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Given the formalism of quantum mechanics, the study of those of its laws which are
invariant under the Lorentz group inevitably leads to infinite-dimensional representations
of both the homogeneous and inhomogeneous forms of the group. Responding to earlier
work of Dirac and Wigner, Bargmann, Gelfand-Năımark, and Harish-Chandra published
in 1946 and 1947 classifications of the unitary representations of the homogeneous Lorentz
group, or rather of a covering group, SL(2,C). Bargmann, because he was interested in the
representations of the inhomogeneous group, was led as well to classify the representations
of SL(2,R), a covering group of the Lorentz group in three variables, two in space and one in
time.

From these innocent beginnings the mathematical theory of infinite-dimensional represen-
tations has expanded relentlessly, forgetting its origins in physics but encroaching on other
domains of mathematics, especially number theory, to which its methods, those of functional
analysis with a heavy admixture of Lie theory, have been foreign. Since the training of many
contemporary number-theorists has been primarily algebraic, even those who view the new
methods with favor find them difficult to assimilate. Some simple introductions are needed,
not so much to expose the techniques, or even the basic concepts, but just to pierce the
tough rind of unfamiliarity. Such is the purpose of SL2(R). It is a rough-hewn book, leisurely
and informal, which in the manner of a good graduate course, conscientiously explains the
heterogeneous facts from various domains which could be stumbling blocks for the novice,
and may be exactly what is needed.
Bargmann, to whose paper many later students have turned for an introduction to the

subject, discovered in particular a discrete series of irreducible representations of SL(2,R)
with square-integrable matrix coefficients. It is remarkable that most of the phenomena which
are significant for the general theory, not only the discrete series, whose importance cannot
be exaggerated, but also other things more easily overlooked, appear already in SL(2,R);
those who are led through it by an experienced guide will, if they later penetrate the general
theory, meet nothing totally unfamiliar.
But one does not reach new continents by skirting the coasts of home. The physicist is

concerned almost exclusively with the internal structure of the irreducible representations,
for example with the eigenvalues of the angular momenta and other operators of physical
interest, but the mathematician is not. It does no harm to know it and it must occasionally
be brought into play, but it is the harmonic analysis which matters to him, the characters
of irreducible representations and the decomposition of distributions on the group invariant
under inner automorphisms into linear combinations of characters. Because the transition to
the traditional viewpoint in automorphic forms is through the internal structure and because
the still immature representation theory of groups over nonarchimedean fields needs it as a
prop, there is danger, particularly severe for the algebraist since it belongs to a category of
thought with which he feels at ease, that the internal structure will be emphasized at the
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expense of the harmonic analysis, and the point be missed. Over nonarchimedean fields the
harmonic analysis must of course be supplemented by the arithmetic, but that is something
else and not pertinent here.

The internal structure of the irreducible representations of SL(2,R), especially the decom-
position with respect to the action of the group of proper rotations, is so simple that it is
worth learning, if only to know the thing one’s neighbor knows. Lang describes it of course,
and treats the representations induced from a parabolic subgroup, a simple but essential
construction. Only the spherical functions bi-invariant under the group of proper rotations
are introduced, and the role of the differential equations in determining their asymptotic
behaviour, central to the later work of Harish-Chandra on the harmonic analysis, is not
described. The asymptotic behaviour is analyzed using integral formulas, which have not
proved very useful in general, rather than Harish-Chandra’s techniques, which for SL(2,R)
become elementary, reducing to the method of Frobenius. Lang confines his discussion of the
harmonic analysis to the very important Plancherel formula, the explicit representation of
the distribution f → f(1) as an integral of characters.
But it could have been treated more fully, in order to bring its outlines into sharper

focus. For the analyst, one might introduce the Schwartz space and the notion of a tempered
distribution, prove that the characters are functions, fairly easy to do for SL(2,R) and certainly
enlightening, and perhaps also show how to prove the existence of the characters of the
discrete series without explicitly realizing the representations. There is some misunderstanding
even among experts about the form taken by Harish-Chandra’s proofs in the simple case of
SL(2,R). Since they may soon be superseded by others, it would be useful to examine them
carefully before it is too late.

To guide the arithmetician one can stress the integrals over conjugacy classes, characterizing
the Harish-Chandra transform of functions in the Schwartz space of smooth, compactly
supported functions and, above all, drawing attention to the Selberg principle and the
orthogonality relations for the characters of the discrete series. To fix the harmonic analysis
in the minds of both, one could discuss the trace formula for discrete subgroups Γ of
SL(2,R) with compact quotient. If one does not treat the adelic groups the best arithmetical
applications are precluded, but the geometrical applications, especially those which bring
into play the zeta-function associated by Selberg to surfaces of constant negative curvature,
are available, of wide appeal, and not difficult.
It is hard for anyone who is not a specialist to place the trace formula in perspective.

If the quotient is compact, it is just a clever reformulation of facts with which we are all
familiar from the study of induced characters for finite groups and is easily verified; if it is
not, the cusps, especially in higher dimensions, entail great technical complications. Yet it
may be asserted, without gross exaggeration that to a number-theorist groups with compact
quotient are just as important as the others. The theorems which can be proved for them
with the aid of the trace formula are equally striking. The statements are analogous to
those for noncompact quotients and the same methods are used, but the essential ideas,
freed of technical encumbrances, become patent. Out of obedience to old habits of thought,
and occasionally for arcane motives of convenience, it is usually for noncompact quotients
that the theorems are stated and proved. An obscure exception is described by the present
reviewer in a lecture, Shimura varieties and the Selberg trace formula, which appears in the
proceedings of the 1975 U.S.-Japan Seminar on Number Theory, held in Ann Arbor. Since
the complications arising from the cusps were even more formidable than usual, and could
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be overcome only with the introduction of much additional machinery, he was driven by
desperation to resist tradition’s tyranny.
The difficulties for groups with a quotient which is not compact appear because the

representation ρ of G = SL(2,R) on the space L2(Γ\G) of square-integrable functions on
Γ\G does not decompose into a direct sum of irreducible representations and, even when
the function f is smooth and of compact support, the operator ρ(f) =

∫
G
f(g)ρ(g) dg is

not necessarily of trace class. The theory can only begin after one removes from ρ(f) its
projection on the continuous spectrum. The continuous spectrum is analyzed by means of
the Eisenstein series, so called because they reduce for special values of the parameters to the
Eisenstein series appearing in the study of elliptic functions. The series depend on a complex
parameter s, as well as another parameter which is less important and may be suppressed
here. However the series converges only in a half-plane Re s > c > 0, and it is its value on the
imaginary axis that is needed; so analytic continuation is called for. Selberg’s investigations
revealed that the continuation could be effected very deftly—a twist, a flick of the wrist, and
the prize is won. All that is needed are elementary facts about selfadjoint operators, not even
the spectral theorem, and about the geometry of fundamental domains. Since his method
is fitted to the problem, it is easily formulated in representation-theoretic and adelic terms,
whereby it becomes even simpler, and yields all that is needed for the trace formula, in the
form suitable to arithmetical applications. Among other things it throws the intertwining
operators, which play an important role in the local theory as well, into relief. Selberg’s
proofs were never published or even made widely available. Since they were intrinsic to the
problem they could be used to push a good way into the general theory, becoming thereby
so entangled with the theory of algebraic groups that their simplicity was hidden, and their
nature often misunderstood. It is not completely revealed by Kubota’s none the less useful
account of the original method in his Elementary theory of Eisenstein series.

There are two other methods for dealing with Eisenstein series and the continuous spectrum,
but they introduce elements foreign to the problem and so far have been of limited applicability.
This notwithstanding, they are the methods used in SL2(R). The simplest starts from the
Poisson summation formula and has, in various guises, been with us for a long time. It works
well for subgroups of SL(2,Z), and perhaps for subgroups of SL(n,Z) too. Its limitations are
recognized, and Lang employs it only for the sake of a quick introduction.

The other method is newer and appeared only after the problem of the analytic continuation
of Eisenstein series had been solved for general groups. It has exercised a strange attraction
on a number of mathematicians, Lang among them, and acquired somehow a reputation of
being more analytic. It is in fact not unrelated to Selberg’s method, but this flows easily along
a natural course, while that moves through a channel cut by the machinery of perturbation
or, more precisely, scattering theory. Scattering theory, to which Faddeev has written an
enlightening introduction (translated in J. Mathematical Phys., 1963), is important for its
own sake, and may be a useful weapon for the number-theorist, and the rest of us too; if not
for use against the Eisenstein series which have, after all, already surrendered, then against
stronger, more stubborn foes; so we can be grateful to Lang for pressing it into our hands.
Moreover, since it has been easy to forget that, like everything else, Selberg’s method had
antecedents, it is instructive to place it alongside the methods arising from scattering theory
and to note the fraternal likeness. But this is of interest only to the initiated. The beginner
should be shown an easy path, free of red herring and leading to some outstanding problems,
which for the Eisenstein series are usually in higher dimensions and primarily arithmetic,



4 ROBERT P. LANGLANDS

concerned not only with the analytic continuation which is known but with the location of the
poles contributing to the spectrum. Their solution probably demands a better understanding
of the Euler products associated to automorphic forms and of the intertwining operators and
their normalizations.
But we should not forget the purpose of the book, which was not intended to teach the

reader everything about SL(2,R). It is written by an outsider, although not to mathematics
or to exposition, for outsiders, and in consulting his own needs he has probably met theirs.
SL2(R), which introduces the harmonic analysis through the Plancherel formula and the
analytic theory of automorphic forms through the Eisenstein series, may take its place
alongside the author’s other books, which for many of us have been the entrance to topics
that could otherwise have remained inaccessible.
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