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REDUCTION FOR CONSTRAINED VARIATIONAL PROBLEMS 

ANDj 2 ds 

BY ROBERT BRYANT* and PHILLIP GRIFFITHS** 

Introduction. In this paper we will study certain functionals whose 
domain of definition consists of integral curves of an exterior differential 
system. Our purpose is twofold. First, we want to extend to this general 
setting the Marsden-Weinstein reduction for Hamiltonian systems [4] ad- 
mitting a Lie group of symmetries. Secondly, we want to use this general 
method to investigate the global behaviour of solution curves of the Euler- 
Lagrange equations associated to the functional 

(1) 4Qy)= 
I 

K2dS 

defined on immersed curves Py in a surface S of constant curvature. 
In the flat case S = E2 it is natural to restrict the functional (1) to 

curves of fixed length, and among other things we are able to give an al- 
most complete picture of the closed solution curves to the Euler-Lagrange 
equations. One conclusion that may be drawn from our study is this: 

Denote by [S1, R2] the isotopy classes of immersionsf: S1 -- R2 of fixed 
positive length. According to the Whitney theorem, 7ro([S, R2]) Z, 
where the map is given by assigning to each f the index of y = f (S1). We 
show that the functional (1) has at least one critical value in each compo- 
nent of [S1, R2]. 

Another conclusion of our study is in the case when S = H2, the hy- 
perbolic plane. We show that the Euler-Lagrange equations associated to 
(1) may be represented as a linear flow on a 2-torus T2(1t), provided that an 
"energy level" . * I lies in the interval (-1, 0). By letting I vary we con- 
clude the existence of infinitely many periodic solution curves. This result 
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526 ROBERT BRYANT AND PHILLIP GRIFFITHS 

also implies the existence of infinitely many closed immersed surfaces of 
revolution that are critical values for the Wilmore functional (cf. [5]). 

In [2] there is a study of the Euler-Lagrange differential system in the 
general setting described above, and we will follow the notations and ter- 
minology used there. In Chapter II of [2] there is also a general discussion 
of how a group of symmetries gives 1st integrals. This is used to integrate 
the Euler equations associated to a number of variational problems in ho- 
mogeneous spaces (including those associated to (1)). However, in [2] the 
essential final step of using the full reduction procedure is not taken, and 
that is what we do here in Sections 1, 2 for general variational problems. In 
Sections 3, 4 we show how the general method allows us to draw global 
conclusions about the solutions to the Euler-Lagrange equations associ- 
ated to (1). 

(Added in press) After this paper was finished, the paper [3a] of 
Langer and Singer came to the author's attention. Their paper reproduces 
some of our results and undertakes a study of stability of the critical pts of 

1. Review of Variational Formalism. 

a) Notations from differential systems (cf. [2]). A Pfaffian differen- 
tial system (I, w) on a manifold X is given by the following data: 

i) A sub-bundle I C T*(X). Locally we may choose a coframe 
61, . .., A for I and we think of I as giving the Pfaffian differential equa- 
tions 

(I.a.1) 01 Os = 0. 

ii) Another vector bundle L C T*(X) with I C L c T*(X). If rank 
(L/I) = n then w denotes a locally given n-form on X which induces a non- 
zero section of A"(L/I). We think of w as giving the independence condi- 
tion 

(1.a.2) X * 0. 

Throughout this paper we shall restrict to the case n = 1. An inte- 
gral manifold of (I, w) is given by a compact 1-dimensional manifold (pos- 
sibly with boundary) N together with a smooth mapping 
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(l.a.3) f: N -- X 

satisfying 

*I = 0 
(l.a.4) 

(jf 0. 

The 1st equation means that f*0 = 0 for all smooth 1-forms 0 such 
that 0(x) E I.x C TV*(X) for all x E X. Thus, f (N) is an immersed integral 
curve of the ODE system (1.a.1) satisfying the transversality condition 
(l.a.2). If we define an integral element of (I, w) to be given by a point 
x E X and line E C TX(X) satisfying 

{ I(x)E 0 for all 0 E I 

CO(X)IE E0, 

then the totality of integral elements forms a subset V(I, w) C P T(X) of 
the projectivized tangent bundle. Any immersion (l.a.3) has a canonical 
lift f*: N -- PT(X), and the condition to be an integral manifold is just 
f*(N) C V(I, w). We shall denote the totality of all integral manifolds by 
R2(I, w). 

Sometimes a Pfaffian differential system is given by a C-(X) sub- 
module 5 of the 1-forms on X together with a 1-form c, where it is not 
assumed that the subset I = { (x) E TX*(X): x E X and 0 E q } C T*(X) 
gives a sub-bundle. This failure of I to have constant rank is caused by the 
following phenomenon (cf. below): In order to construct integral curves of 
I along which w * 0 we must be able to first find integral elements (as 
defined below). In examples it will turn out that w(x) E Ix at a general point 
of X, and then the only way there can exist integral elements is for dimIx to 
jump up along a subset of X. This will be explained more fully in the con- 
struction below. 

Example. Let I be a 2-form on X (whose rank may vary), and de- 
fine the Cartan system C(t) to be the Pfaffian system given by 

{v j I: v E C"(T(X)) is a vector field on X}. 
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This example arises naturally in variational problems (cf. [2] and be- 
low). 

Given (I, w) on X we may define integral manifolds by (1.a.4) where 
the first condition is replaced by f *(I) = 0. Under reasonable hypotheses 
(that we do not try to make precise-cf. [2]) we may associate to (I, w) a 
Pfaffian system (I*, w), in the previous sense, on a submanifold X* C X 
such that the integral manifolds on (I, w) and (I*, w) coincide, as follows: 

Construction. Define integral elements of (I, w) to be given by lines 
E C TV(X) satisfying I(X)EE 0 for all 0 E I and (X)IE * 0. The totality 
of such integral elements gives a subset V(I, ) E PT(X) of the projec- 
tivized tangent bundle of X. Denote the projection by 7r: P T(X) -- X and 
inductively define 

X= 7r(V(I, W)) 

V1 (I, w) = E E V(I, ): E is tangent to X1} 

X2 = 7r( V1 (I, )) 

V2(I, )= {E E V1(I, c): E is tangent to X2} 

This gives X, D X2 D , and (under our reasonable assumptions) we 
will have Xk = Xk+= = X* for some k. Moreover, 

I* {0(x) E Tx*(X*): 0 EI I1x*} 

will give a sub-bundle of T*(X*), and by elementary reasoning we will 
have eV(I, ) = 'V(I*, ) 

We shall call (I*, ) the involutive prolongation of (I, w). It is dis- 
cussed in detail, together with numerous illustrative examples, in Chapter 
I of [2]. 

b) The Euler-Lagrange differential system. A variational problem 
(I, w; sp) is the study of the functional 

(I.b.1) 4: eV(I, ) -- R 
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given by 

(1.b.2) 4'(N, f = 
N 

where (I, w) is a Pfaffian differential system on a manifold X, (N, f) E 
RV(I, c) is a typical integral manifold (l.a.3), and where sp is a 1-form on 
X. Associated to (I, w; sp) we shall define the Euler-Lagrange Pfaffian dif- 
ferential system (J, w) on a new manifold Y. We refer the reader to [2] for a 
discussion of how this system is derived and of how the integral manifolds 
of (J, w) give stationary values of the functional (1.b.2). Remark that any 
variational problem for curves (especially constrained and/or higher order 
problems) can be reduced to the setup we are considering. Remark also 
that it is still unknown whether or not in general the Euler-Lagrange sys- 
tem (I, w) gives necessary as well as sufficient conditions for stationary 
values of (. 

For this we define the affine sub-bundle 

Z C T*(X) 

by Z = U xex ZX where 

X {sp(x) + Ix C T*(X)}. 

Note that Z only depends on sp modulo I. Let b be the restriction to Z of the 
tautological 1-form on T*(X) and set 

4f= d{ 

On Z we thus have the 2-form 'I and 1-form w obtained by pulling back 
w on X, and by the above discussion the involutive prolongation of (C(?(), 
w) on Z gives a Pfaffian system (J, c) on a submanifold Y C Z. 

Definition. (J, c) is the Euler-Lagrange differential system associ- 
ated to the variational problem (I, w; p). 

Remarks. i) As noted above, (J, w) depends only on sp modulo I. 
Moreover, if we add to sp an exact form df, then the obvious map Y -- Y + 
df maps the old Euler-Lagrange system to the new one. 

ii) If 01, ... , As is a local coframe for I, then a point of Z will be 
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t(X, X) = <(X) + XaO(X) 

(throughout we use summation convention). Clearly 

'I(x, X) = dep(x) + dXa A 0(x) + XadO'(x). 

By contracting I with tangent vectors a/aX, we see that integral manifolds 
of (J, w) project to X to give integral manifolds of (I, w) (briefly, we may 
say that J contains I). 

iii) The variational problem (I, w; sp) is defined to be nondegenerate 
in case dim Y = 2m + 1 and I"' 0. In many examples the characteris- 
tic direction of I then generates a global foliation 

where Q is a 2m-dimensional symplectic manifold with 2-form Q satisfying 
*Q = I. We may then think of the integral manifolds of (J, w) as them- 

selves constituting a symplectic manifold (cf. [2] for amplification and ex- 
amples). 

iv) Even without the nondegeneracy condition it still makes sense to 
speak of a stationary path: We give V(I, ) the topology it inherits as a 
subspace of the full immersion space with the CX topology, and then we 
seek critical points of 4: V(I, ) -- R with this topology. In this case the 
stationary paths are the projections to X of the characteristic curves of I 
on Z, where 'y: N -- Z is defined to be characteristic if 

i) 'y (t) . q '(,) = 0 for all t E N 
ii) ty*(w) * 0. 

In particular, one may have characteristic curves depending on arbitrary 
functions (instead of just constants as in classical cases). An example of 
this is the functional 

Kds 

define on immersed curves fy C E2. 
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2. Reduction for Constrained Variational Problems. 

a) The reduced system. There is a well known reduction procedure 
for a Hamiltonian system with symmetries (cf. [4]). We shall give an exten- 

sion of this to general variational problems. The outcome is that a symme- 
try group allows us to systematically reduce the dimension of the space on 

which the Euler-Lagrange system is defined. 
Let a connected Lie group G with Lie algebra g act on a manifold X, 

and denote the induced action on T*(X) by 

r7g: T*(X) -- T*(X), g E G. 

Let (I, w; sp) on X be a variational problem and denote by Z C T*(X) the 

affine sub-bundle constructed in Section lb) above. 

Definition. G is a group of symmetries of the variational problem 

(I, c; s) if 

rlg(Z) = Z, g E G. 

It follows that G leaves invariant the sub-bundle I C T*(X) together 
with the 1-form sp considered modulo I, and conversely. Thus, this defini- 

tion agrees with that in [2]. 
Given a group of symmetries of (I, w; sp) we shall define the momen- 

tum mapping 

(2.a.1) m: Y -, 

where (J, w) on Y is the Euler-Lagrange differential system (cf. Section 

lb)). In fact, m will be the restriction to Y C Z of a map 

m: Z Q* 

that we now construct. For t E g we denote by t the vector field on Z given 
by the action of the 1-parameter group nexp t. We then set 

(2. a.2) < m (p), t > = Q I 4) (p), p E Z, 

where t is the restriction to Z of the canonical 1-form on T* (X). Since t is 

tangent to the submanifold Y C Z (this means that t(p) E Tp(Y) C 
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T,,(Z) for p E Y), the momentum mapping (2.a.1) is given by the same 
formula (2.a.2) where p E Y. 

We denote by 

Ad*: G -- Aut(g*) 

the coadjoint representation (cf. [3]). From the obvious fact that i*zW = 

and easily verified fact that (rjg)*= (Adgi)*t, it follows that: 

The momentum mapping (2.a.1) is Ad*-equivariant, in the sense that 

(2.a.3) mn(6g(p)) = (Adg-,)*m(p). 

For I E g* we set 

G = {g E G: (Adg-)*/= 

and note that GI acting on Y leaves m-(y1) invariant. Assume that 
m-l(y) is a submanifold of Y and that the quotient space Y, 

Gl, \m- (y) exists as a manifold; thus we have 

m1(,u) C Y 
17r 

(2. a.4) 

yI 

We claim that: 

(2.a.5) There exists a unique 2-form AI, on Y, such that 

Proof. Let g,Q be the Lie algebra of G,1, so that the vertical tangent 
spaces to the fibering (2.a.4) are spanned by the vector fields t where t E ge 
(note that these vector fields are tangent to m -1() C Y). Next we con- 
sider the identity on Y 

(2.a.6) 0 = J = + d Q 
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Restricting to m - l(y), the last term is zero since t = (y, > is constant 
there. It follows that 

(2. a. 7) t t| t 1() 

If we use the well-known criterion that a form oa on m -(-) is 7r*(a,) for a 
unique form a. on Y. if, and only if, t i a = 0 i du = O for all t E gH, 
then (2.a.5) follows from (2.a.7) and d4f = 0. 

Definitions. We shall call YA the reduced space associated to I E g*, 
and (Y,, e(el)) will be called the reduced system. 

The importance of the reduced system lies in the following observa- 
tions: 

(2.a.8) (NOETHER'S THEOREM). The momentum mapping (2.a.1) 
is constant on integral curves of (J, w). 

This follows from (2.a.6) in the form 

d(Q i i) = - I 4E J= C(tl'). 

Next, it is clear that 

(2.a.9) The integral curves of (J, w) In,-,( are permuted among them- 
selves by G,i. 

Finally, it is also clear that 

(2.a. 10) The integral curves of (J, co) ,,-y, project to integral curves of 
Ce("). 

In practice, (2.a.8)-(2.a.10) reduce the determination of the integral 
curves of (J, co) to finding the integral curves of the reduced system plus 
one more integration to lift these curves to m -I (y). In fact, it is not diffi- 
cult to show that: 

(2.a.11) If the variational problem (I, w; sp) is nondegenerate, then 
(Y, C('*,)) is nondegenerate in the sense that 

{dim Y = 2k + 1 

:?:k 0. 
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Through each point q E YIJ there is then a unique integral curve -y of e(4t) 
obtained by flowing along the characteristic direction field of *1. For each 
p E It- (q), there is a unique integral curve ' of (J, ) lying over y. In 
examples given below the nature of the one integration required to lift 'y to 
'j will be clear. 

b) Reduction for homogeneous variational problems. Let G be a 
Lie group with Lie algebra g = Te(G). Using left translation we make the 
identification 

(2.b.1) T(G)- G X g. 

We shall consider Pfaffian systems given by a left invariant sub-bun- 
dle Io C T*(G). By (2.b.1) the distribution I' C T(G) is simply G X a 
for a unique subspace a C g. To write the differential system in the form 
described in Section la), we let w be the g-valued left invariant Maurer- 
Cartan form on G, uniquely characterized by left invariance plus the con- 
dition that at e E G 

(2.b.2) @(t) =E = Te(G). 

It satisfies the Maurer-Cartan equation 

(2.b.3) d -- [w, w]. 
2 

On 

X = G X a X R, 

where R has coordinate t, we consider the g-valued 1-form 

(2.b.4) 0 = w-Pdt, P E a. 

Here, t: X -- R is the projection on the 3rd factor and P: X a is the 
projection on the 2nd factor. Then 0 = X-Pdt is a g-valued 1-form on X, 
and its components generate a sub-bundle I of T*(X). Clearly (I, dt) gives 
a G-invariant differential system whose integral curves are 

t -+ (g(t), ac(t), t) E X 
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where g(t) E G is a curve whose tangent vector g'(t) satisfies 

WWW ' (t)) = ao(t) e a. 

(Note: Throughout the remainder of this paper the independence condi- 
tion will be dt * 0; this is because we want to reserve the notation w for the 
Maurer-Cartan form.) 

To obtain a left invariant variational problem we take 

p = L(P)dt 

where 

L: a -- R 

is a function. Several examples of invariant variational problems arising 
from Frenet liftings of curves in homogeneous spaces are given in [2], and 
below we shall investigate the global properties of one such system. 

We shall now apply the methods discussed in Section 1 to derive the 
Euler-Lagrange system and reduction procedure for the G-invariant varia- 
tional problem (I, dt, sp). For Z c T*(X) as defined in Section lb) we 
have an identification 

X X g* Z 

where we identify the pair (x, X) E X X g* with the 1-form 

(fo + <X, 0>)(x) E TX*(X). 

Under this identification, the canonical 1-form b on Z may be written 

(2.b.5) 0 = L(P)dt + <X, 0>. 

Here, we are regarding X: X X g* -- g*, the projection on the 2nd factor, 
as a g*-valued function on X X g*. 

Using (2.b.3) and (2.b.4) the 2-form I = do, is given by 

(2.b.6) I dL(P)Adt- <X, dPAdt> + <dX,0>- - < '[o,]> 2' 
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To compute the Cartan system, we consider a eE a as an invariant vec- 
tor field on the vector space a, and for each P E a we consider the differen- 
tial 

dL(P) E T(a) -a*. 

Then, since <dP, a!> = 0! (here P is considered an a-valued function) 

T = <(dL(P) - X, 0> dt. 

Because the independence condition dt * 0 this gives 

(2.b.7) <dL(P) - X, 0!> 0 for all 0! E a. 

(Note: In case the Legendre transform dL: a -- a* is one-to-one, this equa- 
tion determines P as function of X.) Next for t E g viewed as a left invariant 
vector field on G, we have, using (2.b.2) and (2.b.6), that 

T 4 = -<dX, t>> - (X, [ ]> 

-(dX + ad*X, t>. 

Here, 

ad*: g HomQy*, g*) 

is the differential of the coadjoint representation, and we are considering 
ad* as a Hom(g*, g*)-valued 1-form. If we recall that the Cartan system 
e (4f) contains the original system 0 = 0, this equation may be replaced by 

dX + adP*Xwdt = 0. 

Summarizing, the Euler-Lagrange system is generated by the equations 

( (i) 0 = - Pdt = 0 

(2. b. 8) 00 < dP(iii) dL) -, a> d 0 a. 

t(iii) d X + adp* X dt = 
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As in [2] we shall call (iii) the Euler equations associated to the invariant 
variational problem. 

We shall now turn to the reduction procedure. For this we denote by t 
the right invariant vector field induced by the left multiplication by the 
1-parameter subgroup exp tt of G. Then 

t(g) = (Rg)*t(e) 

= (L9-l)*(Rg)*t(g), 

where t E g is considered as a left invariant vector field on G, and this gives 
(cf. (2.a.3)) 

(2.b.9) t(g) = ((Ad9-l)(Q))(g). 

By definition, the momentum mapping is the restriction to Y C Z of 

m: Z 

where 

<m(g, X, P, t), t> = (I i ib)(g, X, P, t) 

=<X\, (Ad -,)0 

< <(Adg-,1)* *-XI t > 

by (2.b.5) and (2.b.9). Thus 

(2.b. 10) m(g, X, P, t) = (Adg-,)*X. 

Restricting to Y C Z we have for I E g* 

m -(it) ={(g, X, P, t) e Y: X = Ad>} 

Following still the general theory, the isotropy group G, acts on 
m-l(y) by left multiplication on G. If we define as usual the coadjoint 
orbit 
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OAd*(A) = {Adg*W: g E G} C g*, 

then there is a natural identification 

GA\ G- OAd*() 

(this uses that Ad*g, Ad*, Ad*). Rather than consider the whole re- 
duced space YH = GJ \ mn '(,) we consider its image in g*. This gives the 
diagram 

m-'(y) C Y 
7r 

OAd* (it) C g* 

where the equations 

7r '(g, A, P, t)-A 

(Adg--,)*X = 

are satisfied. (In case the Legendre transform is nondegenerate so that X 
determines P on Y, YA differs from OAd*(t) by only the trivial t factor. 
This may be eliminated by applying reduction to the time shift auto- 
morphism.) 

Along a solution curve g(t) = (g(t), X(t), P(t), t) to the Euler- 
Lagrange differential system, we have by (2.b.8) 

(i) w(g(t))= P(t)dt 

(2.b.1I) (ii) <(dL)(P(t)) - X(t), a> 0 O for all ae a 

(iii) dX-(0 + ad(,(t) = 0. 
dt 

P 

Equations (i) and (iii) say that 

- (Adg()-)*X(t)) 0; 
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in particular, X(t) E g* moves on a coadjoint orbit (cf. [2]). If we solve the 
Euler equations (iii), then we determine P(t) by (ii) (at least in the non- 
degenerate case), and by one more integration determine g(t) by (i). In 
summary: 

(2.b. 12) 
Given It EQ g* we construct the GIJ bundle B(,u) --(DAd*(I) where 

B(,u) = { (g, X) E G X g*: (Adg -)* X = /, }. 

Then solution curves g(t) E G to our variational problem satisfy (g(t), 
X(t)) E B,A where X(t) E g* is a solution to the Euler equations and (i), (ii) in 
(2.b. 11) are satisfied. 

3. Study of ' f K2ds in the Euclidean Case. 

a) Unrestricted Variations. We shall work on the manifold 5(E2) of 
frames (x, el, e2) in E2. The structure equations of a moving frame are 

dx = oleI + c2e2 

(3.a.1) de1 = pe2 

(de2 = -pe, 

where we have set p = 42 in the usual notation. It is well known that we 
may identify f(E2) with the group G of Euclidean motions, and then WI, 

, p give a basis for left invariant 1-forms on G. This will be made quite 
explicit below. From (3.a.1) we obtain the Maurer-Cartan equations 

(3.a.2) dco2= c'Ap 

dp = 0. 

If (l, 02, 03 is the basis for g dual to wx, c,2, p, then by (2.b.3) 

{[11 U2I = 0 

[02, 03I - 
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From this it follows that (cf. [2]) 

(3.a.3) For X = (X1, X2, X3) E g* the coadjoint orbits are given by 

X12 + X2 = C2, c > 0, 

This will also be made quite explicit below. 
For convenience we consider E2 as oriented R2 with coordinates (xi, 

x2) and orientation dx 1 A dx2 > 0. An immersed curve 'y C E2 is the image 
of a mapping 

(3.a.4) x: N E2 

where N ={a < t < b } and x(t) =(xl (t), x2(t)) is of class C2 on the 
closed interval [a, b]. Associated to (3.a.4) are its arclength element ds = 
a(t)dt where a(t) = IIx'(t)II > 0, and Frenet frame F(t) = (x(t), eI(t), 
e2(t)) where eI(t) = x'(t)/a(t) is the unit tangent and eI(t) A e2(t) > 0. 

Under this Frenet lifting 

(E 2) 

F o 

N-A- E2 

the structure equations (3.a.1) pull back to the Frenet equations 

( dx(t) or(t)dtel, a(t) > 0, 

(3.a.5) de, (t) Ou(t)K(t)dt e2, 

&de2(t) -u(t)K(t)dt e 

where K(t) is the curvature. 
To give Frenet liftings as integral manifolds of a differential system, 

we let V0(E2) be the oriented frames and set X = 0(E2) X R+ X R X R 
where R + X R X R has coordinates (a, K, t). On X we consider the Pfaf- 
fian differential system generated by the Pfaffian equations 

W cor-dt = O, or > 09 

(3.a.6) W= 0 

-p Kadt = 0. 
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Clearly, the integral manifolds of (I, dt) are just the Frenet liftings. We 
also set 

(p = Ldt= - K2dt, 
2 

so that the variational problem (I, dt; so) amounts to considering the func- 
tional 

(3.a.7) 4(*Y)= K2ds 

on immersed curves 'y C E2. (Note: In our general formulation given in 
Section 2b), a C g corresponds to span { e 1, e3} {= fre, + Xe3: a, X ER} C 
g. Here, we are restricting to the open subset R+ X R C a given by a > 0 
and setting X KU there.) 

To find the Euler-Lagrange system associated to the variational prob- 
lem (I, dt; sp) we let Z = X X R3 where R3 g* has coordinates X (=X1, 

X2, X3), and on Z we set (cf. Section lb)) 

Q = ? K2odt + X1(cI - adt) + X2w2 + X3(p - Kodt). 
2 

Using the structure equations (3.a.2) we may determine T = do,, and then 
a straightforward calculation shows that the Cartan system e(4T) is gener- 
ated by the Pfaffian equations (cf. [2]) 

{ (i) a/aX,1 J f = '- odt = 0 

(ii) a/aX2 J f = Co = 0 

(iii) a/aX3 I f = p - Kodt = 0 

{ (iv) a/ a J a1 
(+2K2 - 'X3K - X)dt 0 O 

(v) a/aK J T = a(K - X3)dt = 0 

{ (vi) - /ap i 4 = dX3-X1O 2 +X2w'1 = O 

(Vii) -a/awa1 i A = dX1 - X2P = 0 

(viii) -a/awKj2'I = dX2 + XIP = 0. 
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Here a/ap, a/aw1, I/aW2, ... denotes the tangent frame on Z dual to the 
coframe p, 1, I2, .... Equations (i)-(ii) give the original system. Since 
adt * 0 equations (iv), (v) give 

X3 = K 

(3.a.8) 
X= -K2/2. 

Using the notations from lb), it is easy to see that Y C Z is given by 
(3.a.8). 

Equations (vi)-(viii) are the Euler equations. Since I C (?(t) we may 
replace (vi) by 

dX3 + X2udt = 0, 

and then on integral curves of I this equation is 

(3.a.9) 2= -k = -dK/ds. 

The coadjoint orbit condition (3.a.3) then gives the conservation law 

K 4 
(3.a. 0) k2? = c2> 0 c >- 0 

4 

where c is an "energy level" for our problem. At this juncture, it follows 
(cf. below) that K(S) is an elliptic function of the arclength parameter s. 
Then it follows from the general reduction procedure that the position vec- 
tor x(s) = (x I (s), x2(s)) may be obtained by once integrating elliptic func- 
tions. In particular, the question of closed solution curves will reduce to 
one concerning periods of elliptic integrals (this will be true for all the spe- 
cific problems in this paper). 

It is however instructive to explicitly carry out the reduction. On 
VW(2) we introduce coordinates (x1, x2, 0) E 2 X S1 where the coordi- 
nates of a frame F = (x, e 1, e2) are given by writing 

X = (X1, X2) 

el = (cosO, sinG) 

e2= (-sinG, cosO). 
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Then by the structure equations (3.a.1) 

W = (dx, ei) = cosOdxI + sinOdx2 

(3.a.11) L 2 = (dx, e2) = -sinOdx1 + cosOdx2 

p = (de,, e2)= do, 

and the structure equations (3.a.2) hold. To F we associate the matrix 

'1 0 0 

(3.a. 12) g = x1 cosO -sinO 

X2 sinO Cos 0 

and then 

0 0 0 

g-1dg = cosOdxl + sinOdx2 0 -do 

-sinOdxl + cosOdx2 dO 0 / 

w 2 p o 

where the 2nd step follows from (3.a.11). It follows that w', W2, p give a 
basis for the left invariant 1-forms on the Lie group G of matrices (3.a.12). 

The Euler equations (vi)-(viii) may be written 

d(-X3, X2, -X1) = (-X3, X2,-1) - 0 -p . 

U)2 p 0 

Letting X be the row vector (-X3, X2, -X1) this is 
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dx = Xg dg; 

i.e., 

(3.a. 13) d(Xg-1) = 0. 

To put this equation in a general context we remark that the linear map- 
ping X -) X induces an isomorphism g_ R3 under which the coadjoint 
representation is given by 

Adg l* X = X . 

Noether's theorem (2.a.8) is 

(3. a. 14) X * g, , = constant, 

on solution curves to the Euler-Lagrange system. Using (3.a.8) and 
(3. a.9), (3. a. 14) is 

(i) -K = 3 + A2X1 -LX2 

(3. a. 15) (ii) -K = A2cosO -I I sin 0 

K2 
(iii) - 2 = 2sin 0 + u I1 cos 0 

Equations (ii) and (iii) give (3.a.10) where 

c2 = tL12 + t22. 

If c = 0, then k = K = 0 and the solution curve is a straight line. 
Assume c > 0. Then we may find go E G with - *g-1 = (0, -c, 0). 

Applying the rigid motion go to E2, we may assume that ,2 = (0,-c, 0) in 
which case (3.a.15) becomes 

(i) X1 = K/C 

(ii) k2 = CCOSO 

K2 
(iii) 2 = c sin 0. 

2 
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From x2(s) = sin0(s) we obtain 

X2(S) = X2(0) + 2c dt 

> X2(0). 

Thus, even though K(S) and therefore x I (s) may be periodic functions of s, 
x2(s) cannot be and there are no closed solution curves in E2 to the Euler- 
Lagrange equations. Of course, this is clear a priori, since dilation about a 
point in E2 induces a variation of closed curves along which 2 i K2ds is 
clearly not stationary. 

b) Fixed length variations. We shall now study the functional 
(3.a.7) defined on immersed curves of fixed length. It turns out (cf. [21) 
that the Euler equations here are the same as the Euler equations for the 
functional (3.a.7) on curves of variable length in a surface of constant cur- 
vature. Careful study of the reduction procedure will lead to the closed 
solution curves mentioned in the introduction. 

We give an immersed -y C E2 of fixed length Q by a mapping 

x: N E2 

where N = O c s c f} and jjx '(s) 11 1. The Frenet equations (3.a.5) are 
then valid with s replacing t and u(t) -1; we write this as 

-4 f (E 2) 

F, 

N 1E 2 x(N)= 

A length-preserving variation of -y is given by a I-parameter family of 
Frenet liftings F,: N --+ fl(E2)(0 c t < c) such that Fo = F and F*W1 = 

ds. Thus, to set up the fixed length variational problem we let X = 
3:tE2) X R XK R where R X R has coordinates (s, K), and on X we consider 
the G-invariant Pfaffian equations 
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(3.b.1) U)2 = 

- KdS= 0 

together with 

p = L(K)ds = -K2dS. 
2 

The variational problem (I, ds; p) then corresponds to fixed length varia- 
tions of the functional (3.a.7). 

On Z = X X R3 where R3 _g has coordinates (XI, X2, X3) we con- 
sider 

= 2K2ds + X1( - ds) + x2w + X3(p - Kds). 2 

Following our usual prescription, the Euler-Lagrange system is generated 
by the Pfaffian equations 

(i) -a/as j 'I = d(K2 - X3K - ) ? 0 

(ii) a/aK 1 I = (K - X3)ds = 0 

(iii) al/aXI1 = c- ds = 0 

(iv) a/aX3 2 I = = 0 

(v) a/aX3 ' = p - Kds = 0 

{ (vi) -a/ap i ' = dX3-1W2 +X2WI 

(vii) -a/ aw1 i I = dx1 - x2P = 0 

(viii) -a/la2 i ' = dX2 + xP = 0. 

Equations (iii)-(v) are the original Pfaffian system (3.b.1), and since ds * 
0 (ii) gives 

3 = K. 
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Then (i) implies that, on any solution curve to the Euler-Lagrange system, 

1 2 = -R- -K2 
2 

where R is a constant to be determined by the condition that the solution 
curves have length ?. As before, (vi) gives on solution curves that X2 =-k 

= -dK/ds. We collect these equations together as 

(3.b.2) X = (XI, X2, X3) = (-R - K2, -k, K) 
2 

on solution curves. 
The coadjoint orbit condition (3.a.3) is 

K4 
(3.b.3) k2+ - + RK2+ R2=b2 b-O. 

4 

As before this equation may be integrated by elliptic functions (cf. below). 
To look for closed solution curves in E2 we apply the reduction procedure. 
For 

X (-3, X2S A-X1) = (-K, -k, R + 2K2) 

we have equations (3.a.13) and (3.a.14) as before. Writing 

1 0 0 

g(s) = x,(s) cos0(s) -sinG(s) 

\x2(s) sin0(s) cosW(s) 

(3.a.15) becomes 

(i) K = -,3 - 2X1 + tL1X2 

(3.b.4) (ii) k = -,2cosO + ,uIsin0 

(iii) IK2 + R = -,2sin 0 - 1 cos0 
2 
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where it 12 + fL2 = b2. If b = 0, then t 1 = A2= 0 and the solution curve is 
part of an arc of a circle with constant curvature K = f-R/2 (thus we 
must have R ? 0). In particular, circles give closed solution curves. If b * 
O then as in the previous section, we may reduce to the case = (0, -b, 0) 
and (3.b.4) becomes 

( (i) XI(S) = K(s)/b 

(3.b.5) (ii) cosW(s) = k(s)/b. 

(iii) sin 0(s) = (42K(S)2 + R)/b. 

As before we cannot have a closed solution curve to the Euler-Lagrange 
equations if R - 0. Thus we assume that R < 0, and by a dilation we may 
reduce to the case R - 1/2. Then (3.b.3) becomes 

(3.b.6) k2 = -(c2 - (K2 - 1)2) 
4 

K 

where c = 2b . 
To study (3.b.6) by the method of phase portraits we consider the al- 

gebraic curves given in C2 by the equation 

1 x 4 x 2 c2- 
(3.b.7) y2 - (c2 -(x2 - 1)2) - __X + + 

4 4 2 4 

depending on a parameter c - 0. The real points on these curves may be 
plotted as follows 

Fe 1 = K 

Figure I 
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Let E, denote the complex elliptic curve determined by (3.b.7). Then E, is 
smooth for c * 0, 1, oo. The mappingf: Ec -- P1 given by (x, y) --x is a 2- 
sheeted covering with branch points at 

x= +. 

On EC the holomorphic 1-form may be taken to be 

(3.b.8) dx dx 
2y aC 2-~(X 2-1j) 2 

The 1-form 

a-2(X2-_)8 = 4 2(X2 -1) dx 
OF- 2(X2 - 1)q =1c2_ - (x2_ -1)2 

is a 1-form of the 2nd kind on EC with double poles at fc(oo), and the 
integrals 

( /l~+c 
7r (c) 2 u a, O<c<1, 

,/I -c 

(3.b.9) 
,,/I +c 

r 2-(c) =2 OF, < c < oo, 

are periods of a. For reasons to appear below we shall need the following 

(3.b.10) LEMMA. (i) For O < c < 1, w I(c) < 0. 
(ii) There exists at least one value of c with 1 < c < oo such that 

7r2(C) = 0. 

The proof will be given at the end of this section. 
Returning to our discussion of solution curves to the Euler-Lagrange 

system we have from (3.b.6) that (K(S), k(s)) varies on one of the curves in 
Fig. 1, and from (3.b.5) that 

x 1 (s) = 2K(S)/C 

(3.b.11) X2(S) X2(0) + I (K(Q)2-1)d#. 
c 0 
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For c ? O, 1, oo the elliptic curve EC is representable as C/AC where C is the 
complex s-plane and AC C C is a lattice depending on c (the same is true 
for c = 0, 1, oo but where AC is only generated by one vector). Then K(S), 

k(s) are doubly periodic meromorphic functions (elliptic functions) such 
that the homogeneous coordinate 

[1, K(S), k(s)]: EC -+ p2 

gives a holomorphic mapping sending EC to the plane algebraic curve 
whose affine equation is (3.b.7). 

We now break our study into three cases. 

Case 1. (O < c < 1). The real points of EC consist of the two ovals in 
Fig. 1, and thus K(s) and x 1 (s) are periodic functions of s. To see if (x 1 (s), 
x2(s)) gives a closed curve in E2, we restrict to the oval where K > 0 

K 

K 

Te 

Figure 2 
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As K(S) traverses this oval once we infer from (3.b.11) thatx2(s) undergoes 
the "phase shift" 

7r l (c) = 2 2(K 2 - 2)dK 

i'll1-c c2-(K2 ) 

Here we have used (3.b.5) to write 

2dK 2dK 
ds = - C2-(K2- 1)2 

Thus, the phase shift is just the period irI(c) in (3.b.9) of the elliptic inte- 
gral discussed above. It follows from (i) in the lemma that wr I (c) < 0 and so 
there can be no closed solution curve when 0 < c < 1. 

(Note. It follows from the 4 vertex theorem that there can be no 
closed embedded solution curve in this case.) The picture of the integral 
curve is shown in Figure 3. 

Case 2. (1 < c < oo). Now K(S) travels around the closed curve (Fig- 
ure 4) and as above x2(s) undergoes the phase shift given by Ir2(c) in 
(3.b.9). By the lemma there exists a value of c with Ir2(c) = 0. The corre- 
sponding closed curve is a figure eight (Figure 5). 

If we consider circles traversed n times (where n ? 0 but may be neg- 
ative) as solution curves of index n, then since the figure 8 curve gives a 
solution curve of index 0 we conclude from Whitney's theorem that there is 
in each isotopy class of immersions x: SI -l E2 at least one solution curve 
to the Euler-Lagrange equations for the functional (3.a.7) with fixed 
length curves. 

Case 3 (c = 1). The solutions of (3.b.6) are seen to be 

K = X sech(s + so)/XJ2). 

The solution curve is shown in Figure 6. 

Note. Equations (3.b. 12) are consistent with the fact that, when an 
elliptic curve degenerates to a rational curve, elliptic functions specialize to 
circular functions. 
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I / 

X2 I / I 

I1/ I 

II/ 
\l 

IV i 

I' I 

I! 
I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-1(C 

x = 2 xl +c 

Figure 3 
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Figure 4 

x2 

-_2____+- 2, I +c 
C c 

Figure 5 
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X2~~~~V 

xx 

Figure 6 

Translating, we may assume that so = 0 and then 

x, (s) = 2V2 sech (s/V1) 
(3.b. 12) 

X 2 (S) = 2V1 tanh(s/X1) - s. 

Proof of lemma (3.b.10). Setting u = (K2 -1)/C we get 

I u du 
7r i (C) = 2 -l 11-u2 /1 + cu 
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e1 
= 2 (\1-cu- \+cu)udu 

1 1- c2u2 41 - 

< 0 

where 0 < c < 1. This proves (i) in the lemma. 
Turning to (ii), the same substitution gives 

I U du 
r 2 (C)= 2 \ -u2 +cu 

Setting u (-1 + cv)/(c - v) we obtain 

, I 

ir2(cC)= 2 (cv - 1)dv 
' VV(1 - V2)(C -V)3 

(3.b.13) ~~~2 (v - 1/c) dv (3..3 o V v(1- v2)(1 -VC)3 

We will show that i-X2(c) is negative for c close to 1 and positive as c oo. 
For the first we write 

1r2 (C) = 2(A (c) - B(c)) 

where 

A(c) u du ?0 and 
O /1- u2f1j+ cu 

l/c 

B(c)= udu ?0. 
? 1-u2 1-cu 

= 

Since 1 c 1 + cu c 1 + c for 0 c u c 1 we have 

A(c) < u du 
O f /1- 

- 
uw2 
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It will then suffice to show that B(c) -- oo as c 1. Clearly this follows 
from 

vl/c du (*) ~~~lim 00= 
c- 1 J1/12 /1-u 2 X1/c-u 

Setting u = sin 0 this integral is 

X arcsin 1 /c dO 

arcsin 1/V2 [\ 1 /c - sin6 

Taking so = r- 0 our claim (*) follows from 

arccos 1/V2 d 
lim =00. 
c J arccos 1/c V\1/c - cos(p 

Setting 1/c 1 - c it will suffice to show that 

( arccos ( 1-b(e)) dip 

()e0 arccos(1-e) \/(1 - CosSc) - 

where c < b(c) and b(c) -O 0 as c -e 0. The point of this is that in a neigh- 
borhood of so = 0 

1-Cos =70 2 and 

d= fd-, f(O)> 0. 

For c sufficiently small the integral (**) lies in an interval wheref > 0, so it 
will suffice to show that for v < 1 

v/2 
d m lim -o 
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Setting -1 = V0 this integral is 

dt 
, - 

402 - 1 

which clearly diverges as c- 0. 
Finally, we want to show that 7r2(c)> 0 for large c. From (3.b.13) this 

follows from the positivity of 

(v - 6)dv 
t ? V(i -V 4(-a) 

for small 6. But this integral is a continuous function of 6 as 6 I 0, with 
limit 

XI v dv O 
v ? V(1 -v2) 

Q.E.D. for the lemma. 

4. Study of I 5 K2ds in the Hyperbolic Case. 

a. Setting up the problem. Let R3 have points x = t(XI, x2, X3) and 
quadratic form 

x x = X12 + X2 -x32. 

Denote by G the identity component of 

SO(2, 1) = Ig g = Q where Q = 1 0 
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Then the Lie algebra g consists of all matrices 

? 43 tl\ 

(4.a.1) = -3 0 2 

(l 02 0 

We define R3-valued maps e1, e2, x: G R3 to be the column vectors of a 
variable matrix g e G; i.e., 

(el, e2, x) =g. 

Then we have 

d(e1, e2, x) = (el, e2, x) CO 

where 

,g-'dg= -p 0 2 

2 0 

is the left invariant Maurer-Cartan form on G. The Maurer-Cartan equa- 
tions are 

(dcol = -p A co2 

(4.a.2) d 2 = p A col 

Ydp = -c1 A o2. 

G is a simple Lie group, and if we use the isomorphism g = R3 given by 
(4.a.1) then the Cartan Killing form is 

B( , t) = 1i2 + ~22 - 2. 
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The set H2 = {xeR 3:x*x =-1 andx3 > O} with the metric ds2 = 

(co1)2 + (W2)2 is the Minkowski model of the hyperbolic disk. The map x: 
G -- H2 realizes G as the oriented frame bundle of H2. 

To set up the variational problem given by the functional 

(4.a.3) +(a)= + \ K2ds 

defined on immersed curves -y C H2 we follow the procedure of Section 
2a). Thus, on X = G X R+ X R X R, where R+ X R X R has coordi- 
nates (a, K, t), we consider the differential system (I, dt) generated by the 
Pfaffian equations 

(A) -oadt = 0 

(4.a.4) ( w2 O 

p KUdt = 0. 

The integral curves of (I, dt) are Frenet liftings of immersed curves -y C 
H2, and the functional (4.a.3) is associated to the variational problem (I, 
dt; o) where 

1 
f = - K2odt. 

2 

To compute the Euler-Lagrange equations, we identify g with g* using 
the Killing form. Then for X, t e g 

B(X, ) = 2Tr (X)). 
2 

We set 

0 K(J Or 

P = -K(J 0 O 
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and on Z = X X g we consider the 1-form 

4' = 2K2ordt + 2Tr((co - Pdt)). 
2 2 

Computing ' = d4' using (4.a.2) we find that the Cartan system is gener- 
ated by the Pfaffian equations (cf. [2]) 

(i) a/at j4 = 
d(2 K2 + X3KU - Xi) = 0 

(ii) a/aK .. * = Or(K + X3)dt = 0 

(iii) a/au Ij = (+K2 + KX3 - X)dt = 0 

{ (iv) a/ax3 1I = -(p - Ko)dt = 0 

(v) a/ax,, I' =co - odt = 0 

(vi) a/aX2 1 = O2 = 0 

{(vii) a/ap i4 = dX3 - XICO2 + X2C0 = 0 

(viii) -a/acol j4 = dXj - X3CO2 + X2P = 0 

(ix) -a/aco2 i4 = dX2 + X3W' - f = 0. 

Equations (iv)-(vi) are the original differential system, and (vii)-(ix) are 
the Euler equations. Since, under the identification g _ g* given by the 
Killing form the coadjoint representation goes over to the adjoint represen- 
tation, they may be written as 

d(g X g-') = 0. 

This means that 

(4.a.5) gxg 

is constant on solution curves to the Euler-Lagrange equations. 
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Equations (ii), (iii), and (vii) give on solution curves (cf. Section 2a)) 

X3 =-K 

(4.a.6) 1=K2 

(2 -k = dK/ds. 

Since B(X, X) = B(,, ,u) is constant we obtain the 1st integral 

+K 4 
(4. a. 7) k2 + - K 2 = B (,u, ,u) = constant. 

Comparing with (3.b.3), this is formally the same equation as in the Eu- 

clidean constrained length case. In particular, the ODE has phase portrait 
given by Fig. 1 in Section 2b) where a = (c2 -1)/4, and as explained there 
this equation is integrable by elliptic functions. 

b. Investigation of the solution curves. Given ,u e g we denote by 

FP C (9Ad() = {g lUg: g e G} the closed curve traced out by 

0 -K(S) - K(s)2 
2 

X(s) = K(S) 0 k(s) 

- K(5)2 k(s) 0 
2 

where K(S) is a solution to (4.a.7). Over Fr, we have the Ga-bundle 

BA r' 

as discussed in Section lb) (here, G. C G is the stabilizer of ,u under the 

adjoint representation). Momentarily leaving aside degenerate orbits, G, 
is a Cartan subgroup and is therefore either S1 (compact case) or R* (non- 
compact case). In the compact case, B, is diffeomorphism to S I X S I and 
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is consequently a 2-torus. Our main result is that the flow on B, given by 
the Euler-Lagrange system is linear. We now proceed to carry out the rele- 
vant computations. 

O X3 X1I 

For 0 = 3 ? e g we define 

X2 0 

- = e R 

X\3 

Then B(N, X) = X - \ and (4.a.5) becomes 

(4.b. 1) gx = A. 

As in Section 2a), it will suffice to study this equation when , runs through 
a complete set of orbits of G acting on R3. We proceed to examine cases. 

Case 1. (, = 0). Then X = 0 and k(s) and K(S) = 0. The solution 
curves are the geodesics on H2. 

Case 2. (*i = -1). By (4.8.7) this equation is 

K4 
- + k2 - K2 = 1. 

4 

By the Cauchy-Schwarz inequality we must have 

{K(S) =+ 

(S) = 0. 

The solution curves are closed circles of curvature ?+I2 in H2. 

Case 3. (O > ii > - 1). This turns out to be the case when G, is 
compact. Set ,i A = -c2 where 0 < c < 1. For A = t(0, 0, 1) we may 
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conjugate , to A, and therefore it suffices to study the torus B, C G X R3 
given by 

(4.b.2) gX = cA. 

We want to introduce a suitable parametrization of Bc. 
For this we restrict to the case X3 > 0 (i.e., K < 0 by (4.a.6)) and 

denote the coordinate frame by fi, f2, y, so that 

1 0 ?\ 

(f1, f2, Y) =O 1 0 

O 0 1 

Then using (4.a.6) 

(4.b.3) elk + e2(2 K2) + X(-K) = (eI, e2, x)x 

= (f1, f2, Y)g9X 

= (fi, f2, y)A 

= cy. 

Dotting both sides with x we get K = cy x X. Thus 

(X + (K/C)y) y = 0, 

and we let (u 1, u2, y) be a frame such that 

x = (-K/C)y- mu2, m > 0. 

From xx = -1 it follows that 

m =- I C12, 
c 



564 ROBERT BRYANT AND PHILLIP GRIFFITHS 

and we may define a frame field v1, v2, x by 

/1 0 0 

(VI, V2, X) = (U1, U2, y) -K/C -- 2 - 

K\ 
c2 -K/C 2 
C2~~ 

= (ui, U2, y)hi(s). 

Equation (4.b.3) is 

ke1 + (K 2)e2 = K2- C2 V2 

or 

K2!/ - C K 2-C - K C2 

(el, e2) = (V1, V2) 

-K2/ K2 C 2 

Writing 

2 !/ K2C-2 -k/ K2 - C2 0 

h2(s) k/ NK2C-c2 K2/ CK2 C2 0 
2 

0 0 1 

cosG -sinG OX 

R(0) = sinG cosG 

0 0 1/ 
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we set 

(e,, e2, x) = (f1, f2, y)R(0)h1 (s)h2(S). 

Taking (s, 0) as independent variables and K, k as functions of s deter- 

mined by (4.a.7), this equation parametrizes the torus B, defined above. 

The differential equation of motion is 

f 0 Kds ds\ 

-Kds 0 O = (R(0)hj(s)h2 (S))- I d(R (6)h I (s)h2(S)) 

ds O ? 

After a lengthy computation this becomes 

dO _ K2C 

ds 2(K2-c2) 

Write the right hand side as f (s, c); note that f (s, c) > 0 by (4.9.7). We 

shall show that any O.D.E. 

dO 
d = f(s, c), 
ds 

on the torus with angular coordinates (0, s), is linearizable. Suppose that s 

has period T (i.e., as s traverses the circle R/T Z, (K(s), k(s)) goes once 

around the left hand oval in Fig. 1 in Section 3b)). Set 

T 

v = |f(s, c)ds. 
0 

Then 

\j(f(s,c)- )ds 0 

so that 

f (s, c)- T as 
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for some function g(s, c) satisfying g(s + T, c) = g(s, c). We have 

(4.b.4) d (6 - g(s, c)) = T 
ds T 

Set 

(0, s, c) 6 0-g(s, c) 

,s =S. 

In terms of the new angular coordinates (sp, s) on BC the Euler-Lagrange 

system is by (4.b.4) 

Tdq' - vds = 0. 

This is a linear flow. 
In the hyperbolic plane we may picture the solution curve as 

ideal boundary 

X Figu-2r 

Figure 7 
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Here, Sp(c) is the "phase shift" when (K(s), k(s)) traverses the oval once. 
The condition to get a periodic solution curve is Sp(c) e Q. As c varies we 
find countably many periodic solutions. 

Remark. In [5] Wilmore considered the functional 

(4.b.5) 4(S) = H 11 I 2dA 

defined on immersed surfaces S C E3, where 11 H 11 is the length of the 2nd 
fundamental form. Denoting by H and K the mean and Gaussian curva- 
ture, if we add to the integrand in (4.b.5) the divergence term KdA then we 
may equivalently study the functional 

(4.b.6) 4D(S) = (H2 - K)dA. 
2 Js 

The advantage of doing this is that 4b(S) is invariant under the full confor- 
mal group acting on E3. 

It is natural to consider (4.b.6) defined on surfaces of revolution. This 
was done in [2] where it was pointed out that we obtain a classical 2nd 
order classical variational problem given by a functional 

l'b 

(4.b.7) F(y) = \f(y(x), y'(x), y"(x))dx 
,it 

defined on functions y e C2 [a, b]. It is straightforward that the Euler- 
Lagrange equations associated to (4.b.7) may be written in Hamiltonian 
form in Rs with coordinates (x, y, y', X, X') and Hamiltonian H = H(y, 
y', X, ') (loc. cit.). There the 2nd author conjectured that this Hamilto- 
nian system was completely integrable. 

Now invariance of the functional (4.b.6) under the dilation vector 
field v = ,3= xi a/axi in E3 gives a 1st integral G = G(y, y', X, X') 
independent of H (actually, a slight variant of Noether's theorem must be 
used here since v is not invariant under translation along the axis of rota- 
tion). However, in [2] it was not noticed that (4.b.7) is also invariant under 
the 1-parameter group of inversions in spheres along the axis of revolution; 
this gives another 1st integral and leads to the complete integrability 
result. 

The 1st author noted that, when written intrinsically, the functional 
(4.b.7) for surfaces of revolution reduces to the study of the functional 
(4.a.3). The consequence of complete integrability that the motion is 
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equivalent to a linear flow on a 2-torus then follows from our result above. 
For more information on the variational equations associated to the 
Wilmore problem we refer to [1]. 

Case 4. (i> O). In this case, G is noncompact, and by analogy 
with (4.b.2) it will suffice to study the case gX = c where A = '(0, 1, 0). 
Then (4.a.7) and (4.b.3) are 

+K 4 
k2 +- - K 2 C2 C > 0, 

4 

and 

elk + e2(2 K2) + X(-K) = Cf2. 

In a purely analogous fashion to case 3 we have 

(e , e2, x) = (f1, f2, y) T(T)h1 (s)h 2(S) 

where 

coshT 0 sinhT 

T(T)=( 0 0 1 

sinh T 0 cosh T 

I 0 0 

h (s) = 0 -VK2 _ c2 K/C 

c~~~~~ 

0 KICK/C - 2 - C 
C 

1 2 K2/4K2 - c2 -K/ 2- C2 0A 

h 2(S) k -K K2 C2 -k/ K2C2 
2 0 12 

1 
0 

1 
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The differential equation of motion is 

( 0 Kds ds 

-KdS 0 0 ) -(T(T)h 1 (s)h2(s)) I d(T(T)h 1 (s)h2 (s)). 

ds 0 0 

Again, after much computation this becomes 

dT _ K2C 

ds 2(K2 + c) 

In particular, T is strictly increasing on solution curves and so there can be 
no periodic orbits of this type. 

Case 5. (,i * 0 but , , = 0). In this case the Euler-Lagrange 
equations may be integrated in terms of elementary functions and we ob- 
tain curves which may be pictured as follows: 

ideal boundary 

Figure 8 
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