
REPRESENTATIONS OF ABELIAN ALGEBRAIC GROUPS

ROBERT P. LANGLANDS

The present paper is a reproduction, with only trivial stylistic changes, of a preprint now in circulation for 29
years. The material has, in the meantime, been treated in print by several other mathematicians. So the

author is flattered that the editors of this collection still think it of some interest and is of course very pleased
to be able to dedicate it to the memory of Olga Taussky-Todd.

There is reason to believe that there is a close relation between the irreducible represen-
tations, in the sense of harmonic analysis, of the group of rational points on a reductive
algebraic group over a local field and the representations of the Weil group of the local field
in a certain associated complex group. There should also be a relation, although it will not
be so close, between the representations of the global Weil group in the associated complex
group and the representations of the adèle group that occur in the space of automorphic
forms. The nature of these relations will be explained elsewhere. For now all I want to do is
explain and prove the relations when the group is abelian. I should point out that this case
is not typical. For example, in general there will be representations of the algebraic group
not associated to representations of the Weil group.
The proofs themselves are merely exercises in class field theory. I am writing them down

because it is desirable to confirm immediately the general principle, which is very striking,
in a few simple cases. Moreover, it is probably impossible to attack the problem in general
without having first solved it for abelian groups. If the proofs seem clumsy and too insistent
on simple things remember that the author, to borrow a metaphor, has not cocycled before
and has only minimum control of his vehicle.
It is well known that there is a one-to-one correspondence between isomorphism classes

of algebraic tori defined over a field F and split over the Galois extension K of F and
equivalence classes of lattices on which G(K/F ) acts. If T corresponds to L then TK , the
group of K-rational points on T , may, and shall, be identified as a G(K/F )-module with
Hom(L,K∗). If K is a global field and A(K) is the adèle ring of K the group TA(K)/TK may
be identified with Hom(L,CK) if CK is the idèle class group of K. If K is a local field CK
will be the multiplicative group of K.

Suppose L̂ is the lattice Hom(L,Z). If C∗ is the multiplicative group of nonzero complex

numbers and C∗
u the group of complex numbers of absolute value 1 we set T̂ = Hom(L̂,C∗)

and T̂u = Hom(L̂,C∗
u). There are natural actions of G(K/F ) on L̂, T̂ , and T̂u. The semi-

direct product T̂ ⋊G(K/F ) is a complex Lie group with T̂u ⋊G(K/F ) as a real subgroup.
If F is a local or global field the Weil group WK/F is an extension

0 CK WK/F G(K/F ) 0σ

of G(K/F ) by CK . We want to consider continuous homomorphisms φ of WK/F into

T̂ ⋊G(K/F ) that make
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WK/F G(K/F )

T̂ ⋊G(K/F ) G(K/F )

σ

α

commutative. Two such homomorphisms φ and φ′ are said to be equivalent if there is a t

in T̂ such that φ′(w) ≡ tφ(w)t−1. We write φ(w) as f(x)× σ(w). Then f is a continuous 1

cocycle on WK/F with values in T̂ . If φ′(w) = f ′(w)× σ(w), then φ and φ′ are equivalent if
and only if f and f ′ are cohomologous. Thus the collection of equivalence classes may be

identified with the collection H1
c (WK/F , T̂ ) of continuous cohomology classes.

Theorem 1. If K is a global or a local field there is a canonical isomorphism of H1
c (WK/F , T̂ )

with the group of generalized characters of HomG(K/F )(L,CK). Under this isomorphism

H1
c (WK/F , T̂u) will correspond to the group of ordinary characters.

Suppose F and F ′ are global or local fields, K is a Galois extension of F , K ′ a Galois
extension of F ′, and φ an isomorphism of K into K ′ that takes F into F ′. If F and F ′ are
both global or both local we want F ′ to be separable over the image of F ; if F is local and
F ′ is global we want F ′ to be separable over the closure of the image of F . Under these
circumstances there is associated to φ a homomorphism

φw : WK′/F ′ → WK/F

and thus a map

φ∗
w : H1

c (WK/F , T̂ ) → H1
c (WK′/F ′ , T̂ ).

If K is a local field HomG(K/F )(L,CK) is just Tf , the group of F rational points on T .
However, if K is a global field and IK is the group of idèles of K the exact sequence

1 K∗ IK CK 0

leads to the exact sequence

1 TF TA(F ) HomG(K/F )(L,CK) H1
(
G(K/F ), TK

)
.

Thus, TA(F )/TF may be regarded as a subgroup of HomG(K/F )(L,CK). Thus we have a

canonical homomorphism ofH1
c (WK/F , T̂ ) into the group of generalized characters of TA(F )/TF .

The following theorem is a slight improvement of these immediate consequences of the first
theorem.

Theorem 2.

(a) If F is a local field H1
c (WK/F , T̂ ) is canonically isomorphic to the group of generalized

characters of TF ,

(b) If F is a global field there is a canonical homomorphism of H1
c (WK/F , T̂ ) onto the

group of generalized characters of TA(F )/TF . The kernel is finite and consists of those
classes α such that φ∗

w(α) = 0 whenever K ′ is the completion of K with respect to
some valuation, F ′ is the closure of F in K ′, and φ : K/F → K ′/F ′ is the imbedding.

Of course only the second part of this theorem will need to be proved. First we prove
Theorem 1.
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All G(K/F )-modules may be viewed as WK/F -modules and hence as CK-modules. Of
course CK will act trivially. The cup product gives a bilinear mapping

H1(CK , L)×H0(CK , L) → H1(CK ,Z)

that commutes with the action of G(K/F ) on these three groups. Since H0(CK , L) and
H1(CK ,Z) are isomorphic as G(K/F )-modules to L and CK respectively we have a G(K/F )
invariant homomorphism

H1(CK , L̂) → Hom(L,CK).

Since L is the direct sum of a certain number of copies of Z this map is an isomorphism. The
restriction map

Res : H1(WK/F , L̂) → H1(CK , L̂)

has an image contained in the set of G(K/F ) invariant elements of H1(CK , L̂). Using

standard techniques [1], we shall show that it determines an isomorphism of H1(WK/F , L̂)

and H1(CK , L̂)
G(K/F ) and thus an isomorphism of H1(WK/F , L̂) and HomG(K/F )(L,CK). This

isomorphism can be used to turn H1(WK/F , L̂) into a topological group. To complete the
proof of the first theorem we show that the pairings

H1
c (WK/F , T̂ )×H1(WK/F , L̂) → H0(WK/F ,C

∗) = C∗

H1
c (WK/F , T̂u)×H1(WK/F , L̂) → H0(WK/F ,C

∗
u) = C∗

u

associated to the natural maps T̂ × L̂ → C∗ and T̂u × L̂ → C∗
u determine isomorphisms

of H1
c (WK/F , T̂ ) and H

1
c (WK/F , T̂u) with the groups of generalized and ordinary characters

of H1(WK/F , L̂).

If x : a→ x(a) is a 1-cycle on CK with values in L̂ we associate to it the 1-cycle on WK/F

that is 0 outside of CK and equal to x on CK . If x : w → x(w) is a 1-cycle on WK/F we
associate to it the 1-cycle σ →

∑
σ=σ(w) x(w) on G(K/F ). Passing to homology classes we

obtain a sequence

H1(CK , L̂) H1(WK/F , L̂) H1

(
G(K/F ), L̂

)
0

that we shall verify is exact. Let
{
wσ
∣∣ σ ∈ G(K/F )

}
be representatives of the cosets of CK

in WK/F . If x : σ → x(σ) is a 1-cycle on G(K/F ) and y is the 1-cycle on WK/F that is equal
to x(σ) on wσ but is zero otherwise, then x is the image of y. Thus the sequence is exact

at H1

(
G(K/F ), L̂

)
. To show it is exact at H1(WK/F , L̂) we observe first of all that if G is

any group and A is any G-module then a 1-cycle that vanishes off the identity is a boundary.
Indeed if x(1) = x while x(g) = 0 if g ̸= 1, let y(h, g) = 0 unless h = g = 1 when y(h, g) = x.
Then

dy(g) =
∑

h−1(h, g)−
∑

y(gh−1, h) +
∑

y(g, h) = y(1, g) = x(g)

Consequently the composition of the maps in and out of H1(WK/F , L̂) is 0. Suppose σ →∑
σ(w)=σ x(w) is the boundary of Y (σ, τ). Let z(u, v) be the 2-chain on WK/F that is 0 unless

u = wσ for some σ and v = wτ for some τ when z(u, v) = y(σ, τ). Then

dz(u) =
∑
σ

w−1
σ z(wσ, u)−

∑
σ

z(uw−1
σ , wσ) +

∑
σ

z(u,wσ),
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and if x′ = x− dz,∑
σ(w)=τ

x′(w) =
∑

σ(w)=τ

x(w)−

{∑
σ

σ−1y(σ, τ)−
∑
σ

y(τσ−1, σ) +
∑
σ

y(τ, σ)

}
= 0

Let z′(u, v) = 0 unless (u, v) = (wσ, a) for some σ and some a in CK when z′(u, v) = x′(wσa).
Then

dz′(u) =
∑
σ

w−1
σ z′(wσ, u)−

∑
σ

z′(wσ, w
−1
σ u) +

∑
a

z′(u, a)

=
∑
σ

w−1
σ z′(wσ, u)− x′(u).

Thus x′ + dz′ has support in CK and the class of x is in the image of H1(CK , L̂).
Let N be the map ∑

σ∈G(K/F )

σ.

It takes H1(CK , L̂) into H1(CK , L̂)
G(K/F ), the group of G(K/F )-invariant elements. Denote

its image by N
(
H1(CK , L)

)
. By definition

H1(CK , L̂)
G(K/F )/N

(
H1(CK , L̂)

)
= Ĥ0

(
G(K/F ), H1(CK , L̂)

)
.

The group on the right is isomorphic to

Ĥ0
(
G(K/F ),Hom(L,CK)

)
and the sequence

0 N
(
H1(CK , L̂)

)
H1(Ck, L̂)

G(K/F ) Ĥ0
(
G(K/F ),Hom(L,CK)

)
0

is exact.
There is an obvious isomorphism of L̂ ⊗ CK with Hom(L,CK). It sends λ̂ ⊗ a to the

homomorphism λ→ a⟨λ,λ̂⟩. Since

H1

(
G(K/F ), L̂

)
= Ĥ−2

(
G(K/F ), L̂

)
,

the cup product gives a map

H1

(
G(K/F ), L̂

)
× Ĥ2

(
G(K/F ), CK

)
→ Ĥ0

(
G(K/F ),Hom(L,CK)

)
and the cup product with the fundamental class gives a homomorphism

H1

(
G(K/F ), L̂

)
→ Ĥ0

(
G(K/F ),Hom(L,CK)

)
,

that is well known [2] to be an isomorphism. We have to show that the following diagram (I)

H1(CK , L̂) H1(WK/F , L̂) H1

(
G(K/F ), L̂

)
0

0 N
(
H1(CK , L̂)

)
H1(CK , L̂)

G(K/F ) Ĥ0
(
G(K/F ),Hom(L,CK)

)
0

N Res
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is commutative. Let Λ be the group ring of WK/F over Z and let I be the kernel of the map
Λ → Z that sends

∑
m(g)g to

∑
m(g). The exact sequence

0 I ⊗ L̂ Λ⊗ L̂ L̂ = Z⊗ L̂ 0

gives rise to a commutative diagram

H1(WK/F , L̂) H0(WK/F , I ⊗ L̂)

H1(CK , L̂) H0(CK , I ⊗ L̂)

Res Res

in which the horizontal arrows are isomorphisms. If x : w → x(w) is a 1-cycle on WK/F with

values in L̂, the image of its homology class in H0(WK/F , I ⊗ L̂) is the class of∑
w

(w−1 − 1)
(
1⊗ x(w)

)
.

Restricting to CK we obtain the class of∑
σ

∑
w

{
wσw

−1
(
1⊗ x(w)

)
− wσ

(
1⊗ x(w)

)}
.

If τ belongs to G(K/F ) and w belongs to WK/F there is a unique element δ(wτ , w) of CK
and a unique σ in G(K/F ) such that wτw = δ(wτ , w)wσ. The sum is equal to∑

τ

∑
w

(
δ−1(wτ , w)− 1

)
wτ
(
1⊗ x(w)

)
,

which equals ∑
a∈CK

(a−1 − 1)
∑

δ(wτ ,w)=a

wτ
(
1⊗ x(w)

).
Since (wτ − 1)⊗ wτx(w) is in I ⊗ L̂ this is homologous to∑

a∈CK

(a−1 − 1)
∑

δ(wτ ,w)=a

1⊗ wτx(w)

.
This is the image of the class in H1(CK , L̂) containing the 1-cycle

y : a→
∑

δ(wτ ,w)=a

wτx(w).

If x has support in CK ,

y(a) =
∑

wτ bw
−1
τ =a

wτx(b) =
∑
τ

τx
(
τ−1(a)

)
and the first square at least of the diagram (I) is commutative.

In general the image of the class of y in Ĥ0
(
G(K/F ),Hom(L,CK)

)
is the class of the

homomorphism

λ→
∏
a

a⟨λ,y(a)⟩ =
∏
τ,w

δ(wτ , w)
⟨λ,wτx(w)⟩.
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If w = awσ with a in CK then δ(wτ , w) = wτaw
−1
τ δ(wτ , wσ). Thus this product equals∏

σ,τ,a

wτaw
−1⟨λ,wτx(awσ)⟩
τ


∏
σ,τ,a

δ(wτ , wσ)
⟨λ,wτx(awσ)⟩

.
The first product is a norm. Thus the homomorphism is cohomologous to

λ→
∏
σ,τ

δ(wτ , wσ)
⟨λ,τz(σ)⟩

if
z(σ) =

∑
a

x(awσ).

The class of z in H1

(
G(K/F ), L̂

)
is the image of the class of x.

To complete the verification that the diagram is commutative we have to examine the effect

of taking the cup product with the fundamental class on the elements of Ĥ−2
(
G(K/F ), L̂

)
.

We proceed as at the end of Chapter XI of Serre’s book [3]. We take the cup product as
defined by axioms, for example, those of Serre, and by “décalage” find how it is to be expressed
in terms of cycles and cocyles. Let Λ be the group algebra of G(K/F ) over Z and let I be
the kernel of the map Λ → Z that sends

∑
m(σ)σ to

∑
m(σ). If B is a G(K/F )-module δ

will be the isomorphism

Ĥp
(
G(K/F ), B

)
→ Ĥp+1

(
G(K/F ), I ⊗B

)
associated to the exact sequence

0 I ⊗B Λ⊗B B 0 .

If A is another G(K/F )-module the following diagram (II)

Ĥp
(
G(K/F ), B

)
⊗Hq

(
G(K/F ), A

)
Ĥp+1

(
G(K/F ), I ⊗B

)
⊗ Ĥq

(
G(K/F ), A

)
Ĥp+q

(
G(K/F ), B ⊗ A

)
Ĥp+q+1

(
G(K/F ), I ⊗B ⊗ A

)
δ⊗id

δ

in which the vertical arrows are given by the cup product is commutative. There is also a
G(K/F )-invariant map from Z to Λ. It sends m to

∑
mg. Let J be the cokernel of this map.

If B is any G(K/F )-module the sequence

0 B Λ⊗B J ⊗B 0

is exact. The associated isomorphism

Ĥp
(
G(K/F ), J ⊗B

)
→ Ĥp+1

(
G(K/F ), B

)
will be called d. The following diagram (III)

Ĥp
(
G(K/F ), J ⊗B

)
⊗ Ĥq

(
G(K/F ), A

)
Ĥp+1

(
G(K/F ), B

)
⊗ Ĥq

(
G(K/F ), A

)
Ĥp+q

(
G(K/F ), J ⊗B ⊗ A

)
Ĥp+q+1

(
G(K/F ), B ⊗ A

)
d⊗id

d
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is also commutative.
If a is an invariant element of A the map b→ b⊗ a is a G(K/F ) homomorphism fa of B

into B ⊗ A. If a is the class of a in Ĥ0
(
G(K/F ), A

)
and x belongs to Ĥp

(
G(K/F ), B

)
the

equality
x · a = f ∗

a (x)

is true by definition for all B when p = 0. The diagrams (I) and (II) together with the
commutativity of

Ĥp
(
G(K/F ), B

)
Ĥp+1

(
G(K/F ), I ⊗B

)
Ĥp
(
G(K/F ), B ⊗ A

)
Ĥp+1

(
G(K/F ), I ⊗B ⊗ A

)
δ

f∗a f∗a

δ

and

Ĥp
(
G(K/F ), J ⊗B

)
Ĥp+1

(
G(K/F ), B

)
Ĥp
(
G(K/F ), J ⊗B ⊗ A

)
Ĥp+1

(
G(K/F ), B ⊗ A

)
d

f∗a

d

allow it to be verified, by induction up and down from 0, for all p. We are going to apply the
equality with the roles of A and B interchanged.

Suppose a belongs to A and Na = 0 and f is a 1-cocycle with values in B. We now verify

that f · a is the class of
∑

σ f(σ)⊗ σa in Ĥ0
(
G(K/F ), B ⊗ A

)
. The image of f(σ) in Λ⊗B

is ∑
τ

τ ⊗ f(σ) =
∑
τ

στ ⊗ f(σ) =
∑

στ ⊗ f(στ)−
∑

στ ⊗ σf(τ)

which, in turn, equals ∑
τ

τ ⊗ f(τ)− σ

(∑
τ

τ ⊗ f(τ)

)
.

Thus f is the image of the class in Ĥ0
(
G(K/F ), J ⊗B

)
of the image b in J ⊗B of −

∑
τ τ ⊗

f(τ). The class of b ⊗ a is b ◦ a. Since diagram (III) is commutative f · a = d(b · a). By

the definition of d on Ĥ−1
(
G(K/F ), J ⊗B ⊗ A

)
this is the class of the element of B ⊗ A

corresponding to

−
∑
σ,τ

στ ⊗ σf(τ)⊗ σa.

This expression is equal to

−
∑
σ,τ

στ ⊗ f(στ)⊗ σa+
∑
σ,τ

στ ⊗ f(σ)⊗ σa.

The first sum is (∑
τ

τ ⊗ f(τ)

)
⊗

(∑
σ

σa

)
= 0.

The second is ∑
τ

τ ⊗

(∑
σ

f(σ)⊗ σa

)
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and corresponds to
∑

σ f(σ)⊗ σa as required.
Next we verify that, if f is a 1-cocycle with values in A and x is a 1-cycle with values in

B, x · f is the class in Ĥ−1
(
G(K/F ), B ⊗ A

)
of −

∑
x(σ)⊗ f(σ). The image of this class in

H̃0
(
G(K/F ), I ⊗B ⊗ A

)
is the class of

−
∑
τ,σ

τ ⊗ τx(σ)⊗ τf(σ).

The image of x in Ĥ−1
(
G(K/F ), I ⊗B

)
is the class of

b =
∑
σ

(σ−1 − 1)
(
1⊗ x(σ)

)
.

Now apply the previous remark with A and B replaced respectively by I ⊗B and A. Then
b ◦ f is the class of

−
∑
τ,σ

τσ−1 ⊗ τσ−1x(σ)⊗ f(τ) +
∑
τ,σ

τ ⊗ τx(σ)⊗ f(τ)

which equals

−
∑
τ,σ

τ ⊗ τx(σ)⊗ f(τσ) +
∑
τ,σ

τ ⊗ τx(σ)⊗ f(τ)

which in turn equals

−
∑
τ,σ

τ ⊗ τx(σ)⊗ τf(σ).

Finally we have to show that if f is a 2-cocycle with values in B and x is a 1-cycle with
values in A then f · x is the class of∑

σ,τ

f(τ, σ)⊗ τx(σ).

The image of f(τ, σ) in Λ⊗B is∑
ρ

ρ⊗ f(τ, σ) =
∑
ρ

τσρ⊗ f(τ, σ)

=
∑

τσρ⊗
{
τf(σ, ρ)− f(τσ, ρ) + f(τ, σρ)

}
= τ
(∑

σρ⊗ f(σ, ρ)
)
−
∑

τσρ⊗ f(τσ, ρ) +
∑

τρ⊗ f(τ, ρ).

If g : σ →
∑

ρ σρ ⊗ f(σ, ρ) this is just dg(τ, σ). Thus f is the image of the class of the

1-cocycle h with values in J ⊗ B that takes σ to the image in J ⊗ B of g(σ). The class of

−
∑
h(σ) ⊗ x(σ) in Ĥ−1

(
G(K/F ), J ⊗B ⊗ A

)
is h · x. Applying d we obtain the class of

the element in B ⊗ A corresponding to

−
∑
τ,σ,ρ

τσρ⊗ τf(σ, ρ)⊗ τx(σ).

This expression equals∑
τ,σ,ρ

τσρ⊗ f(τσ, ρ)⊗ τx(σ)−
∑
τ,σ,ρ

τσρ⊗ f(τ, σρ)⊗ τx(σ) +
∑
τ,σ,ρ

τσρ⊗ f(τ, σ)⊗ τx(σ).
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The first sum is equal to ∑
τ,σ,ρ

τρ⊗ f(τ, ρ)⊗ τσ−1x(σ),

and the second is equal to ∑
τ,σ,ρ

τρ⊗ f(τ, ρ)⊗ τx(σ).

Since
∑
σ−1x(σ) =

∑
x(σ) their difference is 0. The third sum is equal to∑

τ,σ,ρ

ρ⊗ f(τ, σ)⊗ τx(σ),

which corresponds to ∑
τ,σ

f(τ, σ)⊗ τx(σ)

as required. In this case f · x = x · f modulo the identification of B ⊗ A and A⊗B.

Thus, if B is CK and f(τ, σ) = δ(wτ , wσ) so that f is the fundamental class, and A is L̂,

then x · f is the class of
∑
τx(σ) ⊗ δ(wτ , wσ). Applying the isomorphism of L̂ ⊗ CK with

Hom(L,CK) we obtain the homomorphism

λ→
∏
σ,τ

δ(wτ , wσ)
⟨λ,τx(σ)⟩.

The commutativity of the second square is established.
To show that

Res : H1(WK/F , L̂) → H1(CK , L̂)
G(K/F )

is an isomorphism all we have to do is show that the kernel of the map

H1(CK , L̂) → H1(WK/F , L̂)

consists precisely of the elements of norm 0. This is equivalent to showing that the image of
the adjoint map

Hom
(
H1(WK/F , L̂),Q/Z

)
→ Hom

(
H1(CK , L̂),Q/Z

)
consists of the homomorphisms that vanish on the elements of norm 0.

If G is any group that acts on L̂ and Q any abelian group on which G acts trivially, the
cup product gives a pairing

H1
(
G,Hom(L̂, Q)

)
×H1(G, L̂) → H0(G,Q) = Q

and thus a homomorphism

φ : H1
(
G,Hom(L̂, Q)

)
→ Hom

(
H1(G, L̂), Q

)
.

We need to show that φ is an isomorphism if Q is injective as an abelian group. If f is a
1-cocycle and x a 1-cycle the pairing sends f × x to∑

g

〈
f(g), x(g)

〉
.

Suppose φ(f) = 0. Then

x→
∑〈

f(g), x(g)
〉
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is a homomorphism of the group of 1-chains into Q that vanishes on the cycles. Thus it
defines a mapping of the boundaries in dimension 0 into Q. This map can be extended to a

homomorphism f ′ of L̂ into Q. Then∑
g

〈
f(g)− df ′(g), x(g)

〉
is 0 for all 1-chains. This means f = df ′ and f = 0. Thus φ is injective. Conversely suppose ψ

is a homomorphism of H1(G, L̂) into Q. Then ψ determines a homomorphism of the 1 cycles
into Q that may be extended to a homomorphism ψ′ of the group of 1-chains into Q. If g

belongs to G define f(g) in Hom(L̂, Q) by
〈
f(g), λ̂

〉
= ψ′(x) if x is the 1-chain satisfying

x(g) = λ̂ and x(h) = 0 if h ̸= g. Then for any 1-chain x,

ψ′(x) =
∑
g

〈
f(g), x(g)

〉
.

Suppose g1 and g2 are two elements of G and x is the 2-chain defined by x(g1, g2) = λ̂, while
x(h, g) = 0 if h ̸= g1 or g ̸= g2. Then

dx(g) =
∑
h

h−1x(h, g)−
∑
h

x(gh−1, h) +
∑
h

x(g, h).

The first sum is 0 unless g = g2 when it is g−1
1 λ̂; the second is 0 unless g = g1g2 when it is λ̂;

the third is 0 unless g = g1 when it too is λ̂. Thus

0 = ψ′(dx) =
〈
f(g2), g

−1
1 λ̂
〉
−
〈
f(g1g2), λ̂

〉
+
〈
f(g1), λ̂

〉
=
〈
g1f(g2)− f(g1g2) + f(g1), λ̂

〉
.

Consequently f is a cocycle, ψ = φ(f), and, in conclusion, φ is an isomorphism.

The necessary functorial properties are easily checked so that to handle the original problem

we need only verify that the image of H1
(
WK/F ,Hom(L̂,Q/Z)

)
in H1

(
CK ,Hom(L̂,Q/Z)

)
consists of those elements corresponding to homomorphisms vanishing on elements of norm

0. This problem may be reformulated. The group G(K/F ) acts on Hom(L̂,Q/Z), and we

can form the semi-direct product Hom(L̂,Q/Z)×G(K/F ). Suppose we have a commutative
diagram

0 CK WK/F G(K/F ) 0

0 Hom(L̂,Q/Z) Hom(L̂,Q/Z)×G(K/F ) G(K/F ) 0

ψ′ ψ′

σ

id .

Define the 1-cochain f by ψ′(w) = f(w) × σ(w). Then f is a cocycle. Conversely given a
cocycle this equation determines a ψ′ that, together with its restriction ψ to CK , will make
the diagram commutative. What we have to show is that given ψ we can find a ψ′ making

the diagram commutative if and only if the associated homomorphism φ : H1(CK , L̂) → Q/Z
vanishes on the elements of norm 0. It is well known [3] that ψ can be so extended if and
only if it is G(K/F ) invariant and sends the fundamental class H2

(
G(K/F ), CK

)
to 0. The
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first condition is satisfied if φ vanishes on the elements of norm 0 because the map from ψ to
φ is G(K/F ) invariant. We need to verify that the diagram

L̂⊗ CK L̂⊗ Hom(L̂,Q/Z)

H1(CK , L̂) Q/Z

id⊗ψ

φ

is commutative. The arrow on the left is the composition of the isomorphism of L̂⊗CK with

Hom(L,CK) and Hom(L,CK) with H1(CK , L̂) previously introduced. It sends λ̂⊗ a to the

class of the 1-cycle that is 0 except at a where it is λ̂. Applying φ we obtain
〈
ψ(a), λ̂

〉
which

is, of course, the result obtained by moving around the diagram in the other direction. If ψ,
and hence φ, is G(K/F )-invariant we are led to the commutative diagram

Ĥ−3
(
G(K/F ), L̂

)
⊗ Ĥ2

(
G(K/F ), CK

) Ĥ−3
(
G(K/F ), L̂

)
⊗ Ĥ2

(
G(K/F ),Hom(L̂,Q/Z)

)

Ĥ−1
(
G(K/F ), H1(CK , L̂)

)
Ĥ−1

(
G(K/F ),Q/Z

)µ νν

.

The vertical arrows are given by the cup products. If α is the fundamental class ψ(α) = 0 if
and only if ν

(
β ⊗ ψ(α)

)
= 0 for all β. On the other hand γ → µ(γ ⊗α) is an isomorphism of

Ĥ−3
(
G(K/F ), L̂

)
and Ĥ−1

(
G(K/F ), H1(CK , L̂)

)
. Thus ψ(α) = 0 if and only if the lower

horizontal arrow is 0. By its definition this is so if and only if φ vanishes on the elements of
norm 0.

We now know that H1(WK/F , L̂) is isomorphic to HomG(K/F )(L,CK) and that, since both
C∗ and C∗

u are injective, there are isomorphisms

φ : H1(WK/F , T̂ ) → Hom
(
H1(WK/F , L̂),C

∗
)

φ : H1(WK/F , T̂u) → Hom
(
H1(WK/F , L̂),C

∗
u

)
.

We need only verify that φ(f) is continuous if and only if f is a continuous cocycle.
If UK consists of the elements of norm 1 in CK we have an exact sequence

1 UK CK MK 1 .

The group MK is Z or R and G(K/F ) acts trivially on it. The sequence splits as a sequence
of abelian groups and

0 Hom(L,UK) Hom(L,CK) Hom(L,MK) 0λ µ

is exact. There is an obvious map

N
(
Hom(L,CK)

)
∩ Hom(L,UK)/N

(
Hom(L,UK)

)
→ Ĥ−1

(
G(K/F ),Hom(L,MK)

)
/µĤ−1

(
G(K/F ),Hom(L,CK)

)
.

If z = Nx belongs to Hom(L,UK) and y is the image of x in Hom(L,MK), then Ny = 0.
We send z to the image of y in the group on the right. The image is independent of x
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and if x can be chosen in Hom(L,UK) it is 0. If the image is 0 we can so choose x that
y =

∑
σ σ

−1vσ − vσ. If uσ in Hom(L,CK) maps to vσ then x′ = x −
∑
σ−1uσ − uσ lies in

Hom(L,UK) and Nx
′ = Nx. Thus the map is an injection. Since the group on the right is

finite so is the one on the left. Since Hom(L,UK) is compact, N
(
Hom(L,UK)

)
, and hence

N
(
Hom(L,CK)

)
∩ Hom(L,UK), is closed in Hom(L,UK). Since HomG(K/F )(L,UK) is an

open subgroup of HomG(K/F )(L,CK), except when K is archimedean, and

N
(
Hom(L,CK)

)
∩ HomG(K/F )(L,UK) = N

(
Hom(L,CK)

)
∩ Hom(L,UK)

is closed, N
(
Hom(L,CK)

)
is closed in HomG(K/F )(L,CK). Since it is of finite index, it is also

open. In the archimedean case the sequence

0 UK CK MK 0

splits as a sequence of G(K/F )-modules and

HomG(K/F )(L,CK) = HomG(K/F )(L,UK)× HomG(K/F )(L,MK).

Moreover
N
(
Hom(L,MK)

)
= HomG(K/F )(L,MK),

so that, in this case too, N
(
Hom(L,CK)

)
is closed in HomG(K/F )(L,CK).

The upshot is that a homomorphism φ of HomG(K/F )(L,CK) or, what is the same,

H1(CK , L̂)
G(K/F ) into C∗

u or C∗ is continuous if and only if φ ◦N is continuous. Of course an

element of H1(WK/F , T̂u) or H
1(WK/F , T̂ ) is continuous if and only if its restriction to CK is.

Since the diagrams

H1(WK/F , T̂ ) Hom
(
H1(WK/F , L̂),C

∗
)

H1(CK , T̂ ) Hom
(
H1(CK , L̂),C

∗
)

H1(WK/F , T̂u) Hom
(
H1(WK/F , L̂),C

∗
u

)

H1(CK , T̂u) Hom
(
H1(CK , L̂),C

∗
u

)
in which the right hand vertical arrows are adjoint to the corestriction are commutative, we

need only check that f in H1(CK , T̂ ) is continuous if and only if the corresponding element of

Hom
(
H1(CK , L̂),C

∗
)
or Hom(L̂⊗ CK ,C

∗) is continuous. Since that homomorphism sends

λ̂⊗ a to
〈
λ̂, f(a)

〉
this is clear.

We have still to prove the second part of Theorem 2. The diagram

TA(K) Hom(L,CK) 0

TA(F ) HomG(K/F )(L,CK)

N N
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is commutative and the upper row is exact. Thus TA(F )/TF contains N
(
Hom(L,CK)

)
and is

a closed subgroup of finite index in HomG(K/F )(L,CK).
If K ′ is the completion of K with respect to some valuation and F ′ is the closure of F

in K ′ there is a mapping TF ′ → TA(F ) and thus a mapping TF ′ → HomG(K/F )(L,CK). A
generalized character of HomG(K/F )(L,CK) is trivial on TA(F )/TF if and only if it is trivial
on the image of TF ′ , for all choices of K ′.

TF ′ = HomG(K′/F ′)(L,CK′)

and, if E = K ∩ F ′, the natural map CK′ → CK gives a map

HomG(K′/F ′)(L,CK′) → HomG(K/E)(L,CK).

If G(K/F ) is the disjoint union
⋃r
i=1 σiG(K/E) we compose this with the map

∑r
i=1 σ1 of

HomG(K/E)(L,CK) into HomG(K/F )(L,CK) to obtain the map of TF ′ into HomG(K/F )(L,CK).
On the other hand if φ is the imbedding K/F → K ′/F ′, the map φw : WK′/F ′ → WK/F

determines maps

H1
c (WK/F , T̂ ) → H1

c (WK′/F ′ , T̂ )

H1(WK′/F ′ , L̂) → H1(WK/F , L̂)

that are adjoint to each other. All we need do is verify that

H1(WK′/F ′ , L̂) H1(WK/F , L̂)

HomG(K′/F ′)(L,CK′) HomG(K/F )(L,CK)

is commutative.
Let x′ be a 1-cycle on WK′/F ′ with values in L̂ and let x be the 1-cycle on WK/F that sends

w to
∑

w′→w x
′(w′). Restriction to CK′ sends the class of x′ to the class of y′ if

y′(a′) =
∑

δ(wτ ,w′)=a′

wτ ′x
′(w′).

Restriction to CK sends the class of x to the class of y if

y(a) =
∑

δ(wτ ,w)=a

wτx(w).

The class of y′ corresponds to the homomorphism

λ→
∏
τ ′

∏
w′

δ(wτ ′ , w
′)⟨λ,wτ ′x

′(w′)⟩

and that of y to the homomorphism

λ→
∏
τ

∏
w

δ(wτ , w)
⟨λ,wτx(w)⟩.

The inner product need only be taken over WK/E.
If σ = σiτ with τ in G(K/E) we take wσ = wσiwτ . Then if w belongs to WK/E

wσiwτw = wσiδ(wτ , w)w
−1
σi
wσiwρ
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for some ρ in G(K/E). Thus the homomorphism corresponding to y sends λ to
r∑
i=1

σi
(
φ(σ−1

i λ)
)
,

if φ is the homomorphism

λ→
∏

τ∈G(K/E)

∏
w∈WK/E

δ(wτ , w)
⟨λ,wτx(w)⟩

of L into CK . The homomorphism φw is an injection and we may use it to identify WK′/F ′

with a subgroup of WK/E. We may also identify G(K/E) and G(K ′/F ′). If τ ′ ↔ τ we take
wτ ′ ↔ wτ . If w

′ ↔ w
δ(wτ ′ , w

′) ↔ δ(wτ , w)

and the above product may be written∏
τ ′

∏
w′

δ(wτ ′ , w
′)⟨λ,wτ ′x

′(w′)⟩

so that φ is the homomorphism corresponding to y′. The diagram is commutative and
Theorem 2 is proved.

It is convenient to add now one or two observations that will be used elsewhere to compare
two kinds of L-series. Suppose F is a non-archimedean local field and K/F is unramified. I
claim that

N : Hom(L,UK) → HomG(K/F )(L,UK)

is surjective. To see this let Un
k =

{
x ∈ UK

∣∣ x ≡ 1 (mod P n
K)
}
if n ⩾ 1. These subgroups

are G(K/F ) invariant and we need only verify that

N : Hom(L,UK/U
1
K) → HomG(K/F )(L,UK/U

1
K)

N : Hom(L,Un
K/U

n+1
K ) → HomG(K/F )(L,U

n
K/U

n+1
K )

are surjective. Let κ = OK/PK be the residue field of OK . The group U
n
K/U

n+1
K is isomorphic

as a G(K/F )-module to κ; so we consider

N : Hom(L, κ) → HomG(K/F )(L, κ).

If k = OF/PF and Λ is the group ring of G(K/F ) then κ is isomorphic as a G(K/F )-module
to Λ⊗ k, and Hom(L,Λ⊗ k) is isomorphic to Λ⊗ Hom(L, k), so that

Ĥ0
(
G(K/F ),Λ⊗ Hom(L, k)

)
= 0

and N is surjective. The group UK/U
1
K is isomorphic as a G(K/F ) module to κ∗ the

multiplicative group of κ; so we consider

N : Hom(L, κ∗) → HomG(K/F )(L, κ
∗).

To show this is surjective is the same as showing that Ĥ0
(
G(K/F ),Hom(L, κ∗)

)
is 0. Since

G(K/F ) is cyclic and Hom(L, κ∗) is finite all the groups ĤP
(
G(K/F ),Hom(L, κ∗)

)
have the

same order. We show that

Ĥ1
(
G(K/F ),Hom(L, κ∗)

)
= H1

(
G(K/F ),Hom(L, κ∗)

)
is 0. If κ is the algebraic closure of κ and G is the subgroup of G(κ/κ) generated by the
Frobenius substitution, the sequence
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0 H1
(
G(K/F ),Hom(L, κ∗)

)
H1
(
G,Hom(L, κ∗)

)
is exact. We show that the group on the right is 0. If σ0 is the Frobenius substitution any
1-cycle f on G is determined by f(σ0). To prove that f is a boundary we have to show that
f(σ0) = σ0φ− φ for some φ in Hom(L, κ∗). Let λ1, . . . , λn be a basis for L and let

σ−1
0 =

∑
j

ajiλj.

The matrix (aij) is integral and all its eigenvalues are algebraic integers. Thus, if q is the
number of elements in κ, (qaij − δij), where δij is Kronecker’s delta, is non-singular. We may
write it as a product (bij)(miδij)(cij) where (bij) and (cij) are integral with integral inverses
(b′ij) and (c′ij), and m1, . . . ,mn are integers. Let f(σ0) = ψ and let ψ(λi) = αi. If φ(λi) = βi,

σ0φ(λi) = σ0
(
φ(σ−1λi)

)
=

n∏
j=1

β
qaji
j ,

and the equation ψ = σ0φ− φ is equivalent to the n equations:

αi =
n∏
j=1

β
qaji−δji
j .

If γi =
∏n

k=1 α
c′ki
k and δj =

∏
k β

bkj
k these equations are equivalent to

γi = δmi
i .

This equation can be solved for δ1, . . . , δn. Setting

βj =
∏
k

δ
b′kj
k

we solve the original equations.
There is an exact sequence

0 UK WK/F Z 0
µ

such that µ(w) = 1 implies that σ(w) is the Frobenius substitution in G(K/F ). Then µ(w)
is 1 if and only if the transfer of w in CK generates the prime ideal of OK . The preceding
discussion shows that under the isomorphism

H1(WK/F , L̂) ↔ HomG(K/F )(L,CK)

the image of H1(UK , L̂) in H1(WK/F , L̂) corresponds to HomG(K/F )(L,UK). Thus the gener-

alized character associated to an element of H1
c (WK/F , T̂ ) is trivial on HomG(K/F )(L,UK) if

and only if that element is in the image of the inflation

H1(Z, L̂) → H1(WK/F , L̂).

The action of Z on L̂ is determined by that of WK/F .
The sequence

0 UK CK Z 0ν

in which ν(a) = 1 if and only if a generates the prime ideal of OK splits as a sequence of
G(K/F )-modules and leads to the exact sequence
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0 HomG(K/F )(L,UK) HomG(K/F )(L,CK) HomG(K/F )(L,Z) 0 ,

and the generalized characters of HomG(K/F )(L,CK) that are trivial on HomG(K/F )(L,UK)

are just the generalized characters of HomG(K/F )(L,Z), which is contained in Hom(L,Z) = L̂.

If λ̂ is an invariant element of L̂ and w belongs to WK/F , consider the 1-cycle x, where

x(w) = λ̂ while x(u) = 0 if u ̸= w. The image of the class of x in Hom(L,CK) is the
homomorphism

λ→

{∏
τ

δ(wτ , w)

}⟨λ,λ̂⟩

.

Now
∏

τ δ(wτ , w) is just the transfer of w. Applying ν we obtain the homomorphism µ(w)λ̂.

Thus if f is a 1-cocycle on WK/F with values in T̂ associated to a 1-cocycle on Z, µ(w) = 1,

λ̂ is an invariant element of L̂, and χ is the generalized character of L̂G(K/F ) associated to f ,
then

f(w)(λ̂) = χ(λ).

Given χ we can take any extension of χ to L̂, take f(w) to be that extension when µ(w) = 1,
and extend f to all of WK/F by the cocycle condition.

Suppose ρ is a rational representation of the complex algebraic group T̂×G(K/F ). Given χ

we define a local L-function L(s, χ, ρ) by extending χ to L̂ and thus defining t in T̂ , choosing
the Frobenius substitution σ in G(K/F ), and finally setting

L(s, χ, ρ) =
1

det
(
I − ρ(t× σ)|Π|s

)
if Π is a generator of the prime ideal of OK .

But f determines a homomorphism φ of WK/F into T̂ ×G(K/F ):

φ(w) = f(w)× σ(w).

Thus ρ ◦ φ is a representation of WK/F . The associated local L-function is

L(s, ρ ◦ φ) = 1

det
(
I − ρ ◦ φ(w)|Π|s

)
if µ(w) = 1. Since f(w) may be taken equal to t, the two functions are equal.

References

[1] E. Artin and J. Tate, Class Field Theory, Harvard, 1961.
[2] S. Lang, Rapport sur la Cohomologie des Groupes, New York, 1966.
[3] J.-P. Serre, Corps Locaux, Hermann, Paris, 1962.



Compiled on July 30, 2024.


	References

