
SUPPLEMENT

ROBERT P. LANGLANDS

The first draft of the review was sent to a number of friends and colleagues, not
all of whom had the time to respond, but some did and I am very grateful to those
friends, especially James Arthur, Dipendra Prasad, Claude Levesque and Freydoon
Shahidi, who drew my attention to misprints, blunders and stylistic lapses, to James
Milne, who corrected both solecisms and an unintended historical misrepresentation,
to Bill Casselman and to Anthony Knapp, who carefully explained to me the
many difficulties a reader for whom the field was largely new would have with
my presentation. At the same time, style and clarity aside, there are a number of
aspects of the review about which I was more than a little uneasy.
In attempting to describe my impressions of the major contours of the field as a

whole, I introduced a square of objects (automorphic representations, motives, Hecke
algebras, and Galois representations) as a key element. I was relieved and delighted
when all of the three specialists who replied, Michael Harris, Richard Taylor and
Jacques Tilouine, responded positively to it. That they had reservations is hardly
surprising. There was no reason that my observations be right on the mark. Their
suggestions to me will be helpful to the reader as well, but rather than try to
incorporate them in a revised and much longer, much more difficult review, I prefer
to present the comments as they came to me, in informal e-mail messages or brief
pdf files. There is no particular value in presenting myself as an expert when I
am not. It will take me a great deal of time to digest all that they wrote, and
the reader, even the novice, is better off with information coming straight from the
horse’s mouth.
The suggestion that ultimately more use might be made of functoriality, especially

for tori, reflects, of course, my own experience and my own contributions to the
theory of automorphic forms. So I was pleased to discover that it was a point of
view already well represented among specialists.

A final point that troubled me and about which I am still uneasy is the
presentation of the Selmer group as a Galois-theoretic p-adic form of the extensions
that appear in the theory of mixed motives. I have not seen this parallel clearly
mentioned in the literature, although I suppose it was familiar to specialists. This
is confirmed by the lack of comment on it. The reader is warned, however, that I
have no positive evidence that it is cogent and generally accepted. As a whole my
comments on material related to the definition and properties of p-adic L-functions
especially to the Selmer group and to the main conjecture leave a great deal to be
desired in the way of precision and suggestiveness. So I am extremely grateful to
Ralph Greenberg for communicating a number of essential insights into the difficulties
to be overcome and several suggestions for further reading.
The comments of Harris and Taylor correct my review on a number of points

connected with Hp. My response—and it will I hope be the response of the reader as
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well—is simply that I will have to study their remarks and references until I have
understood them. They confirm the sentiment expressed in the first paragraph that
modern number theory is experiencing an almost unprecedented eclosion. There are
indeed a number of fascinating suggestions that bear a lot of reflection scattered
among their informal remarks.
It will also be clear to all readers of the review that, for lack of competence,

I steered clear of many technical difficulties. I did not come to grips with Hida’s
technical achievements because I was not and am not yet in a position to
appreciate them. So, although my uneasiness about Hida’s style appears to be
shared, the emphasis of Harris and Tilouine on the importance of Hida’s aims and
accomplishments is a welcome corrective to any tepidity that may be present in my
review. It was a result of ignorance. On seeing the draft of the review, more than
one mathematician expressed his indebtedness to the personal influence of Hida.
The remarks of Harris, Taylor and Tilouine are presented below in the order and

the form in which I received them. After that, come observations of Ralph Greenberg
and some questions of Laurent Clozel and, finally, the first draft of the review,
not much different from the final version. It is, however, the version to which the
comments were directed.
Some apology for not following the advice of Tony Knapp is necessary. Casselman

had commented that ‘your review is a tough read.’ Knapp was blunter,
explaining,

I have tried to put myself in the position of a reader who might

want to know a little more about the general field in question,

say a number theorist who knows little about representations or

a representation theorist who knows little about number theory.

I made some notes as I read the first two and a fraction pages

and then stepped back to guess at the reader’s reaction. My

guess at that reaction is ‘Do I have to understand all this in

order to understand any of the book?’

That reader might well put the review aside at that point, be

angry with you, and go away having learned nothing about the

book or the field. In my own case I persevered, though skipping

things here and there. When I got to page 10, I saw what your

answer might be: ‘Maybe yes. But maybe it is worth it’ And I

realized that the first paragraph of the review was continuing

that sentiment by adding, ‘That being so, let me supply some

background’ My key point to you is that it would be much better

if the reader had seen this assessment of yours (the one on page

10) in the first page or two. Then the reader would be grateful

that you gave a frank opinion and would be better positioned to

decide how much further to read in the review.

So, even though I managed to meet experts more than half-way, I was running
the danger of alienating not just one reader but a broad class of readers, those who
wanted to know what the book was about but who, unlike Tony Knapp, would be
unwilling to persevere. At the same time, the editor, Robert Devaney, was satisfied,
‘I think anyone who reads this review will very much enjoy what you have
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written (both from a mathematical and personal standpoint).’ He was indeed
enthusiastic, ‘Yes, the review is long, but to be honest, I never realized this

as I was reading the review. It seems perfect as is for the Bulletin.’ So I
was, and am, torn. There were classes of readers who found the review more than
satisfactory; yet at the same time there was a danger of alienating many others. The
absence of a response from a number of specialists to whom I sent the review may
be a further sign of this.
The arguments in favor of a serious rewriting are strong. My initial hope, when

undertaking the review, was that of a mathematician whose principal competence lay
at the margins of the field and who wished no more than a modest understanding
of the meaning of the many conjectures about the values of L-functions and their
relations to algebraic geometry. As the review developed, my stance changed and
my inclination now would be to attempt, so far as time and talent allowed, to
acquire some mastery of the field and to compose a text that revealed both its
fine lines and its broad contours. Casselman’s observation that ‘my impression is

that you have in mind a much longer version with drastic cuts. That’s fine,

editing is undoubtedly necessary, but I also have the impression that you

have edited this review for the pleasure of experts, and that therefore the

cutting room floor is filled with the sort of stuff The Naive Reader would

appreciate.’ has therefore an element of truth. I had in mind explaining more, but
the editing was not a matter of choice but of necessity. I did not understand enough
to say more. The limitations of space imposed by the review were my salvation.
Nevertheless, even with more knowledge at my disposal, I would still have to decide
whom to address. It is not clear. For the moment, since I am unable to satisfy
fully any group, there is no need to do so. Having some evidence that I have not
offended the specialists and that the text, if read without great expectations, has
something to offer the uninitiated, I decided to leave well enough alone, to correct
all misprints and all misleading references and to mitigate all doubtful affirmations
with the corrections of the experts, but to let the original text otherwise stand.
There is a great need for a longer text that also devotes adequate space to the very
many topics given, in spite of their importance for the book at hand, short shrift in
the review: mixed motives; the Bloch-Kato conjecture; the main conjecture. We can
all dream of writing it.
A text, even a book, that explained—with as few prerequisites and as few

technicalities as possible and with no reference to black boxes such as étale
cohomology—the relation between algebraic irrationalities and diophantine equations
or even between algebraic irrationalities and the geometry and topology of algebraic
varieties would also be very welcome, but even more difficult to compose.

On the other hand, Tony Knapp was addressing difficulties and suggesting
improvements related to neither extreme, but just to the problem of making the
text more widely accessible without major modifications either to content or to goals.
Nevertheless even though I considered it carefully, I ultimately ignored important
aspects of his very sound advice. There are reasons. It was only slowly, in the course
of writing the review, that I appreciated that p-adic L-functions and the attendant
problems were only one corner of a relation that expressed the strategy developed
over the last two decades for dealing with a broader, and at the same time much
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more central, matter, that of the identity of the class of motivic L-functions with
a class of automorphic L-functions. This is not an issue in the book although the
importance of the book is not independent of its relevance to it. The author is
certainly not unaware of this.
I do not admit frankly in the review that my principal concern is with the larger

question, but this may be transparent. It is not until we are halfway into the review
and have some familiarity with the four elements of the nexus and the difficulties
associated to them that we arrive at the book itself. So I have cheated: I have
introduced a topic that strongly affects the size of the potential audience for this
and related books as well as my judgement of their importance but is none the
less a topic not strictly belonging to the book’s subject matter. I have moreover
deliberately kept the book in the background until I had completed the introduction
of the broader issue. I have no regrets, but this does entail an obscurity that Knapp
was trying to remedy. Although I am not at all certain just what the ultimate role
of p-adic L-functions and Shimura varieties in the developing arithmetic will be, they
alone do not capture its grandeur!

1. Comments of Michael Harris

Dear Langlands,

When you wrote me last summer I somehow didn’t guess that the book you had

agreed to review was Hida’s latest book. This is an essential reference for

my project with Li and Skinner and although I have immense admiration for

Hida for his personal qualities as well as for his mathematical vision, I

have some sympathy for the comments on p. 10 of your review.

There is one troubling point in Hida’s book I have not been able to

settle. One of his main theorems is the irreducibility theorem for Igusa

towers, proved in section 8.4 and crucial for applications to p-adic

L-functions. This connection was discovered by Katz and Ribet’s proof of

irreducibility for Hilbert modular varieties was one of the main steps

in the Deligne-Ribet construction of p-adic L-functions for totally real

fields. Chai has a simpler proof for PEL Shimura varieties with point

boundary components (among other cases) and is probably the best-informed

specialist on the question, but he has told me he is unable to understand

one of the main steps in Hida’s proof, namely the appeal to Serre-Tate

coordinates at the end of the second paragraph of p. 371, which seems

implicitly to depend on the conclusion of the theorem being proved. I have

not tried to sort this out. You may want to check with Chai on the status of

this argument.

The specialists in p-adic automorphic forms have been slowly groping

toward an appreciation of the role of functoriality, especially during the

ongoing special semester at Harvard on eigenvarieties. Beyond its original

motivation as a review of Hida’s book, your article will be a fundamental

contribution to understanding this rapidly growing field in the context of

functoriality, and it comes at just the right time.

I have a few comments about the content of the review. The first is to

place Hida’s choice to work with holomorphic forms (de Rham cohomology)
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rather than Betti cohomology in historical perspective. In fact, Hida had

developed his theory for Betti cohomology in considerable generality, and

although he worked it out in detail for groups G which at p are isomorphic

to GL(n) (references [H95] and [H98]), the method was sufficiently general

to apply to symplectic groups (the article of Tilouine and Urban) and

indeed to general quasi-split groups (the thesis of Tilouine’s student David

Mauger -- which I think only treats groups split at p). However, proof

of the vertical control theorem, which is perhaps the main result of Hida

theory, runs into difficulty for locally symmetric spaces of dimension

> 1 because of the possible presence of torsion in cohomology. I will

return to the issue of torsion below. Hida was very pleased in the late

90s when he realized that he could work with holomorphic forms in higher

dimension. Torsion is less of a problem, because only coherent cohomology

in degree 0 is involved, but there are new issues arising from arithmetic

compactification.

Probably the most significant omission from your review is any reference

to the growing literature on non-ordinary deformations (sometimes called

"positive slope" deformations by analogy with the case of classical modular

forms). This subject was initiated by Coleman, at Mazur’s suggestion, and

has grown into the field of eigenvarieties which has been occupying the time

and energy of a great many people at Harvard all spring. Eigenvarieties are

a more geometric approach to what you call the Hp than one finds in Hida’s

work; in particular, they really live over a characteristic zero base rather

than over rings of mixed characteristic. I’m not a specialist, but I can

point to two events that indicate that the field has matured: Kisin’s work

relating the local structure of eigenvarieties to local Galois deformation

rings, in his work on the Fontaine-Mazur conjecture; and the article of

Skinner-Urban using p-adic (non-ordinary) deformations from non-tempered

cohomology classes of Siegel modular threefolds to tempered classes in

order to construct infinite subgroups of Selmer groups of elliptic modular

forms. Hida’s theory corresponds to the part of the eigenvariety with the

best analytic behavior. My impression from talking to Mazur is that he

and the other specialists are now speculating about functoriality in terms

of general eigenvarieties but only expect to be able to confirm their

speculations for the (nearly) ordinary locus constructed by means of Hida

theory.

I’m not sure I understand your comment on p. 10 regarding the definition

of Hp. As I indicated above, Hida has a very general definition for groups

isomorphic to GL(n) at p -- including many classes of unitary groups. The

case where G(R) is compact modulo center has been studied quite generally,

in part because it is clear they are well adapted to the Taylor-Wiles

method. Deformations with fixed Hodge-Tate parameter, as in Wiles’ theory,

are studied for definite unitary groups in my unpublished article with

Taylor on the Taylor-Wiles method for unitary groups, written between 1996

and 1998 and mostly incorporated into the article with Clozel that you cite.

The extension to (nearly) ordinary deformations in Hida’s sense is routine
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and well understood by experts. The general (nonordinary) version of this

theory was developed by the thesis of my student Chenevier, completed in

2003. In this way Chenevier was the first to construct eigenvarieties -- he

used "variété de Hecke" as the French translation -- of dimension greater

than one.

In his thesis Chenevier also used constructed the corresponding families

of n-dimensional Galois representations (in general he has to work in

the setting of pseudorepresentations, but in most cases it gives what

you would expect). He has given a course on these results and their

arithmetic applications at the Harvard eigenvarieties semester. This answers

your implicit question in the second paragraph of p. 12 regarding the

theory of parametrized families of Galois representations of dimension

greater than two. The Galois deformation theory corresponding to automorphic

forms on unitary groups of fixed weight is, of course, the subject of my

unpublished article with Taylor, its successor with Clozel, and Taylor’s

most recent article on the subject. Together with Kisin’s work, this latest

article of Taylor eliminates all but one remaining technical obstacle to

applying Wiles’ approach to all Galois representations arising from Shimura

varieties. The remaining technical obstacle has to do with weights that

are large relative to the congruence prime; Kisin thinks this will be

resolved in the setting of the "p-adic Langlands program." (The Taylor-Wiles

method for GSp(4) is the subject of a article of Genestier-Tilouine; the

methods are roughly the same as those in our work on unitary groups but the

geometric problems are technically more difficult.)

More information about Chenevier’s course is at

http://www.math.harvard.edu/ev/newsletter.html

(the item dated March 1). You may also be interested in some of the other

items on this page.

With regard to your comment on p. 4 on "passages from one [p-adic]

leaf to another," Taylor’s method, which is a geometric version of weak

approximation, is surprisingly powerful. My paper with Shepherd-Barron and

Taylor extends the method to (certain kinds of) representations of any

dimension. Apart from the problem of finding local points on moduli spaces

with prescribed ramification at the congruence primes, which I don’t think

is insurmountable, there seems to be no obstacle in principle to applying

the method to prove that any compatible system of l-adic representations of

the Galois group of a CM field F with the right polarization (an archimedean

sign condition generalizing the odd condition for GL(2)) can be connected by

a series of p-adic deformations to a compatible system coming from Shimura

varieties, up to replacing F by a CM extension. If the Hodge-Tate numbers

are right then by a series of deformations to monomial representations we

should even deduce that the L-function of the original compatible system has

a meromorphic continuation satisfying the expected functional equation. This

is still a long way from the general problem but it may be more than an

isolated class of cases. In any event, Taylor’s potential version of Serre’s

http://www.math.harvard.edu/ev/newsletter.html
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conjecture is the starting point of the Khare-Wintenberger proof of the

original conjecture.

I wanted to say something about torsion in the integral cohomology of

locally symmetric spaces. Already while he was writing his thesis, Taylor

was convinced that if G is GL(2) of an imaginary quadratic field K, then

the torsion in the cohomology of the corresponding locally symmetric space

has associated 2-dimensional Galois representations (of the absolute Galois

group of K). After you wrote me last August I learned from Mazur that he

and Calegari have been attempting to formulate precise conjectures about the

p-adic representations obtained by piecing together those (conjecturally)

attached to torsion classes for different coefficient systems. Their con-

jectures inevitably lead them to questions about functoriality. A typical

question, put very roughly, is to determine the locus of these l-adic

representations in the p-adic eigenvariety associated to Siegel modular

forms of genus 2. The idea is that induction of the 2-dimensional Galois

representation of K to a 4-dimensional Galois representation of Q carries

the right kind of polarization (the archimedean sign condition again) to be

in the eigenvariety for holomorphic Siegel modular forms, or rather in its

Galois version, the one you denote Gp. On the other hand, the base change

to K of a p-adic family of elliptic modular forms, twisted by appropriate

(variable) motivic Hecke characters, gives rise to another locus in the

Siegel modular eigenvariety; here one can make sense both of Gp and Hp.

Calegari and Mazur believe, first of all, that one can identify Gp and Hp;

next, that these two loci described above meet transversally, or at least

that they have no common components; finally, that the union of the two loci

corresponds to the polar locus of an appropriate p-adic L-function (I think

it would be defined by the Tannakian condition corresponding to the map of

L-groups). They have a fair amount of numerical evidence for this, as do

Ash and his collaborators for the related case of cohomology of the locally

symmetric space attached to GL(3) over Q (here there is a pro-torsion locus

and a "classical" locus obtained as the image of the symmetric square from

GL(2) of elliptic modular forms).

In this sense, the number theorists have already been "reflecting" on

the "passage to the primed objects" as you put it in the next-to-last

paragraph of p. 12. The surprising answer seems to be that functoriality for

p-adic automorphic forms may not simply be obtained by p-adic completion of

functoriality for complex automorphic forms; one has to allow pro-torsion

cohomology classes as well. Some of us have ideas for actually proving some

cases of these conjectures that are not totally far-fetched, but it’s far

too early to say anything definite.

I apologize for the long-winded comments on your review. Please feel free

to quote anything you find useful; no attribution is necessary.

Best regards,

Michael Harris
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As Harris suggested, I asked Chai about Hida’s proof of the irreducibility theorem
for Igusa towers. His reply follows.

2. Response of Ching-Li Chai

Dear Prof. Langlands,

It is a surprise to get a message from you, I have to say. I am in Amsterdam

for a conference but would like to get back to you with some preliminary

response first. I will write to you after going back to Philadelphia on

Thursday (June 1st).

Unfortunately I still have not gone through Hida’s book carefully enough to

draw any conclusion that I can "state to the world". The only thing I can

say is that I don’t understand that proof. I remember that the proof uses

embedding into a Siegel modular variety, and Hida wanted to draw information

from the valuation defined by the q-expansion for Siegel modular varieties.

One of the reasons I did not pursue it further is that there are other

proofs of that statement. I know of at least two proofs using ideas

different from Hida’s. One is a combination of Ribet’s original method (for

Hilbert modular varieties), then using Hecke correspondence which fixes

a "hypersymmetric point" of the moduli space in characteristic p. (The

hypersymmetric points correspond to abelian varieties whose endomorphism

ring is "as large as possible" under a given slope constraint. For ordinary

abelian varieties, the hypersymmetric ones are those which are isogenous

to a product of copies of a fixed elliptic curve defined over Fp.) On

the other hand, Ribet’s orginal method also works. (There seems to be a

prevailing opinion that Ribet’s method works only when the target of the

p-adic monodromy representation is a commutative. This is not the case.

Incidentally, I gave a sketch of a proof of this just two hours ago.)

My experience has been that Hida usually has good ideas. So it is entirely

possible that the idea sketched in the book works, and I just failed to

understand it. There was a result of Hida that I did not undersand when I

heard it in a talk at Toronto. But eventually the proof worked.

Best regards, Ching-Li

RPL. There is an important supplement to these remarks, again from Chai.

I hope there is still time to update/revise my previous message about Hida’s

method on p-adic monodromy for subvarieties of modular varieties of PEL-type

in characteristic p, defined by p-adic invariants.

Several email messages from Hida helped me to finally understand the key

idea in his proof: the local stabilizer subgroup in Hecke correspondences

at a point can be effective exploited to produce elements in the image of

the p-adic monodromy. The lifting to characteristic zero, q-expansion, and
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embedding to Siegel modular varieties in Hida’s argument can be replaced

by an irreducibility statement which resulted from group theory and ℓ-adic
monodromy. (Pure and Applied Math. Quarterly,1, 2005, special issue in

memory of Armond Borel, 291--303, Prop. 4.4 and 4.5.4.)

When applied to a hypersymmetric point, the above argument proves the

maximality/surjectivity of the p-adic monodromy map by "pure thought".

Moreover it applies to "leaves", subvarieties defined by an isomorphism type

of p-divisible group with prescribed endomorphisms and polarization.

The above statements are of course subject to error and need to be checked

carefully. But any error and imprecision would be my responsibility. The

point is that Hida had a good idea, and it works.

3. Comments of Richard Taylor

Dear Robert (if I may),

I enjoyed your review of Hida’s book. Here, for whatever they are worth, are

a few comments that came to my mind.

1) Concerning your diagram on page 5: I do not think the vertical dashed

lines should be thought of as ‘‘correspondences’’. For a general reductive

group G the spaces h p will be much bigger than a and the spaces g p will

be much bigger than m. (Forgive my inability to reproduce gothic letters

in this message.) Most clearly I presume g p is the space of p-adic Galois

representations of the absolute Galois group of F into the L group of G -

in some suitable sense. Within this space only those representations which

are unramified almost everywhere and de Rham (in Fontaine’s sense) above p

will correspond to an element of m. For GL 2/Q these so called ‘geometric’

points may be distributed rather regularly, but in general they seem to

be distributed rather randomly. For example if one looks at GL 2 over an

imaginary quadratic field K and looks at Galois representations which become

diagonalisable on restriction to decomposition groups above p one sees whole

components with no ‘geometric’ points, positive-dimensional components with

one ‘geometric’ point and positive-dimensional components with a dense set

of ‘geometric’ points. We believe that whenever we get a geometric point

the p-adic representation is part of a compatible family and so we get

corresponding points on all the other leaves g l. Moreover these ‘geometric’

points should be in bijection with m. However it seems that there can be

whole components of g p with no geometric point and hence no relation to m

nor to the other g l. This seems to happen both for GL 2 over an imaginary

quadratic field and for GL 3 over Q.

If one believes in your square, and I am inclined to, one should believe

that something similar happens on the left hand side. As you say there is

a problem in defining h p. But it seems to me (and I think others) that it

should be some sort of space of p-adic automorphic representations. There

should be some correspondence between h p and g p - close to a bijection.
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Hence the different h p should only touch at certain special points, which

for general G seem to be rather randomly distributed. I would like to

think of the usual automorphic forms as h infinity, and the points where

h infinity meets one (and hence presumably all the) h p would just be the

set of arithmetic automorphic forms you call a.

For groups like GL 2 over an imaginary quadratic field and GL 3 over Q one

can construct pieces of h p which are far away from anything in a using

torsion in the cohomology of quotients of the symmetric space.

In summary m provides the glue between the different sheets g p. Similarly

a provides the glue between the different sheets h p and also h infinity.

The sheets h p and g p should correspond, matching a with m. Unfortunately I

have no idea what g infinity should be - if indeed it exists!

Note that this is exactly the picture one has for GL 1 over a field K.

h p would be the space of continuous p-adic characters of the idele clas

group. h infinity the space of grossencharacters of the idele class group.

g p the space of continuous p-adic characters of the absolute Galois group

of K. m would be the space of those p-adic characters which are ‘geometric’

and hence fit into compatible systems. (See Serre’s book on abelian l-adic

representations.) a would be the set of grossencharacters of typoe A 0, ie

arithmetic in your sense. Everything fits together, but you already see that

a can be quite sparse in h p and h infinity. Take for instance K to be a

cubic field with two infinite places. (However the picture for GL 2 over an

imaginary quadratic field seems to be even less regular than this.)

The ‘geometric’ points seem to be fairly uniformly distributed in g p, i.e.

a seems to be fairly uniformly distributed in h p, exactly in the case that

G(R) has an inner form which is compact mod centre.

You are right that the thrust of Wiles, Taylor-Wiles and further develop-

ments along these lines, is that if a point of h p matches a point of g p

then locally h p looks just like g p. However these arguments only seem to

have a hope of working in the case that G(R) has a compact mod centre inner

form, i.e. that the points of a are dense in h p.

You are also right that these arguments become much more powerful when

combine them with switching from h p to h l to h l’ ... and eventually back

to h p (at points in a). This allows you to travel much further in h p as

points which are far apart p-adically may be close l-adically. One may even

move from one ‘component’ of h p to another. Primitive arguments of this

form are found in Wiles’ Fermat paper (and indeed predated it), but they

have been developed greatly, most recently by Khare and Wintenberger.
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(For GL 2 over Q Matt Emerton at Northwestern has been developing a very

nice picture, which you might find interesting. I am not sure how much he

has written up, but you could check his website.)

2) Concerning the second paragraph on page 10, beginning ‘At present, to

give any definition’: Firstly I don’t think this is true. In my (unpub-

lished) thesis I looked at GL 2 over an imaginary quadratic field. I think

Hida subsequently looked at GL 2 over any number field. There is ongoing

work of Ash and Stevens on GL n over Q for n>2. However what we prove is

weaker than in the case that there is a Shimura variety or inner form G(R)

compact modulo centre, because h p can be smaller than one might guess at

first. (In technical parlance ‘the eigenvariety will not be flat over weight

space’.)

Concerning your comment about using groups which are compact at infinity,

I believe that Chenevier has worked out the theory of the eigencurve for

unitary groups of any rank which are compact at infinity. Similarly Clozel,

Harris and I make heavy use of these definite unitary groups in our recent

preprint.

3) Concerning the second paragraph on page 11 which begins ‘If l is not

equal to p ... It may as well be fixed’: I disagree. These deformations are

as you point out much more limited, but their study is the basis of both

Wiles’ paper on Fermat’s last theorem and of Taylor-Wiles. They are definid

over much smaller rings (eg Z p[[T]]/((1+T)^p-1) as opposed to Z p[[T]]).

However their study has led (so far) to far more interesting theorems than

the study of deformations of the restriction to decomposition groups above

p.

Also I do not think the odd/even dichotomy is the same as the ordinary/non-

ordinary dichotomy. For higher rank groups with G(R) having a compact mod

centre inner form there is still an odd even dichotomy. For instance if

the L group is GSp 2n one asks that the multiplier of complex conjugation

is −1. I know a similar criterion for unitray groups. The ordinary/non-

ordinary dichotomy is different. There are ordinary even representations,

but they don’t move in big families. For GL 2 over Q they don’t move at all.

Suppose now we are in the odd case, then in both the ordinary/nonordinary

cases one expects families of automorphic forms of the same dimension -

the ‘eigencurve’ or ‘eigenvariety’. (Technically I only know this in the

‘trianguline’ case, which is much weaker than ordinary but not completely

general - I am not sure what is expected in the non-trianguline case.)

In the non-ordinary case it is hard to give these families an integral

structure. The specialisations in weights k and k’ congruent modulo p^c will

only be congruent modulo some smaller power of p. What distinguishes the

ordinary case, and makes it technically much easier to work with, is that

there is a very nice integral structure. Hida, who first discovered these
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families, seems only ever to work in the ordinary case. But Coleman, Mazur

and others have generalised his theory.

4) Concerning page 13, paragraph 2 beginning ‘‘The functions are to be p-

adic ...’’: Maybe they should be defined on the whole of h p or g p, just as

non-arithmetic automorphic forms have L-functions. They would need however

a direct definition. They could only be related to complex L-functions at

points in a or m. I don’t know much about it, but I believe that for

GL 2 over Q there are hints in this direction in work of Kato, Colmez and

Emerton.

I hope these comments might be some help to you. Best wishes,

Richard

The comments of Tilouine came as a pdf-file!

4. Comments on a recension of Hida’s book (J. Tilouine)

May 28, 2006

I read with great interest your recension. I kind of forgot my own review of Hida’s
book on p-adic automorphic forms, so I had to reread it to compare with your
comments. First, I subscribe completely to your presentation of the modern approach
of the arithmetic of automorphic forms via the four elements of the nexus drawn on
page 5. Apart from one or two misprints, I don’t see anything to modify up to page
9.
Then, concerning comments on the book on p. 10 and p. 12 of the text you could

maybe develop the remark of l. 10 from bottom p. 10 about the beautiful program
hinted at in the introduction of Hida’s book; in particular his vision of an integral
version of Shimura’s reciprocity law relating Galois theory of Igusa towers inside the
Kottwitz p-adic integral model of Shimura varieties to (non-abelian) Iwasawa theory
of certain number fields.
The fact that the book is (statistically) not for graduate students is sad but true.

That it should have been edited more carefully is also obvious. But I still believe it
is edifying (hence challenging).
I think that the mere existence of your review speaks in favor of the book, but

an emphasis on the vision it contains/suggests could be made slightly more strongly.
With all its defects (and inessential errors) I think one should say it is really
important.

5. Comments of Ralph Greenberg

Dear Professor Langlands,

I looked through the article that you sent me and have a few comments. I’m

sorry to have taken so long. I hope my comments will still be helpful.
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Concerning the discussion of the main conjecture on page 16. One of the

difficulties of the topic is that the characteristic function of a Selmer

group is only well-defined up to a unit in R. Only the ideal (called the

characteristic ideal) is well-defined. Thus, the main conjecture asserts

that the characteristic ideal has a generator which is, essentially, the

p-adic L-function. Even the p-adic L-function is not very well-defined. The

Kubota-Leopoldt p-adic L-functions are precisely defined in terms of the

complex values of Dirichlet L-functions. The Mazur-Swinnerton-Dyer p-adic

L-function for an elliptic curve E/Q is also well-defined because the period

can be chosen canonically. (Note: This function was defined at first only

when E has good, ordinary reduction at p.) This is a function of one p-adic

variable and corresponds to twisting the Tate module for E by characters of

the Galois group Gamma that you define. But the analogous p-adic L-function

for a modular form of arbitrary weight is not well-defined. One has to

choose a period. The situation becomes more complicated when one considers

p-adic L-functions of more variables than just the cyclotomic variable.

For example, one might have a "Hida family" of ordinary modular forms

of varying weight k. Then the interpolation property becomes less clear.

In each weight, it will coincide with the one variable p-adic L-function

for that modular form with a suitable complex period, but only up to

multiplication by some mysterious p-adic unit. Thus, I’m not sure if it is

accurate to say that the main conjecture can be formulated directly in terms

of the complex L-function and the p-adic representation in general.

Also, concerning the proofs of the main conjecture, the methods so far are

based on establishing a divisibility in one direction or the other and then

somehow showing that the corresponding quotient must be a unit in R.

Remarks about page 17. I can say a little about why I chose a discrete

Galois module, namely what you call V^ , for the purpose of defining a

Selmer group. The problem with looking at extensions of V (as in (7)) is

that H1(Gal(Qbar/Q), V) doesn’t give very much information. This can be

illustrated by the Tate module T p(E) for an elliptic curve E. Assume, for

simplicity, that E(Q) has no p-torsion, which will usually be the case. Then

H1(Gal(Qbar/Q), T p(E)) is a free Z p-module of some rank. One could define

a Selmer group, but, by itself, it would simply be a free Z p-module and its

rank would be equal to rank(E(Q)). The Tate-Shafarevich group would not be

present. One would have to consider H2 to bring that group into the picture.

This probably would be possible to do. I like the Selmer group associated

with a discrete Galois module because it contains more information and also

it is easier to relate to the Selmer groups for the specializations.

Concerning the Panchiskin condition, this is kind of a weak form of ordi-

nariness. Panchiskin discovered that with that condition he could construct

a p-adic L-function which is "integral." That means that it corresponds to

an element theta of the deformation ring R. The p-adic L-function is then

of the form phi(theta) as phi varies over the Q p-valued spectrum of R.



14 ROBERT P. LANGLANDS

(Let me add the remark that it is better to consider the Q pbar - valued

spectrum because, in many cases, the interpolation property is too limited

if one restricts to just Q p-valued phi’s.) In any case, I realized that the

Panchiskin condition also allows one to define a Selmer group which has a

chance of having an interesting (i.e., nonzero) characteristic ideal. That

is, the Pontryagin dual of the Selmer group would have a good chance of

being a torsion-module over the ring R. The hope is that theta would be a

generator of that ideal. Thus, what happens on the algebraic side seems to

mirror what happens on the analytic side.

Concerning the non-ordinary case, the difficulties are usually that the nat-

ural Selmer group is too big (and doesn’t have an interesting characteristic

ideal) and, on the analytic side, the p-adic L-function is not integral,

i.e. it is not defined in terms of an element theta from R. The simplest

example occurs in the theory of elliptic curves and the cyclotomic extension

Q \infty/Q. In the ordinary case, the p-adic L-function should correspond to

an element of Lambda. This essentially means that it only has finitely many

zeros. In contrast, if E has supersingular reduction at p, then the p-adic

L-function has infinitely many zeros. It is much harder, although possible,

to formulate a main conjecture in that case.

One final comment is about deformation theory of p-adic Galois representa-

tions. You mention this on page 12. You might want to take a look at some of

the papers of Mazur. He has developed the theory rather generally, and the

ideas have been important. Here are some references:

Deforming Galois representations. Galois groups over Q (Berkeley, CA,

1987), 385--437, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.

The theme of p-adic variation. Mathematics: frontiers and perspectives, 433-

-459, Amer. Math. Soc., Providence, RI, 2000.

Also, there is a long expository article by Fernando Gouvea including many

references:

Deformations of Galois Representations," in Arithmetic Algebraic Geometry,

ed. by Brian Conrad and Karl Rubin, American Mathematical Society, 2001,

pp. 235--406.

The literature on this topic is rather vast.

I also found a few small misprints. I can send them to you if you want.

Sincerely yours,

Ralph Greenberg
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Although they are quite informal and arrived after the rest of the text was
written, I also include comments of Laurent Clozel. They are the questions and
reservations of an informed specialist and will assure anyone who is troubled by
the involuntary imprecision of many assertions in the review that his unease is
shared. I have preserved the style of the message as is customary in Clozel’s e-mail
communications. I have also responded briefly to the easy queries.

6. Comments of Laurent Clozel

dear Bob,

i have read your draft in some detail and, although i can’t pretend to

understand it as well as i would like, i’ll send you my remarks.

first some unconnected points. ... 3. i’m writing from home, and after a

while i will have to "maintain the connection" which has the effect of

garbling the text somehow. i hope it is still readable. 4. i hope you have

the state you sent me for i will quote by page & line

now:misprints

...

math

p2, middle §: it is not quite clear what ^mu G /M is : it is not a complex

group. i assume it is the motivic Galois group of the category generated by

M

RPL. Correct!

p3 l4 : "there is ... pi’ " : well, not quite if G’ is not quasi-split

(think of Jacquet-Langlands)

p3 l14 : ^lambda H / pi unique ? it seems to me that it is unique - as

the image of the Langlands group - but possibly we cannot determine it by

looking at the poles of L-functions?

My first response was that, “there is a pertinent preprint of Song Wang available.”
This is so, but it is not certain that I understood the question. Clozel replied, “i
am aware of these examples, but this was not my point: the point is that (in

a world where everything would be known) the image of the Langlands group

exists as a well-defined group (up to conjugacy), only we cannot determine

what this group is by looking at poles of L-functions. is this incorrect? if

not i find your comment confusing ....” This I too believe. It seems to me that
we must none the less expect that occasionally the same π will be attached to two
or more different nonconjugate homomorphisms into LG, perhaps even with images
that may be isomorphic but are not conjugate in LG. If I am not mistaken, when
the images are not connected they may not even be isomorphic. I have not studied
the available literature thoroughly.

l.20 ff: here things are not clear to me: first of all the groups ^mu

G or ^lambda G are NOT subgroups of G or G’ : they are not just

reductive groups of finite dimension, but contain the information of their

Tannakian categories - they may be subgoups endowed with families of
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Frobenii, whatever that means. the whole paragraph is cryptic, unless one

thinks of the groups as the (motivic or automorphic) groups of a Tannakian

subcategory.

p5 top : right and left are inverted in yr diagrams.

p6 l 24 : several parameters: here i don’t understand, should’nt there be no

L-indiscernability for tori (but this is probably my mistake).

RPL. Local equivalence of automorphic representations implies global equivalence, in
particular for tori, but two homomorphisms of the Weil group into the L-group of a
torus can be locally equivalent without being globally equivalent.

p6 l -4 ff: here i wonder if you could not pursue the analysis further.

first you use the splitting Gal(F/v) --> script T, but in fact you have

a splitting of the whole Gal(Q) --> adelic, and in particular Q/p points

of script T. (let’s take F = Q). assume the field of "coefficients" L is

CM. the deformation you seek should be related to this: assume chi is an

algebraic Hecke character of L. as such it has exponents (p,q) for all

pairs of complex embeddings of L, with p+q = w; let’s take w = 0, i.e.,

anticyclotomic directions. also by Serre, it gives us for each place v, over

p, of L, an abelian character of Gal(L). this takes values in a finite

extension of L/v; let’s assume for simplicity all L/v = Q/p. now we can

vary the exponents p (r/2 of them, with the usual notation) in a p-adic

continuous way (sorry, p has two meanings). a trivial case of Hida’s theory

gives us a p-adic family, depending on r/2 parameters, of abelian characters

of Gal(L). this looks essentially like a representation Gal(Q) --> finite

extension of L/p = product of all local completions of L over p; in fact

it will go into the Serre group because we are deforming (p-adically) at

w constant. one problem is that this depends on the choice of an initial

character (before deformation); the number of choices is a class number. i

do not see how to take care of this. the other problem is that we want a

deformation of representations of Gal(Q) not of Gal(L), and i do not see how

to obviate this. however it may make sense when L is fixed. maybe you can

understand how to go further.

p7 l 13 : at this point the reader no longer sees what the "other route"

is...

p7, bottom: the variance for T, T^ seems wrong : phi is an analytic

one-parameter group to (your) T which should be called T^, so it gives

one-parameter groups for (my) T^, p, q, so characters of T where T is in G -

correctly, of course, in terms of Harish’s theory.

RPL. I hope it is now correct.

p8, middle : distinction even/odd: as Khare tells me it is not true that

there are no deformations of an even representation; the problem has been

studied by Ramakrishna. in fact there is a deformation space (FINITE over

Q/p); what seems to be true is that no deformation will be of geometric

(=Fontaine-Mazur) type, except the original one with finite image. (here we
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encounter the problem, which i had mentioned to you, that you speak rather

loosely of "deformations", term which may mean 2 things: deformations in

the Taylor-Wiles sense, lifting to char.0, or deformations in the sense of

Hida’s families of p-adic representations. but i assume the ambiguity is

voluntary).

RPL. This is an important correction.

p9, l22 "Sometimes it can be realized" is ambiguous : D can be realized (not

G/T).

p10, middle: it is not true that the situation where G(R) is compact has not

been studied; in fact the modular deformation theory in this case is done

in the C-Harris-Taylor paper you quote, and the p-adic theory is done (for

unitary groups) in the thesis of Chenevier.

RPL. This too is an important correction, made by several correspondents.

this concludes my comments: i have read the rest but i do not know enough

about p-adic L-functions (amongst other things) to comment. one remark only:

p15 l -11 : it is really known (with a suitable definition of the HdR

structures) that (6) splits, or is it only natural in the formalism? i will

only add that of course your review is very hard to read - more than Hida’s

book?

regards, l.

In a frivolous vein, I have a final observation. A large number of correspondents
were troubled by my designation of the positions on the diagram, to be more precise
they thought my use of “left” and “right” incorrect, some even found it grossly
negligent. I polled a few acquaintances and family members and found that their
use of “left” and “right” was also not mine. So I decided that I should, as a
compromise, use “left-hand” and “right-hand,” which would have been less troubling
and more precise—or so it seemed at first until I thought of those readers who,
for one reason or another, might look at the page upside-down. These two words
turned out to be stylistically clumsy as well. In the new text I did my best to
find a compromise between my logic, the style, and a desire not to put unnecessary
difficulties in the path of a reader.
The imprecision of the adjectives “left” and “right” has troubled me from an early

age, especially when referring to the printed page, but I decided when very young
that it was the page that determined the sense and not the viewer, whose position
could at his pleasure change. This view still seems to me legitimate and applies to
all objects that have a definite orientation in space, thus an “up” and a “forward.”
A tree does not, but a river, an automobile, a ship (although here “left” and “right”
are of course replaced by “port” and “starboard”), a house are generally accepted
to determine their own left and right. A stage, too, or a baseball field has its own
notion of “left” and “right.” So why not the printed page. I looked for some clear
guidance from our household dictionaries, Oxford and Webster, but found little. So a
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modicum of liberty is still to be found in this one small corner of our intellectual
world, but on this occasion I sacrificed it to clarity.
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7. —DRAFT SUBMITTED FOR COMMENTS—

Review of

Haruzo Hida’s p-adic automorphic forms on Shimura varieties

by

R. P. Langlands

Three topics figure prominently in the modern higher arithmetic: zeta-functions,
Galois representations, and automorphic forms or, equivalently, representations.
The zeta-functions are associated to both the Galois representations and the
automorphic representations and the link that joins them. Although by and
large abstruse and often highly technical the subject has many claims on the
attention of mathematicians as a whole: the spectacular solution of at least one
outstanding classical problem; concrete conjectures that are both difficult and not
completely inaccessible, above all that of Birch and Swinnerton-Dyer; roots in an
ancient tradition of the study of algebraic irrationalities; a majestic conceptual
architecture with implications not confined to number theory; and great current vigor.
Nevertheless, in spite of major results the subject remains inchoate, with far more
conjectures than theorems. There is no schematic introduction to it that reveals the
structure of both the conjectures whose proofs are its principal goal and the methods
to be employed, and for good reason. There are still too many uncertainties. I none
the less found while preparing this review that without forming some notion of the
outlines of the final theory I was quite at sea with the subject and with the book.
So ill-equipped as I am in many ways – although not in all – my first, indeed
my major task was to take bearings. The second is, bearings taken, doubtful or
not, to communicate them at least to an experienced reader and, in so far as this
is possible, even to an inexperienced reader. For lack of time and competence I
accomplished neither task satisfactorily. So, although I have made a real effort, this
review is not the brief, limpid yet comprehensive, account of the subject, revealing
its manifold possibilities, that I would have liked to write and that it deserves. The
review is imbalanced and there is too much that I had to leave obscure, too many
possibly premature intimations. A reviewer with greater competence, who saw the
domain whole and, in addition, had a command of the detail would have done much
better.
It is perhaps best to speak of L-functions rather than of zeta-functions and to

begin not with p-adic functions but with those that are complex-valued and thus –
at least in principle, although one problem with which the theory is confronted is to
establish this in general – analytic functions in the whole complex plane with only
a very few poles. The Weil zeta-function of a smooth algebraic variety over a finite
field is a combinatorial object defined by the number of points on the variety over
the field itself and its Galois extension. The Hasse-Weil zeta-function of a smooth
variety over a number field F is the product over all places p of the inverse of
the zeta-function of the variety reduced at p. Of course, the reduced variety may
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not be smooth for some p and for those some additional care has to be taken
with the definition. In fact it is not the Hasse-Weil zeta-function itself which is of
greatest interest, but rather factors of its numerator and denominator, especially,
but not necessarily, the irreducible factors. The zeta-function is, by the theory of
Grothendieck, a product, alternately in the numerator and denominator, of an Euler
product given by the determinant of the action τm(Φp) of the Frobenius at p on the
l-adic cohomology in degree m,

(1)
∏
p

1

det
(
1− τm(Φp)/N ps

) .
Algebraic correspondences of the variety with itself, if they are present, will act
on the cohomology and commute with the Frobenius elements, thereby entailing an
additional decomposition of τm and an additional factorization of the determinants
in (1) and thus of (1) itself. These factors are the L-functions that are one of the
key concepts of the modern theory. Grothendieck introduced a conjectural notion of
motive, as objects supporting these factors. Although there are many major obstacles
to creating a notion of motive adequate to the needs of a coherent theory, not least
a proof of both the Hodge and the Tate conjectures, it is best when trying to
acquire some insight into the theory’s aims to think in terms of motives. In practice
they are concrete enough.
So one element of the nexus to be described is the collection M of motives M

over a given finite extension F of Q. To each M is associated an L-function L(s,M)
about which, at first, we know little except that it is an Euler product convergent
in a right half-plane. The category of motives as envisioned by Grothendieck is
Tannakian so that to each M is also associated a reductive algebraic group µGM

with a projection onto the Galois group of some sufficiently large, but if we prefer
finite, extension K of F . The field of coefficients used for the definition of µGM

lies, according to needs or inclination, somewhere between Q and Q. The µ in the
notation is make it clear that the group has a different function than G. It is not
the carrier of automorphic forms or representations but of motives.
An automorphic representation π is a representation, usually infinite-dimensional,

of an adelic group G(A), the group G being defined over F and reductive. To G
is associated an L-group LG, which is a reductive algebraic group over C. There
is a homomorphism of LG onto Gal(K/F ), K being again a sufficiently large finite
extension of F . Generalizing ideas of Frobenius and Hecke, not to speak of Dirichlet
and Artin, we can associate to π and to almost all primes p of F a conjugacy class{
A(πp)

}
in LG. Then, given any algebraic, and thus finite-dimensional, representation

r of LG, we may introduce the L-function

(2) L(s, π, r) =
∏
p

1

det
(
1− r

(
A(πp)

)
/N ps

) .
The usual difficulties at a finite number of places are present.

In principle, and in practice so far, the functions (2) are easier to deal with than
(1). Nevertheless, the initial and fundamental question of analytic continuation is still
unresolved in any kind of generality. One general principle, referred to as functoriality
and inspired by Artin’s reciprocity law, would deal with the analytic continuation
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for (2). Functoriality is the core notion of what is frequently referred to as the
Langlands program.
Suppose G and G′ are two groups over F and ϕ is a homomorphism from LG

to LG′, then if π is an automorphic representation of G there is an automorphic

representation π′ of G′ such that for each p the class
{
A(π′

p)
}

associated to π′ is

the image under ϕ of
{
A(πp)

}
. To establish this will be hard and certainly not for

the immediate future. I have, however, argued in [L] that it is a problem that we
can begin to attack.
It is then natural to suppose, once again influenced by Artin’s proof of the

analytic continuation of abelian L-functions, that each of the Euler products L(s,M)
into which (1) factors is equal to one of the Euler products (2). This would of
course certainly deal with the problem of its analytic continuation. Better, in [L] it
is suggested that we should not only prove functoriality using the trace formula but
simultaneously establish that each automorphic representation π on G is associated
to a subgroup λHπ of LG, even to several such subgroups, but the need for this
multiplicity is something easy to understand. So we are encouraged to believe that
the fundamental correspondence is not that between L-functions but that between M
and µGM and π and λHπ. In particular µGM and λHπ are to be isomorphic and the
Frobenius-Hecke conjugacy classes in µGM associated to M are to be equal to the
Frobenius-Hecke conjugacy classes λHπ associated to π. Apart from the difficulty that
there is little to suggest that λHπ is defined over any field but C, it is reasonable
to hope that in the long run some correspondence of this nature will be established.
The λ in the notation is inherited from [L] and emphasizes that H is a subgroup of
LG and not of G.
The Tannakian formalism for motives – when available – suggests that if there

is a homomorphism µGM ⊂ µG′ then M is also carried by µG′. If functoriality is
available, as is implicit in the constructions, and λHπ ⊂ λH ′ then, in some sense, π
is also carried by λH ′, but in the form of an automorphic representation π′ of a
group G′ with λH ′ ⊂ LG. So if µG′ and λH ′ are isomorphic, the couples {M, µG′}
and {π, λH ′} also correspond.
An example, in spite of appearances not trivial, for which the necessary

functoriality is available is the unique automorphic representation π of the group
G = {1} with LG = λHπ = Gal(L/F ), where Gal(L/F ) is solvable, together with
the motive M(σ) of rank 2 and degree 0 attached to a faithful two-dimensional
representation σ of Gal(L/F ). They clearly correspond. Moreover λHπ = µGM is
imbedded diagonally in GL(2,C) × Gal(L/F ). The representation π′ is given by
solvable base-change and the correspondence between

{
π′, GL(2,C)×Gal(L/F )

}
and{

M(σ), GL(2,C)×Gal(K/F )
}

is one of the starting points for the proof of Fermat’s
theorem.
Although functoriality and its proof are expected to function uniformly for

all automorphic representations, when comparisons with motives are undertaken
not all automorphic representations are pertinent. The representation π has local
factors πv at each place. At an infinite place v the classification of the irreducible
representations πv of G(Fv) is by homomorphisms of the Weil group at v into LG.
This Weil group is, I recall, a group that contains C× as a subgroup of index 1 or
2. We say ([Ti]) that the automorphic representation π is arithmetic (or algebraic or
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motivic) if for each place π∞ is parametrized by a homomorphism whose restriction
to C×, considered as an algebraic group over R, is itself algebraic. Thus it is
expressible in terms of characters z ∈ C× → zmzn, m, n ∈ Z.
Only arithmeticic automorphic representations should correspond to motives. Thus

the second element of our nexus is to be the collection A of automorphic
representations π for F , each attached to a group λH. Because of functoriality, in
the stronger form described, π is no longer bound to any particular group G.
A central problem is to establish a bijective correspondence between the two

elements introduced. Major progress was made by Wiles in his proof of the
conjecture of Taniyama and Shimura. Since he had – and still would have – only an
extremely limited form of functoriality to work with, his arguments do not appear in
exactly the form just suggested. Moreover, there are two further extremely important
elements in the nexus in which he works to which we have not yet come.
To each motive M and each prime p is attached a p-adic representation of the

Galois group Gal(Q/F ) of dimension equal to the rank of the motive. The third
element of the nexus is not, however, the collection of p-adic Galois representations
– subject to whatever constraints are necessary and appropriate. Rather it is a
foliated space, in which the leaves are parametrized by p and in which there are
passages from one leaf to another, permitted in so far as each p-adic representation
is contained in a compatible family of representations, one for each prime. We are
allowed to move from one leaf to another provided we move from one element
of a compatible family to another element of the same family. The arguments of
Wiles and others, those who preceded and those who followed him, rely on an often
very deep analysis of the connectivity properties of the third element, either by
p-adic deformation within a fixed leaf, in which often little more is demanded than
congruence modulo p, or by passage from one leaf to another in the way described
( cf. [Kh]) and their comparison with analogous properties of yet a fourth element
whose general definition appears to be somewhat elusive.

For some purposes, but not for all, it can be taken to consist of representations
of a suitably defined Hecke algebra. For automorphic representations attached to
the group G over F , the Hecke algebra is defined in terms of smooth, compactly
supported functions f on G(Af

F ), Af
F being the adèles whose components at infinity

are 0. They act by integration on the space of any representation π of G(AF ), in
particular on the space of an automorphic representation or on automorphic forms.
Let A∞

F be the product of Fv at the infinite places. When the Lie group G(A∞
F ),

defines a bounded symmetric domain – or more precisely when a Shimura variety is
attached to the group G – then there are quotients of the symmetric domain that
are algebraic varieties defined over number fields. There are vector bundles defined
over the same field whose de Rham cohomology groups can be interpreted as spaces
of automorphic forms for the group G on which the Hecke operators will then
act. The images of the Hecke algebra will be finite-dimensional algebras over some
number field L and can often even be given an integral structure and then, by
tensoring with the ring Op of integral elements at a place p of L over p, a p-adic
structure, imparted of course to its spectrum. In so far as these rings form the
fourth element of the nexus, the leaves are clear, as is the passage from one leaf to
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another. It seems to correspond pretty much to taking two different places p and q
without changing the homomorphism over L.

The four elements form a square, motives at the top left, automorphic
representations at the top right, the leaves Gp of the p-adic representations at the
bottom left, and the fourth as yet only partly defined element Hp at the bottom
right. The heart of the proof of Fermat’s theorem is to deduce from the existence
of one couple {M, µGM} ∈M and {π, λHπ} ∈ A of corresponding pairs the existence
of others. We pass from {M, µGM} in M to some leaf in the element below, thus
to the corresponding p-adic Galois representation sp ∈ Gp, and from {π, λHπ} to an
object hp ∈ Hp, the fourth element of the nexus. Then the essence of the arguments
of Wiles and Taylor-Wiles is to show that movement in Gp of the prescribed type is
faithfully reflected in permissible movements in Hp and that if in Gp the movement
in leads to an image of a pair in M then the corresponding movement in Hp leads
to an element of A. These two pairs will then necessarily correspond in the sense
that the associated Frobenius-Hecke classes will be the same.
As a summary of the proof of Fermat’s theorem, the preceding paragraph is far

too brief, but it places two features in relief. There has to be an initial seeding of
couples with one term from M and one from A that are known for some reason or
another to correspond and it has to be possible to compare the local structures of
the two spaces G and H.
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The easiest seeds arise for G an algebraic torus, for then an automorphic
representation π is a character of T (AF ) and if the character is of type A0, thus
if the representation is arithmetic, the process begun in [W] and continued by
the construction of the Taniyama group ([LS]), should construct both the p-adic
representations and the motive {M, LT} corresponding to {π, LT}. From them others
can be constructed by functoriality, a formality for M .
Although they are somewhat technical, it is useful to say a few words about the

correspondence for tori, partly because it serves as a touchstone when trying to
understand the general lucubrations, partly because the Taniyama group, the vehicle
that establishes the correspondence between arithmetic automorphic forms on tori and
motives, is not familiar to everyone. Most of what we need about it is formulated
either as a theorem or as a conjecture in one of the papers listed in [LS], but that
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is clear only on close reading. In particular, it is not stressed in these papers that
the correspondence yields objects with equal L-functions
The Taniyama group as constructed in the first paper of [LS] is an extension
T = TF = lim←−L

T L
F of the Galois group Gal(F/F ), regarded as an pro-algebraic group,

by a pro-algebraic torus S = lim←−L
SL
F and is defined for all number fields F finite

over Q. One of its distinguishing features is that there is a natural homomorphism
φF of the Weil group WF of F into TF (C). This homomorphism exists because there
is a splitting of the image in SL

f (C) of the lifting to WL/F of the Galois 2-cocycle

in H2
(
Gal(L/F ),SL

f (Q)
)

defining T L
F . Thus every algebraic homomorphism over C of

TF into an L-group LG compatible with the projections on the Galois groups defines
a compatible homomorphism of WF into LG(C). In particular if G = T is a torus,
every T -motive over C (if all conjectures are anticipated, this is just another name
for a homomorphism ϕ from TF to LT ) defines a homomorphism ψ = φ ◦ ϕ of the
Weil group into LT and thus ([LM]) an automorphic representation π of T (AF ).

The Weil group can be constructed either at the level of finite Galois extensions
L/F as WL/F or as a limit WF taken over all L. The group WL/F maps onto the
Galois group Gal(Lab). The kernel is the closure of the image of I∞L =

∏
v|∞ L×

v . A
key feature of the construction and, especially, of the definition of the group S that
permits the introduction of φF is the possibility of constructing certain elements of
the group of idèles IL well-defined modulo the product of I∞L with the kernel of
any given continuous character. Moreover in the construction an imbedding of Q
in C is fixed, so that the collection of imbeddings of L in C may be identified
with Gal(L/Q) or, if the imbedding of F is fixed, with Gal(L/F ). The automorphic
representation π associated to ϕ will be arithmetic because of the definition of the
group X∗(S) of characters of S and because of the definition of φF .
Conversely every arithmetic automorphic representation π of T arises in this way.

Such a representation is attached (cf. [LM]) to a parameter, perhaps to several,
ψ : WL/F → LT (C). The field L is some sufficiently large but finite Galois extension
of F . If π is arithmetic this parameter factorizes through φF . To verify this, take
L so large that all its infinite places are complex and observe first of all that
ψ restricted to the idèle classe group CL = IL/L

× defines a homomorphism of
I∞L ⊂ IL to SL and for any character λ of T , there is a collection of integers{
λτ

∣∣ τ ∈ Gal(L/F )
}

such that

λ
(
ψ(x)

)
=

∏
τ∈Gal(L/F )

τ(x)λτ .

The function λ → λτ is a character of SL and it defines the homomorphism ϕ

from SL to T̂ . To extend it to ϕ : T L → LT all we need do is split the image in

T̂ (Lab) under ϕ of the cocycle in H2
(
Gal(Lab/F ),SL

)
defining T L with the help of

ψ. If w ∈ WL/F maps to τ in Gal(Lab/F ) and to τ in Gal(L/F ) then a(τ), the
representative of τ in Gal(Lab/F ) used in the first paper of [LS] to define T L

F ,
then ϕ

(
a(τ)

)
= ϕ−1

(
a(τ)−1φF (w)

)
ψ(w). The right side is well-defined because of the

definition of the groups SL and T L.
As emphasized in the first paper of [LS], for each finite place v of F there is

a splitting Gal(F v/Fv) → T L(Fv), thus a v-adic representation of Gal(F v/Fv) in T L,
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in particular a p-adic representation if F = Q and v = p. At the moment, I do not
understand how or under what circumstances this representation can be deformed
and I certainly do not know which, if any, of the general conjectures about L-values
and mixed motives to be described in the following pages are easy for it, which are
difficult, or which have been proved (cf. [MW, R]).
The toroidal seeds themselves will be, almost without a doubt, essential factors

of any complete theory of the correspondence between motives and arithmetic
automorphic forms. There are two conceivable routes: either attempt to establish and
use functoriality in general or attempt to use only the very little that is known
about functoriality at present but to strengthen the other, less analytical and more
Galois-theoretic or geometric parts of the argument. Although functoriality in general
is not just around the corner, it is a problem for which concerted effort now
promises more than in the past. So there is something to be said for reflecting on
whether it will permit the correspondence between A and M to be established in
general. I stress, once again, that up until now only simple seeds have been used,
perhaps only those for which the group T is the trivial group {1}.
The principal merit of the second route is perhaps that it quickly confronts us

with a difficulty carefully skirted in the above presentation, an adequate definition
of the fourth element H. In addition, starting with known couples, the method
can also arrive at other couples, of which the first element, thus the element in
A can, because of the element in M with which it is paired, be identified with
the functorial image of a representation of a second group. Such examples are a
feature of the work of Richard Taylor and his collaborators ([Ta], but see also [Ki])
on odd icosahedral representations or on the Sato-Tate conjecture. Although their
present forms were suggested by functoriality, these problems are of great independent
interest and can be presented with no reference to it – and sometimes are.
Nevertheless, functoriality is expected to be valid for all automorphic representations,
not just for arithmetic automorphic representations, and is indispensable for analytic
purposes such as the Selberg conjecture. So proofs of it that function only in the
context of arithmetic automorphic representations are not enough.
I have so far stressed the correspondence between the four elements M, A, G

and H partly because the research of the most popular appeal as well as much of
the wave that arose in the wake of the proof of Fermat’s theorem involves them
all. There is nevertheless a good deal to be said about the relation between the
deformations in Gp and those in Hp that bear more on the structure of the elements
of M and on the problematic definition of H than on the relation between M and
G. The notion of a deformation in H or Hp remains imprecise and it is not at first
clear when two elements of H or G are potentially in the same connected component.
By definition there is associated to each arithmetic automorphic representation a
family {φv}, v running over the real infinite places, of homomorphisms of the Weil
group WC/R into an L-group LG. The restriction of φv to C× can be assumed to
have an image in any preassigned Cartan subgroup T of the connected component

Ĝ of LG and will be of the form z → zλzµ, where λ, µ ∈ X∗(T ) are characters of
T . The homomorphism φv is then determined by a choice of w in the normalizer
of T in LG of order two modulo T itself whose image in the Galois group is
complex conjugation at v and which satisfies w2 = eπi(λ−µ), wλ = µ. Since φv is only
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determined up to conjugation, there are equivalence relations on the triples {w, λ, µ},
but the essential thing is that for each real v the homomorphisms fall into families,
defined by w and the linear space in which λ lies. These spaces may intersect,
and in the intersection there is ambiguity. For example, if the ground field is Q,
G = GL(2), LG = GL(2,C) and

T =
{
t(a, b)

}
=

{(
a 0
0 b

)}
then the action of w on T is either trivial or it takes t(a, b) to t(b, a). Moreover

zλzµ = t(zkzl, zmzn)

with k = l, m = n if the action is trivial and k = n, l = m if it is not. In the first
case, w2 = 1, so that w can be taken as t(±1,±1). In the second, at least if k ̸= l,
w can be taken in the form

(3) w =

(
0 1
α 0

)
, α = eπi(k−l).

This is a possibility even if k = l. It is equivalent to the particular choice
w = ±t(1,−1). Thus, even though the parameters λ and µ are discrete and not
continuous it is natural to distinguish two components in the space of parameters.
In each λ is arbitrary and µ = wλ, but in the first w = ±t(1, 1) and in the second
w is given by (3). These two families reappear in G as even and odd Galois
representations, the odd being apparently readily deformable, while the even seem to
admit at best trivial deformations, as happens for reducible representations. There
are similar families for other groups. Formally the number of parameters will be the
dimension of the space of λ, thus the rank of the group G.
Although deformation in these parameters is not possible in A or M, the

deformations in Gp or Hp appear in some sense as deformations within families like
those just described. Nevertheless the most important step in the proof of Wiles is a
comparison of the local structure of Hp and Gp that does not involve a variation of
the parameter, which we should think of as a Hodge type, or rather as the source
of the Hodge type, motives being objects that are realized by a linear representation
of the associated group, and the Hodge type being affected by the realization.
The parameter maps to the L-group LG, so that representations r of LG are an
important source of realizations.
It is the deformations within Hp and their structure that are central to much of

Hida’s efforts over the past two decades. His early work on the infinitesimal structure
of Hp for modular forms or for Hilbert modular forms appears to my untutored
eye to have been a serious influence, but of course by no means the only one, on
developments that ultimately led to a proof of Fermat’s theorem.
As the notation indicates the spaces Hp are related to Hecke algebras, but these

algebras cannot be exactly those that are defined by the algebra of compactly
supported functions on G(Af) acting on automorphic forms, thus on complex-valued
functions on G(F )\G(AF ), because the algebras defining Hp must be algebras over a
number field or, at least, over an extension of Qp.
For classical automorphic forms or representations the difficulty is not so egregious,

since from the subject’s very beginning the modular curves were present. The forms
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appeared as sections of line bundles on them, so that a structure of vector space
over Q or some other number field or of module over Z was implicit in their very
definition. In general, however, an adequate definition of Hp remains problematic.
Suggestions can be made. It is natural to look for actions of the Hecke operators

on cohomology groups, for these can be taken either in the Betti form so that they
have a Q-structure or, if the group G defines a Shimura variety, in the de Rham
form so that they are defined over a number field. Not only can both, or at least
their tensor products by R or C, be calculated in representation-theoretic terms
([BW, GS]) but there are general theorems to compare the two, of which I suppose
the Eichler-Shimura map favored by Hida is a particular manifestation. Although he
intimates both possibilities before finally favoring a presentation in the de Rham
form, Hida does not undertake a description of the general background. A brief but
thorough account of it would have been of great benefit to the reader, the reviewer,
and perhaps to the author as well.
To continue, I take, by restriction of scalars if necessary, the group G to be

defined for simplicity over Q. Suppose, as in [GS], that B is a Borel subgroup of G
over C and that B(C) ∩G(R) is a Cartan subgroup T (R) of G(R) whose projection
on the derived group is compact. Then B(C)\G(C) is a projective variety and the
complex manifold F = T (R)\G(R) is imbedded in it as an open subset. If K∞ is
a maximal compact subgroup of G(R) containing T (R) then T (R)\G(R) is a fiber
space over D = K∞\G(R). Sometimes D can be realized as a bounded symmetric
domain and then for any open compact subgroup Kf of G(Af ) the complex manifold
D × G(Af)/Kf can carry the structure of a Shimura variety, whose exact definition
demands a little additional data that it is not useful to describe here. Of paramount
importance, however, is that the variety is defined over a specific number field, the
reflex field, and that if Kf is sufficiently small it is smooth, although not necessarily
complete.
In particular, if the adjoint group of G(R) is compact then D is a point

and trivially a bounded symmetric domain. This is perhaps significant because the
arguments of, for example, [T, Ki, Kh], not to speak of those in §4.3 of the
book under review, often appeal to the JL-correspondence, at least in the special
case of GL(2), but because of the recent work by Laumon and Ngô on the
fundamental lemma a proof of the correspondence, a special, comparatively easy case
of functoriality, is – with time and effort – within reach for all groups. The correctly
formulated correspondence relates automorphic representations on a group and an
inner twisting of it and any group over R with a compact Cartan subgroup has an
inner twisting that is compact.
Any character of T defines a line bundle on F , but also a cocharacter of type A0

of a Cartan subgroup of the connected component Ĝ of LG. The cocharacter can be
extended to a homomorphism of the Weil group W (C/R) and this homomorphism
defines a parameter ϕ∞ and an L-packet of representations in the discrete series
of G(R); moreover, according to [GS] a substantial part of the cohomology of the
line bundle is yielded by the automorphic forms associated to these L-packets. For a
given group, just as for the example of GL(2), it appears that all these parameters
are expected to define the same connected component of Hp or Gp.
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Although Hida recognizes clearly the need for general definitions of Hp, he
concentrates on groups G that define a Shimura variety. As their designation suggests
these varieties were introduced and studied by Shimura in a long series of papers.
Although their importance was quickly recognized, these papers were formulated in
the algebro-geometric language created by Weil, not in the more supple and incisive
language of Grothendieck, especially suited to moduli problems, and were not easily
read. An influential Bourbaki report by Deligne in 1971 clarified both the basic
definitions and the proofs, although he like Shimura only treated those varieties, a
very large class, which are essentially solutions of moduli problems. The remaining
varieties were eventually treated by Borovoi ([BM]) by different methods. Neither the
papers of Borovoi nor the investigations that preceded them are mentioned by Hida
and the reader of his book is strongly advised to turn elsewhere for an introduction
to the modern theory of Shimura varieties, for example to the lectures of Milne
([BM]). For the purposes of the book, only special Shimura varieties are needed, but
that is presumably a reflection of the limitations of current methods.
At present, to give any definition whatsoever of Hp, one has either to work with

groups with G(R) compact modulo its center or with groups for which the associated
Shimura varieties can be defined over the ring of integers in some finite extension of
Q. The first possibility has not, so far as I know, been examined, except in some
low-dimensional cases, and the second requires, for the moment, that the variety
be the solution of a moduli problem. Then Hp is the algebra of Hecke operators
acting on p-adic automorphic forms. Classically these automorphic forms had been
investigated by others earlier (cf.[KS]), but Hida discovered even for classical forms
some remarkable features that seem to appear for general groups as well.
The present book is an account of that part of the theory developed by him

for several important types of Shimura varieties: modular curves, Hilbert modular
varieties, and Siegel modular varieties. The publishers recommend it as a text for
graduate students, but that is irresponsible. Although many of Hida’s early papers
and a number of his books are very well written, neither expository flair nor
a pedagogical conscience are evident in the present text. The style is that of
rough lecture notes, cramped pages replete with formulas and assertions that run
one into the other, largely obscuring the threads of the argument, and with an
unchecked flood of notation. The meaning of essential symbols is variable and not
always transparent so that the reader is occasionally overcome by a disconcerting
uncertainty.
On the other hand, Hida’s goals, both those realized in the book and those

still unrealized, are cogently formulated in his introduction and, so far as I can
appreciate, of considerable interest. Experts or even experienced mathematicians in
neighboring domains, for example the reviewer, will I believe be eager to understand
his conclusions, but they, and the author as well, might have been better served
either by a series of normal research papers or by a frankly pedagogical monograph
that assumed much less facility with the technical apparatus of classical and
contemporary algebraic geometry. The material is difficult and in the book the
definitions and arguments come at the reader thick and fast, in an unmitigated
torrent in which I, at least, finally lost my footing.
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Although as I have emphasized, the parameters ϕ∞ of the discrete series or of the
Hodge structure seem to lie in the same connected component, we cannot expect
to pass continuously from one to another. Indeed, for Shimura varieties, fixing the
parameter corresponds approximately to fixing the weight of the form. The dimension
of the space of automorphic forms being, according to either the trace formula or
the Riemann-Roch formula, pretty much a polynomial in λ, we cannot expect it to
be constant and independent of λ. For p-adic forms, however, there are large families
of constant dimension that interpolate, in a space with p-adic parameters, a certain
class of arithmetic automorphic forms.
The Hecke algebra and its actions are just another expression of the automorphic

representations or of the automorphic forms. Fixing imbeddings of Q into C and into
Qp and taking all fields F to be subfields of Q, at a finite place p we replace the
collection of local parameters ϕ∞ = {ϕv}, v|∞, by a collection of homomorphisms
of the local Weil groups WFv , into the L-group over C. For those representations
π = ⊗πv that are associated to motives, these parameters will presumably be given
by homomorphisms σv, v|p, of the Galois groups Gal(F v/Fv), v|p, into the L-group
over Ql, where l may or may not be equal to p.
If l ̸= p, such a homomorphism will be tamely ramified and the restriction to

the decomposition group is strongly limited and does not offer much room for
deformation. It may as well be fixed, so that the deformations will take place over
the image of the Frobenius which there seems to be no attempt to constrain. If,
however, p = l, the possibilities for the σv are at first manifold but when the
representations σv, v|p, arise from a motive they are constrained in an important
way first discovered by Tate. They can be assigned a Hodge-Tate type whose basic
description in terms of parameters λ subject to an integrality condition is much like
that attached to the Hodge structures at infinity. Since Tate’s paper [T] a very great
deal has been learned about the restrictions of the p-adic representations associated
to motives to the decomposition groups at places v dividing p ([FI]) that appears
to be indispensable for the study the spaces Hp or Gp, but what the reader of the
present book will discover is that at p the Hodge type seems to control the possible
deformations just as it did at infinity in combination with the elements w of order
two. In the much studied case of the group GL(2), a w with the two eigenvalues
+1 and −1 can allow many deformations but a w with equal eigenvalues does not
appear to do so. At p the analogous dichotomy seems to be between ordinary and
extraordinary or – more colloquially expressed – nonordinary, although I suppose that
there will ultimately be a whole spectrum of possibilities each permitting some kinds
of deformation and forbidding others. The ordinary case is presumably the optimal
case and is the one on which Hida concentrates.
For the types at ∞ there was no possibility of real deformation because λ was

constrained by an integrality condition. At p it is possible to abandon the integrality
condition because the decomposition group of the infinite cyclotomic extension Qµp∞

is Z×
p which is isomorphic to the product of the group F×

p with 1 + pZp and the
second factor admits a continuous family of characters x→ xa, a ∈ Zp, interpolating
the characters given by integral a. This allows for deformation or interpolation in the
space Gp which is, it turns out, accompanied by possible deformations in the space
Hp. The new parameter is usually not just an open subset of Z×

p but, as for abelian
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G, of some subspace of X∗(T )⊗ Zp, X
∗(T ) being the space of characters of a Cartan

subgroup of G.
This discovery by Serre (cf. [KS]), whose work was followed by that of Katz

and preceded by that of Swinnerton-Dyer can perhaps be regarded as a second
point where Ramanujan influenced the course of the general theory of automorphic
forms in a major way, for Swinnerton-Dyer was dealing with congruences conjectured
by him. The first point was of course the Ramanujan conjecture itself, which led,
through Mordell and Hecke, to the general theory of automorphic L-functions. Hida
appreciated that in the p-adic theory, where the weight was no longer integral, there
was a possibility of the uniform deformation of whole families of modular forms, the
ordinary forms, to a rigid-analytic parameter space, thus to an open subset of Zn

p for
some integer n. It would be surprising if this possibility were limited to GL(2) and
Hida has devoted a great deal of time, energy and space to the admirable design of
creating a general theory. To read his books and papers grows increasingly difficult;
to read them alone without consulting those of other authors, Katz or Fontaine for
example, or, in a different optic, Taylor or Khare, is ill-advised, even impossible for
some of us. Nevertheless, although no one, neither Hida nor anyone else, appears to
have broken through to a clear and comprehensive conception of the ultimate theory,
there is a great deal to be learnt from his writings, both about goals and about
techniques. In spite of Hida’s often trying idiosyncrasies, to follow his struggles for
a deep and personal understanding of the resistant material is, as Tilouine observed
in a briefer review, not only edifying but also challenging, although it appears to be
easier to begin with the earlier papers, for they are often more concrete and in them
some key ideas are less obscured by technical difficulties and general definitions.
Hida has also been preoccupied with two problems parallel to that of constructing

deformations of p-adic forms: parametrized families of p-adic Galois representations;
p-adic L-functions. Although the theory of parametrized families of Galois represen-
tations is not developed in the book under review and, indeed, so far as I know,
unless very recently, has hardly been developed beyond GL(2), it is adumbrated in
the introduction as one of the ultimate goals of the author. In earlier papers of
Hida ([Hi]), the elaborate “infinitesimal” structure, whose appearance in Hp is for
GL(2) a manifestation of congruences between the Fourier expansions of automorphic
forms and whose coupled appearance in Hp and Gp is a key feature of the proof
of Fermat’s theorem, appears and is investigated not only for fixed weight and
central character but also for entire parametrized families. There is much more
number-theoretical information in these investigations than I have been able to digest.
The elements of A or of Hp are attached to automorphic representations or

forms, thus to a particular group G and to a particular L-group LG, but to the
extent that functoriality is available the group G can be replaced by others G′

and the representation π of G(AF ) by another π′ of G′(AF ). The p-adic Galois
representations can be modified in the same way, and without any ado. It might be
worth reflecting on how the passage to the primed objects should be interpreted in
Hp.
A final, major goal described briefly in the introduction to the book and of

concern to many people (cf. [Gr]) is the construction of p-adic L-functions. They
seem to me of such importance both to Hida’s project and to all mathematicians
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with an interest in number theory that I cannot end this review without a very
brief and even more superficial description of the attendant questions. I have no clear
idea of their current state. I believe that we can safely assume that they are largely
unanswered.
The complex L-functions attached to π ∈ A or to a motive M ∈M are specified

only when in addition a finite-dimensional complex representation r of LG is given, π
being an automorphic representation of G and M a motive of type LG. It is of the
form L(s, π, r) or L(s,M, r) although both can be – in principle! – written as L(s, π′)
or L(s,M ′), π′ = πr an automorphic representation of GL(n), M ′ = Mr a motive of
rank d, d = dim ρ. Of course, if M is associated to π then L(s, π, r) = L(s,M, r).
These somewhat speculative remarks are meant only to emphasize that all problems
related to the p-adic L-functions will have to incorporate r. They will also have
to incorporate the parameter space of the deformations, which appears to be, the
elaborate local structure aside, at its largest, an open subset A of X∗(T ) ⊗ Zp, T
being a Cartan subgroup of G over the chosen ground field F , but it is of this size
only in unusual situations. As we noticed for tori, there are important constraints on
the subspace in which A is to be open. X∗(T )⊗ Zp has of course a Galois action.
The functions are to be p-adic analytic functions Lp(s, r) on the parameter space,

thus on a subset of Hp or Gp identified with the set A in X∗(T ) ⊗ Zp. Elements
s = µ× z of this space define equivariant homomorphisms of open subgroups of K ⊗ Zp

into T̂ (Qp) in the form a→
∏

φ|p φ(a)
zφ(µ). Moreover at points in λ ∈ X ∗ (T ) ∩A (or

at least at a large subset of this space, perhaps defined by a congruence condition)
the element of Gp is to be the image of a motive M(λ). So M ′(λ) = Mr(λ) is
defined. The p-adic function Lp(s, r) is to interpolate in an appropriate form values
R
(
M ′(λ)

)
of the complex L-functions L

(
z,M ′(λ)

)
at z = 0.

There are many important conjectures pertinent to the definition of R
(
M ′(λ)

)
.

Unfortunately we do not have the space to describe them fully ([Mo, Ha]), but
something must be said. For this it best to simplify the notation and to suppose
M =M ′(λ). When discussing the L-function L(z,M) it is best to suppose that M is
pure, thus that all its weights are equal, for otherwise there is no well-defined critical
strip, and no well-defined center. Since every motive will have to be a sum of pure
motives, this in principle presents no difficulty.
Motives are defined (in so far as they are well-defined) by projections constructed

from linear combinations of algebraic correspondences with coefficients from a field K
of characteristic zero. It is customary to take K to be a finite extension of Q. The
field K is not the field over which the correspondences are defined. That field is F ,
the base field. It is probably best, for the sake of simplicity, to take at this point K
and F both to be Q. Once the ideas are clear, it is easy enough to transfer them
to general F and K, but not necessary to do so in a review.
The expectation is that the order n = n(k,M) of the zero of L(z,M) at z = k,

k an integer, will be expressible directly in terms of geometric and arithmetic
properties of M , and so will

(4) R(M) = lim
z→k

L(z,M)

(z − k)n
.
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These geometric and arithmetic properties are defined the mixed motives attached to
the pure motive M . Mixed motives appear in the theory of L-functions as extensions
of powers T(m) of the Tate motive by M and in the simplest cases are determined
by, say, divisors over the ground field F (for example, Q) on a curve or, indeed, on
any smooth projective variety over F . The most familiar examples are rational points
on elliptic curves. Of importance are the extensions N of the form

(5) 0 M N T(−k) 0 .

as well as similar extensions in related categories defined by various cohomology
theories for varieties, motives and mixed motives, by de Rham theories, by the Betti
theory for varieties over the real and complex fields, and p-adic theories that attach
to the motive M a p-adic Galois representation of dimension equal to the rank of
M .
The motive M has a weight w(M), which if M is a piece of the cohomology of

a smooth projective variety is the degree in which it appears. So, by the last of
the Weil conjectures, for almost all finite places p of F there are associated to M
algebraic numbers α1(p), . . . , αd(p) of absolute value N pw(M)/2. The integer d is the
rank of M . Thus L(z,M) which is essentially∏

p

1∏d
1

(
1− αi(p)/N pz

)
does not vanish for Re z > w(M) + 1.
Suppose that it can be analytically continued with a functional equation of the

expected type, thus

Γ(z,M)L(z,M) = ϵ(z,M)Γ(1− z, M̂)L(1− z, M̂),

where ϵ(z,M) is a constant times an exponential in z and thus nowhere vanishing,

M̂ a dual motive, which will be of weight −w(M) and of the same rank as M , and
Γ(z,M) a product of Γ-factors. The product is a product over the infinite places v
of the basic field F . If the weights in the Hodge structure of the Betti cohomology
associated to M at v are

{
(p1, q1), . . . , (pd, qd)

}
and v is complex, the Γ-factor is∏

i Γ
(
s−min(pi, qi)

)
, if v is real it is

∏
i Γ

(
s/2 + ϵi/2−min(pi, qi)/2

)
, where ϵi is

either 0 or 1.
The center of the critical strip is w(M)/2 + 1/2. Suppose w(M) is even, then for

integral k > w(M)/2 + 1, L(k,M) ̸= 0 and for integral k > −w(M)/2 + 1, L(k, M̂) ̸= 0.
The functional equation allows us to deduce from this the order of the zero of
L(z,M) at all integral k < w(M)/2. Moreover the order of the pole of L(k,M)
at w(M)/2 + 1 is presumably equal to the multiplicity with which M contains

the Tate motive T
(
−w(M)/2

)
. Applying this to M̂ we deduce the order of the

zero of L(z,M) at w(M)/2. So there is, in principle, no mystery about the order
of the zero of L(z,M) at any integer when w(M) is even. When w(M) is odd,
the same arguments deal with all integral points except w(M)/2 + 1/2, but this
point is very important, being for example the one appearing in the conjecture of
Birch and Swinnerton-Dyer. So the order of vanishing of L(z,M) at the BSD-point
z = w(M)/2 + 1/2 is related to much more recondite geometric information. According
to the conjectures of Beilinson and Deligne, the irrational factor of (4) is determined
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topologically by the motive over the infinite places of the field F (cf. [Ha, F]). We
first consider k ⩾ w(M)/2 + 1, supposing that M does not contain the Tate motive
T
(
−w(M)/2

)
as a factor.

The motive has, on the one hand, a Betti cohomology HB(M) over Q that when
tensored with C has a Hodge structure

HB(M)⊗C = ⊕p+q=w(M)H
p,q(M)

and, on the other, a de Rham cohomology HdR(M) over Q with a filtration

· · ·F p−1(M) ⊃ F p(M) ⊃ F p+1(M) · · ·
that terminates above at HdR(M) and below at 0. Moreover HB(M) ⊗ C and
HdR(M)⊗C, identified with de Rham cohomology over C, are canonically isomorphic
and under the isomorphism

F p(M) ≃ ⊕w(M)⩾pH
p,q(M).

There is an involution ι1 on HB(M) that that arises from the complex conjugation
of varieties over Q. It can be extended to HB(M) ⊗C linearly. There is a second
involution ι2 : x ⊗ z → x ⊗ z on this tensor product. On the other hand, complex
conjugation defines an involution ι of the de Rham cohomology over C. Under the
canonical isomorphism ι1 ◦ ι2 becomes ι. The particular pair HB(M) and HdR(M) with
the auxiliary data described define a structure that we denote MHdR but we can also
consider the category of all such structures, referred to in [Ha] as the category of
Hodge-de Rham structures and here as HdR-structures. This category also contains
extensions

(6) 0 MHdR NHdR THdR(−k) ,

in which NHdR may not be associated to a motive. Nevertheless extensions (5) in the
category of mixed motives presumably give rise to extensions (6) in the category of
HdR-structures.
It follows readily from the definition of HdR-structures, mixed or not, that the

sequence (6) splits if k ⩽ w(M)/2. Otherwise the group Ext1HdR

(
THdR(−k),MHdR

)
formed by classes of the extensions (6) can be calculated readily as

HdR(M)⊗R/
{
HB(M)+ + F 0(M)

}
.

The vector space HB(M)+ is the plus eigenspace if ι1 in HB(M).
The group in the (hypothetical) category of mixed motives formed by classes of

the extensions in (5) is denoted Ext1
(
T(−k),M

)
. The functor M →MHdR leads to

Ext1
(
T(−k),M

)
→ Ext1HdR

(
THdR(−k),MHdR

)
≡ HdR(M)⊗R/

{
HB(M)+ + F 0(M)

}
.

in which HB(M)+ is the fixed point set of ι1 The combined conjectures of Beilinson
and Deligne affirm not only that the resulting map

Ext1
(
T(−k),M

)
→ HdR(M)⊗R/

{
HB(M)+ + F 0(M)

}
is injective but also that it yields an isomorphism of Ext1

(
T(−k),M

)
⊗ R with

the quotient on the right. Thus the product of the determinant of a basis of
Ext1

(
T(−k),M

)
with the determinant of a basis of HB(M)+ can be compared with

the determinant of a basis of the rational vector space HdR(M)/F 0(M), the quotient
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being an element of C×/Q× that is supposed, as part of the Beilinson-Deligne
complex of conjectures, to be the image of (4).
Although the notion of a mixed motive is somewhat uncertain and little has been

proved, the theory is in fact strongly geometric with, I find, considerable intuitive
appeal. Moreover when developed systematically, it permits a clean description of
the integers n appearing in (4), even when k is the BSD-point, and of the limits
R(M), not simply up to a rational number as in the conjectures of Beilinson-Deligne,
but precisely as in the conjectures of Bloch-Kato. Although clean, the description is
neither brief nor elementary. It is expounded systematically in [FP].
The general form of the Main Conjecture of Iwasawa can also be profitably

formulated in the context of mixed objects. Recall that part of Hida’s program
is to attach to π a p-adic representation in LG and thus to each representation
r a p-adic family of representations σr. The principal objective of the book is
the algebro-geometrical constructions that enable him to transfer to Siegel varieties,
thus to the Shimura varieties associated to symplectic groups in higher dimensions,
the techniques developed by him earlier for GL(2) over Q and over totally real
fields and to construct for them a theory of p-adic automorphic forms, from which
a construction of p-adic L-functions might be deduced. This is a well-established
tradition. The p-adic L-functions are constructed either directly as interpolating
functions or indirectly from the Fourier expansions of p-adic automorphic forms and
then the main conjecture affirms that they are equal to the characteristic function
of a Selmer group defined by a parametrized family of p-adic Galois representation,
essentially, if I am not mistaken, by showing that this characteristic function does
interpolate the modified values of the complex automorphic L-function. The first,
easiest, yet extremely difficult cases of the Riemann zeta-function and Dirichlet
L-functions are in [MW].
The main conjecture could therefore be formulated directly in terms of the complex

L-function and the p-adic representation were it not that, at present, the only way
to construct the parametrized Galois representations is often, as in Hida’s books and
papers, through the mediating family of p-adic automorphic forms.
The p-adic space A on which the p-adic L-function was to be defined could

– since we agreed to take both fields K and F to be Q – be the continuous
Qp-valued spectrum of a commutative ring R over Zp, thus the continuous
homomorphisms of R into Qp. The ring R will be chosen such that these
homomorphisms all have image in Zp. R could be, for example, a power series ring
over a module of finite rank over Zp. For example, the extension of Q generated
by all pnth roots of unity contains a subfield Q∞ over which it is of finite index
and for which Γ = Gal(Q∞/Q) is isomorphic to Zp ≡ 1 + pZp. Let Λ = limp→∞Zp(Γ

′)
be the limit over finite quotients of Γ. Of course 1 + pZp ⊂ Z×

p . The ring Λ is a

common choice of R and is isomorphic to a power series ring Zp

[
[T ]

]
. Its continuous

Qp-valued spectrum may be identified with the continuous homomorphisms of Γ into
Q×

p .
Certain isolated points λ in the spectrum of R were to correspond to motives

M(λ). If the primary object is not the p-adic L-function but a family {σs} of
p-adic representations over R, say into GL(d,Qp) then at s = λ, the representation
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σM(λ) = λ ◦ σ is to be that associated to M(λ), thus that on the p-adic étale

cohomology Hp

(
M(λ)

)
.

The p-adic representation σM of Gal(Q/Q) on the étale cohomology Hp(M) of
a motive M over Q or perhaps better the restriction of σM to Gal(Qp/Qp) is an
object whose theory ([FI]) I do not yet understand and do not try to describe.
Perhaps the most important thing to recall is that its Hodge type, which describes
the action on the tensor product of Hp(M) with the completion Cp of Qp, is a
sequence of integers h1, . . . , hd, with d equal to the dimension of M , supposed pure.
In [Gr] very tentative, yet very appealing conjectures are formulated. They are

difficult to understand, but are a benchmark with which to compare the aims
and results of Hida. First of all, the representation σ is supposed to take values
in GL(d,R). Then the parametrized repesentations arise on taking a continuous
homomorphism ϕ = ϕs : R→ Zp, s ∈ A and composing it with σ.
Denote the space of the representation σ by V = Rd. The appropriate analogue for

p-adic representations of the mixed objects (6) would appear at first to be extensions

(7) 0 V W T 0 ,

in which T = T (0) is the one-dimensional trivial representation, so that W stands
for a representation of Gal(Q/Q) of degree d + 1. Thus k in (7) has been taken
to be 0, a formal matter because the sequence can be twisted. If we write the
representation on W in block form, the first diagonal block d × d and the second
1× 1, only the upper-diagonal d× 1 block is not determined and it defines an element

of H1
(
Gal(Q/Q), V

)
.

Not this group appears in [Gr] but the group

(8) H1
(
Gal(Q/Q), Ṽ

)
, Ṽ = V ⊗ Hom(R,Qp/Zp).

More precisely, it is a subgroup of this group, the Selmer group S, that is
pertinent. It is defined as an intersection over primes q of subgroups defined by local
conditions. If q ̸= p the subgroup is the kernel of the restriction to the decomposition
group. To define the subgroup at q = p, Greenberg imposes a condition that he calls
the Panchiskin condition, a condition that I do not understand, although the notion
of an ordinary form or Galois representation seems to be an expression of it.
Thus the group S is defined by extensions that are a reflection at the p-adic

level of extensions of motives. R acts on it and on its dual Ŝ = Hom(S,Qp/Zp).
The general form of the main conjecture would be that the characteristic ideal of

Ŝ, an element in the free abelian group on the prime ideals of R of height one,
is – apart from some complications related to those that arose at k = w(M)/2 + ϵ,
ϵ = 0, 1, 2 – essentially the interpolating p-adic L-function. This is vaguely expressed
both by Hida and Greenberg and even more vaguely by me, because I understand so
little, but, as a general form of the Main Conjecture of Iwasawa, it is, in concert
with the Fontaine/Perrin-Riou form of the Beilinson-Deligne-Bloch-Kato conjectures, of
tremendous appeal.
As a valediction I confess that I have learned a great deal about automorphic

forms while preparing this review, but not enough. It is a deeper subject than I
appreciated and, I begin to suspect, deeper than anyone yet appreciates. To see it
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whole is certainly a daunting, for the moment even impossible, task. Obtaining proofs
of serious results is another, even more difficult matter and each success demands an
enormous concentration of forces.
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