The present paper, for which its author was awarded a Fields medal, had achieved, even
before publication, considerable fame and the proceedings of the International Mathemati-
cal Congress in Hyderabad will contain two accounts of it, one by the author itself and one
by James Arthur, a laudation delivered at the presentation of the prize. Both accounts
are extremely instructive, and I refer the reader to them, as well as to two instructive
presentations of the fundamental lemma on ArXiv, one by Thomas Hales, one by David
Nadler

There is a great deal to be said about the fundamental lemma, about its origins, about
the methods used to prove it and the developments that preceded the proof itself, and
about its consequences or possible consequences, much more than could be accommodated
in a normal review. No-one is yet familiar with all this material. As a consequence, a good
deal has been written about the lemma that, in my view, is misleading. I am convinced
that anyone who wants to contribute to the central problems in the contemporary theory
of automorphic representations, or, better, to functoriality and matters related to it, will
need a better grasp of all these matters than any one person possesses at present. I shall
try here to clarify this assertion, although this will entail a risk, not only of false prophecy
but also of revealing my own ignorance. I understand the origins of the lemma; I believe I
have as much insight into its possible consequences as anyone; but the proof itself, which
exploits difficult tools and concepts from both modern algebraic geometry and topology,
contains a very great deal of which I have only an uncertain understanding. The reader
should take what I say about geometry or topology with a grain of salt.

The origins of the lemma are in the theory of Shimura varieties and in the theory of
harmonic analysis on reductive groups over R. This second source is analytic and algebraic,
the theory of the spectral decomposition of invariant distributions on real reductive groups,
a theory that we owe almost in its entirety to Harish-Chandra, although the basic idea, that
the pertinent eigenfunctions are characters, was introduced in the context of finite groups
by Dedekind and Frobenius. What was imposed on our attention by the theory of Shimura
varieties and the trace formula, was the understanding that for reductive algebraic groups
there are two different notions of conjugation invariance: invariance and stable invariance.
These are a result of two different kinds of conjugacy in, say G(R), but more generally
in G(F), where F' is a local field, archimedean or nonarchimedean. One is conjugacy in
G(F) itself, the other is conjugacy in G(F'), where F is the (separable) algebraic closure
of F. Tt was only as we began the study of the zeta-functions of Shimura varieties with
the help of the trace formula that the importance of the distinction, its consequences, and
the attendant difficulties were recognized. They led to the fundamental lemma.

The issue, at first, is less the fundamental lemma, which can take diverse forms, than its
consequences, not only for Shimura varieties but more importantly for harmonic analysis,
both local and global. With the fundamental lemma, it is possible to create a theory of
endoscopy that reduces invariant harmonic analysis, even various forms of twisted-invariant
harmonic analysis, on arbitrary reductive groups to stably invariant harmonic analysis on
quasi-split groups. It is the latter in which the notion of functoriality is best expressed,
and it is functoriality, still to a large extent conjectural, that is the source of the arithmetic
power of representation theory and harmonic analysis. Specific forms of functoriality have
already been used in the course of establishing Fermat’s theorem and other conjectures of



considerable interest to arithmeticians.

The fundamental lemma, once proved, offers two methods to attack functoriality: the
first more immediate; the second much more encompassing. Although more limited, the
first is of great importance, as it has offered to Arthur reasons for developing the general
trace formula, which thanks to him, has been given a chance to demonstrate the enor-
mous power of nonabelian harmonic analysis, of which the trace formula is an expression,
for arithmetic. The lemma allows global, and presumably also local, transfer of stable
characters from the endoscopic groups H for a given group G provided with a twisting,
perhaps trivial, to the group groups G itself. The best reference for this type of theorem
will be Arthur’s book The Endoscopic Classification of Representations: Orthogonal and
Symplectic Groups. It promises to increase greatly the confidence of mathematicians at
large in the notion of functoriality, even though the functoriality yielded directly by en-
doscopy is limited. I add that, in my view, the central issue in endoscopy is the theory
with no twisting.

After the introduction of endoscopy, there were a good many years during which I did
not pay much attention to the attempts to develop it, by Waldspurger, Hales, and others on
one hand, and by Goresky, Kottwitz, and MacPherson on the other. These contributions
not only made possible the final proof of the lemma in the hands of Laumon and then
Ngo, but introduced ideas that will, I expect, play a major role in the continuing attack
on functoriality.

The principal tool of Harish-Chandra in the development of harmonic analysis on real
reductive groups and then, later, of Shelstad’s treatment of endoscopy were the bi-invariant
differential operators on the group. The spectral decomposition amounts to a spectral
decomposition of this family of commuting operators on L?(G(R)). This is a local theory.
Although a great deal of effort has been spent on nonarchimedean fields, the theory has
not reached the same stage, in good part because the spectral theory could not be reduced
to one for a commutative family. My impression on studying the work of Waldspurger,
Laumon and Ngo6, without yet in any sense mastering it, is that the cohomology theory of
perverse sheaves may offer a substitute, so that the possibilities offered by Waldspurger’s
reductions have by no means been exhausted.

Without any real knowledge of perverse sheaves as I began the study of Ngd’s proof,
and the earlier work with Laumon, and still only superficially informed, I am struck by the
advantages of working with them. At the coarsest of levels, the orbital integrals provide
over R or C the transfer that is dual to the transfer of characters from Cartan subgroups H
of G, or better, although the theory has not been properly developed in this form even over
R, the transfer of characters implied by functoriality. Something similar will, I suppose,
be true for nonarchimedean fields, but it will be more delicate because some irreducible
characters are not associated to a Cartan subgroup, for example, those associated to rep-
resentations of the local Galois groups as tetrahedral representations. What, in my view,
is taking place in Waldspurger’s analysis, although I have yet to examine it with sufficient
care, or even any care, is a reduction of the local analysis to the study of orbital integrals
on Lie algebras, not over a local field, but over a finite field, or, better expressed, in the
context of algebraic geometry over a finite field. The asymptotic behavior described by
the germs of Shalika becomes at this level, a question of direct images of perverse images



and their support, thus a behavior that is strictly geometric and strictly within the range
of behavior encountered already in the study of these sheaves. I can imagine that the
geometric information available through this translation might replace Harish-Chandra’s
study of the orbital integrals and their jumps to characters of G. Something similar to the
jump conditions that Harish-Chandra met, and even something more subtle, might appear.
I imagine that, when examining the possible behavior of the direct images with care, one
will find behavior that can only be explained with the help of local Galois groups that
admit surjective homomorphisms to relatively complex solvable groups. These matters
will have to be studied on their own.

This kind of local information will be necessary if the program proposed for the utilisa-
tion of the stable trace formula, — a formula available only after the fundamental lemma
has been established —is to succeed in establishing functoriality. It is to be utilised in
combination with the Poisson formula on the Steinberg-Hitchin base, an affine object in-
troduced by myself with Frenkel and Ng6. The introduction of the Poisson formula was
suggested by Ngb’s use of the Hitchin base,

None of this explains the reasons for the success of Ngo nor for the earlier partial suc-
cesses of Goresky-Kottwitz-MacPherson and Laumon-Ngo. Moreover, with the exception
of Arthur’s laudation, little attention has been paid in various expositions to the needs of
specialists of the theory of automorphic representations, thus of those to whom the lemma
itself is of the most interest and who may, like me, have little, if any, familiarity, with
stacks, perverse sheaves, or equivariant cohomology. So it may be worthwhile for me to
have attempted to describe some glimpses of understanding that I have had while trying
to penetrate their thoughts. I still have a long way to go and I am not certain that these
glimpses are not will-o-the-wisps. Waldspurger and one or two others may have clearer
notions of the possibilities than I.

The fundamental lemma itself appears in the context of orbital integrals, thus integrals
over the conjugacy classes {g 1vgg} defined by elements v = yg € G(F), F a local field,
for the present nonarchimedean. For 74 semisimple and regular, the conjugacy classes
within the stable conjugacy class of 75 are parametrized, in essence, by the elements of
the abelian group H'(Gal(F'/F),T), T the centralizer of yg. If x is a character of this
group, we may form ) k(v4)Oa (s, fa), where the sum over conjugacy classes is to be
interpreted as a sum over H'(Gal(F'/F),T), and fg is the unit element of the Hecke
algebra over (G. Associated to k is an endoscopic group, thus a quasi-split reductive group
H and to ~ a stable conjugacy class {yy} in H, for which we can form a stable sum
O% = > O0u(Vly, fu), where fg is the unit element in the Hecke algebra of H. The
fundamental lemma, in its simplest and earliest formulation, is the equality of these two
sums, up to a well-defined constant factor that will necessarily depend on the choice of
Haar measure on G and H.

After Waldspurger’s reduction, a new, but similar equality appears with integrals over
a set determined by an element v, again often semisimple and regular, of the Lie algebra
g of G (or H) over F’ again a local field but of positive characteristic, the ring of formal
power series over a finite field k. Not having followed the developments over the years, I
find the transition from one context to the other abrupt. My intuition is often brought
up short. In addition, the proof of the fundamental lemma, like early proofs in local class



field theory and occasionally elsewhere, is an argument from a global statement to a local
statement, so that the function field F' of a complete nonsingular curve X over k of which
F’ is a completion at some place v is introduced. G is replaced by a group over this new
F and v by an element of the Lie algebra g of GG, or more precisely by a section of the
Lie-algebra bundle defined by a G-bundle over X, a section that is allowed to have poles
of large but finite order at a certain number, again large but finite, of points. It is in
this difficult, especially for those not sufficiently conversant with the notions of modern
algebraic geometry, context that the proof functions.

I was first disoriented by the appearance of Picard varieties in this context. They seemed
to be of the usual type, thus closely related to abelian varieties. It was only after some time,
when I noticed that the point of departure was the first cohomology group of a torus —
thus a multiplicative group — the centralizer of v, and that it was entirely possible that the
transition from the local field F' to the function field F' of X and from Galois cohomology
to etale cohomology or other cohomologies might entail the appearance of Picard varieties,
that I began to feel more at ease. Galois cohomology groups have not been for me geometric
objects. As descriptions of families of line bundles, thus of cohomology groups with values
in GL(1) or, possibly, other abelian algebraic groups, Picard varieties (or stacks) may be
representable — whether by varieties or by stacks — and thus subject to study by the
usual methods of algebraic geometry. Once reoriented, I found it much easier to follow,
at least superficially, the presentations by Ngo and others of the geometrical proofs of the
fundamental lemma, in the final form as well as in the earlier forms.

There are nevertheless in Ngd’s proof and in the reflexions of other authors that preceded
it several notions of which my grasp is tenuous, equivariant cohomology on the one hand
and the — apparently — related notion of stacks on the other. Some aspects of the
structure of the proof are quite clear. At a given place of X that is defined over k, in
particular at the place with which we began, the orbital integrals, both for G and for H,
can be interpreted as counts, although the count is a weighted count because centralizers
of the elements ~ interfere. One of the functions of stacks and equivariant cohomology, for
those who understand them, is to take this weighting into account. That said, thanks to
the passage to a global context, in the sense of algebraic geometry, thus to the passage to X
and bundles over X, the counting, or rather the equality of two different counts asserted by
the fundamental lemma, is replaced, in the spirit of the Weil conjectures and the Lefschetz
formula, by an isomorphism of cohomology groups. The global count is, however, a sum
over the points of X of local counts, so that, a global equality once established in general,
it is necessary to return to X and to the section of the g-bundle that replaced the original
v, and to make choices that allow us to isolate the local contribution with which we began.
Most of the effort is expended on the proof of the global cohomological statement — in
the context of perverse sheaves for the etale cohomology and in the context of stacks.

I found it difficult to discover and keep firmly in mind the nature of the local count.
There are at least two parameters at hand: the point of X and the point ~, which is now
a section ¢ of the Lie algebra of a G-bundle F on X the total order of whose poles is
controlled by a divisor D. The family M of these Hitchin pairs, (E,p), is an essential
element of the theory. The family of the classes in the Lie algebra of the group in question,
G or one of its endoscopic groups H — as the case may be — is the Hitchin base, a

4



designation now familiar, thanks to Ngo, to a wide mathematical audience. The count is
made over this base. Rather, the count is made, for both G and H, after a projection to
this base. The domain of the projection is, to a first approximation, a scheme whose points
are, first, a G-bundle on the given base X and, secondly, the section . So, implicit in the
discussion is, I suppose, the existence of moduli spaces or stacks and an understanding of
the cohomology of perverse sheaves defined on them. Most of this, and much else, I have
to take on faith at present.

The Hitchin base is, as an algebraic variety over k, an affine space. The count on the
fiber is made indirectly, through the direct images of the cohomology of the fiber. This
fiber has, I believe, two important features: one that it shares with the usual Picard
varieties, namely an action of a very large connected group, sometimes an abelian variety;
this large group is defined over the Hitchin base. If I understand correctly the explanation
in Ngo’s Hyderabad lecture, an important consequence is that the action of the full group,
a Picard group (rather stack!) P in the sense of Ngo, on the cohomology of the fibers is
defined through a discrete quotient, denoted 7o (P) by Ngo, a possibility that is certainly
plausible from a topological point of view. This discrete quotient is closely related to the
Galois cohomology groups H'(Gal(F/F),T) with which we began. These things are well
explained in Ngo’s Hyderabad lecture, where it is also explained that the local discrete
quotients can be patched together, but in the etale topology, to form a sheaf of abelian
groups. It is somewhat comforting, and perhaps not altogether incorrect, if we think
of this as a patching in the etale topology of the various H!(Gal(F/F),T), defined for
widely varying tori 7'. In any case this allows the discrete quotient and its characters
to be introduced globally, something that was done in a different manner in the original
formulation of the lemma.

The result is a sheaf over the Hitchin base that permits an action of the group P. Since
‘P acts on the fibres over the base, its action defines an action on the direct image of the
cohomology on the Hitchin base, an action that factors through m(P). Consequently the
direct image can be decomposed as a direct sum with respect to the characters k of mo(P).
The principal theorem of Ngo, at least in connection with the fundamental lemma, is to
establish that each component of the direct sum is isomorphic to a similar component for
an endoscopic group H over X, a group defined by the character s

There is a fluidity in the development of the proof that Ngo captures in his various
expositions. Ideas appear, reveal themselves as suggestive, but ultimately inadequate,
and then reappear in a different, often more difficult, guise. It is probably impossible to
understand the final proof without some feeling for these initial stages: for equivariant
cohomology in all its guises and, above all, for the geometry of the Hitchin fibration. I
certainly have a long way to go, but I find the relatively concrete form in which this
fibration is used by Laumon-Ngo in the proof of a special case of the fundamental lemma
a helpful guide to the general case.

Since the Hitchin fibration and its properties are basic, a word or two about its con-
struction may not be inappropriate. For a vector bundle, thus for a GL(n)-bundle, one
can associate to the section 7, or better to the point a in the Hitchin base, a matrix valued
function on X, and to each point z € X, the n points in an n-dimensional space given by
its eigenvalues. As x varies these points trace a curve, an n-fold covering Y, = Y, of X.



With v we can introduce, at least in favorable circumstances, more: for each point z and
each of the eigenvalues, a line, the eigenspace corresponding to the eigenvalue. Thus the
section 7 defines a line-bundle on Y,. There are questions that arise at the points where the
eigenvalues are multiple, but we do see line-bundles on the horizon and therefore, perhaps,
abelian varieties and cohomology groups in degree 1, groups related to those with which
endoscopy began. The abelian varieties are a sign that in the new context, these cohomol-
ogy classes appear as line bundles that give rise to representable functors, whose points
can be described geometrically. The Hitchin fibration, as defined by Ngo, provides similar
constructions for a general group. Even in the original form, the eigenvalues associated to
~ define at each point of X a diagonal matrix, but as the order of the eigenvalues is not
prescribed, it is in fact only the conjugacy class of this diagonal matrix that is determined.

At the level of groups we cannot, so far as I know, ordinarily find a map from conjugacy
classes to matrices that is inverse to that from matrices to conjugacy classes, but at the
level of Lie algebras, low characteristics aside, we can. For example, for the group SL(2),
the conjugacy class is given, at least at the regular elements by the determinant, a, and
the representative matrix for this class can be taken to have diagonal elements 0 and
off-diagonal elements 1 and a. There are, I believe, various such lifts. Ngo uses the one
associated to the name of Kostant. Our original description of the spectral curve Y, was
deliberately vague about its form at those points where eigenvalues coincide and it is best
here to pass over in silence the difficulties they entail in Ngo’s definitions. They entail
technical difficulties that I have not yet made any attempt to understand. Indeed, I am
not much beyond the introduction to his paper. In any case, what results is a lift not
only of the regular conjugacy classes of the Lie algebra to the Lie algebra itself, but an
abelian group over these lifts. It is closely related to the centralizer of the lifts and yields
a fibration in groups over the Hitchin base. The dimension of the fibers is the rank of
G. In the definition of the Picard variety (stack) relevant to the Hitchin fibration and to
Ngd’s analysis, the bundles associated to this fibration in groups replace the line bundles
of the classical theory. I have to remind myself constantly that there are two parameters
at play in this fibration: the base a, given by the class of v, and a point x of X, at which
v is essentially an element in the Lie algebra of GG, say over the residue field or over the
coordinate ring at x.

As already observed, the argument for the proof of the fundamental lemma proceeds in
two stages; first for a fixed a and all of X, but fortunately only for well-chosen a; secondly
for a suitable X and a suitable point x of X. We have already described the projection at
the first stage, from the total space of the Hitchin fibration to the Hitchin base, and the
decomposition of the direct image according to the characters s of the Picard stack.

There is an equality of sheaves over X to be proven at the first stage. There are two
issues in the proof of the equality: the support of the relevant direct images; the equality
on this support. An endoscopy group is so defined that there is a morphism of the Hitchin
base Ay to Ag. So we can compare the direct image of a sheaf on Agy with a sheaf on
Ag. The sheaf on Ag is defined by the part of the direct image of the sheaf associated
to the character k. For H, one does the same thing, but the character for H is taken
to be trivial. If H is associated to k, it has first to be shown that the direct image of
the k-component for G is supported on the image of the Hitchin base for H. This is, in



principle, a consequence of the definitions, but it is not an easy consequence. Indeed the
final proof is tremendously daunting.

Those of us with less than adequate facility with the concepts can best begin with the
theorem for unitary groups proved by Laumon-Ngo, because in their Annals paper, not
only does the Picard stack appears in its primitive form in terms of the spectral curve Y,
but, in addition, the proof of the necessary homotopy lemma, which is used to deal with
the problem of support, appears to be at an altogether different level of difficulty than
the support theorem of the paper under review. In the Annals paper, both G and H are
unitary groups. Since a unitary group is a form of GL(n), the concept of spectral curve
has a more immediate geometric content and there is a more direct relation between the
Hitchin fibrations of G and H that appears to simplify the arguments considerably.

I have already adumbrated the final step of the proof. If the curve X and an element a
of the Hitchin base are given, they define locally at any point = of X the elements for the
original statement of the fundamental lemma for the Lie algebra, an element of the local
Lie algebra and a group G(O,). Moreover the equality of a k-component of the direct
image at a with a direct image for an endoscopic group H can be interpreted, thanks to
the Grothendieck-Lefschetz theorem as an equality of the product over the points of X
of two counts, one for x-components on G, one for H. If we can choose x, X, and a so
that they reproduce any arbitrarily given local data and if X and a are also chosen such
that the fundamental lemma is true at all points ' # = of X, we can cancel all terms
in the product but those at x and deduce the desired equality at that point. We cannot,
apparently, expect to choose X such that the fundamental lemma is utterly obvious away
from X, but it can be so chosen that it is accessible to direct computation. To establish
the existence of X and a with the necessary properties requires, both in the final paper and
in the earlier paper on unitary groups, very sophisticated algebro-geometrical methods. It
is also important for its existence that the poles of the section defining a are allowed to
grow in number.

For the unitary groups, the very last step, the deduction of the fundamental lemma
outside of x from the properties of X and a appears almost an elementary exercise in
geometry over finite fields. This is not so in general. Further struggles with perverse
sheaves await the reader.

It is certain that, for the majority of specialists in nonabelian harmonic analysis and
representation theory, thus, in particular, for specialists in the theory of automorphic
representations and the associated arithmetic, certainly for me, it will take more than a
few weeks, or even a few months, to assimilate the techniques from contemporary algebraic
geometry that are required for the proof of the fundamental lemma. How long it might
take geometers to understand fully the questions posed by the arithmetic and the analysis,
I hesitate to guess. This might be easier. Certainly representation theory has a briefer and,
in some respects, narrower history, but it is less familiar to the majority of mathematicians.
Time will tell.

Since, as I intimated at the beginning of this review, the fundamental lemma is an
essential and fundamental contribution to a theory that will not be developed by specialists
in algebraic geometry alone, there will be a need for further, more accessible expositions
of the methods of this paper and those that preceded it, with examples, even very simple
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examples, and with considerably more explanation of the geometric intuition implicit in
the abstract theory. An index to definitions and symbols would also be welcome! The
present paper is 168 pages long and these pages are large and very full. An exposition
genuinely accessible not alone to someone of my generation, but to mathematicians of all
ages eager to contribute to the arithmetic theory of automorphic representations, would
be, perhaps, four times as long, thus close to 700 pages. It would, I believe, be worth the
effort.



