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We continue to outline certain developments in the analytical theory of algebraic
manifolds which seem to have applications to moduli and other questions.'

5. Some Applications.-There appear to be two main applications to geometric
problems, namely, to the problem of classifying integrals and to moduli. Neither
of these is in definitive form, and so we shall only illustrate the main points.

(a) Some questions on moduli: To begin with, we must set up the problem
correctly. We consider, then, a family VI} teB of polarized algebraic manifolds;
thus, there is given a distinguished class of positive line bundles L, VI. Instead
of looking at all cohomology, we should take only the primitive classes Ho2(V,) =
2Ho2-T`(Vg). The polarization induces two bilinear relations, given by a quadratic
form Q:Ho2(V,) 0 Ho0(V,) C satisfying

Q(Ho'-", Hoq-T',) > 0 (1)

Q(Ho0-rTT Hoq-, = 0 for s P r. (2)
Thus, we let 9q c 5q be the flags

So c SO + S,c ... cSO + ...+ S.l c Hoq(V)
where dim S, = houqT r Q(SrSr) > 0, Q(Sr7St) = 0 for t 5 r. We must factor 9q by
the group r, of integral transformations T:Hoq(V) -- Hoq(V) which preserve Q.
In fact, it may be shown:
THEOREM. 9q is a homogeneous complex manifold H\G where G is a real semi-

simple Lie group without compact factors and H c G is a compact subgroup. Further-
more, r. c G is a properly discontinuous group and so Mq = 9q/rq = H\G/rq is
an analytic space.
For q odd, 9, is a bundle of algebraic manifolds over a bounded domain, but, e.g.,

92 = U(h) XO(l)\SO(2h,1; R) (h = h2,0, 1 = hole 1), so that 92 iS symmetric if and only
if h2,0 = 1. A further difference with the classical theory is predicted by
THEOREM. Let £ -- M2 be the canonical sheaf (factor of automorphy). Then,

for ji large,

= 0 frq ~h2 - hI- q(M2) V') = 0 for q 5-h h
2

LetM = M, X ... X M,,; there is a well-defined holomorphic mapping Ib: (B -
S) -- M given by 4(t) = "period matrix of primitive integrals on VI." By the re-
sults in part I, sections 1-3 of this paper,' we may locally write d1(t) = "PRicker
coordinates taken from the period matrix"

(7r)l(t) ... rb (t)

2hl(t) * Xhb(t)
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where each row in 7r(t) is composed of segments [7rkl ... , rrk,] consisting of a basis of
solutions to an equation (E).
The central problem here is first to construct a good compactification M of M,

and then to show that D extends to a holomorphic mapping of B into M. For the
case of curves, take M = Siegel space, M = Satake compactification, and then 4P
is holomorphic (as shown by Mumford and Mayer, unpublished result). For the
case of surfaces with p0 _ 4, we have constructed MA and proved that '1 is holo-
morphic.

In fact, the above suggests how one might compactify M = s/r, and this checks
known results for symmetric bounded domains of types III, IV: If A is the unit
disk, then a holomorphic mapping 7r: A -t{o} -o M is holomorphic at zero if the
row vectors of 7r are composed from the solutions of a regular differential equation.
For dim V > 1, the influence of periods on moduli depends on the extent to which

the periods distinguish birationally inequivalent varieties. On the local question
(when do the periods give local moduli?), we have a multiplicative problem in
cohomology [by (C) ] which may sometimes be reformulated as a multiplicative
problem on linear systems. In a number of examples (nonsingular surfaces in P3,
hypersurfaces on abelian varieties, cubic threefolds, ...), the periods give local
moduli generically. It seems plausible that this will be the case for surfaces with
ample canonical series. Further evidence is given by the result: 4(t) = 4D(t') inM
if and only if the homology class [f]eH2n(V1 X V,1,Z) of the graph of the homeo-
morphismJf: V, -- V:, is of type (n,n). Thus, if 4li(t) = b(t'), one might hope for a
birational correspondence f: Vt-- Vt.
We close with an application to the (algebraic) Kummer surface, which is the

nonsingular surface of degree 4 in P3. In this case, dim M = 19 and it is known
that the set of teM cut out by period matrices of Kummer surfaces is open. Our
results imply that every t is covered by a (perhaps singular) Kummer surface. Fur-
thermore, dim(M- M) = 1 and the surfaces over - M are cut out by a one-
parameter family of Kummer surfaces having acquired a double curve.

(b) Residue calculus and classification of integrals: Let W be an algebraic n-
manifold and co a rational n-form on co with polar locus V c W. If a- is an n-cycle
in W - V, then we want to analyze the integral f. w. Especially, there are two
types of such integrals; those where a ' 0 in W (called residues), and the other
periods (called cyclic periods). The cyclic periods should be thought of as given
transcendental quantities, and what we want is an effective method of writing
residues as integrals of rational n - 1 forms on a Vn'>. Once this is done, then we
will have a decomposition f co = z fba W,", wheref'af °a is a cyclic period of a
rational form on an algebraic manifold.
So there are two problems; one is to give a basis ,,. . , a-, for the n-cycles in W -

V which bound in W, and the other is to write faO as i', W', where w' is a rational
n - 1 form.
For curves the solution is essentially trivial, and corresponds to writing o =

C02 + c"3 + d4,6 where CW2 is a form of the second kind (giving the cyclic periods),
w3 is of the third kind (giving the residues), and Vt is a function.
For surfaces, the solution is known by the methods of Picard and Lefschetz, and

goes as follows (for W = P2): A 2-cycle a- in P - V is of the form a- = 6c3, C3 being
a 3-chain. If S(V) c V is the singular locus, we may assume that c3 meets V in a
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1-cycle missing S(V), as well as any finite number of intersections Cj-V of V with
other curves in P. Then C3- Vis a 1-cycle y in V - S(V) - C* Vand a -T(y),
the tube lying over y in P - V. Clearly, fg X = fT(Y) Co.
Assume w = g(x,y)dxdy/fk, f(xy) being irreducible. If k = 1,

Lr f= g(xy)dx f fXdy

If k > 1, we may assume that -y misses the intersection of V and-f = 0. Thenax
dxdy _ 1 dxdy / hdy where is regular near

g Ifk k - 1 gb(Xf/fx)kfkl= kxf/)x r

T(y). Consequently,

r @ = r 9-=x=y 1(x y)dxdy
7fT(-Y) = fr f1 f(Y) f

where 1 is regular near 'r(y). We may evaluate this integral as before.
The case w = (g dxdy)/(fialf2a2.. .f,), where fi,... .,f are irreducible and mu-

tually prime, may be treated by partial fractions.
If dim W = 3, we can solve the problem but significant new phenomena appear,

dxdydzeven in case V is nonsing ular. For example, ifW = P3, W fk .with f(x,y,z)

= 0 being nonsingular, then every 3-cycle c74H3(P - V) is a tube, a = r(Ty). If

k = f= dxdY as before. Especially,j = 0 if -y r (curve) in V.T(,) z flbz r(-)
But if k > 1, we cannot assume that y misses the locus = o)* V. What must

be done is the following: Write H2(V) = A + B, where A is generated by H
(= hyperplane section), C1,. . . ,Cp-1, the C, being effective algebraic curves giving a

base on V; and where B = A'. Then, if yEB, we may evaluate f dxdydz =
(O fk

dxdydz as before; here the polar locus of My misses r(y).
(,) f
To evaluate f xg dydz , we assume for simplicity that k = 2 and that C0 meets

the curve (Of/lz = 0) . V transversely at a point p, p being nonsingular on each
curve. Let D. be a disk of radius e around p on Cj. Since

dxdydz + dxdydz _ dxdy g dxdydz
g f2 + (f/Z)2f - k af/zf), fj(cj-De) f2

+.f(CD.) gdxdydz - l() fb dxdy,
+ (Cj-De) 9 (bf/?z)2f = (D) ,fla f

and this last integral is of the formf h(Q)dtdqd and so may be evaluated.
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since j: 9dxdydz -,,
we may let E -0 to evaluate 9

(CjDe)WIMY (Cj) ~~~~~~~~~f2
In case V is irreducible with singular curve C, we cannot write every oeH3(W - V)

as a tube. Indeed, oa = 6C4 and C4 Will meet C in a finite number of points. The
trouble is similar to the above and may be overcome as follows: Let DC V be a
curve meeting C transversely at a finite number of points pi,...pt. For sim-
plicity, assume t = 1, p = pi, and let B be a small ball around p in W. We may
assume that, locally, D is Vie (2-plane in 3-space) and we restrict our attention to
V- (this 2-plane). We may construct a tube r, over D -D n B,, and 6rT, will be a
finite number (= number of local branches of V) of linked toral surfaces in a 3-
sphere. If we take out the solid tori from the sphere, we are left with a 3-chain a'
such that T, + fT = T is a 3-cycle in W - V. Furthermore, T = 6c4 where c4- C =
{p}. Then, if aoH3(W - V), a - kr will be a 3-cycle with u- - kr = bc4 and
c4. C = 0. Thus, a - kT is a linear combination of tubes and, to evaluate f, co,
we may evaluated c. This integral may, as before, be written as a Cauchy inte-
gral.

* Supported in part by Office of Naval Research contract 3656(14).
1 Griffiths, P. A., these PROCEEDINGS, 55, 1303 (1966).
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1. It has been proved by D. Mumford2 that a 2-dimensional normal complex
space which is a topological manifold is nonsingular. The following example
shows that there is no corresponding theorem for dimensions higher than 2.
THEOREM. Let Xs be the complex subspace of the (k + l)-dimensional affine space

Ck+l given by the equation Z12 + ... + Zk2 - Z03 = 0 (k odd). Then the underlying
topological space of Xk is a topological manifold. (See Note added in proof.)
Remark: For k = 2, the rational double point of x12 + x22 - xo3 has a lens

space L(3,1) as neighborhood boundary (see ref. 1). The author does not know
whether the theorem would also be true for even k > 2.

2. Proof.--The set of singular points of the hypersurface Xk consists only of the
point z = 0; so it has codimension k and hence, by a result of Oka, Xk is normal for
k > 1. The case k = 1 is well known, and therefore excluded in what follows.
Let S2k+1 be the sphere S2k+j - {ZeCk+1Izoo + ... + ZkZk = 1}, and define W2k-1 as
W2k-1 = S2k+flnXk. Then W2k-1 is a (2k -1)-dimensional compact orientable
differentiable manifold and the boundary of a neighborhood of 0 in Xk. The space
Xk- 0 is homeomorphic to W2k-1 X (0, cn); for instance, b(xZ,... .,Zk;t) = (t2Zo,
t3z1, ... ,t3Zk) describes a homeomorphism -c: W X (0, co) X - 0. Therefore, to
prove the theorem, one has to show that W2k-1 is a (2k -l)-dimensional sphere.


