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The Regulator Map for a General Curve

Mark Green and Phillip Griffiths

1. Introduction

For X a smooth projective curve over C, a reasonably mysterious object is the
Kz-group of X, K3(X). The piece of this we want to study is

I_{Q(X) = G'I",.ZFKz{X) = HO(’C'z(bXJ)s

where 7y is the weight filtration by Adams operations. This has a beantifal
transcendental invariant attached to it, the regulator map

fix: Ka(X) — HYUX, C/Z(2)).
If py is & base-point on X, for a loop ¥ on X, the regulator is defined by

Bx{{f,g(n) = f tog(£) % - tog(a(po) %,
o g f

which is weli-defined mod (27{)2Z = Z(2) independent of py and of choices of
branches of log, and depends only on the homology class of . Out of this map, an
arithmetic version can be made if X is defined over a number field & by using the
appropriate parts of £x for the various complex embeddings of &, of [R]. The image
of the arithmetic regulator is not at all well understood, and one has important
conjectures about it when X is defined over a number field, due to Blech-Beilinson,
described for example in [R].

‘The image of Ry is likewise highly mysterious. A basic result, a proof of which
we will give below, is [Rj:

THEOREM 1.1. (Bedlinson) For a fited X, Ry is constant on algebraic families,

Thus the image of Ay is 0-dimensional in all cases. We adopt the language
that very general means that a statement holds on the complement of a countable
number of lower-dimensional Zariski closed subsets; general means the statement
holds on the complement of a finite number of lower-dimensional Zariski closed
subsets. Our results are:
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118 MARK GREEN AND PHILLIP GRIFFITHS

THEOREM 1.2,
(1} For any smooth projective complez curve X, the image of Ry contans the
torsion poinis of HYX, C/Z(2)).
(2) For a very general comples curve X of genus > 2, the image of Rx is exactly
the torsion points of H'Y{X. C/Z(2)).
{3} Let k be a number field. For o given genus g = 2, there does not exist o degree
d and o nomber N such that a general curve X defined over k of genus g has an
element of HY{Ka(Oxx))) whose regulator is non-torsion and which is a product
af € N symbols of functions of degree < d.

REMARKS:
(2} Another way of saying (1) and (2} is that the image of Rx for a very general
curve of genus > 2 is
HY(X, Q(2)/2(2)) € B (X, C/Z(2).
As will be discussed later on, if Beilinson’s conjectures are correct, this implies:
For the very general curve X of genus > 2, in the conjectural category of mixed
motives over C,
Extlate (Q HH(X)(2) =0
and presumably
Extipme (Z, H'{X)2)) = H'(X. Q(2)/Z(2)).
{b} Statement (3) is an elementary consequence of {2}, since the existence of ele-
ments of H9(K2{Ox)) expressed as the product of N symbols involving functions
of given degree defines a variety over @ in moduli, and by (2) this subvariety must
be proper if the regulator is not identically torsion. Also, it is elerentary by the
Riemann-Rech Theorem that over C any element of C(X) can be written as a prod-
uct of symbols involving only functions of degree < g + 2. Statement (3) says thal
if the Bloch-Beilinson Conjecture about the image of the regulator of curves over
number feids (see [R]), which predicts the existence of elements of H?{Ka(Oxq})
mapping to non-torsion elements under Ry is true, then for a given genus g 2 2
and given algebraic number field %, the number of symbels involving functions of
degree < g + 2 required to express any such element is unbounded.
(c) Quite a bit is known about the torsion in H°(K2(Ox)), see [T], [S].

In [(). Collino shows that the image of the regulator map for a very general
plane curve of degree = 4 is contained in the torsion paints. Interestingly, neither
his result nor our result implies the other. The proofs are simitar, but rely on
different algebraic lemmas to show the vanishing of the infinitesimal invariant. In
the same paper, Collino also shows that for genus 1, the image of the regulator map

is not finitely generated.
The following more geometric conjecture can be reduced to the general conjec-

tures of Beilinson:
CONIECTURE 1.1. Modulo torsion, the kernel of Rx is Kq(C).
From the conjecture and our theorem, it would follow that:
Consequence of the Conjecture. For a general curve X of genus > 2,
Ka(X)
Ka(C)

is torsion.

———A—.
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REMARKS:

{1) The clagses in {_( 2{X} which Bloch-Beilinson predict should exist for g > 1 when
X is defined over Q cannot, for g > 2. come from some “universa! elements” which
exist on the general curve.

{2) There are two ways in which the situation for the image of the regulator differs
frons that of the image of the Abel-Jacobi tmap; firstly, there is no "abelian pary” of
HY{X,C/Z(2)} and no continuous families, and secondly the fact that all torsion
classes appear in the image of the regulator is quite surprising and, at least by us,
totally unanticipated—for example. one expects that the situation is quite different
for algebraic cycles.

2. Motivic Interpretation of the Regulator Map

In this section, we want to show how the regulator map and various conjectures
about it Rt into the general framework of the conjectures of Bloch-Beilinson, Indeed,
we feel that this is one ease where one can “hold in one’s hand” the relevant objects
aml got a reasonable geometric feeling for the content of the conjectures. In what
follows, X is a smoath projective curve over C.

PROPOSITION 2.1, The following ave three equivalent definitions of Ko(X)

_ . S b
(1} Ko(X) = HYK(Ox));
(8) Ko( X} = ker(T: K3(C(X)) — @5cx C3), where T is the tame symbol;
(3) Ko(X) 3z Q =CHYX,2) 2z Q.
PROOF: The equivalence of (1) and (2) follows from the Gersten-Quillen exact
sequence

0~ Ka{Ox) = fuKa(C(X N5 @rex JouCl — 0.

the equivalence of (1} and (3) follows by work of Bloch [B].

Now, there is the Bloch-Beilinson conjectural filtration on

CHz(X, 2) ®Z QJ
which has the form:
CHYIX. 2@z Q= F?CHQ(X, 219z Q2 FICHYX, )% Q 2
FOH X, 2)92zQ2 FCHYX, 2)®z @ =1.
Furthermore, we should have conjecturaily:

CONJECTURE 2.1.
GrOCH(X,2) ®2 Q Extiue (Q H2(X)(2))

GrCH?(X.2) @7 Q Extime (Q HY{X){(2))

GriCHY(X, 1) 27 Q Ext4 e (Q. H(X)(2)),

where MMg 15 the conjectural category of mized motives over C.

1R H

We may note that since

H2(X)(2) = Q(2)
and
HO(X)(2) = Q(2),
and since
Extling(Q Q(2) = o
Extii e (@ Q(2) = K(C)azQ,
we may simplify Conjecture 2.1 to the conjectural equalities:




120 MARK GREEN AND PHILLIP GRIFFITHS

CONJECTURE 2.2.

GrPCH?*(X.2)®2Q = G,
GriCH*(X,2} 92 Q & Exth,u(Q H'(X)(2),
GriCH} X, Y22 Q = K(C)zz Q.

Purther, one expects that there is on injective map
Exthpeo(Q H'(X)(2)) — Exthos(Z, H'(X)(2) @2 Q 2 H'(X.C/Z(2)) 22 Q.
where MM.S is the category of mized Hodge structures.

We expect that this map is induced by

By @z Q: CHX,2) 82 Q — HYX.C/Z(2)) 2z Q;

indeed, we expect that:

CONJECTURE 2.3.

Exthug (Q. H1(X)(2)) % im(Rx ®2 Q).
It follows that

CONIECTURE 2.4, Module torsion,
ker(Rx) = Ko{C).

3. The Regulator of a very General Curve of Genus > 2 is Torsion

The method employed here is the infinitesimal invariant of [G] and [V]. This
allows us to use Hodge theory to reduce the problem to a new purely algebraic result,
which is proved in section 4.

Let p: 4 — M be the universal curve over the moduli space of curves of
genus g with a suitable level structure. If the regulator of a general curve has
image which is non-torsion, one can find a family of elements 3{t) € K3(X,), where
t ranges over some generxcally finite branched cover M of M, with the property
that

v{t) = R, (B(8))
gives an analytic section of R*5.(C/Z(2)) 8¢ O, where f: U — M is the liffing
of the universal curve to M, and such that (¢} is non-torsion for a general t.
The first fact we need is the infinitesimal property:

PROPGSITION 3.1.
Vﬁfﬁy(f;) € Qj\;‘ ® FTHYX,C),
where Vi > &5 the Gauss-Manin connection.
PROOF: This is well-known, but it is helpful to have a geometric proof.
If we have a local smooth family p: A’ — B of curves over a 1-dimensional disc
B, and p~i(t) = X, then i we have a smoothly varying family of loops ; on X,
with base-point p(t), and F,, G, € C(X)*, let p be & path from iy to £; in B. We

assume B
[I{F.. G} € ker() = &5(X).

We want to compute

#ﬂi__
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R, (TT{Fe. C) ) = Ry ([L{Fr G D)

=24 toetF) G tos(Gutp(tn T~ | ostn) G oniGutpta) )
Let

U= Lheprt
and

o = Useaplt).

We cut I/ along & and open it up to obtain {7, whose bounda.r} i8 e 4 i, 1, and
aa,where the latter two paths are two copies of 0. [V is topologicaly a disc. and
log{ F), log(G} have well-defined branches on I7. By Stokes’ Theorem applied to T,

Ry (JU{F.. 6.1 w) - Bx, (J (R G,

~ dF, dG, dF, dF, [ dG,
= S g HosG o os@ e [ T Rk

“Tig

where we do not have problems in the intericr of 7 because any zeros and pales
of the F,, G, cancel out because [] {F..G.} € ker(T'). The preceding formula

reduces to
z /' ar, dG

Rxsl(H{Fvst}]('}'h RX,,O H{FmG }
a4,

VX/BRX‘ H{F”'G })(“(g dt@Z/ < —;"\ o — Ty >

where <, > represents contraction and 7; is the normal vector of the variation of
X;in A, Thus

VasBx ([[{F. G0 = dt@Z dF”

Taking the limit as t; goes to &g, we obta.m

HYx,, ©.

This completes the proof of the Pmposltmn.
Returning to the situation discussed at the beginning of this section, since

2
VWM a,
we have that

Vg
Vi mv(t) € ker(Q, ® FTH' (X, C) 23°0%, & H(X,, C)).
If we quotient out on the right from H(X;, C) to H%!(X,), then a fortiori we have
Vi, mp(t) € ker{Q @ FIH'Y(X,,C) =5 “"“"n-’* ® H% (X))
We make the identifications

HYOL) = C
jﬁ,: = HO{K??)
FIHYUX,.C) = HYKy),
HYMX,) = H"(Kx,)
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and, iff X, is not hyperelliptic or ¢ = 1. by Noether’s Theotemm
SPHY(Ky,)

W
wherve W is the quadratic ideal of the canonical image of X;. Now

HYKZ) =

52V
V&_ff,g,‘u{t) ker{:—-— 2V — A (?} 2 V),
where V = H¥{Ky,) and the map is induced by multiplication. as described in
section 4. In section 4, we prove the general Fact:
THEGREM 3.1. Let V' be a complezr vector space uf dimension g > 2, and
W c SV

a linear subspoce that deoes not contain any non-zero decomposoble elements, ie.
images of elements of the form v ® g vy with vr, vz # 0. Then the naturel mop

52y 52y

W SV —= A (I’V 1@V

is injective.

In our case, since a decomposable element of W would be & union of two
hyperplanes containing the canonical image of X,, which cannot hdppen since the
canonical curve is nob-degenerate, the hypotheses of the theorem are satisfied and
we eonciude that

Vi v(t) =0
We now employ a simple monodromy argument. Pick a general point ¢y € M. If
p: m (M) — Aut{ HY{Xy,, Z))
is the monodromy representation, then for all loops ¥ in M,
p7)(wite)) — v(to) € HY{X,Z(2)).

If we allow X, to acquire a node, and -y i§ a loop around the value of { where
this happens, then we have the Picard-Lefschetz transformation for any v €

HY(X,C),
plr)(v) = v + (v-8)3,
where 4 is the vanishing cycle associated to . It follows that
vity) - J € Z(2)

for all vanishing cycles . Since for the full family of curves of genus g. or a
genatically finite branched cover like M, the vanishing cveles have finite index in
HY X, Z), it follows that v{p) € H*(X, Q(2)). This says that

Ryx,,(8(ta)) is torsion.

Since t5 was a general point, this is a contradiction.
Appendix to §3: Proof of Theorem 1.1 This is similar to, but more elementary

than. the proof of proposition 3.1 above.
Let B be a smooth algebraic curve and

B — HY(K,(Ox))

—E“
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an algebraic map. We want to show that the differential of the composite map
B — H(Ky(0x)) 2 H Y (X.C/2)

is zero. If B is complete, this is clear since H'(X,C/Z(2})) = &C~, and any
Lolomorphic map B — C* is constant.

In general, we lot £ be a local uniformizing parameter en B and give the above
map as

t— oy — Bxla)

where

= [T{5t0. g2}
with f,(¢), g.{£} € C( X} depending meromorphicaly on f. Then for v € H (X, Z)

d fo dgo g df
—R {7 = Jv e v Hv
g Fxlad() E;_T(f,, o o)

and

T

We note that ihe integrand is a holomorphic I-form on X and a logarithmic 1-form
on the smooth compactification B of B. If u is a closed loop in B

bodge 4v dh
Zf {fv & g fo )dt € 2(2)

1

i.e., by integration the above map is
B — HO(QY,c)/H' (X, 2(2)) € H (X, C/2(2).

New, as noted above

fu dg.  dv df.
E (f_,, Tg-;- - E; T )dt IS HD(”Y;C) ﬂgic(]ogl))

for some set of points D on B, and for t € B\D

Z (& dgy  gv df")dt € H'(Q,0) 0 HY (X, Z(2)) =

foa g fo
Thus
B — HY QY )
fu g, e dfy
b _— = dt
Z/ fv gu He fu)

is well-defined, and since the integrand has at most logarithunic singuiarities and
no residues it extends 1o B, and therefore must be constant.
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4. An Algebraic Result

Given a vector space V and a linear subspace W C 5%V, the multiplication
map

VoV — sty
indueces a map
V-8Vel
and hence & map )
54V .
By tensoring with idgzyw-. We obtain a natural map
2 5%V _ 8%
-2 g2 gV
eV YW ®
which then gives a natural map
52V ., 82V .
W &V —=A (TVM) V.
TueoREM 4.1, Let V be o complex vector space of dimension g 2 2, and
W C 5%V

a linear subspace thaf does not contain any non-zero decomposable elements, i.e.

images of elements of the form vy ®¢ ve with v, vy # 0. Then the natural map
52V 52V
@V A )RV
W &V - A% W )2
is injective.
PROOGT: Assume that )
54V
E—aVv
CE W
maps to 0 under the map above. We may think of o as a map
52V
W’
and let r be the rank of this map. Choose a basis

V' —

for ¥* such that

spaz ker(a}. Let
€11 -0,y Eg

be the dual hasis for V. We may write

"
5%
Q:E‘ﬁi@eie V‘SVI
i=

By construction, ¢,. .., ¢, are linearly independent; let
5
Ve ——
- W

THE REGULATOR MAP FOR A GENERAL CURVE 125

denote the subspace they span. Under the map of the theorem, o maps to

+ g 2
5V
E :E :(fptﬂeisj)tzbe;GA?(—T—)@V*.

i=1 j=1
Thus, for all j,
i
Y o Alee;) =0
i=I
If
eie; ¢ U,
then no term of the sum can cancel ¢; A (ge;). If
P =spanfe;,...,e) CV,
then we conclude that
PRV U
under the muiltiplication map
sV
VoV —o ——,
SV — W

By hypothesis on W, no tensor product of non-zero elements 1 & vo maps to 8. By
the Lemma below, we conclude that

dim{P) + dim{V) - 1 < dim{T},
ie.
r+g—1=<rv
and hence g £ 1. This contradicts the hypothesis ¢ > 2, and hence o must be 0.
Lewmna 4.1, Let A, B, O be finite-dimensional vector spaces over C, and
FiA®ReB—=C
a linear map such that
Flagb) #0
Jor afl non-zero elements a,b. Then
dim{4) +dim{B) — 1 £ dim{C).

This is classical and appears for example in the proof of Clifford’s Theorem.

5. The Image of By Includes all Torsion Points

Let X be a smooth projective curve of genus g Our proof proceeds using
classical complex methods from Riemann surface theory, where we save some terms
that are ordinarily thrown away. The first step is ta open up X into a fundamental
domain U whose sides are ay,by,..., 05, by. Pick po the Arst vertex of the domain.
Let wy, ... wy be a basis for H%(02) ) and

Fi(p} = fp:m-

|
!
@—
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Let F(p) be the corresponding vector {(F(p),.... Fp{p)) € C¥ By the implicit
funetion theorem, for any vector £ € CY, there exist for &k large enough points
Pis-. . Pr in the interior of {7 and integcrs F1ve .- gk such that

Z FoF{pu) =

pes

Now choose an arbitrary element of the integral lattice

g
Z mga; + nb7

in HY{X,Z), where aj, bi,.-. a5 by is the dual basis t0 a1.b1... .. 44,8, and an
arbitrary positive integer N. WE may choase a collection of points py,...,pr In the
intertor of I and integers jl, <.+, jx such that
m t -
Z JoF(py) = — ‘?b
If

D= Z Jupy

=1

as a divisor, then by the Abel-Jacobi theorem, there exists f € C{X)* such that
div{f) = ND.
If we do a contour integral on I for the 1-form Fjdf/f, we obtain the

fw,fb{%—fb‘wj [ %):mpjpvpy

=1
It fo]lows that

§ :¢= - —¢(b*) f = 2miF(N D) —2m§ miplal} + ng(57),
i i=1
where 1(x,C)
H
.l SR vk hnd S
o H\X.2) — ey =

is induced by the coefficient map. Since ¢ maps H!(X,Z) injectively to C9, it
follows that

— = =2mwiny,
L7
f -i = 2mimy.
Now let o
p=e¥

Consider the element
{u, F} € Bo{C(X)).

k& k

T N =Y (1), = > (1), =0.

=1 v=1

We have that

THE REGULATCR MAP FOR A GENERAL CURVI 127

Thus
{u. 1} € Ka(X).
The regulator is computed by

Rx({u SDtas) = [ tog(w S = 28 (—2min = —(2mip 5 € Q)

and similarly
21

Rx (s [H:) = (2mip* T € Q(2),

Since ng, m; were arbifrary integers and N > f} was arbitrary, we conclude that
every element of H1(X, Q(2)/Z(2)) can be realized by an element of K3{X) of this
form. This proves that the image of By contains all of the torsion points.
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