de Rham :

E

¢ A*(log (D)) is a special ease of the € log complex associated to a divisor with

normal erossings, which is discussed in §5(a).
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R(p) = &g (2.17)
and let ¥ A*(log ¢ 1) ;) be the kernel of E. There is an ohvious
inclusion
;
AFT) 1>,
and we shall prove shortly the
PRrROPOSITION,

(2.18) The inclusion 1 induces an rsomorphism on

d and @ cohomology.

Assuming this, the Gysin map on the form level is given as
For z € A" D). Choose & € A»(V) with 3!, = «, and set
= d(Z

If = is a closed form on 0. then y(z) is a closed form in 1¥* and

follows:

ylz) ) =dX A+ %N e (2.19)

defines a class
yla) € H¥(I*) = Hpp(V),
using (2. 18). We claim that this preseription, up to a factor of = 1.
represents the (iysin map (2.14).
Proor. Given a closed form z on D and a closed form ¢ on V|
we must show that

j‘, pla) A= £ L“ A 4.

Let T_ be a solid tube of radius e around D. By (2.18) and Stokes'
theorem

— lim ‘

a0 JiTe

; A y A 9!' i 'i'j

x A i,
n

RERE

: |
since lim —
e=n 2

r” flee®) df = f(0) for any C® function f.
J 1

C'OMMENTS.

The forms in A*(log

* R is the Poincare residue operator discussed in §3(b),

(ii) {A) < D y) are infegrable

on V., in the sense that
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for g € A*(log ¢(D)) and any & A% V), and thus they defing

currents on V(ef. §2 in [18]). Now g satisfies the equation of 3§

currents :
dn = w —{D}

where {I} is the current defined by integration over [, whereag :

the forms o € W* satisfy

dyp in the dg in the
sense of currents sense of forms/’

'l‘ilis is basically the reason why (2.18) holds.

(B) The Hodge filtration F? on A*(V) extends to a filtration ;
PP WE = @, W

on the bigraded complex W*. Since 1
HE(AMV)) = HEW?) 4

is an isomorphism by (2.18), it follows from the discussion in 2(a) *
that the spectral sequence associated to FPW* degenerates at B, ' '
and that the induced filtration on H*(W*) = H#*(V, C) is the usual
Hodge filtration. Referring to (2.19), we see that :

il

FPA*(D) —}—-r Fetl e,
which again shows: The Gysin mapping (2.14) is a morphism of
Hodge structures of type (1,1). 1

(C) Apropos the comment just made, we can see the necessity 3
for going outside the class of € forms in order to give y on the
form level. If we think of D as a (" manifold, then the extension )?
&% of = may be taken to be closed in a tubular neighborhood of D. i
Then dp A& = wA&—17 Ad& is C° on V. However, if a lies in 2
the pth level of the Hodge filtration, then in general we cannot
find & which is closed near D and is also in the piu ievel; the 7

primary obstruction to doing this is a class in ‘J
H*(D, Q%' [D])
which may not be zero. The complex W* is probably the smallest

one in which y is defined.
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(iii) ProoF or (2.18). First observe that the definitions of
A* (log (D)) and W* localize: that is to say, there are obviously
defined complexes of sheaves %, /*(log (D), and #™* on V
such that

AXV) = D(V, %)

A*(log (D)) =T(V, ooy ¢

W* = T(V, #7*).

D3))

The usual sheaf-theoretic proof of de Rham’s theorem will apply if
we can prove the Poincaré lemma :

(2.20) Luswa.  The sheaf sequences on i

0—>C —> ¥V W1 — H#? —> ...

d d #
0 —> Qf —> W¥ — WP o W
are exact.
Pwroor. The problem is local around a point p & D, where we

choose holomorphic coordinates (z,w) = (2, wy. ... W, ) on T such

that D is given by z = (. Sections of ¥ '* may be written as
(of. (2.16))
© = il:_ - B

where «, B are C* forms, and where (ef. (2.17) )

al,_p =0, and

B does not involve dz.
Suppose that do — 0 and deg e > 0. Write

B=y ANdz+ B
where & involves only dw and dw. Then dp =0 = d,8 = 0 (dy, ==
exterior derivative with respect to the w's), and so & = d,0 by the
usual Poincaré lemma with O dependence on parameters [16]. Now

o—di~a AP L BN
& ]

& The sheaves o ¥ Mlog {D)}.'ﬂ'-*nﬂ sabisty HJ"( V)= 0 forg >N




30 PHILLIP GRIFFITHS and WILFRIED SCHMLID
where 8" does not involve dz. Again, dp — 0= d, 8" = 0 and so 8

i dz : Gy i ., "
d, 0 ¢+ — (mod exact forms). Write  — " 5 dZ + ", where

4" involves only dw, diw. Then d " == 0 and " |, =0. We may
write ' = d, 7, with nl_, =0 [16], and then e;ubtructing

( dz\ .
d (1} z ) gives

oo iR
mo== 1 NAEN (mod exact forms).

Onee more o 7 0 and 80 7 == d_w, so that
W w

. odz
o= pdip 7 . dp 1,

Now p  p{z. Z). and by the 3-Poincaré lemma [39]

pdZ = 3¢, £(0) =0,

3 T i g ;
so that subtracting o ( EN ) gives finally that 5 is exact.
The proof of the 7-Poincaré lemma in the present context is

done in the same way, using [39].
i o ; ; A g oz
Reamani.,  The é-Poineard lemma is false in #7*; forms f(Z)— .

with fiZ) -~ 27, a,Z". are 8-closed but not 2-exact.

M

3. Variation of Hodge structure. On a compact Kiihler manifold,
the Hodge decompositions of the complex cohomology groups
reflect the complex structure of the manifold. Since a Hodge
structure is a much simpler object than a global complex structure,
by passing to the Hodge decompositions, one obtains a simplified
model of the complex structure of the manifold. In some sense, this
process is analogous to looking at the topology of & space in terms
of its homology. The study of variation of Hodge structure was
begun in [18, 19]. We shall recall the constructions which are relevant
for this paper. One can approach the subject from several points of
view. Each has its advantages, and so we shall discuss and relate
them in the three parts of this section. One more general comment:
For technieal reasons, which will become apparent below, it is

RECENT DEVELOPMENTS IN HODGE THEORY 51

necessary to consider the polarized Hodge structures on the primitive
parts of the cohomoloy, rather than the Hodge structures on the full
cohomology. Since the former completely determine the latter, no
information is lost by doing so.

(a) The Hodge bundles. Throughout this section, X and 8 will
denote connected complex manifolds, and #: X -8 a holmorphic
proper mapping with connected fibres, which is everywhere of
maximal rank. Moreover, X is assumed to be embedded in some
projactivc space, but not necessarily as a closed submanifold. Each
fibre ¥V, =m""'(s), ¢ € 8, then becomes a projective manifold. We
shall refer to this geometric situation as a family of polarized
algebraic manifolds.” 1In practice, such families usually arise as
follows: let X and S be projective varieties and X > 8 a proper
algebraic mapping, whose generic fibre is smooth. If we set § equal
to the subset of the regular set of S over which » has smooth fibres,
and X ==~ 1(8), we obtain a family of polarized algebraic manifolds.

Disregarding the complex structures, one may think of =: X -8
as a O fibre bundle. For each integer m between 0 and 2n(n =
dimV,), the direct image sheaf RT (C) is the sheaf of flat sectionsof a
flat complex vector bundle H™ —8. The fibre of H™ over s € § has
a natural identification with H™(V,,C). According to harmonic
theory with variable coefficients [33], the dimensions of the Hodge
subspaces H?9(V,), with p + ¢ = m, depend upper semicontinuously
on 5. Since their sum, being a topological invariant, remains constant,
so does each of the summands. Again a.i}pea.ling to the results of [33]
one now finds that the Hodge subspaces HP¥(V,) are the fibres of
a C™-subbundle H»?c H™. As a preliminary definition, which will
goon be changed slightly, we set F* = @,,, H*"%L Let T* S8
be the holomorphie cotangent bundle, and

V: 0H™) —» O(H"® T*),

"By the polarization of the fibres V;, we mean the datum of the eohomology
class of a projective embedding. Instesad of assuming that the total space X
lies in some PN, we only need a_polarization for each fibre, which is constant with
respect to s, in the sense that the polarizations form a global section of the direct

image sheaf RZ_(Z) on S.
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the flat connection of H™. The following result of the first authop

provides the starting point of the study of variation of Hodge
structures.

(3.1) TEEOREM [18].
Furthermore,

Each F? i3 a holomorphic subbundle of Hm

V O(F?) c O(F*~1 @ T*).

One can paraphrase the second statement roughly by saying that
infinitesimally the subspaces H™¢(V,) get shifted by a change in

indices of at most one. When it is restated in terms of period matrices,

as we shall do below, it looks like an infinitesimal period relation, .::

For families of algebraic curves, this condition is vacuous. However,

in the general case, it becomes a crucial ingredient of virtually all

arguments about variation of Hodge structure.

The Kihler operator L: H™(F,) - H™*%(V,) is defined solely in g

terms of topological quantities. It therefore extends to a flat bundle |
map L: H™ - H"*2 Let P™ be the kernel of L*~™*+1, acting on H™,
Then P™ becomes a flat subbundle of H™, whose fibres correspond |

to the subspaces P™V,)c H™(V,). 1t is the complexification of a
flat real subbundle P}, and PY in turn contains a flat lattice bundle

P2, In terms of a local flat trivialization, P™(V ) n HPI(V,) is the ..

intersection of a fixed vector space with a family of continuously
varying subspaces. Hence the dimension depends semicontinuously
on s. The sum of these dimensions, with -+ g = m, equals the dimen-
gion of P™(V,), which is constant. We may conclude that P™ n H*¢
has constant fibre dimension, and is therefore a ¢'®-subbundle of P™,
Changing notation, we now set

PP = @,,, P"n Himi,

izp
From (3.1), one immediately deduces the two analogous statements
F? is a holomorphic subbundle of P™ and

(3.2)
VO(E?) c O(F?~ 1@ T*).

——

Finally, since the Hodge bilinear form ¢ does not depend ox the

i
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complex structures of the fibres, we may view it as a flat bilinear
form on the bundle P™.

Fgor some applications, it is convenient to consider collections of
yector bundles with the various properties mentioned above, even if
the situation does not arise directly from a family of algebraic mani-
folds. We gather the ingredients in the form of a definition. Let S be
a complex manifold. By a variation of Hodge structure, with base S,
of weight m, we shall mean a collection of the following data:

(i) a flat complex vector bundle H — §, containing a flat, real
subbundle Hy, so that H is the complexification of Hy, to-
gether with a flat bundle of lattices Hy c Hg;

(ii) a flat bilinear form Q: Hx H — C, with Q(f, &) = (— 1)"Q(e, f),
which is rational with respect to H;

(iii) a descending filtration of H by a family of holomorphic sub-
bundles Ho ... > FP~1 5 F? 5 F?*!1 5 ... 5 0, so that VO(F?)
cO(F* ' @ T*);

these data have to satisfy the conditions that at each s €S, the fibres
of the {F?} at s define a Hodge structure of weight m on the fibre of
H, and this Hodge structure is to be polarized by @.

The bilinear form @ determines indefinite Hermitian metrics on
the bundles {¥*}. It is thus possible to apply the methods of Hermi-
tian differential geometry, as was dong by the first author in [19]. We
shall take up these matters again in §10.

(b) Classifying spaces and the period mapping. Not surprisingly,
the bundles {F?} of a variation of Hodge structure can be realized as
the pullbacks of certain universal bundles over a classifying space.
This classifying space parametrizes the polarized Hodge structure
on 3 fixed vector space. In order to recall the construction, which
was given in [18], we consider a finite dimensional complex vector
space H, with a real form Hy c H and a lattice H, c Hg. We also
fix an integer m and a rationally defined bilinear form @ on H, which
shall be symmetric if m is even, and skew if m is odd. Next, we let
{A*7} be a collection of nonnegative integers, corresponding to pairs
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of indices (p, ¢) with p+ = m, such that 2%? =k and Z h*'=dim j_
By D, we denote the set of decreasing filtrations

Ho..oFr-'3FP5 P> ..00
which satisfy the two conditions

a) dim FP—= » _ pim—i
z i=p {3.3)

b) Q(F?, Frm—2+l) =0,

In a natural way, D lies as a subvariety in a product of Grassmann

varieties. By elementary arguments in linear algebra one finds that

the algebraic group
G'¢ = orthogonal group of @
= {T & GUH) | Q(Tuw, Tv) = Q(u, v) for all u, v € H} (3.4)
operates transitively on D. In particular, D cannot have any

singularities; it is a projective manifold. The subset D of all those
points in D whieh correspond to filtrations {#”} with the property

(V=12 mQv,5) > 0ifve FPo F" 2 50, (3.5)

is open in the Hausdorff topology of D. Hence D inherits the structure
of a complex manifold from D. Any filtration {#7} belenging to
a point D automatically satisfies (1.5), and therefore determines
a Hodge structure of weight m on H, which is polarized with respect
to . In other words, D_pa-mmetrizes cxacti_y the Hodge structures
of weight m on H for which ¢ is a polarization, and such that
dim HP? = pP4. ‘\é’e call D a classifying space for polarized Hodge
structures, and D its dual space.

Almost by definition, the trivial veetor bundle H = D X H over
D is filtered by decreasing family of holemerphic subbundles

Ho..oF 15 5FPt 5 00

whose fibres over any point of D constitute the filtration of H cor-
responding to the point in question. Let ¥ be the trivial flat connec-
tion on H, and x a point of D. We shall say that a tangent vector X
at x is horizontal if

v, O(F"), c O(F*~1),, for all p. (3.6)
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The transitive action of G¢ on D lifts to the family of bundles {F?}
and the tangent bundle. This action maps horizontal tangent vectors
again t0 horizontal tangent vectors. In particular, the spaces of
horizontal tangent vectors at the various points of D have constant
dimension, and they fit together, to form a G¢-invariant, holomorphic
subbundle of the holomorphic tangent bundle T — 1. We shall call
it the horizontal tangent subbgndle, T, A holomorphic mapping j
of a complex manifold & into D, or into the open submanifold D c D,
is said to be horizontal if the induced mapping [ between the tangent
gpaces takes values in the horizontal tangent subbundle.
Let @y C G¢ be the subgroup ofreal points,
Gp = {T €Gc| THyc Hy}. (3.7)
The action of G preserves D C D. By arguments in linear algebra
(cf. [18]), one can show that Gy acts transitively on D. Thus D has
the structure of a homogeneous space, and this is the key to under-
gtanding all of the more subtle properties of D. In order to realize
D as a quotient space of Gy, we fix a base point, or origin, 0€D.
It corresponds to a filtration { F§} of H, the reference Hodge fillration,
which in turn determines the reference Hodge structure {H%%. The
automorphism group G of D operates with isotropy group
B = {T € G| TF§ c F} for all p} (3.8)
ato; Bcis a parabolic subgroup of @, and one has the identification
D = G/ Be. We denote the group of real points in BcbyV, e
V = B¢ n Gy (3.9)
Then ¥ is the isotropy subgroup of G at o, and D = Gg/V. Under
these identifications, the inelusion D c D corresponds to
D =~ G}V = Gy/Ggr 0 Be=—>Gc/Bc= D. (3.10)
Let C'y be the Weil operator of the reference Hodge structure, so that
Oy = (v/ —1)P~7vif v € 3. Since V' commutes with complex con-
jugation, it fixes not only the filtration {#7}, but also the reference
Hodge structure, and therefore also the positive definite hermitian
form
(w, v) = Q(Cyu, ¥), U, vE H.
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Hence:

V is a compact subgroup of (. (3.11) /
As an arithmetic subgroup of Gy, i

P=G,={I'eGy | TH,c H,}
is diserete in Gy. Coupled with (3.11) and the identification D ~ GV,
this shows:

I" operates properly discontinuously on D. (3.12) '

In particular, the quotient I'\ D has the structure of a normal anal ytie
space. If we had considered arbitrary Hodge structures, rather
than polarized Hodge structures only, the analogous statementg
waould be false.

Before coming back to the properties of the classifying space D,
we recall the definition of period mapping. Let (H, F?) be a variation
of Hodge structure, of weight m, with base space §— for example,
the variation of Hodge structure corresponding to the mth primitive
cohomology groups of the fibres of a family of polarized algebraio
manifolds 7 : X —S. The pullback of the flat vector bundle H to the
universal covering S of § is canonically trivial. Thus it makes sense

to talk of the fibre H of this pullback. The flat bundle H - is then
associated to the principal bundle = (S) 8 8 by a representation
p: m(S) = GI(H). The flat subbundle Hyc H, the flat lattice bundle
Hy c Hy, and the flat pairing @ : H x H — C correspond to, res-
pectively, a real form Hyc H, a lattice Hy c Hy, and a bilinear
form @ on H. All of these objects are preserved by the representation
9, 50 that ¢ takes valuesin I' = @,. The bundles F? —;S pull back to
holomorplm subbundles of the trivial bundle H x S. At each point
of 8, the fibres of these pullbacks determine a filtration of H,

which corresponds to a Hodge structure of weight m on H, with
polarization ). For these Hodge structures, the dimensions h?? —
dim A7 are constant. We now consider the classifying space for
Hodge structures D which cmrebponds to the collection of Hodge
numbers {A??}. For each se §, the Hodge structure determined by s

corresponds o a definite point in D. This gives a mapping

s

i
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7: §—D. As a direct consequence of the definition of the complex
gtructure of D, I is holomorphic. Also the condition (iii) for a
sariation of Hodge structure ensures that F is a horizontal
mapping. Next, if the points s, s '8 are related by an element y of
the fundamental group of 8, and if 7' = (y),”” then the Hodge
structures corresponding to s and s are related by T: ie. F(s‘)l &=
7F(s). In particular, when F is composed with the projection
p —T'\D, the resulting mapping becomes ,(S)-invariant. Thus we
obtain a mapping f: § — T'\ D, which is the period mapping of the
variation of Hodge structure. As follows from the construction,

the period mapping is holomorphic, locally liftable,

and it has horizontal local liftings. (3.13)
By {‘locally liftable’” we mean that f, restricted to any sufficiently
small open set in S, factors through the projection I —I'\ D.

This process, which associates to a variation of Hodge structure
the period mapping, can almost be reversed. Let f:8 - T\D bea
mapping of the connected complex manifold § into I'\.D, with all of
the properties mPntdOIled in (3.13). Then there exists a holomorphic
horizontal map I : S — D, which makes the diagram

_I‘I
—_ D
f zl
commutative, Moreover, for each y e (S), one can choose an element
T,eT, so that

ta(— tm

F(ys) =T, F(s), forallses.
Since I' does not operate fixed point-free, 7', may not be uniquely
determined by »®, in which case y — T', need not be a representation

3 For example, if the variation of Hodge structure arises from the m%h prinlait.ivn
cohomology groups of the fibres of a family of polarized algebraic In&l‘llf(ﬁ!]li!_i
7: X —» A* parametrized by the punctured disc A*, and if yen (A%} is the canonical
geherator, 7= o(y) represents the action of y on the mth primitive cn_ho.mnlogy
group of a typical fibre V. This element 7' is usually ecalled the Picard-Lefschetz
transformation.

¥ This cannot happen if f is “sufficiently general’'.
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of m,(8). However, if there does exist a homomorphism g: m(8) -1,
with ¢(y) = T, for suitable choices of 7', then ¢ will determine 4
flat bundle H — 8. All the other ingredients of a variation of Hadge
structure can now also be reconstructed; details are left to the reader,

We briefly mention the classical situation, which has motivateq
the study of variation of Hodge structure. Let 7: X -8 be a family
of principally polarized, g-dimensional abelian varieties, or of non-
singular algebraic curves of genus g. The classifying space for the
Hodge structures on the first cohomology groups is then the Siegel
upper half plane H,, the discrete group I' is the Siegel moduler
group, and the period mapping f: § - I'\H , associates to each fibre
of the family the usual invariant in the quotient I'\H,,.

The Siegel upper half plane, as is well known, has a realization
a8 a bounded symmetric domain. The classifying space for the Hodge

structures on the cohomology of algebraic K3 surfaces also has this

property; it is a hermitian symmetrie domain of type IV. In general
however, D may be very far from being a bounded domain. In fact,

D will usually not have any nonconstant holomorphic functions, |

On the other hand, the classifying spaces behave somewhat like
bounded domains, as far as horizontal mappings into them are
concerned. The important feature is the existence of a metrie which
is negatively curved in the horizontal directions. How this affects
mappings into D will be taken up in §7. Here we shall only give a
precise statement about the metric in question, to which we can
refer later,

(3.14) ProrositioN. Let D be a classifying space for Hodge
structures. Then there exisis a Gy-invariant hermilian metric on D,
whose holomorphic sectional curvatures in all horizontal langent
direclions are negalive and uniformly bounded awaey from zero.

A general discussion of the manifolds which can arise as classi-
fying spaces for Hodge structures is contained in [25]. The proposition
is proven in §9 of that paper. Deligne has given a short, sel{-contained
proof in [11]. Incidentally, in order to have results like (3.14), one
is again forced to look at polarized Hodge structures.

= .. =
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swroof in [11]. Incidentally. in order to have results like (3.14). one
is again forced to look at polarized Hodge structures.
In some applications of the theory of variation of Hodge struc-

one is coufronted with technical problems of the following
i

ture,
type: If E- Dis a homogeneous, holomorphic vector bundle'
and if the restriction of E to D) carries a Gg-invariant metric, how
does the metric behave as one approaches the boundary of D
In order to illustrate the kind of arguments which are made possible
by the homogeneous structure of D, we shall look at this question
ir; }_ml'ti(.'.ulzu‘:_ the answer will also be of use elsewhere in this paper.

.Some preliminary remarks are needed. We recall the identification
D = G/ Be.

Be -+ GI{E) associ-
ates a vector bundle E to the principal bundle B. — G¢ = ﬁ

Its

A holomorphic representation r :

total space can be identified with (/¢ x E/~, with the equivalent
relation ~ defined by (gb 1, be) ~ (g,¢) if be Be. The action of G¢
on the first factor of (¢ < E then induces an action on E and turns E
into a homogeneous vector bundle. Conversely. every homogeneous
vector bundle arises in this fashion. The restriction of E to D~Gy/ T
may be thought of as the veetor bundle associated to the principal
bundle V - (y ~ D by the representation /.. Because of the
compactuess of 17, one can choose a V-invariant inner produet on
the vector space K. When E is identified with the fibre of E over
the origin, by translating the inner produect via (¢, one obtains a
(fp-invariant metric on E —~ D. It should be pointed out that any
two (p-invariant metrics will be mutually bounded.

We are interested in comparing a Gh-invariant metric to a
global Hermitian metric of E over D. near the boundary of D.
Since D is compact, the choice of a global metric will not matter.
However, there exist metries with which one can caleulate parti-
eularly easily, because they are derived from the homogeneous
stracture of D. We shall proceed to describe them. As before, Cy
shall denote the Weil operator of the reference Hodge structure.
Then
u,ve H,

(w, v) = Q(Cy u, v), (3.15)

Wio, a vector bundle to which the action of @ on D lifts.
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defines a positive definite inner product on H.
intersection of G with the unitary group

of this inner produygeg,.
Ty
it is a compact subgroup of

One can check directly that

Fal
res.

dimg M = dim, G = dimg 25
Next, we claim that

Mn Be=V;

and the inner product (3. 15) invariant, and must therefore also keep |

the Hodge subspaces of the reference Hodge filtration fixed, Tnd
particular, g commutes with Cy. Thus g preserves the Hermitiay

form Q(u,5), as well as the bilinear form . This is
g € (g, so that

M B e yn Bae ¥,

The reverse containment is clear, and (3.17)
of the origin in D can now be indentified with M/ ¥V ; because of (3.16),
it has the same dimension as D ~ GelV
On the other hand,

and must be open in ) |
the compactness of M forces the orbit to be
closed. Thus

M operates transitively on D, with

isotopy group V
at the origin, so that D ~ M|V,

(3.18)
gives rise to a @,

an inner product can
M-invariant Hermitian metric

Just as a V-invariant inner product on. &
invariant Hermitian metric for £ —» D, such
be translated around by M, to give an
for E over all of D.

We now consider two Hermitian metries A, h, for B, of which F

the first is Gy-invariant and defined over D, and the second M-
invariant and defined over all of D. We also assume that the
metrics coincide on the fibre over the origin. Let x be
and ¢ a vector in the fibre of E over 2, We can write x as the g-trans-
late of the origin, for some g € (I, and also as the m-translate of the
origin, for some m € M. Since B, is the isotropy
origin, g =

two
a peint of D

subgroup of @, at the
mb, with b € Be. In order to compute the h,-length of

(3.17)
in fact, every g € M A B¢ leaves both the reference Hodge filtratioy, 4

possible only jf

is proven. The M-orbj 3

Let M c G be tpoll

(3.16) 4

ot

€, we may translate e by g~ to the origin and compute the length
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there. Similarly, the &y-length of ¢ is the length of its transiate by
m~! at the origin. It follows that %, and &, at x are mutually bounded
and the operator norm

by respectively, the operator norm of +(b)
of 7(b™ 1), relative to the F-invariant inner product on &

which
corresponds to the two metries. The matrix entries of r(b) and +(b 1)
are rational functions of those of b, when b is viewed as an element
of the matrix group &¢. Because of the compactness of M, the matrix
entries of b = m~'y are bounded by a constant multiple of the
largest matrix entry of g. For any g @y, we let gl denote the
operator norm of g on H, relative to some inner product on H,
According to what has been argued above, the metrics Ay and ks on
the fibre of E over  must be mutually bounded by a constant
multiple of a suitable power of || ¢]|. Clearly this remains correct if
we réplace h, by any Gy-invariant _metric and k&, by any global
Hermitian metric for E over all of D. We have proven :

(3.19) Lemma. Let E— D be o homogeneous holomorphic vector
bundle, h; a Gy-invariant metric for the restriction of Eto D, and h,
a global Hermitian metric for B over D, There exisi constants ', N wiih
the following property : if x € D is the g-translate of the origin, with
g € Gy, then each of the two metrics hy, hy at x is bounded by C || g |~
times the other.

In order to make the lemma useful, one has to know how {/g||
grows as the point'z approaches the boundary of D. For this purpose,
we recall some standard facts from the theory of symmetric spaces. 1)
Let Gy be a semisimple matrix group, and K ¢ Gy a
compact subgroup. The quotient Uy/K then carries a Gg-invariant,
Riemannian metric ds® which is essentially unique. In the Lie
algebra of g, of @, the subalgebra f, corresponding to K
unique Ad K-invariant complement D,. We now choose
abelian subspace q, in Do,

maximal

has a
a maximal
and we denote the subgroup exp g,
of Gg by 4. All elements of 4 act semisimply, under any finite
dimensional representation of Gg. One then has the (non unique)
decomposition '

"'Helgason's book [27] is a good reference.
B &
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g = K A K.

Moreover. with respect to-a suitable Buclidean metric on (1,2

X —> exp XK is a locally and globally isometric,

totally geodesic embedding of 4 in Gal/K. {3.21)

In our situation, as the “orthogonal group’” of a noxuiugeneraml

symmetric or skew symmetric bilinear form, e will certainly he

semisimple.

subgroup A" of (g which contains V. Relative to any two (.
invariant metrics, the projection

D= Gg/V - Gy/K

is bounded. Let x € D be the g-translate of the origin, with g e e

We write g = k,a by, k), kne K, ae 4. According to (3.21) and the -
boundedness of the projection (3.22), the Euclidean norm of log ais
bounded by some multiple of the distance pplz, o). The abelian group
A4 can be simultaneously diagonalized, because all of its elements
operate semisimply. Hence the operator norm of « cannot exceed
some multiple of a suitable power of exp pp(w, 0). Sinceg =k, a k,
and sinee A is compact, this gives the same kind of estimate also for *

the operator norm of g. Thus :

(3.23) LEMMaA. There exist positive constants B,
Jollowing property: if x = D is the g-translate of the origin, with g & G,
then

gl < B exp Map(x, o).

With this lemma, the comparison of the metrics in (3.19) can
now be rephrased in a more intrinsic manner.

(e} In" his book [30] on harmonic integrals,
Hodge phrased his results on the cohomology of Kihler manifolds

Period matrices.

in the language of period matrices. For some questions, such as
computations of specific examples, it is useful to be able to think in
this way. and so we shall give a brief “dictionary”.

relating the

preceding  discussion to the language of period matrices. This

Y1f the Riemannian strueture ds® is the one corresponding to the Killing form,

the restriction of the Killing form to &y will be the “suitable Euclidean metric".

{,'{_2{-”. L

Because of (3.11), there exists a maximal compacet :
! ) pact

M with the B
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description of Hodge structures will be used in §§8, 9 below. We
conclude this section with a proof of the theorem of the regularity
of the connection on the Hodge bundles.

Let us consider a polarized Hodge structure [H??} of weight m
on the vector space H, with polarization form . Once and for all,
we assume that H®? = 0 unless p,q¢ > 0. Also to simplify the
discussion, we shall limit ourselves mainly to the case when m = 2,
with only some parenthetical remarks about the general case. Under
these hypotheses, the Hodge filtration has length 2:

H=F'>F 5 F*>0.
For 0 < k < 2, F* and F3~* are perpendicular with respect to Q.
On the other hand, @ is nondegenerate, and #* and F** have
complementary dimensions, so that F** = F*L  Ag an immediate
consequence, we see that F? already determines the remaining
subspaces.®® We now let the polarized Hodge structure vary,
keeping the polarization form ¢ and the Hodge number r = dim H>®
= dim H%* and s = dim H"' fixed. The points of the dual space
D of the classifying space D then correspond exactly to the subspaces
F* c H, with dim F? = r, Q(F®, F*) = 0. (3.25)
Such a subspace can be completed to a filtration (3.24) by setting
F1= F*', The subspace belongs to a point of D when the appro-
priate positivity conditions are satisfied. In our special case, they
can be compressed into the single condition
—Quv,v) >0 ifve F? v 0. (3.26)
Indeed, by conjugation, the condition on H"? follows from (3.26),
and the condition on HM = (H>®® H%)L is automatic, since Q
has exactly s positive eigenvalues.

In order to represent the points of D and D by period matrices, we
pick a basis {e,, ..., e,,, .} of the lattice H,, and we denote the dual
basis by {AZ, ..., A**+#}. Relative to the basis {¢;}, the bilinear form ¢
is specified by a (2r 4 s) x (2r 4- 8) matrix, whiéh we shall also call Q.
, v}, and

(3.24)

Given a subspace F'® as in (3.25), wo choose a basis {v,, ...

“In general, it suffices to know F¥, for [m)2] + 1 <k < m;ifk < [mf2], F*
is then determined by F¥ = (F™4+1)L
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of Gl(r, ©) induees a holomorphic line bundle L. — D, whose space
of sections has the Pliicker coordinates ; _; as a basis.

we let £ be the (27 +s) x 7 matrix whose (i, j)-entry is (X, #;); thig;
the period matrix of the Hodge structure in question.0* It clearly §
determines the Hodge structure completely. Every nonsinguly, |
(2r +s) X r matrix Q which satisfies the first of the two bilineg, &
relations

Like any principal bundle, the bundle of period matrices has local
gections. Hence every holomorphic mapping f: § — D can be repre-
gented locally by a holomorphic, matrix-valued function Q(s), s€8,
whose values satisfy the two bilinear relations (3.27). The mapping f
is horizontal exactly when the column vectors of d{2 correspond to
one-forms with values in #1 = F2L; in other words, when

‘Q(s) Q dQ(3) = 0, (3.28)
which looks like an infinitesimal period relation.

‘QQQ—0
QG >0

corresponds to a point of D. If it satisfies the second relation as well,
then it is the period matrix of an actual Hodge structure. Two such 3
matrices Q and ' belong to the same point of D, or of D, exactly
when (' = Q.4, for some invertible » x » matrix 4. This equivalengg
relation reflects the freedom of choice of a basis of /2, In the preced.
ing discussion, the basis {e;} of I has been kept fixed; changing it
has the effect of pre-multiplying the period matrices by the transpose

We now consider a variation of Hodge structure with base S ;'
or, more concretely, the periods of holomorphic two-forms for a
p.)la.rized family of algebraic manifolds »: X — 8. We fix a base
point s, € 8, and we choose a basis {e;} of the fibre of Hy over s,.
In the geometric situation, this amounts to choosing a basis for the
primitive part of Hy(V,, Z). Displacing the e; horizontally, we
obtain a flat frame {e/(s)}, w_§, for the pullback of H, to the
universal covering S of 8. 1f pimy(8) > Gy =S80(Q, Z) is the repre-

of the change-of-base matrix,

The set of all nonsingular (2r -+ ) x r matrices , modulo the
equivalence relation Q ~Q4, is a particular realization of the §
Grassmannian G (r, 2r + s) of r-planes in C**¢. The first of the

two bilinear relations (3.27) exhibits [ as a sub-variety of this § sentation corresponding to the flat bundle H — S, one finds that
Grassmannian. By associating to each nonsingular matrix Q the .' e(y8) = p(y) e(s), whenever y € m,(8), s & 8. (3.29)

Pliicker coordinate: } o
Holer coorauares 4 [t may be possibie to find a holomorphic frame {o,,...,0,} of the
Qi - Qipr i é bundle F2 — §, although usually only outside of a subvariety of .

By pairing the os with the dual frame to {e;(s)}, we obtain a
_Q’ Q 1 ! holomorphically varying period matrix ({s), s S", which deseribes
L e the period mapping.*® The transformation property (3.29) implies

btains t i ) i 9p L g} 3 -
one obims o " Meiser anhedding 9F G-, and. Shovsly g Q(ys) = 9ly) $s), for y & m,(8), s € S. (3.30)
also of its subvariety D, in the projective space of dimension

Q.

LD

. = det
T

Equivalently, we may think of Q(s) as a multiple-valued function on 8.

2r 3) . . -
— 1. The set of i trices fo % . P ; -
( r period matrl ASHATANE L e We shall use the language of period matrices to sketeh a proof

of a holomorphic principal bundle over 5 with structure group ¢ of the theorem on regular singular points. Let m: X — A* be a

@Ql(r, C). The character ~ family of polarized algebraic manifolds over the punctured disc A* =
A —s det A ¥ The assumptions made at the beginning of this section still apply.
Ll i A i : y m+1 .
MFor arbitrary m, one obtains a collection of [{m--1)/2] period matrices, o sensedl woahis prosess eldea sollsssion TR F ok [ - ] mabrLE-

corresponding to the subspaces F¥, (mf2] + 1< k< m. 4 valued funotions.
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{zeC|0< |z|< 1}, which can be continued to a family =: X - A !

over the entire disc A, by inserting a possibly singular fibre ovep

the origin. For any m between 0 and the fibre dimension, we consider -
the period mapping f: § — M = I'\ D which corresponds to the m-th __

primitive cohomology groups.

(3.31) Tusones (Regular singular poinis):" The period mapping §
can be representcd by holomorphic, mulliple valued period mairices 3§

{Q(t) }, t € A* which salisfy the estimate
N0 < cref™

in the slit disc 0 < arg ¢ < 2.

Remark. For a more concrete statement of the theorem, ong -;:_;
should mention which choice of a holomorphic frame of the bundles -
F? > A* gives period matrices with this property. This will be done

in the course of the argument.

SxETCH 0F PROOF.

purely algebraic argument has been found by Katz [31].

By assumption, there is a projective embedding X c P¥. Standard
arguments involving the Lefschetz theorem allows us to replace -_j
V,= =~ '(t) by a surface lying in V{!®), and sc we shall assume that |
the ¥, are algebraic surfaces. A generio projection X — P3 will now

realize the V, as hypersurfaces in P? given by a single polynomial
equation of fixed degree 8

P, y, 2; 1) =0, (3.32)
where the coefficients of P are holomorphic functions of £ € A. For
this, we may have to shrink the disc A. The arguments given by

Landman [35] show that we may assume that the surface {3.32) has
7 The theory of differential equations with regular singular points arising in
algebraic geometry is discussed extensively in [15] where several different proofs
of the regularity theorem are given.
18 The point is that, if dim V¢ = n, and if S; = V¢® Pr—2 is a generic intersection,
then there is an injection

BV, Q- H%S5,, Q)

We will discuss how one proves the theorem
for m = 2, i.e. for the periods of the holomorphic two-forms, refer- -
ring to the reference cited in footnote (17) for the general argument, |
Our proof will be analytic, but it is worthwhile remarking that a

ThASeaT
-
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at most ordinary singularities for t # 0.1 The holomorphic 2-forms
on V, are given by
_ Q. y.zmi)deNdy
?_}_) (z, ¥, 2z t)
o0z

where Q(z, ¥, z; t). is a polynomial of degree §—4 vanishing on the
double curve of V.2 Since dim H?>°(V,) is constant, it follows that
we may choose a basis
w (t) =% _{_?E;.jge zit)dz I\ dy insas
== (x,y,2;t)
for H>"(V,), where the @); (z,y, z;t) are polynomials of degree § — 4
whose coefficients are holomorphic functions of ¢ in the whole dise A,
again possibly after shrinking A. We may think of the w(f) as an
algebraic framing for the vector bundle F? —A*. In more sheaf-
theoretic terms, the w(t) are rational sections of the cokerent sheaf

over A,
RP Q%)

which give a basis for each fibre R} (Q%,.),(t # 0). It is this latter
language which forms the natural setting for the generalization of
our argument to Hodge structures of arbitrary weight.

Now choose a basis e, ..., e, , for the primitive part of Hy(V,, Q).
The cycles’e; displace in a multiple-valued fashion to give cycles e;(t)
all fibres V{t + 0). Moreover, by considering the “collapsing map”

V=V

the cycles e,(t) will tend to cycles ¢,(0) on V,, and during this process
the volumes of the e;(f) will remain bounded (cf. the explicit deserip-
tion of the e(t) given by Landman [ 35]). It is now clear that the
' Families of surfaces with ordinary singularities are discussed in Appendix II
to_ [19].
* This is classical; c.f. the reference cited in footnote (19).
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integrals satisfy the estimate

alt) = 0([t]™")
ei(t)
on any sector ) << arg ¢ << 27, The period matrix
f "
Q(t) - { [ wjm)
£i{¢)

describes the period mapping, and so we have proved the theorem,

4. Varieties with normal crossings. As was mentioned in the

introduction, IJe!i_gné has put functorial mixed Hodge structureg

on the complex cohomology groups of & projective variety [14]. The

construction involves a substantial amount of homological algebra, E |

However, the mixed Hodge structures can he deseribed very

concretely in one special case, namely that of a vatiety with normal
crossings. According to Hironaka [29], a suitable modification of an
arbitrary variety has this form. For many applications, the knowledge 8§

of the general existence theorem, together with the conerete descrip-

tion in the case of a variety with normal crossings, suffices already, -

{AppED INn ProOF: Recent notes by M. Anderson at the I.A.S,
give a proof of Deligne’s general result, extending the methods of
this section. )

Thus we consider a compact analytic space V¥, which can be
realized locally as a union of coordinate hyperplanes

i
We assume moreover that globally V = D, u ... u Dy, where the D
are compact Kihler manitolds meeting transversely, as in (4.1).
(4.2) ProrvosrrioN. On H*(V, C), there exisis o mived Hodge
structure, which is functorial for holomorphic mappings between
compact analytic spaces satisfying the above two conditions.

Zip) E MY 2 vy vt B=0, |5 <€) {4.1)

As a corollary to the proof, we will find that the weight filtration
on H™(V, C) has the form
{0cWocWic..c Wy c W,, = HYV,C);
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in particular, A"(H"(V, C)) = 0 unless p, ¢ = 0 and p + ¢ <m.

The same restrictions apply to the mixed Hodge structures on the
cohomology of a general projective variety.

The pl'oof will be given in several steps.

Srep OoNE.  We recall the speetral sequence of a double complex
(17 Let A** — @, ., A"" be a bigraded vector space and assume
given

d: AM o APTIa g2~ ]
8 APt APl 52 ) i

ds + 8d — 0. |

(4.3)

Then one may consider the total differential D =d + §: A% — 4,
where A* = @, ., A" There is a spectral sequence {£"?} with
E, = Hj(A**); '|
By = Hy(H (A*); |
(4.4)

dy = &; and ‘
E = Hj, (A**). '

Here the filtration on Hj(4*¥), with associated graded £, is

induced from the filtration W, = @,., 4" on A4**
Srep two. For each index set I = {i), ..., 4} c{l, ..., N} we set
Dy = D; n...n Dy,
1] =g,
D["]*:J.-:q Dy, (disjoint union).

Each D' is a compact Kithler manifold, and we define
A — 4 ;:(Dlr;]}_

where 4%( D) is the usual de Rham complex. A form g € A" may

be written as

v € A" (1) is the “value” of ¢ on 1),. Detine
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d: AP — APT1 (d — exterior derivative), ang
8: AP o APt :

by the formula

(89) dain = z (-1) Pliren Sy g+ 1 | (4.5)

P | Dy weedge )

The properties (4.3) are immediate, and so {4** d, 8} is a doubls :.:I
complex.
(4.6) Lemma (de Rham theorem for V): Hpj(A**) = H*(V,Q).

Proor. There are obvious sheaves &7 on ¥ with I'(V, S = -
A7 and where H'(V, o#/™9) = 0 for r > 0 (partition of unity). Setting
A" =@ yuye, A7 we consider the complex of sheaves

D D
0—Cp—a A — 1 > 2 5, _
folds will apply if we can prove the Poincaré lemma for D.

This may be done directly, or deduced from the spectral sequence of o

a double complex as follows: Let AP%(U) = I'(U, 2#79), where U is
the open set (4.1) on V. By the usual d-Poincaré lemma

Hy47%) =0, p>0.
H (A" 1) = H® (g-fold intersections).
In the spectral sequence for { AP%(U), d, 3},

The usual sheaf-theoretic proof of the de Rham theorem on mani- ii

EPM =0, p>0,
Eli Cm.

in the coboundary operator of a simplex, and consequently
EPt =10 ifp+4q >0,
EY = C = HYU, C).

Thus B, = E, and we have the Poincaré lemma for 1.

STEP THREE. Réturning to the global case, we define a weight
Jiliration W, and Hodge fiitration F? on A** by 1

4

The d, map §: B - EP**1 is given hy the same formula as occurs I
!

RECENT DEVELOPMENTS IN HODGE THEORY O

W, =@, 4", |
P =®,, FrA4™).

4.7y

These filtrations induce filtrations on H%(A**), and by (4.4) the
associated graded of the weight filtration on H #(A**) is the B, term
in the spectral sequence of a double complex. Thus Proposition 4.2
will follow from the

(4.8) Lumma. The Hodge filtration (4.7) induces a Hodge struc-
ture of pure weight m on E7 in the spectral sequence of (A**, d,8).

Referring to (4.4) the E, term is
Er =@, H*(D'9),
and consequently has a Hodge structure of pure weight m induced
by the Hodge filtration (4.7). The d, map is
5: E} - E7
and, by (4.5) is a morphism of Hodge structures of pure weight m.

Thus by Corollary 1.15 the EJ' term has a Hodge structure of pure
weight m. Our task will be complete if we can show that

Ey,=E, (4.9)

"This is accomplished in the last step of our proof.

Srer FoUR. We must show that

Suppose that [«] € E37. Then [«] is represented by a class in
H™( D9y, Tecomposing this class into type, we may assume that
[«] is represented by a closed C'® form « on D% which has type (r, s)

with r + s = m. The condition d,[«] = 0 is that
da =df (4.10)
for some B e A™ 177!, and.then

"32{0‘) =3p
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viewed as a class in F
in two ways »

a—=df’

da=df"
where 8 has type (r, s — 1) and 8" has type (r — I, s}. But [68'] =
[88"] in EF~' which has a Hodge structure of pure weight m — |,

Thus dy[=] = 0 by the principle of two types.

3. The case of non-compact varieties. Let X he
projective algebraic variety/C. We will prove the following result

of Deligne [13]:

a smooth, quasi-

(5.1) THEOREM.
Hodge structure.

The following will be corollaries of the proof of (5.1):

The Hodge numbers AP"(H" X)) =
q = 2n.

COROLLARY, = 0 unless

= n,n =, P+

(5.2)
0<p.4q

(5.3) CoroLLARY. Let X be a smooth compactification (cf. §5(a)
below) of X. Then the image of H'(X) — H"(X) is W {H"(X)}.

(a) The C'® log complex. Au‘ortlm},‘ to Hlmnahd[“}] we may find
a smooth compactification X of X. Thus X is a smooth, projective
variety on which there is a divisor D with normal crossings. such
that X = X — D. Locally D is given'by

(5.4)

and it will simplify matters notatlormlh to assume (as we may}
that globally

D=Du..uDy,

where the D; are smooth divisors meeting transversely. The general

case can be treated with only a slight additional twist.

polat2 - Applying Lemma 2.13, we may write N,

The cohomology H*(X) has a functorial mized
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X U
D,
D,
. ORI /—\___/
X
(Fig. 5.5)

By a neighborhood at infinity we will mean an open set Uc X given
by (5.4). By 7 we will mean the polyeylinder | z; | < e so that
U=U-—UnD.
(5.6) Dermntrion.  The 'C” log complex’ A*(U, log (D)) is the
complex of C® forms ¢ € AYU) such that
BB ®

Zy . 2 dop

are C% in U.

Note that A¥(U, log { D)) is closed under d, and it will follow from
Lemma 5.7 that the produet of two forms in A*(U, log (D} )is again
in the log complex. Thus 4*(U, log (D)) is a sub-complex of the full
de Rham complex A*(I7). Note that A*(U, log (D)) is not closed

under conjugation.

[ dz _‘u
(5.7) LEMMA. A* (U, log (DY) = A* (U) {==2...., =2 } .
L Z ZL
Proor. We assume that k = 1; the general case is similar. Clearly
A (U {‘f_'z_.l,_.. d“*| c A*(U, log <D>).
G

Conversely, suppose that « € A* (U, log (D)) and write

= BA dil:-_yl',

“1 1

where 8, y do not involve dz,. By the first condition in (5.6), we

may assume that B, y are C”in U. Now
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it (EIEA..‘?E; L ¥ ) 4 yNdey
2y 1 (21)?

and the second condition in (5.6) gives that %)

%
{dzl |
Lz &

(5.8) DerFintrion, The C® log complex’ A*(X, log (DY) on X isthe
sub-complex of A*(X) consisting of all o which are in A*(U, log( D)
Sor all neighborhoods U at infinity.

a= B A i—zl + 8 lies in A* (I)

1 1

To giv_e the global analogue of (5.7), we consider the line bundles

{D;] - X and choose sections o; € I'(X, O[D;]) with (o;) = D; and i

fibre metrics in [D;]. Setting

d l()g | "illzr

Koy s
=T
it follows (cf. §2(b)) that
AX(X, log (D)) = 4*(X) {n3,...., narh
and w; € H%, (X) is the dual cohomology class of D;.
Tt will be proved now that the natural map

H*(A*(X, log (D})) - H*A*(X)) = H*X,C)
is an isomorphism, and that A4* (X, log (D)) has a weight and

Hodge filtration inducing a mixed Hodge structure on H* (X).

(b) The weight filtration and the Poincaré residue operalor.

DrriNiTIoN. On A* (X, log (D)) we define the weight filtration’
W, =W, (4* (X, log (D)) to be those forms p such thai. locally
ai infinity

dz;

_ [
v 4% (0) { Py .__H} .
z, dz;,

%isq, Clearly

%

Informally, ¢ has weight [ if ¢ involves at most {

=3e4%D). The §

(59)
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LR l
dWi {5 W; i
W, AWpc Wip- |

Note that the definitions of the log complex and weight filtration
are local around a point z € X. Thus we may define complexes of

(5.10)

sheaves on X

a*(log (D))

Wy = W, (a*(log{ D))
such that 4* (X, log (D)) =TI (X, s#*(log (D))) and similarly for W,.
By the usual partition of unity argument, these sheaves have no
higher cohomology.

Given that D=D, u ... u Dy, we shall use the following notations:
I = {i,..., 4} c{l,...,N}is an index set;

Dy = Dyn .0 Dy,

[ 1| = k;
and

D¥ = u e Dy
DermvrrioN. The ‘ Poincaré residue operator’
R 7, (af* (log (D)) -+~ F(DIk)D
is defined by

: dz; .
R (q A (_iz_ll T ._._‘i") =alp,. (5.11)
z z,
The following lemma, i easy to verify
(5.12) Lemma. (i) R% is well defined and B¥(# ) = 0; and

(ii) R commaules with d, 9, and 8.

Not quite so simple is the Poincaré lemma in the present context.
To explain it, we recall that associated to & complex of sheaves

21 J&’*(@[“) is the sheaf of C= forms on D), sometimes referred to as the des
Rham sheaf.
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a
L*={... >#?—» "' - _}on a space, the cohomology sheaf 3

HHLH)
is that sheaf coming from the presheaf

d
U+ cohomology of {... (U, #?) — (U, &P+1) ik

Thus, e.g., the statement #9(.%*) = 0 for g >0 is nothing other thay

the Poincaré lemma. In the situations that we shall encounter, .#*
will be a subcomplex of the de Rham sheaf and will be closed under
d, 9, and 3. We shall denote the various cohomology sheaves by
HF(LH), HHNL*), AB(L*).
(5.13) Lemma. The induced mappings
R S5 (W Wy _,) — HE—H(af %( DY)
R SOYW YW 1) > A (ot ¥( D))

are isomorphisms.

The proof of (5.13) is essentially the same as the proof of Proposi-

tion (2.18), and will be omitted.
(c) de Bham’s theorem for the log complez.

(5.14) ProrosirroN.  The inelusion A¥(X, log (D)) s A*¥ X)
induces an isomorphism on cohomology. Thus
H*(A*X, log (D)) —» H*X, C).
Prooy. Issentially, this proposition is true because it is true
locally at infinity by (5.13). The easiest way to make this precise
is using some homological nonsense.

The basic fact we shall utilize is that if #* = {... > %*—»
£P*1 > ...} is a complex of sheaves on a space ¥ and if the cohomo-
logy HY(Y, #7) = 0 for ¢ > 0 then there is a spectral sequence
{E,} with

= Since R is surjective, the subtlety here is that thers are forma & « W} with
R¥ o 0 but o AWi-1 (o ?d?z on C.) What must be proved is that these don't

matier when we pass bo cohomology. The lemma is false for 2-cohomology, sssen-

tially because we areusing o and not d;_‘" for the log complex.
z z
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Ey = H¥Y, #%(L%)

d
4= = cohomology of {... (¥, #7) —>[(Y, &) > ...}
(cf. [17], pages 176-179). As an application, we see that if &*, ™
are two complexes of sheaves with HY(Y, . #*) =0 = HYY, o*) for
g >0, and if we are given a morphism
o
Lt — A*
of complexes of sheaves such that cohomology sheaf map
Yy s HHL) s A
is an- isomorphism, then the global eohomology map

ker ((Y, #7) > D(¥, L7*1)}  ker (I(Y, A7) > T(Y, A7*1))
dT(Y, L*) dI(Y, ™)

is also an isomorphism.

and o°* = j, (o#*(X)), where j:X = X is the inclusion mapping.
Note that T(X, o#*(log (D)) =A*(X, log (DY) and T(X, j(a/*(X)))
= A*(X). Proposition 5.14 consequently follows from the

Levmma.  The induced mapping
H (a4 (log (D)) —> H¥(ju(*(X)))
is an isomorphism.
Proor. The quest;ieh is local in a neighborhood I/ at infinity
given by (5.4). Let

c[‘izl ....ﬁ}:C“‘i"*H

z 2 Lz

be the free differential graded algebra generated by @51 S ,i%
1 k

having differential d — 0. There is a commutative triangle

and
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AMU, log (D)) —> A*(U)

\_/

z1 %

of complexes, and v, is an isomorphism on cohomology by the usua] §

de Rham theorem.
phism on cohomology.

2

There is an obvious weight,_ filtration W{( C{ [tizf} }) such thag

" { W, (C i {iz_"} } ) ] c W(A*(U, log {D>)).

Moreover, there is a commutative triangle

(k]
Wid*(U, log <D})) —s A*~HDWF D)
Wy (A*(U, log {D3))

B = Poincaré residue

Uz

wf_z(cu;}'})

where B, is obviously an isomorphism on cohomology, and R¥lis
also an isomorphism by Lemma (5.13). (This is the main step in the -

proof). Thus «, is an isomorphism on cohomology. Using this it
follows inductively on [ that

wi W € {{ &} ] — wiar @ 10803

Thus it will suffice to show that u, is an isomop. 4

v s :
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induces an isomorphism on cohomology. For I=k, we obtain our

lemma.
REMARK. Lemma 5.13 plus the same method of proof gives the
(5.15) CoroLLaRY. The residue mapping R¥: W /W, —

A*H( D™ induces isomorphism on both d and 8 cohomology.

(d) The weight and Hodge filtrations on cohomology. On the C* log
complex A*(X, log (D)) we have defined the weight filtration, W; in
§5(b), and we now define the Hodge filtration by \

FPA*(X, log (D) =@, A (X, log (D)) (5.16)
The weight and Hodge filtrations induce filtrations on the cohomo-
logy H*(4* (log (D))= H*(X, C), and it is to be proved that (with
guitable indexing ! ) this gives a mixed Hodge structure.

(5.17) ProposrrioN. The weight filiration W, {H*(X, C)} is defined
over Q. &

Proor. We begin with a preliminary remark. Suppose that
pe W(d* (X, log (D})) is a closed form of filtration level I. Then

the Poincaré residue

R g e A*- (DY)
is a closed form giving a cohomology class in H*~!(DV, C). If this
class is zero, then by Corollary 5.15 we may find §& W, such that
o—dficW,_,.

To prove the proposition, we take a closed form ¢ € 4*(X, log {D}).
Then
RM pe H* (DM, C)

== 0, and conversely if Ri"'p

is well defined. If g W,_,, then RI"l ¢
is zero in cohomology, then by the above remark we may find f¢
A* (X, log (D)) such that ¢ —d8e W,_,.
we find that

W,{H*X, C)} = {p€ H¥X, C): RMo= .=
where, on the right hand side, the R!le are taken in H+*(DM, C).

Repeating this argument

RU+1 5 =0} (5.18)
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With the description (5.18), it is clear that the weight filtratioy

W {H*X, C)} is defined over Q.

Now consider the filtration

W= = W{(A4*(X.log (D)) (5.19)

on the log eomplex. The indices have been reversed in order to give

decreasing filtration,
wid W ra WS,

S0 t}_w.t we may consider the spectral sequence (=s.s.) of a filtered
complex [17]. Accordingly, there is a s.s. {E,} such that £, is the
associated graded to the weight filtration on H*(X, C) and

E, = H¥W-Yw-i+),
(5.20) Lesmma. The Hodge filtration {F7} induces a Hodge sm;c-
ture of pure weight k -1 on HYNW 1[IV =1+1),
Proor. Using the obvious notations,
PPW- YWY 2 (@, WIS Wi,
The Poincaré residue operator induces

RW
Fo(W 1 W=i+1) s FP- Y A*( DI,

Applying Corollary 5.15, it follows that
HY WY w1y = g ptiy

is a morphism of Hodge structures of type {(— [, — I).

(5.21) Lemma. The mapping d,: B, — E,| is amorphism of Hodge
structures.

Proor. Using the isomorphism

B, =@ H*D,),

we shall prove using (2,19) that d, is given by Gysin mappings

H*(Dil,..:';) — }1*+2f"{)f]...|'i_ ).

1

A class o € H¥W YW '"') may be represented by a form
oe W (4*(X, log (D)) such that R¥dg = dR"¢ = 0. Then
by definition
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d,p = R¢-Vido,
since d, is the coboundary map arising from the exact sequence of
comptexes
00— W, W _s— WIW,_y— W /W, —> 0.

v Any and g = 2 n; N\ 9. Then by an

Write 7= n; A
lilm=i

obvious computation

R“_}}d?'n;!.._i{._l - z + {wj A%, st A ‘l’?il...:’!_ .13'}1
1
which is just the Gysin mapping according to (2.19).
(5.22) CoroLnarY. The weight and Hodge [filtrations on
AMX, log (D)) induce a mixed Hodge struciure on &,
Proor. This follows from Lemmas 5.20, 5.21, and Corollary 1.15.

The main remaining step in the proof of Deligne’s theorem is to

ghow that the spectral sequence in question degenerates at K,

This will be proved in the next section.
(e) Completion of the proof of Theorem 5.1.
(i) Degeneration of the spectral sequence.

We continue the discussion of §5(c). In case D is smooth,
the weight filtration is just W, c W, and consequently &, = K.,
The crucial case is when D = D, u D, and we shall check here
that d, = 0-—this will suffice to make clear how the general argu-

ment goes.
Let « be a class in
B =H¥W_, /W)= H* %D, n D,)

(ef. 5.15)). We may assume that x is represented by a closed
C={p, q) form on D, n D,. Let & be a €' extension of « and 7,, 7,
as in (5.9). Then

A = Anan 3
gives a form in W, {A*(X, log {D)}} with

R’ = a.
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If d)« = 0, then, referring to the proof of Lemma 5.21,

Wwe may fing
forms B; on I, such that '

a

g /N 7—'}1, = {){31. !

RUN(d4" D, = M2 Ade
R (dA )Juz =n, N\ dZ + wy Nty = dg..

Moreover, we may choose the 8; to have t-‘-"?_e (P9 B l’l.):' ot
(E +1,) (cf. (2.10)). Setting B’ = — (5, A By — 7y Ba) where the
B; are ' extensions of B,, 8,, we find the relations
R*™A' + B) =«
RENd(A' + B)) = R(\(d(4’ + B)) =0
d(d’ + B')e F**? 4* (X, log (D).

(5.24)

|
f
|
|
|

Now we may repeat the same argument using 7,, 7, and solving

the equations (5.23) emphasizing the opposite direction in the Hodge |

filtration. This leads to A", B" satisfying
RE(A" + By =a
RZ(d(A" + B") = R'(d(4" + B")) =0 b
d(A" + B") e FTT2 A*(X, log ¢ D).

(5.25)

Since deg [d(4" + B')] = p + ¢ + 3, equations (5.24) and (5. 25) say

exactly that dyx e £3® has total degree p-+q -

FPHEYF 0 FO3E =0,

3 and is in
since /, has a mixed Hodgé structure by (5.22). Thus o, o = 0.

As was the case in the proof of Lemma 4.7, this proof is
simply an application of the principle of two types as discussed at
the end of §2(a).

REMARK.

(ii) Tying up loose ends.

Given X, we have chosen a smooth completion X of X, defined

the log complex A*(X, log (D)) with a weight filtration IV, and

Hodge filtration F7, and proved that

# Recall that dy: E, "2 —E,"

ol e
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H*(A*(X, log ¢ DY) = H¥(X. C):
the filtrations W,, F? induce a mixed
Hodge structure on H*(A*(X, log {D3)).
Moreover, Corollaries 5.2 and 5.3 follow immediately from the defini-
tions of W, and (5.20). It remains, therefore, to prove independence
of our construction from the smooth completion .\ and funetoriality.
Observe first that, given a diagram
Yy ¥
Y

Xe s X

(5.26)

then f*: AX(X, log (D)) — A*(¥, log (D)) commutes with the
weight and Hodge filtrations. Given smooth completions X, X, of X,
by [29] there exists a smooth completion X; and a diagram

X,
™
5 u &

S ¢

X

and independence of the smooth compactification follows. Given a
morphism ¥ 4 X using [29] again we may find a diagram (5.26) and
this implies funectoriality.

6. Applications of mixed Hodge structures. (a) Applications to
moduli. Let X, S be smooth quasi-projective varieties and f: X8
a smooth, proper mapping. Setting V,= f~1(s) (s € 8), we may think
of X as an algebraic family {V,},.g of smooth, projective varieties
with algebraic parameter space S. Pick a base point 5,8 and set
V=V,. The fundamental group (S, s,) acts on the cohomology

HY(V, Q), and we let

P=HYV, C):

by the invariant part of the cohomology under this action. Note that
for each point s € S there is a well-defined inclusion
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iye 1" —s H"(V,, C)
obtained by “transporting” I" to V', along some path from s, to 4

(6.1) Prorosrrion. (cf. Corollary 4.1.20f[13]). ["c H*(V, C) hay

an induced Hodge structure, and the inclusions 1, are all morphisms of

Hodge structures.

Revark.
and if in each H"(V,, C) we decompose ¢ into (p, g) type

¢ = Z Pog (8,
»

TH=HN

In other words, if ¢ is an invariant cohomology clagg

then the g, , (s) are constant in s. In particular, if ¢ is of fixed type
(p.g) at one point s€S, then o is everywhere of the same (p, q) type.

In [19], Proposition 6.1 was proved for an arbitrary variation of -

Hodge structure H —+ 8 with compact base space 8. Using the results

of the second author [41] discussed in §9 below, (6.1) may be proved :

for an arbitrary variation of Hodge structure H-»S with an algebraic
variety as base space (cf. §10).

Proor.
in §2(a), the image of

According to Deligne's degeneration theorem discussed
- P r
H"(X, C) — H"(V,C)
is exactly /". Note that i, ({") is then the image of

HYX, C) =2 Hv(V,, ©)

for all s € 8. Let X be a smooth com pactification of X. In the diagram

HYX,C) —P; HY(V,,C)

HYX,C)

we will show that

T

RECENT DEVELOPMENTS IN HODGE THRORY 85

image p = image p. (6.2)
If this is done, then because j is a morphism of Hodge structures,
1"~ HYX, C)/ker p
will have an induced Hodge structure. Since ker p = ker j, for all
5. the inclusion i, will be morphisms of Hodge structures and our

prupositiml is proved.
According to Theorem 5.1, the cohomology H"(X, C) has a
fuﬂctorial mixed Hodge structure { W, F?, H*(X, C)} with
W, (HYX, C)) = image { HMX, C)—» H"(X, C)}.

Since H"(f, C) and H*(V, C) have mixed Hodge structures of pure
weight n and all maps are morphisms of mixed Hodge structures,
our assertion (6.2) follows from (6.3) and the strictness Lemma 1.10.

(6.3)

(b) A direct proof of a result of Deligne about meromorphic forms
on projective varieties. Let V be a compact Kiihler manifold. It is

well known that
(i) every holomorphic form on V is closed; }-L _—
(ii) a non-zero holomorphic form is not exact. | )
Clearly (ii) = (i), and (ii) may be most casily seen as follows:
Suppose that ¢ £ 0 is a holomorphic q-form and ¢ =dy for a C*
form 7. Letting w be the Kihler form, by Stokes’ theorem, and

because dw = 0,

0 < (v/=1) j e AP A @ 1= (y/=1) I A ABA ") =0,

14 v
a contradietion. In [13] Deligne proved the following generalization
of (6.4):

(6.5) Prorosirion. Let Dc V be a divisor with normal crossings
and ¢ e I'(V, Q'(log (D))) a meromorphic q-form having a
logarithmic singularity on D. Then

(i)

(i)

do = 0, and
if g = 0in H(V—D,C). then ¢ == 0.
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Proor.  We shall give a proof similar to the speciul case discusseq
above, Observe that the result is not changed if we replace 1) by
1> = H. where H is a suitable hypersurface section relative to ,

projective embedding of 1. Thus we are free to make /1) as ample .

as we wish.
We first show that (i) = (ii). Settingu = V — D, if
pel(V,Q%log (D}))
is zero in H%u, C), then taking u to be affine, we have by the
algebraic de Rham theorem [26] that
v = d (6.6)
where 7 is meromorphic on V and holomorphic on U, The obstruction

to lowering the order of pole of 4 along D) to one are in ct)homolog}-
groups (cf. §10 in [20])
HYV,Q; @ 0[uD]) (»>0,p > 0),

and these may be made zero by making D more ample. Thus we may
assume that n has a pole of order one on D, and then

ne (¥, Q' (log { D))
by (6.6). Applying (i), 0 = dn — w which gives (ii).

We now prove (i). The Poincaré residue (cf. §5(b)) R(p)is a
holomorphic ¢ — 1 form on D, and thus dR(p) — 0 by the usual
result on Kibler manifalds. Thus

R(dy) = d(Rp) = 0,

and so dy is holomorphic on V. Let T, be an e-tube around 1. Then

0= (4 — 1)1 j de N dg N\ "7 (since dy is holomorphicon )
5

(v — 1) lim J. o Ado A w7t (Stokes' theorem)
ot

e+

— 1y o
o I J' R(g) N dy A w71 (by residue formula)
7 n

since () has type (g — 1, 0) and dp has type (0, ¢ + 1).
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(c) Intermediate Jacobians.*) Let ¥V be a smooth projective
qari;:ty of dimension n and
T(V) = Rp=1 Ty(V)

the intermediate Jacobian of V@) If o/(V) are the algebraic cycles
which are algebraically equivalent to zero and taken modulo
equivalence, then one has the Abel-Jacobi mapping

o (V) = T(V).
The image ¢{s/(V)} is an abelian subvariety I%V), and an out-
gtanding problem is to (i) describe I°(V) algebro-geometrically and
(i) prove that, up to isogeny, [)(V) is the dual abelian variety
[,.2(V) to I, 0. (V). Using Deligne’s theory, it is possible to do
this in one significant new case, which shall now be discussed.

on V
ra_ti(}nu.l

To explain this result, we recall from §1 of [22] the notion of
incidence equivalence, and let 2(V)c .« (V) be algebraic cycles which
are incidence equivalent to zero. The quotient

A (V)] 2(V) = Pic( V)

was termed in [22] the identity component of the (algebraic) Picard
variety of V. Abel’s theorem (loc. cit, §3) gives a factorization

A(V) —> I(V)

\ / v (67)

Pic’(V)
It is conjecturally the case that (i) 4 is an isogeny, and (ii) that
the duality relation
y ’T/f“-\_\“
Pid(V) = Pio,_9.,(V) (6.8)
is valid upto isogeny. We shall prove that this is so when

# The general reference for this section is [22], whose terminology and nota-
tions we shall follow. Intermediate Jacobians are also discussed in [36].

® Ty(P)= FUH2-1(V, C)\H2~1(V, C)/HU~1(V, Z), 50 that

T, (Vy — HYV, OyHYV,Z)and T,(V)=Alb (V).
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dim V =2m + lisodd |

H¥*1(V, C) = 0for q % m®, (6.9)

Proor. We shall first discuss a special case. Let {Z,},. s be an
algebraic family ofm-dimensional subvarieties Z,c ¥ with smooth
projective- parameter space S, and which is in general position so
that the incidence divisors

D,={s'eS: Z, nZ, + &}

are defined. The correspondences

§— Z,
D,
induce mappings
[+

Alb (8) — I%(V)

”
l” L
Picy (8) (6.10)

where the factorization 5 =i ¢ is a consequence of Abel’s theorem
(§3 of [22]). The homology intersection relation

(Paclec), 94(B)) = - (o0, i (B)) g (o, BEH (S, Z))

is easy to verify, and it follows from (6.10) ﬂ.l‘ld (6.11) that up to
isogeny

(6.11)

the intersection pairing
is non-singular on

ker ¢ = kery -
{ } ex[H,(S, Q)]

in (6.10) (8:18)

* Examples of such ¥ are complete intersections in PN, The reason for assum-
ing (6.9) is that all of H2m+ 1V, Q) is primitive (§2), and thus the cup-product
Him+1L(V, Q) @ HIm+1(V, Q) - Q is non-degenerate on any sub-Hodge structure
of H2m+1(V, Q).

-
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Now ox[H,(8, Q)] is a sub-Hodge structure of H,,,,(V, Q), and
consequently the intersection pairing is non-singular on ¢, [H (8, C)l,
gince H2"*1(V,C) is all primitive by the assumption (6.9). Thus
ker o° = ker 7" in this case.

In general, the point is that if {Z,},.s is any algebraic family of
algebraic m-cycles on ¥, then

9, 1 Hy(8, C) = H,,,,(V,C)

is a morphism of mixed Hodge structures of type (m, m) and,as a
result, the intersection pairing is non-degenerate on

eulHy(A(V), C)]C Hypis(V, C).

Now the same argument as before may be applied to give our
desired conclusion,

7. Hyperbolic complex analysis and the period mapping.

(a) General comments: the Ahlfors lemma. Hyperbolic complex
analysis is the study of holomorphic mappings into negatively curved
complex: manifolds; i.e. complex manifolds M having an Hermitian
metric dsl{. whose kolomorphic sectional curvatures K (L) ({ € T(M)=
holomorphic tangent bundle of M) satisfy

Rl & 0P, (7.1)

If NcM is a complex submanifold with induced metric ds¥,
then for { & T'(N),

Ky() = Ky(l) — 180 % (7.2)

where S(£) is the second fundamental form of N in M. In particular,
N is negatively curved if M is, and this is one of the two reasons why
hyperbolic complex analysis works so well, the other being the

Ahlfors Lemma 7.7 below.

Let A={2eC:|z| <1} be the unit disc and define a pseudo-
metric on A to be given by
¥ The general philosophy dnd uses of hyperbolic complex analysis are discussed

in the monograph [34] by Kobayashi, and the paper [48] by Wu, both of which con-
tain the relevant definitions and differential-geometric formulas.
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hiz)dzdz,

R of A. The Gaussian curvature and Ricet form are defined by

1 d%log A
EWy==gp =5
— 2 i
Ric (w) = ”/4 : (a BLOB%Z ?') dz Ndi= —Kh)w;  (1.4)
v —1

here w

The rules (cf. [24] for further discussion),
Ric (e* w) = 1{4.,_1 (80p) - Ric (w)

Ric (f*w) = f* Ric (w)

afford easy manipulation of the Gaussian curvatures.

If f: A— M is a non-constant holomorphic mapping into a nega-
tively curved complex manifold M, then by (7.2) f*dsj is a pseudo-

metric on A, whose Gaussian curvature K satisfies

K<—A4<0®

The Ahlfors lemma compares a general pseudo-metric satisfying

(7.5) to the Poincaré metric

dsE—n(z) dod — M%
(7.6)
Rio (" __Iqr(z)dz/\dé) = Y= ma)da A di

Despite its simplicity, it is one of the most powerful and subtle
tools available in the study of holomorphic mappings.

™ The pseundo-metric -l‘z j*(ds_ﬁ, ) has Gaussian curvafure K < — I, and in this

way we may always assume that A=1 in (7.1). The points z, & R where h(z,) = 0
should be thought of as having K(z,) = — .

(7.3) |

where A(z) is C* on A and k(z) > 0 on A — R, for some discrete subseg |

- Y1 Rz A d2 is the (1.1) form associated to the metric,

(7‘5] o

g

(f: A-> A holomorphie) ;
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Given a pseudo-metric h(z)dzdz on. A whose

(7.7) LEMMA {Ahlfors).
)20

gaussian curvature satisfies K(z) < — 1, then h(z) < w(z

& - }szzdz IR
ProoF. Let ds} (p) = m,(z) dzdZ = F=zPP be the Poincaré
metric on A= {z: 2| < p} with Jaussian curvature K, = — 1. Writing

hiz)dzdz = p,(2) dsp(p),
it will suffice to show that p, < 1 for p < 1 since

lim p(z) = py(z) (zeA fixed).

el
The reason for doing this is that p,(2) goes to zero as |z|—p for
p<1,and thus g, has a maximum at some point ze A,. By the
maximum principle and (7.4),

a2 lOg P‘p(zll)

e L

= K, m,(z0) — K(z) hz).

Since K, = -1 and K(z,) = — 1,
holzo) = m.(2p)
which is the same as p(z,) = 1.
To conclude this section, there are three little properties of the
Poincaré metric we wish to record for future reference.
(i) Let U={zeC:z=2x+iy,y > 0} be the upper half plane
and py(z, 2') the distance measured in the Poincaré metric i

B da? + dy®
dsp = =
y

on U'. From the formula for ds},

Az,z +1)= —. (7.8)
pol T
B Phe invariant form of the Schwarz lemma [28], due to Pick, states that if
. R -
fi A — A is a holomorphic mapping, then f*dsp)sdap, or equivalently

LA
=T 7 (L— =%
i . i a x
this follows from the Ahlfors lemma taking h(z) dzdZ = f*(dsp ). Note that the

proof of (7.7) is quite similar to the proof of the Sechwarz lemma.
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(i) Let A* = {0 < |z| < 1} be the punctured disc and A* _, |

{0 < |z| < p}. Via the universal covering map

U —— AF*

z > I,:i!w'Tl.s
the Poincaré metric induces the metric

] dzd3

def — ——r

=1% (log [z/)®
on A*. Denoting by p,. (2,
(7.9), for fixed z and 0 < ¢ < |

1
pas (2, £2) = 0 (log log : bE (7.10)

Proor.

Using (7.9}, we have

1 i

ds i 1
T -0 - = — —| loz log - 3
pas (2. 12) (L- log I_.u’s) U( J ds ( 0g log s) ds)
t

t
-
=) (Iog log E).
(iii) Finally, it follows from (7.9) that for p < 1

dady

j\/ii _ dz p dE

2 |z[? (log |2]3)% e ¥

_.3' Ly = — logp
»

so that A} has finite non-Euclidean area for p < 1.

(b) Unipotence of the Picard- Lefschetz transformation. Let D =Gy/V
be a classifying space for polarized Hodge structures, T' == &, the
arithmetic group of integral points in Gy, and I'\ D the eorresponding
modular variety. Now the principle of hyperholic complex analysis
does not apply to I'\ D, but it does apply relaiive to those holomorphic
mappings which might come from algebraic geometry. More precisely,
from (3.14), (7.2), and (7.7) we have

{7.12) LEMMA,
horizontal

z') the distance on A* measured using

w (7.11) 4

Let f: A - I'"\D be a locally lifiable, holomorphie,
mapping. Then

(7.9) |

.
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fH(dsh) < ds3,
where ds3y 18 the metric on U\D induced from the Gy-invariant metric
on D and ds is the Poincaré metric.

A beautiful and simple application of (7.12) to the Picard-Lefschetz
transformation (§3(b)) has been given by Borel. Let

frA* ST\ D
be a locally liftable, holomorphic, horizontal mapping of the

(7.13)

pun(:tured disc into D). Letting U = {z =z + iy, y> 0} be the
aniversal covering of A¥, we obtain from (7.13) a diagram
r
U —m— D
7.14)
¥
A¥ 2 S TND

where I': U — D is a holomorphic horizontal mapping which
covers [. In particular
Flz - 1) = T F(z),

where 7' € T is the Picard-Lefschetz trangformation associated to f.

(7.15)

(7.16) Prorosrrion (Borel). T'he eigenvalues of T are roots of

unity 50

Proor.
integer, all of whose conjugates have absolute value one, must be a

According to a theorem of Kronecker, an algebraic

root of unity. Since 7' e ¢z is an integral matrix, it will therefore
suffice to show that all eigenvalues of 7' have modulus one. Now
Vo @Gpis a compact matrix group, and thus the cigenvalues of
all h e ¥ are of absolute value one. Thus it will be cnough to find a

*® When f: A*— I D “ecomes from algebraie geometry™, e, when there is a family

X — A
of polarized projective varictics with f{f) = “Hodge structure on Pu{z—1))", then
(7.18) is part of the so-called wmonoedromy theorem (cf. Landman [35] for the original
proof plus further references). Matrices T all of whose cigenvalues have finite order
are said to be quasi-unipoteni. Tor a suitable positive integer N, T¥ — [ is then
nilpotent. The exact position of 1" in G has.been determined in [41] (ef. §10).
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sequence {g,} ¢ Gy such that
g.'Tg,—> V.

Let {z,} ¢ U be a sequence of points sueh that Im z, — co. l)enuting
by pg, and p,. the distances associated to ds 2 and dsj, we have by
(7.15), (7.12), and (7.8} ~

polF(z,), T*F (z,)) = pp(F(z,), F(z, + 1))
= pL-(ZN, EM + ]}
o
“Imz,
which tends to zero as n -+ 0. On the other hand, since Gy acts transj.
tively on D, we may write F(z,) = g, p, for some g, € Gg(p,=
reference point in D), and
po(Do 9 ' T9uP0) = Ppl@nPor TGuP0) —> 0

since ds? is (7 invariant. Thus g, 'Tg, —V. and we are done.

Further applications of the Ahlfors” lemma to variation of Hodge

structure will be discussed in §§8, 9 below, and arc also givenin §§ %

and Appendix D of [19].

4. Applications of Nevanlinna theory to the period mapping.

(a) A preliminary resull from Nevanlinna theory. The general
philosophy of hyperbolic complex analysis perhaps finds its deepest
manifestation in the Nevanlinna theory (cf. pages 247-260 in [38] -
and [24]). We want to give two applications of this theory to.
variation of Hodge structure, and as a preliminary-we shall prove

a proposition which is a sort of big Picard theorem. Our method is |

similar to that in §9 (b) of [24].

Let V' be a projective algebraic variety and U c 1 an open subset  }

consisting of smooth points.*" We wish to find conditions under
which a holomorphic mapping

fiA* — U

3 Both eases where U is a Zariski open set in V' and where U= D isa
classifying space for Hodge structures and ¥ = D is the compact dual will be used.

r

[+
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extends across the origin z = 0, to a holomorphic mapping
f3 A y JLE2
On U we assume given a negatively curved ds7, with associated
(1,1) form wpy. On 7 we assume given an algebraic line bundle L— V
and holomorphic sections oy,..., oy such that the rational map
ooy --ry ox]: V —+P¥

is a holomorphic embedding on U. The ratios ¢, — ¢,/o, are rational
funetions on ¥, the pullbacks f*¢, are meromorphie functions on A*,
and clearly

flz) extends across z = 0 <= the meromorphic

functions f*p, do not have an essential

singularity at z = 0. (8.1)
Relating the metric on U to the algebraic geometry on V we assume
that there exists a fibre metric in the restriction | v — U which

satisfies the two conditions

(i) dd°log |'L'*’ < Cwylo e T(U, O(L)))°» ]
o

(8.2)
(i) loi(f(z))| =0 (ll_\,) (ze A%)

(8.3) ProrvositioN. Under the above conditions, any holomorphic
mapping f: A* - U extends to f: A — V.B%

Proor. A meromorphic function ¢(z) on A* has an inessential
singularity at z = 0 <> for some 4 the equation

p(z) =a (eeP!, ze A¥)

# We are interested in the possible singularity of f{z) at z =0, and not on the
boundary circle |2} = 1. Thus we shall assume that f extends to the alightly
larger punctured dise 0 < |2} < 1 +€.

* For any holomorphic section o, the (e (1,1) form dde log i_1_|= represents the
a

Chern class of L i computed from the curvature of the given metric (cf. §0 (a) of [24]).

*  This proposition implies the usual big Piccard theorem by taking 7 = P,

U=pr.{0,1, w}, L—=+P! to be the standard bundle with usual sections and
2

metric, and da -

o the metric constructed in §2 of [24).
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has << A solutions for all points @ € P'; this follows from the Casorqy;.
Weiersirass theorem. (Given a linear combination

N
o= a,o; (a,eC)

of our sections o;, we consider the section
f*a e D(A* O(f*L)).
Denote by n(e, r) the number of zeroes of f*oin 4, = { : <|z|< 1} _m}
It will suffice to show that we have a uniform estimate -
nlo, r) < 4 (8.4)
for all r and o.

Now the problem of estimating the counting function n(o, r),
both from above and from below, is the basic problem of Nevanlinna
theory (ef. the Introduction to [24]). In the present situation, we
shall simply apply the First Main Theorem (FMT) of Nevanlinna
theory to the data at hand to prove the upper bound (8.4) (The
Second Main Theorem is the tool for proving more subtle lower
bounds.)

To give the FMT, we let u(z) = 0 be a C* function on 0 < |z| <1
such that, around any point z,,

e = 12—z "™ pofe). (8:5)
where py is C° and pyfz)) > 0. We call p, the muliiplicity of z,

and leb
D= Z,u,u:'zu
be the divisor of p. Denote by
n(p) = degree(D 1 4,)

N(r) = j n(p) %P
{ P

% Of course, we assume that f*e £ 0. Rocall also that f is assumed to extend across
the circle |z]= 1.

-

|

(
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o counting functions associuted to . Clearly

nip) = A (8.6)

th

is [,[lui\‘&lk‘nt to an estimate
N(@) o A log r 4+ B. (8.7)
Taking p(z) f¥o) (z) % D == D, is the divisor of f*o and (8.4)
follows from (8.7) with a uniform A independent of o. The following
Jensen-type formula is the FAT in the present context,
(8.8) Leaya.  For u(z) as above, we have

r

) j‘ log (-l r':ﬂ) df — [ ( j dd log P") f{p - 0(1).
Do r y p

N{r)= 5
i 1 Ap

; ; 1 -
Proor, Make the change of variables w = = so that A, is given

by 1 < [w] < p. In case

S| = w—w,
a4, x

v
(8.8) is the usual Jensen formula. In ecase pl, is everywhere = 0,

log p is €' and Stokes’ theorem applies to give

J- (I dd® Il)g f‘) @‘f = j ( I d° l()g JJ') d_p
: 5 | =

1 4p jwi=p

‘ g {1 v dp

i e log p (pe") w) &P,
-[,oap(_;277 I og p(pe) s
1

L]

= ﬂ_,[ log p (re'”) df — ‘.:Z_ log p (e*)dd,
o =

i}

S L

which is the desired formula. The general case follows by writing

N

where p, > 0 on 4,.
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The estimate {8.7) follows immediately from the Ahlfors’ lemmyg,
(7.7), {7.11), our assumptions (8.2), and the integral formula (8.8);

! e . .
TTJ log 1 7 )‘”” < dylogr + B, by (i) in (8.2);
]

J dd° log ,i <0C j fray by (8.2)
Ap Adp
=4, < @ by (7.7) and (7.11),
and so N@r)<Adlogr + B(d=4d,+ 4 2) by (8.8),
Remark. The estimate

r

j (j f*w:,r) %P =0 (log r) (8.9)

0 a4,

may be proved by (8.8) without using the Ahlfors lemma as follows:
Write
Srog =Y "Ly 4z pdz
77

and apply (8.8) to u, using the negative curvature assumption in the
form

Vg
ddflog u = - dz A\ dz, (8.10)

to obtain:
o= [([ e
F P
1 i0 dp .
B u(te )dﬁ)tdt) ——  (polar coordinates)
a i P

f

(i}

, by definition

N

, by (8.10)

I dd log P) dp
A P

']
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B
< 2_1 I log p (rei®) d6 -+ 0(1) by (8.8)
ﬂ o
B

< log (%ﬁ J o (m“]dﬁ) + 0(1) concavity of log
i

= log d’i‘;:’)] + 0(log r); i.e.
T(r) < log [dgﬂ")] + 0 (log 7). (8.11)

It is a calculus lemma that “(8.11) = T'(r) is 0 (log )" (cf. [38],
page 253). This proves (8.9).

(b) Borel's extension theorem. ILet D be a bounded, symmetric
domain, I' ¢ Aut (D) an arithmetically defined discrete group of
automorphisms, and U = I'\ D. Borel and Baily [2] have constructed
a compactification V of U, where V is a projective variety in which U
appears as a Zariski open set. From our point of view, V may be
best described as follows:

Let K — D be the canonical line bundle (canonical factor of
automorphy). The I'-invariant sections of K*— D are called
automorphic forms of weight ;. and induce sections o eT'(U, O(K¥)).
Now the graded ring @®,.,I'(U, O(K")) is of finite type,*® and
for sufficiently large p the sections in I'(TU, O(K*)), induce an
embedding U ¢ P¥ in which U appears as a Zariski open set
in its Zariski closure V.

(8.12) ProrositioN (Borel). A holomorphic mapping f: A* - U
eviends to f: A—> V.

Proor. It is well known that K— D has an invariant metric
whose Chern class w is a negatively-curved ds% on D. This then gives
the ds% in §8(a), and we may take L = K*and (i) in (8.2) is satisfied.
For our sections o; € (U, O(K*)), we take the so-called cusp forms:

* of. Andreotti-Grauert [1] for a function-theoretic proof. The proofs of these
statements require general information about the fundamental domains for I,
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these are automorphic forms which, so to speak, vanish at mﬁmtv
[2]. For such o, the length

SUPyey | @y(p) |
ig bounded, and for large p there are sufficiently many cusp forms t,

< + @

induce a projective embedding of U/. Proposition (8.3) now applies ¥

to yield a proof of Borel's result.

REmaRks. (i) Properly speaking, what we have proved is that,

given fi A* - I'\D, the ratio oo’ of two cusp forms of the same
weight pulls back to give a meromorphic function f*(o/o’) having

an inessential singularity at z = 0. With a little work, the same could
be proved for general automorphic forms using the full strength of
condition (ii) in (8.2).
(i) The result of Borel [5] is stronger, in that he shows that if
[ (A% x AU

is a holomorphic mapping of a punctured polycylinder into no,
then f extends holomorphically to

A x Al V.
In both his proof and the later proof by Kobayashi-Ochiai extensive
use is made of the detailed description of Siegel sets. The strongest
result along these lines is due to Kierman-Kobayashi [32], who
show that

FI\D->T\D
extends continuously to the compactifications on each side.

(¢) A Riemann extension theorem for variation of Hodge structures.
As a second application of Nevanlinna theory, we shall prove the
following (cf. [18], [41])

(8.13) ProrosrrioN. Let D be a classifying space for variation of
Hodge structure and f: A*— D a holomorphic, horizontal mapping.
Then f extends to f: A— D.

Proor. Let D bevthe compact dual to D, We will first prove that
J extends to f: A — D, where possibly f(0).€ 2D. For this we want to
apply Proposition 8.3 when U/ = D, V — D and L —» D is a standard
ample homogeneous line bundle (cf. §3(b)). Writing

Nisipiio
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D =Gy/V
e
D=M|V,
the line bundle L — D has an M-invariant metric | | yand L— D

|g- The ratio

| olg
X'l—

has a Gg-invariant metric |

ref ¥

.H'
ig & positive C* function on D. Let o € D be the reference point
and denote by pp(p, g) the Gy-invariant distance on D. From
Lemmas 3.19 and 3.23 in §3(b) we have

x(p) = Olexp py(o, P)).

We are now rea.dy to verify the hypotheses of Proposition 8.3,
The sections o; € I‘{D O(L)) will be chosen as a basis for this vector

(8.14)

space; obviously

supep | 03(q) Iy < C <o (8.15)
For the metric in L |;, we take | | then clearly
dd’ log IULI% = O(wy),
gince both forms are Gy-invariant. Finally
lo(f(2)) e = | o (f(2)) L x(f(2))
<0 x(f(z)) ; by (8.15)
=0 (exp pp(f(zo), f(z))) ., by (8.14)

, by (7.10).

=10 (]og%)

Thus we may apply (8.3) to have f: A — D extending our original
mapping.

In proving that f(0)e D, we shall limit ourselves to the case of
Hodge structures of weight two. The general case can be treated
similarly, and this will also provide an alternative point of view for
the proof of (8.13). We shall use the notation of §3(c). 1n particuler,

we make the identifications H = C¥*+* H, =Z** and the bilinear
(27 + s) symmetric, nonsingular,

from @ corresponds to a (2r +3)
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rational matrix ¢). The Grassmann variety Gr(r, 2r + 3) of r-planeg
in H=C¥** will be realized as the set of nonsingular (2r + s5) x
matrices (), modulo the equivalence relation

Q ~QAd, if 4 € Gi(r, C). (8.16)
The subvariety Dc Gr(r, 2r + 8) is described by the equation
NYQ=0, (8.17)

and the points of D correspond to those Q which satisfy, in addition

to (8.17),
—QQQ > 0. (8.18)
The line bundle L -> D which we shall use is the one induced
by the character 4 —— det 4 of Gi(r, C). Given an index set

I={1<1i<i<..<i,<2r+ s, we let Q; be the corresponding

minor of Q. As was discussed in §3 (e), the space of sections of L. D ]

is spanned by the Pliicker coordinates
o = det Q.
The M-invariant and Gg-invariant metrics on L are given by,
respectively,

2 _ [detQ, |? 2 |det Q
lor 3 Waﬂdh&[gdeﬁ(:ﬂQ );

where || Q| = X, | det Q; {®, Thus the comparison function is

___laep
x(Q) = &t (gD (8.19)

‘We are now ready to prove that given a horizontal holomorphic
mapping
fiA—s 5 such that
f:(A¥) c D
then f(0) e D. Represent f(z) by a holomorphic matrix ((z) having
rank k for all z € A, Then
—0(2)Q Q(z) = H(z) > 0

for ze A*, and we want to show that H(0) > 0. In any case H(0)> 0,
and if the inequality is not strict, then

i
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det H(z) < C |z (8.20)

for small [z|. Since [ Q(z) |2 = 0(1), it follows from (8.19) and (8.20)
that for [z] <e

x(Q) > A (8.21)

z|

On the other hand, by (8.14) and (7.10),
1\*
x(Q@z)<B (log 7) . (8.22)
The inequalities (8.21) and (8.22) cannot both hold, and thus f(0)eD.

9. Asymptotic analysis of the period mapping. Recently thesecond
author has been able to give a detailed analysis of an urbitz'firy
variation of Hodge structure over the punctured disc [41]. In this
gection, we shall discuss the two main theorems from [41], giving in
the “geometric case”®” an alternate proof of the first result, the
nilpotent orbit theorem, and then presenting a heuristic discussion
of the motivation and proof of the second result, the SL,-orbit

theorem.

(a) The nilpotent orbit theorem. Let D be a classifying space for
variation of Hodge structure and

f:A* — I\D (9.1)

a locally liftable, holomorphic, horizontal mapping (§3(b)). Denote
by U = {w = u+ fv: v > 0} the upper half plane and let

U— A¥
D VTJ. w

Wh—r 2 =€

be the universal covering mapping. Then (9.7) induces

¥ The “geometric case’ means that we assume given a complex manifold X and a
proper holomorphic mapping w: X—>A such that = insmooth outsider— 1(0) and such
that there is a projective embedding X — PY. The fibers Vz= n—1 (z) are smooth,
projective varieties for z # 0, but V, may have singularities. As explained in §3,
this situation generates a holomorphic period mapping f: A*— I'\D. The results in
[41] are proved for an arbitrary locally liftable, holomaorphie, horizontal mapping f.
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U——o D A
j’
\:;‘l
(9.2) 4

A*— . I\D
Flw +1) = T F(w)
where 7' is the Picard-Lefschetz transformation (cf. §7(b)). Using

(7.16) and passing to a finite cyclic covering of A* if necessary,
we may assume that 7' is unipotent with index of unipotency 1,038 4
Define 4

- E

(T -1

:’_1__._1)2 +
2 T

N=logT = (T—1I - e (— 1)

G(w) = exp (— wN) F(w) e D.
From (9.2) we see that G(w + 1) = G(w), so that @ induces a mapping
g: A% ey 5

(9.4) ProrosiTioN. In the geomelric case, this mapping extends

to a holomorphic mapping g: A — D,

Proor. We consider the case of Hodge structures of weight two,
Then f(z) is given by a period matrix (cf. §3(c))

() = (j (@),

Ayf-l
where w(2) are a basis for H*(V,) and the y, are a basis for the
primitive part of Hy(V,, Q). According to the theorem on regular
singular points (§3(c)), the w(z) may be chosen so that

J w(z)

Yu

=0(|z]"%) (0<argz < 2),

Now g(z) is the point in the Grassmannian given by the matrix

* Thus ! is the smallest integer such that (T — I}+1=0. It is & consequence of
the results in [41] that [<<m where m is the weight of the Hodge structures classified
by D (ef: [35] for the geometric case).

j (9.3)

et CTCATIR
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(e‘ ir "') Q(z) = ¥(z).09
gince N'*1 = 0, it follows that
¥ (@) [ = 0(lz~%). (9.5)

Consider the composed ma}iping

A* -9 5 Gr(r, 2r + 3)

h l P
p ey
where p is the Pliicker embedding. Using (9.5), it is clear that h(z)
is given by a homogeneous vector
h(z) = [hy(z), ..., k(,‘-r}(z)]

where the hy(z), being the k x %k minors of '¥'(z), are meromorphic at
z = 0. Taking a common factor 27 out of all A, (z), we may arrange
that the J,(z) are holomorphic at z = 0 and some },(0) # 0. Then ¢
extends across the origin as desired.

Remark. It seems likely that this proposition could be proved
in general, using Nevanlinna theory and arguments similar to those

in §8(b).

We set g(0) = p, € D and consider the nilpotent orbit

[ O(w) = exp(wN) p, (we U)

(9.6)
1 O(w + 1) = TO(w).
(9.7) THEOREM (NILPOTENT OROBIT THEOREM): (i) For Im w=C),
the orbit G(w)e D and w —> Olw) is a horizontal mapping; and
{ii) given € > 0,

pp (F (w), O(w)) < A(c)exp (— 27 (1 — ) Tm w)

¥ That is to say, g(z) is the k-plane in C2r+#¢ spanned by the columns of ¥(z).
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for Im w = (.40

Proor. We continue discussing the case of Hodge structupeg
of weight two. Accordingly we may represent f(z) by a period matrix

Q(z) satisfying (8.16) and the relations
'Qz)QQ(z) =0
~"(2)QQ(z) > 0
Q(2)Q'(z) — 0
Q (e 2= T Q(z),

where ((¢*z) is the result of analytically continuing Q(z) around

z = 0 and T = % is the Picard-Lefschetz transformation. Now define

log z
; —_ —
R1=g s

W(z) = e~ 1O¥Qz),

Then ¥(e*'z) = W(z), and indeed ‘¥(z) is the period matrix repre- |
senting g(z) in (9.41,’ s0 that we assume W(z) extends across z=0.

as a mapping into D. Set.
Y(0) =¥, = p, € D.
The orbit mapping @(z) is represented by the matrix
Ofz) = e
It follows from the nilpotency of N that
Q(z) = O(z) + z E(z, log 2) (9.9)

where E(z, log z) is a polynomial in log z whose coefficients are holo-
morphic funetions of z. Our theorem will follow by looking closely at
(9.9) and using the Ahlfors Lemma 7.7, together with the metric
comparison Lemmas 3,19 and 3,23,

We first prove that ©(z) is horizontal. Differentiating (9.9) gives

(40) By the second condition in (9.6) and (i) in the theorom, @ induces a locally,,
liftable holomorphie, horizontal mapping

EJ::&;—» T\D;

(ii) says that @(z) and f{z) are asymptotic in the sense of the estimate.

where E; (

RECENT DEVELOPMENTS IN HODGE THEORY 107

Q(z) = L ér(-)(z} + Ey(z, log z) {9.10)
2wy 2

z, log z) is as before. Plugging (9.10) into the third relation

. N
i (9.8) and looking at the coefficient of @ gives

m

W, Q NY,=0,
which implies that )(z) is horizontal.
Next we want to prove that for 0 < [z | < p
_9(2)Q B(z) > 0, (9.11)
this being the condition that O(z) € D. By (9.9)

0 <—0) Q0E) =='0() Q OF) + 12/ *Iz)  (9.12)
where I'(2) is bounded near z = 0. The idea now is to show, using
the Ahlfors lemma, that

~10(z) @ O) > cflog é yK.I (9.13)

for some K; (9.11) then follows from (9.12) and (9.13). We begin by
looking at

By 2 I @
o) — dot (—'0() QT = . b (log 1)

a=0
i id 1 \8
ji(z) =det {—0(2)QO(z) } = z Jal?) (log m) (9.14)
=0

where h(z), j5(z) are C functions on [z} <p. By (9.12),
0 < h(z) =jlz) + 0 (l21'~). (9.15)

Suppose for a moment we can show that

1 o
hiz ;‘;C(lur—) (9.16)
(z) g
for some (possibly negative) o. From (9.16) it follows first that not
allh (0) = 0. If B, (0) = ... = k,.4(0) =0, 2(0) > 0, then by (9.15),
jal0) = ... =3j,,1(0) = 0 and 5,(0) > 0, so that j(z) > 0 for 2] <p.
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To prove (9.16), we use (8.19) and (8.22) to obtain

T o l f
L x(Q@) __,('(IO‘““ !_z';)

Mz IQEE T TIQEF

a
which gives (9.16),since ||Q(z)[2 = ¢ (log l) for some 4.
lz]

Now we were able to prove that j(z) > 0 for 0 < |z| < p using :'%‘

(9.12) and Lemmas 3.19 and 3.23 relating the M- and Gy
invariant metries in the homogeneous line bundle L — D. Applying -

the same argument to the homogeneous vector bundle E - D3

whose fibre K, is the vector space spanned by the columns of ()
gives (9.13) and subsequently ;

—0(z) QO () > 0for 0 < |z < p.
The estimate

polf @), 0) = 01219 1

is proved by a similar argument, and will therefore be omitted.

(b) The SL,-orbit Theorem. Theorem (9.7) asserts that the
period mapping of a degenerating family of Hodge structuresis
asymptotic to a mapping of a very special nature. By itself, this §.
result is not particularly useful. Tt merely allows one to reduce -
questions about the original mapping to questions about the appro- |

ximating nilpotent orbit. To get further, one needs a description of
the nilpotent orbits which can come up. Such a description is the =
content of the second main theorem of [41], the SL,-orbit theorem.

In the remarks preceeding (9.7), the Picard-Lefschetz transfor-
mation 7' is an element of the arithmetic group @,, which has been
made unipotent, if necessary, by going to a finite covering of A*.
This makes N — log T' a rational, nilpotent element of the Lie
algebra g, of Gy. Thus we have the following data : a point p, € D,
a rational and nilpotent element N e 1, and a constant €, such that

exp (wN)'p, e D, forweC, Im w=C; ] (9.17)

and w +— exp (wN)'p, is a horizontal map. [

J

s

e e,

"

=y
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Let us first look at the simvplest possible case, when D is the
ordinary upper half plane U, D the Riemann sphere P* = C U {0},
and G the group SL(2, R). The Lie algebra 3[(2, R) contains
exactly two conjugacy classes of nonzero nilpotent elements, namely

0.1 and (l} 2
0 0)‘ 1o}’

If N is one of these two, exp(wdN)'p, equals p, + w in the first

those of

-1
instance, nnd(.-l B w) in the second. The condition (9.17)
o

eliminates the latter possibility. Hence, up to an automorphism
of 7, the approximating nilpotent orbit takes the form w +—— py-+w.
The period mapping of a family of elliptic curves which acquire an
ordinary double point has this kind of singularity.

In very general terms, the .SZLy-orbit theorem, combined with
the nilpotent orbit theorem, says the following: given any one-
parameter family of Hodge structures which becomes singular,
one can equivariantly cmbed a copy of the upper half plane in the
classifying space, such that the period mapping asymptotically
approaches a mapping into this upper half plane, of the type
deseribed just above. The copy of the upper half plane arises as an
orbit of the group SL(2, R), and this may serve to explain the name
of the theorem.

Tor a precise statement, some more notation will be necessary.

We consider the basis

0 — 4/ —1
7= /_ W ; rx-{— =
v —1 0

L]
b

) )

(9.18)

(e

1 =1

of the Lie algebra &[ (2, C), and we set

a=(3"1)F=(3 o)

As usual, U/ will stand fer the upper half plane; we also identify
P! with the Riemann sphere C u { 20}.
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(9.19) THEOREM (SL,-ORBIT THEOREM) :
(9.17), there exisi

Under the hypothege,

(i) @ homomorphism of algebraic groups : SL (2, C) & &,
defined over R,

(ii) @ holomorphic, horizontal embedding :',!-r: U — D, which 4
SL(2, R)-equivariant with respect to i,

(iii) and a holomorphic mapping w v—— g(w) of a neighborhood ¥ of o,
in P! info Q.

with all of the following properties :
(a) exp (wN)ep, =g(— v/—Iw) a,b(w forwe Un¥
(b) g(oo) = e, and g(v) e Ggfor v/ —Lve¥? a0/ —1IRF;
(e} N = gu(F);

(d) with respect to the Hodge structwre corresponding to t}w point

(v — 1) € D, the linear transformations i (X .), y(2),
tho (X _) are of Hodge type (—1,1), (0,0)and (1, —1) mepectwety,

(e) if glw) =1+ gw™" -+ gow™* + ... is the power series expan-
ston of the matriz-valued fupction g(w) around w = co, then

(ad NY+1 g, = 0;

(f) ad y.(d) operales semisimply, with integral eigenvalues; let
g1 be the component of g, in the l-eigenspace; then gi = 0 unless
l<k—1,fork=1.

Moreover, when the condition ¢(cw0) = e is weakened to g(ow0) €
exp (image {ad N': g, — @o} n kernel {ad N: g, - g}), one can arrange
that the komomorphism s is defined over Q.

According to (a) and (b), the two mappings w - exp (wN)eop,
and w+— lz(w] take the same value at w = oo; the conditions (e), (f),
when looked at more closely, actually say that the two mappings
are asymptotic as Im w - co. In various applications (cf. §10),

!
|
E

|
n

e
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(o) (e), and (f) allow one to reduce problems about the nilpotent

orbit to questions aboutgﬁ Because of (d), the one- par. ameter family
of Hodge structures parameterized by the SL, orblt:g'x degenerates in
a very simple fashion. To be more precise, the upper half plane 7
cassifies polarized Hodge structures of weight 1 on C2; from this
aniversal family, by the operations of symmetric produets, tensor
pmdu(,ts with constant Hodge structures, and direct sums, the family
parametrized by J can be built up.

Although the proof of the theorem is technical, its basic idea can
be described in simple terms. We shall do so below, in the hope
that this may motivate and clarify the statement of the theorem.

Let {H;‘;"‘} be the reference Hodge structure on H, corresponding
to the base point of D. It induces a Hodge structure of weight
gero on Hom(H, H) which in turn determines a Hodge structure
{g*’:"ﬂ} the Lie algebra g of G¢. We identity the real subspace o
of g with the Lie algebra of Gy. Then

v, =" ngy is the Lie algebra of the subgroup ¥ c @y;

=@ p=o@? " is the Lie algebra of Be ¢ G¢; under the natural

isomorphism between @,_, 7= g/b and the holomorphic

tangent space of D = G¢/Bc at the origin, ="' corresponds to

the subspace of horizontal vectors. (9.20)
According to the hypotheses (9.17),

¥ b—p BXP (vV—1vXN) Py With ve R, v > C, (9.21)
represents a smooth, real curve in D = Gy/V. The Ad ¥V invariant
aplitting
gﬂ = DD @ (@y-x{l gp.—p n GD}
defines a (g-invariant connection on the principal bundle
V — Gg— D =Gy/V.

Hence there exists an essentially unique lifting v — k(v) € Gy of the
curve (9.21) to G, which is tangential to this connection.

We now introduce the three g,-valued functions

A(v)= — A1) (v), F(v) = Ad h(o) N, B(r) ~ — C,F(0) (9.22)
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(the apostrophe stands for differentiation, and €, denotes the Wej

operator of the Hodge structure {g” ?} on g), which are defineq

for » € R, v > €. By construction of A(v), A(v) takes values in
@, 200" 7. Because of the horizontal nature of the mapping

v i—> h(v)}s 0= exp (v — 12 N). peD=Gg/V,
combined with the last statement in (9.20), A(v) actually lies ip

(@ '@ g""")n go- When the holomorphic tangent space of D
G/ Bcat the origin is identified with g/b, the image of F(v) in g/h

represents the tangent vector in the ai direction of the orbit w +——y
%

exp (wN)cp, at w = 4/—1 v, translated back to the origin by A{v)~!,

Similarly, — 4 4(v) represents the tangent vector in the % direction,

Sinee the orbit is a holomorphic mapping, we find that A4(v) +

24/=1 F(») € b. Thus
E(@), Fv)ye (@™ @ ¢**® g """ go 1

A{‘L’:] e (g—l.l @ g],—l} A G } (9.23} ._

A(w)+ 24/~ 1 Fv) e g" ' @ g*°
The functions A(v), E(v), F(v) satisfy the system of differential
equations
2E(v) = —[A(), B(v)]
2F'(v) = [A@»), F(v)] ] (9.24)
A'(v) = —[E({), F(v)]
Indeed, the second equation is obtained by differentiating the equa-
tion which defines F(v), the first equation follows from the second
by applying the Weil operator on both sides, and the third is a
formal consequence of the preceding two, if one uses the information
in (9.23).

TFor the moment, let us assume that

h(v) has a Laurent series expansion in powers of p e

near v == o0, for some e N, which converges and represents
k() for all sufficiently large y € R. (9.25)
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The functions 4(v), H(v), F(v) will then share this property. Accord-
ing to the discussion of the Ahlfors lemma and its consequences in
§7, the mapping
w—rexp((w+ (v —1C)N)- p,, we U,

is distance-decreasing, relative to the Poincaré metric on U, Conse-
quently || A(@) [ = 0(r~ %) as y— oo. With some additional work,
one obtains the same estimate for () and F(v). Hence, still under
the assumption that (9.25) holds, the funetions (9.22) have series
expansions

Alw)=Adg v + A o 7= 4

Ew)=Eyv '+ By o7t 7V 4 L (9.26)

Fo)=Fyv '+ F vV 4
The equations (9.24) now give recursive relations on the coefficients
of the series. In particular,

[Aq, Byl = 2B, [dg, Fy] = —2F,, [ByF,] = Ay
Also, if A, = B, = F,, all three series must vanish identically, which
can happen only if N = 0. We may disregard -this special case.
Hence A,, By, Fy, span a subalgebra 3 [ (2, R) e, ; this observation
is the key to the entire proof. The recursion relations which follow
from (9.24), when analyzed in terms of the representation theory of
2[(2, R), limit the possibilities for the coefficients 4;, &;, F; very
much. For example, if one defines a (g-valued function g(v) by
h(v) = g(v) exp(— 4 log v 4,),

giv)~! g'(v} turns out to have a convergent power series expansion
in integral powers of »~! near v = oo, starting with a term of order
»~% Thus g(v) must beregular near » = co,and g(v) becomes defined
for complex values of its variable ». Similarly, one obtains the various
other ingredients and conclusions of the theorem.,

It remains to justify the assumption (9.25). To begin with, by
elementary arguments in linear algebra, one constructs a lifting
vi—> ki, (v) of the curve (9.21) to (fy, which need not be tangential
to the connection used to define A(v), but which does have the
property (9.25). The two liftings A(), ky(v) are then related by a
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V-valued function. This function satisfies a linear differential equatiop -
with (at worst) a regular singular point at v = . As a result, hy)
has a series expansion in fractional powers of v~ and integra]
powers of log ». An algebraic argument, which depends on th, b
structure theory of a semisimple Lie algebra, then excludes thg

presence of logarithmic terms, proving (9.25).

10. Some applications. (a) Monodromy and the weight filtration,
We consider a family of polarized algebraic manifolds n: X — Ax 7

parametrized by the punctured disc-A*, and we let

T:P*™(V,, C) > P™V, C)

denote the Picard-Lefschetz transformation; thus 7' is the action of
the canonical generator of #,(A*) on the mth primitive cohomology

group of a typical fibre V, = #—1 (1), { € A*,

According to Landman’s monodromy theéorem [35],%") some power
T% of T is unipotent, and 7" has index of unipotency at moat |
m (e (T* — 1)+ —0). In (\F.lﬁ}, we gave Borel’s simple proof of
the first part of the statement. Conjecture (8.4) of [21] suggested a
somewhat sharper bond on the index of unipotency, which has been
proven by Katz [31]. As a direct consequence of the §L,-orbit
theorem, one obtains an additional slight improvement of the bound:

(10.1) ProrosrrioN. Let [ be the largest number of suecessive
nonzero Hodge subspaces of P™ (V,, C); then (T* — 1) = 0.

Proor. We set N = log 7%; since 7% — exp N, it suffices to
show that N' = 0. In the notation of (9.19), N = i, (F). Any two

nonzero nilpotent elements of 3[ (2, C) are conjugate, and thus. _
(), g (X_) are conjugate under some g € (. By part (d) of -

(9.19), in the Hodge structure corresponding to the point i (/1)
€ D, i, (X _) shifts the indices of the Hodge subspaces exactly by
one, so that i, (X _)) = 0. Hencealso NV — i, (F)! = 0.

u The theorem, and various proofs of it, are discussed in [21]. It should also be
mentioned that all the “geometric” proofs depend on the existence of a continuation
of the family to the entire dise, if a suitable, possibly singular, fibre is inserted over
the origin. Moreover, some arguments require that the family should come from a

global, algebro-geometric family.

TR
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With slightly more care, Conjecture 8.4’ in the appendix of
[21] can also be deduced from the SL,-orbit theorem. The index of
unipotency is of course not the only significant information which
one can give about a nilpotent linear transformation. More subtle
properties of the Picard-Lefschetz transformation are implicit in
Dcligno's conjecture (9.17) in [21], concerning the limit of a degene-
rating family of Hodge structures, which we shall now discuss.

We again look at a family =: X — A%, as described above, and
we set N =log 7% Then N™¥! =0, according to the monodromy
theorem. From pp. 255-6 of [21], we recall the existence of the
monodromy weight filtration

0cWycWyc...c Wa..; € Wy, = PV, C), (10.2)
which is characterised uniquely by the following properties:
N: W,c W,_s, foralll, and
) . , 1 (10.3)
NG Wost/ Woeroy =+ Wiyt /Wiy is an isomorphism. ]
Since N is defined over @, so is the filtration. The vector spaces
P™(V,, C) are the tibres of a flat bundle P™ - A* (cf. 3(a)), and with
respect to the flat structure, N becomes independent of f. Heuce
(10.2) defines a filtration of P™ by flat subbundles

’ 0cW,c..cW,,_,cW,, =P (10.4)
The pullback of P™ by the universal covering {7 — A%, zp—p g27V =1z,
becomes canonically trivial, so that we may talk of the fibre H of this
pullback. Now (10.4) corresponds to a rationally defined filtration
. OcWecW,c...c Wy, _c W,,,= H; (10.5)
{10.3) remains valid in this context. To each point z & IJ, there
corresponds a Hodge filtration {¥7} on H, such that 7'F? — P2
(ef. §3 (a)). According to Deligne’s Conjecture (9.17) in [21], for
every ze U/ with sufficiently large imaginary part, the two filtrations
{F?} and {W;} were to give a mixed Hodge structure on H, Deligne
has since pointed out that this is more than should be expected. .

Instead, the conjecture kholds “in the limit”, as can be deduced

from the two theorems . of §0. Full details can be found in §6 of [41];
here we shall only give a precise statement of the result and a brief
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indication of the proof. For every z e U, we consider the filtratioy

{exp (-

TR

exp .V = T%  As a consequence of the nilpotent orbit theorem
the limit :

Tmz-s =

F2 = lim exp ( - %.V) o XY (10.6)

exists. Indeed, the filtration {F2} corresponds to the point Py € 5

(10.7) Tagores. The two filtrations [F?), (W)} constitute 4
mived IHodge structure on H.  With respect to it, N: H — H ig @

morphism of type (— 1, — 1),

Clonjecture (9.17) in [21] also contains some statements about the -
interaction of the polarization form and N; these again hold in the

limit: the quotients W,/W,_; carry suitably defined bilinear forms,
which polarize the Hodge structures of pure weight on the quotients,

As for the proof of (10.7), the nilpotent orbit theorem allows us
to assume that the period mapping is one of the special orbits to
which theorem (9.19) applies. Because of (9.19), and part (e) in
particular, the filtration {F%} and the filtration corresponding to
the point $(+/—1) € D induce the same filtrations on the quotients
W,/W,_,. Hence the nilpotent orbit can be replaced by the SL,-
orbit a,}:{ U). As was mentioned above (9.19), the Hodge structures
corresponding to the points 4i(z) degenerate in a very simple manner
as Im z —w, and in this situation, (10.7) ecan be verified by an
explicit computation.

When a one-parameter family of algebraic manifolds degenerates
to a singular variety, the limiting mixed Hodge structure has geo-
metric significance. We shall take this up in (b) below.

The SLy-orbit theorem also leads to a description of the mono-
dromy weight filtration, in terms of order of growth of cohomology
classes. We assume that the total space X of the family #: X -» A* lies
as an immersed submanifold in some projective space. The standard

N)- F7}, which is invariant under z —s z -+ k, becaug
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metric of this projective space restricts to a Kihler metric on each
of the fibres ¥V, = 71 (£). With respect to the Kiihler metrics, one
can measurc the length of a cohomology class ¢ € P (V,, C), f & A™.
In other words, the flat bundle P" -~ A¥ inherits a Hermitian
metric. Now let ¢ € H be given.” By flat translation, one obtains a
multiple-valued, flat section of P — A*. The length of its values in
the various fibres of P™is a multiple-valued, real function, which
we denote by ¢ — |l¢|l,, ¢t € A*. Over any radial ray or proper
angular sector in A*, one can choose a single-valued determination

of this function.
(10.8) THrEOREM, An element c € H belongs to W, if and only if
el = 0((— log [£])¢— "N , as t— 0,
over some, or equivalently any, radial seclor in A,

A detailed proof can be found in §6 of [41]. As a first step, the
nilpotent orbit theorem allows one to assume, in effect, that the
pullback of the period mapping to the universal covering U-A¥
is one of the special nilpotent orbits. By (9.19), in particular part (£},
one may further replace the orbit by the embedding : U — D.
This situation can be treated by an easy, explicit computation.

If a cohomology class ¢€ P™ (V,, C) is invariant under the action
of the fundamental group, i.e. if T'¢= ¢, it must lie in the kernel of
N. In view of the second statement in (10.3), W, contains the kernel
of N. Hence [|cfl, = 0 (1), as t 0.

(10.9) CororrAry. An tavariant cohomology class has bounded
length, near the puncture of A¥*.

Remarg. Although we have stated the :preceding results only
for families of algebraic manifolds, they carry over immediately to
the case of an arbitrary variation of Hodge structure, parametrized
by A*,

12 As before, I denotes the fibre of the pullback of Pw to the universel covering
U-s A®.
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[n [19], the first author studied global properties of the periog
mapping of a variation of Hodge structure with compact parametep

pdieiabade el o Ll

space. The main technical result was (a slightly more general Version
ot} the “theorem of the fixed part” (cf. §6 (a)), from which the

i

properties of the period mapping were essentially deduced as copgl.
laries. Roughly speaking, the argument went as follows: Let o be a

flat section of the total bundle Hof the variation of Hodge structyre,
If o takes vulues in the subbundle ¥? ¢ H, for some P, then the
length of the (p, m—p)-Hodge component of ¢ is a plurisubharmonie
function on the parameter space S, as follows from the curvature
properties of the Hodge bundles. Moreover, the (p, m— p)-component,
of o is flat exactly when the length function is constant. Since g
compact analytic space does not admit nonconstant plurisubharmonio
funetions. the (p. m —p)-component must be flat, and one can now
apply induction on p, peeling off one Hodge component at a time, .

I£S, instead of being compact, is only Zariski open in some compact,
analytic space. it may carry nonconstant plurisubharmonic functions,
but all of these are unbounded. Hence the arguments of [19] carry
over to this more general situation, as soon as onc knows the i
boundedness of the length functions which come up in the proof,
Corollary (10.9) gives just the needed information. Section 7 of [41]
describes in more detail how the results of [19] can be extended,
We should also add that the “theorem of the fixed part’” was proved
by Deligne for algebraic families, as described in §6(a),

(b)  Degeneration of algebraic manifolds. In this section, we shall
summarize some results of H. Clemens and the second author about

the topology of a family of algebraic manifolds which acquire

singularities [10]. Let X be an immersed submanifold of some

projective space, #: X - A a proper holomorphic map onto the unit
dise A, with connected fibres, which has maximal rank at each point
of X =a 1 A*) (A*=A—{0}). Thus m X - A* is a family of
polarized algebraic manifolds, as defined in §3, and the central fibre
Vy =2~ () has the structure of projective variety. We may think 1
of V, as a specialization of the typical fibre Vi=a=1(t), te A*. It
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js natural to ask to what extent the topology of the general fibre
determines that of the singular fibre (or vice versa).

In some sense, the question is not really well posed. One can
perform operations on the family, such as blowing up or down along a
subvariety of F,, going to a finite covering of the base, again blowing
up or down, ete., which affect the singular fibre, but not the regular
fibre. Thus, in order to get as concrete results as possible, one should
pring the singular fibre into some kind of “normal fbrm"‘-Accor(Iing
to Hironaka, one can arrange that Vis a divisor in X, with no
singularities other than normal crossings. Recently Mumford showed
that in addition by repeated blowing up and change of the base
parameter, all components of ¥ can be made to have multiplicity
one. In this case, V, can be covered by coordinate systems with local
holomorphic coordinates z,, z,, ..., z,,.,, such that

M(Zgy cony Zyp1) = Z4% Zg0 00

for some [, depending on the coordinate system. Unless we say other-
wise, we shall assume that this simplification has been made. We also
assume, as we may, that the components of ¥ have no self-intersec-
tion. Some of the final conclusions, like the solution of the “loeal
invariant cycle problem”, do not depend on these assumptions,

whereas others do.

After shrinking the base A, if necessary, the family = X>A
will continue to a neighborhood of the closure of A. The boundary
29X = 771 (9A) is then a C® fibre bundle over dA, with fibre V,

(t e 2A). Let
T: H¥V,) —> H*(V))

be the Pieard-Lefschetz transformation, i.e. the action of the
canonical gencrator of m,(A*) = =,(9A) on the cohomology™® of
the typical fibre ¥,. One then has the exact sequence of a fibre
bundle with base 81,

** Here, as in the following, the homology and cohomology groups have complex
coeflicionts,
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T—1 :
—> H™0X) —> H™V)) ———> H™(V,) —» H"*1(3X) —, 3

(10.10)

Under the hypotheses we made, 7' itself is already unipotent; in th,

notation of part (a), £ = 1. This follows from the “geometric” progfy
of the monodromy theorem, e.g. Landman's [35]. We set N = log 7
Since N and (7" -— 1) have the same kernels and cokernels, we may
replace (I'—1) by N in (10,10}, which gives the exact sequence ’
N
— H™3X) —> H™V,)) —> H™(V,) —> H™"Y(3X) —,
(10.11) -

The total space X has the central fibre V, as a strong retract

(cf. [8]), so that H*(X)=H*(V,). Taking into account Poincaré

duality, the exact cohomology sequence of the pair (X, 2X) therefore
becomes

— H™*H3X) — Hypyyi2( Vo) —> HMVy) — H™3X) —y -

(10.12) |

(n = dim¢ V). The exact sequences (10.11) and (10.12) can he
combined info the diagram
— H™V,)

avv) — H™V) /

H™3X) Hm“(éX;

e HRHT) Hyypyir(Vg) —> H™Y(V,)
(10.13)

Except for a shift in the indices by one, the two rows are identical,
Let us look at one of them, with the missing arrows filled in:

4

N v N
—> Hyy gy o Vo) = HM(Vo) —> H™( V) —> H"(V,)) —>
Hywn(Vo) —>. (10.14

Ur_l_cler the identifications H,, ., o(Vy) = H?(X, 6X), H™V,) =
H™(X), p corresponds to the natural mapping H™(X, 3X) - H™X);
v is the mapping on cohomology indueed by the “collapsing map”
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v Vo and finally 4 is dual to v, with a shift ir indices, and relative
4o Poincaré duality on H¥(T).

Aceording to Deligne [14]. H*(17y) carries o canonical mixed
Hodge structure. which was described explicitly in §4. By dnality,
H4(V,) inherits a mixed Hodge structure, too. Theorem 10.7
vives the existence of a limiting mixed Hodge structure on the
;rimitive part of the cohomology of the nonsingular fibres. Since the
Lefschetz decomposition and the Pieard-Lefschetz transformation
commute, one can deduce the analogous statement about the full
cohomology. To be more precise, let H" — A* be the flat bundle of
the mth cohomology groups of the fibres, and let H" be the fibre of
the pullback of H" to the universal covering I/ — A*  which is
canonically trivial. On [, there is o unique rational filtration g
with the properties (10.3). A limiting Hodge filtration (K2} on H™
can be defined as in (10.6). Then {F7} and {1V} give a mixed Hodge
strueture on H™,

for cach & A% one can choose various natural identifications
ji H™ 5 HP(V)). which are indexed by the fibre of 7 — A* over /.
Any two of them are related by a power of T = exp N. Hence
Jrevided, and of course j '- N .j become independent of the
particular choice of j. We may therefore replace H"(V,) in (10.14)
by H", for the sake of simplicity, we shall not change the symbols
for the maps which occur:

v N n
>y a1y '_+,u- H" (V) —> M —— H" —— H,, (V=

(10.15)
All of the veetor spaces in (10.13) now carry canonieal mixed
Hodge struetures. The main results of [10] can be summarized by the
formal statement
(10.16) Tueores. The sequence (10.15) is cxact. The mappings
w v, N, o are morphisms of mived Hodge siructures, of lypes
(n -t 1, m--1), (0,00, (-- 1, — 1), and (— n. — n), respectivly.
The local invariant eyele problem, listed as Conjecture (8.1) in [21],
asks whether the image of H™(V,) in H™(V,), I € A*, consists of
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all o (A*)-invariant cohomology classes. For surfaces, an affirmatiy,
answer was given by Katz, and in general, by Deligne (unpubﬁshed]-

1
both arguments depend on having the family come from a globg)

algebraic family. Theorem (10.16) now also asnwers this problem (44

Because of the mixed Hodge structures which are present, and
with the help of Lemma (1.13), quite a bit of information beyond the
local invariant cyele problem can be squeezed out of the theoren,

We do not want to go into details here, and instead refer the reader

to [10].

APPENDIX
The current status of the problems and conjectures listed in [21),

(a)  Torelli-type questions (§7)%%. Conjecture 7.2 has been proved
by Piatetskii-Shapiro and Shafarevich [40]. Very briefly, they deduce
the global Torelli theorem from the local result by verifying the
global statement for “sufficiently many” polarized K3 surfaces. It
seems to be still unknown whether every point in I'\ D comes from a
polarized K3 surface having at most rational singularities [37].

Problem 7.3 has been settied in the affirmative by Tjurin[43], and
independently by Clemens and the first author [9]. A recent paper
by Tjurin [42] discusses the general problem of the global Torelli
theorem for the Fano threefolds.

The local Torelli problem 7.1 for simply connecied surfaces of .
general type seems to remain open. In their recent work on canonical

embeddings of surfaces of general type, Bombieri and Kodaira [3]
have found surfaces whose canonical series exhibit various kinds of
extreme behavior (generalizing that of hyperelliptic curves), and
Cornalba has verified the local Torelli theorem for these.

#0ne can show that going to o finite covering, blowing up, cte. does not affect

the statement in question.
The numbering of sections, problems, ete. is that of [217,

i S

Bl LRES]
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(b) Local monodromy and the behavior of the periods at infinity
(§§8,9). As was mentioned already in §10(b) above, the local
invariant cycle problem 8.1 has been solved by Katz for families of
gnrfaces, and by Deligne in general; see also [10]. Problem 8.2
about the local monodromy around an isolated singularity was settled
by counterexamples of A’Campo and Deligne. Conjecture 8.4 was
proven by Katz [31], and the refined version 8.4" in the appendix is
a consequence of the results of [41] (cf. §9, 10 (a) above).

For the classifying spaces of the periods of holomorphic two-forms,
Cattani [6] has constructed a partial compactification, as suggested
by conjecture 9.2. The general case is still open, as is conjecture 9.5,
even in the special case of Hodge structures of weight two. Conjecture
9.17 is discussed in detail in §10 (a) above.

(c) Uniformization of periods; automorphic cohomology (§§10, 11).
As far as we know, there has been no substantial progress on conjec-
ture 10.1, problem 10.6, and problem 11.1. Sommese (Harvard thesis,
to appear) seems close to a solution of conjecture 10.5, although some
details remain unsettled at the time of this writing,.

(d) General uniformization (§12). Problem 12.1 has been answered
in the affirmative by the first author [23]. However, the result lacks
the symmetry exhibited by the classical uniformization theorem;
basically, this is due to the breakdown of the theory of conformal
mappings in the case of several variables. (Consequently, the theorem
in [23] should be thought of only as a partial result, and we refer to
the above paper for a further discussion and specific open problems,
having to do with the general uniformization question for algebraic
varieties).

We want to conclude by stating a new problem, Let 7: X — S be
an algebraic family of polarized algebraic manifolds, and

I'c Hom (H™(V, ), H™(V,)), s8,€S,
the global monodromy group, i.e. the action of #,(S) on the mth
cohomology group of a typical fibre ¥, = m'(S,).

ProBreM. [s the monodromy group an arithmetic group?
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To be more precise, we recall that I' lies in the automorphigpy,
group Gy, of the appropriate classifying space of Hodge structureg,

and that I' c ¢y (of. §3). The Zariski closure over Q of I' in Gy, .

which we denote by Gi(I'), is the group of real points of an algebraje
Q-group. We are asking whether I' is arithmetic in this group;
equivalently, whether

[T: @z n Gg(I")] < co.
The period mapping ean be taken to have values in the quotien
I'\D (rather than G\ D), and the volume of its image in D ean

be shown to be finite [19]. This at least lends some plausibility tq
the conjecture,
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