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Robert P. Langlands

This paper is a report on work in progress rather than a description of theorems which

have attained their final form. The results I shall describe are part of an attempt to continue to

higher dimensions the study of the relation between the HasseWeil zetafunctions of Shimura

varieties and the Euler products associated to automorphic forms, which was initiated by

Eichler, and extensively developed by Shimura for the varieties of dimension one bearing his

name. The method used has its origins in an idea of Sato, which was exploited by Ihara for

the Shimura varieties associated toGL(2).

To define a Shimura variety S one needs an algebraic group G over Q together with

certain supplementary data [2]; the set S(C) of complex points on the variety then appears as

a double coset space

(1) S(C) = G(Q)\G(A)/K∞K.

Here A = R × Af is the ring of adèles. K∞ is a subgroup of G(R) for which G(R)/K∞ is a

bounded symmetric domain and K is a compact open subgroup of G(Af ) which intervenes

in the definition of S. The suggestion of Sato, as modified by Ihara, is simple to describe.

The Euler products associated to automorphic forms are Dirichlet series defined by group

theoretical data, the traces of the Hecke operators, and if the Selberg trace formula is used

to obtain an explicit formula for the coefficients, this formula will involve only the internal

structure of the groupG. On the other hand the zetafunction is defined in terms of the number

of points of S with coefficients from various fields, extensions of the residue field κ at a prime

p of the field over which S is defined; so these numbers too must be computed in terms of G

if a comparison is to be made. To find the number of pointsNn in S(κn), κn the extension of

κ of degree n, it is in principle sufficient to describe the set S(κ̄), κ̄ the algebraic closure of κ,

together with the action of the Frobenius Φp over κ on it, forNn would be the number of fixed

points ofΦn
p . In analogy with S(C)we might expect to describe S(κ̄) in terms of double coset

spaces. Once armed with explicit expressions for the coefficients of the two Dirichlet series,

we could set out to prove they are equal.

If we follow this suggestion, we might divide the problem into three parts.

∗This material was presented at the 1975 U.S.Japan Seminar on Number Theory in Ann

Arbor, Michigan. The paper appeared in Can. J. Math. XXIX (1977)



Shimura varieties and the Selberg trace formula 2

(a) If a reductive groupH over Q is given, together with an automorphic form π on it, or

ratherwhat has recently been called an automorphic representation, aswell as a representation

r of the associate group LH , then onemay introduce an LfunctionL(s, π, r), which is defined

as an Euler product. We want to show that the HasseWeil zetafunction of S is equal to a

product

ΠL(s − a, π, r)m.

It is first necessary to decide which H, π, and r should intervene in this product, and with

what exponentm and what translation a each Lfunction should appear. Then it is necessary

to derive an explicit expression for its coefficients, or rather those of its logarithm, by means

of the trace formula.

(b) If E is the field over which S is defined, in those cases in which Shimura’s conjecture

is verified, and if one is content, as seems appropriate for the moment, to verify the equality

of the factors appearing in the two Euler products for almost all p, then for all primes p of E

dividing such a p onemust describe S(κ̄) together with the action of the Frobenius on it. If S is

not complete, it is also necessary to analyze its structure near infinity, but this is a complication

which it is best to avoid for now.

(c) The final step is to compare the results obtained from (a) and (b). Here the Harish

Chandra transform on reductive groups over local fields comes into play. Since our knowledge

of this transform is pretty meagre, a real obstacle has presented itself. It does not seem possible

to treat (c), or (a), with any generality until it has been removed.

In [5] I described in conjectural form a solution of (b), indicating that, by applying the

techniques ofmodern algebraic geometry, itwas possible to verify this conjecture in sufficiently

many cases to make it worthwhile to carry out (a) and (c), which are a matter of harmonic

analysis rather than of algebraic geometry. In this paper, I want to describe the solution of (a)

and (c) when G is defined by the multiplicative group of a quaternion algebra over a totally

real field. Here (a) is easy, as is the harmonic analysis required by (c), but the comparison is

difficult enough to be worth describing. It may also be worthwhile to see the form taken by

the solution of (b) described in [5] for some specific groups. However, the methods mentioned

there only yield a solution to (b), which is real rather than conjectural, when the algebra is

totally indefinite; so that this is the only case at present in which the method can yield a full

solution of the problem.

I observe that there are two oversights in [5]. One is mathematical and will be rectified

below. The other is more regrettable. It has been pointed out to me that I might have said

more about the origins of the problems posed and that, in particular, I might have drawn

attention to Section 5 of Ihara’s notes in [4]. It would be unfortunate if this omission caused

any misunderstanding for I am certainly much indebted to Ihara’s ideas, but rather through

[3] and indirectly [1], than through [4].
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I begin by recapitulating, in as simple a manner as possible, some formal aspects of the

associate groups. Suppose G is the group over Q defined by the multiplicative group of a

quaternion algebraD over F , a totally real field of finite degree overQ. ThenG(Q) = D× and

for almost all primes p,

(2) G(Qp) ≃
∏

p|p

GL(2, Fp).

IfF ′ ⊆ Q̄ is a Galois extension ofQ containingF thenG(F ′/Q) acts on the set I of imbeddings

of F into Q̄ ⊆ C. Set
LG0 =

∏

ι∈I

GL(2, C).

We letG(F ′/Q) act on LG0 by

σ : (gι) → (gσ−1ι)

and then form the semidirect product

LG =L G0 × G(F ′/Q).

LG will be referred to as the associate group.

Suppose p is a prime at which (2) is satisfied and G(Zp) ⊆ G(Qp) corresponds to

∏

p|p

GL(2, Op).

Op is the ring of integers in Fp. Suppose moreover that F
′/Qp is unramified. Fix a Frobenius

element Φp in G(F/Q). The associate group has been so defined that the Hecke algebra of

G(Qp) with respect to G(Zp) is isomorphic to the algebra of functions on
LG0 × Φp obtained

by taking linear combinations over C of restrictions of the characters of finitedimensional

complex analytic representations of LG0 × ΦZ
p . Suppose the function ϕ corresponds to fϕ in

the Hecke algebra. To each irreducible admissible representation πp of G(Qp)which contains

the trivial representation ofG(Zp) there corresponds a semisimple element g(πp) in
LG0×Φp

which satisfies

ϕ(g(πp)) = trace πp(fϕ).

The elements of I may also be regarded as imbeddings of F into R. Suppose J ⊆ I is the set

of such imbeddings which split D. If K ⊂ G(Af ) then the canonical model of the Shimura

variety S = SK corresponding to K is defined over the fixed field E of G(F ′/E), consisting

of those elements ofG(F ′/Q)which leave the set J invariant. Suppose rι is the representation

of LG0 obtained by projection on the ιth factor. We extend the representation ⊗ι∈Jrι to
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LG0×G(F ′/E) by letting σ ∈ G(F ′/E) send the vector⊗νι to⊗νσ−1ι. We then induce to
LG

to obtain the representation r which will play a role in this paper. It is one of the simplifying

features of the groups G we are considering that the zetafunctions of its Shimura varieties

can be expressed entirely in terms of Lfunctions attached to automorphic forms on G itself;

no auxiliary groups H need be introduced. The simplification is to some extent spurious. It

would not occur if we attempted to study the zetafunction of the connected components, or

even of the parts irreducible over E.

The zetafunction Z(s, SK) is an Euler product
∏

p

Zp(S, SK)

with

Zp(S, Sk) =
∏

p|p

Zp(s, SK),

where p denotes a prime of E. If π = π∞ ⊗ πf = π∞ ⊗ π2 ⊗ π3 . . . is an automorphic

representation almost all factors of the Euler product L(s, π, r) are defined by

Lp(S, π, r) =
1

det(1 −
r(g(πp))

ps )
.

Suppose Z0 is an open subgroup of the centre Z(A) of G(A) containing Z(R) and with

Z0 ∩ G(Af ) ⊆ K . The representation of G(A) on L2(Z0G(Q)\G(A)) is a direct sum of

irreducible representations. Let Π be the set of representations occurring. If π ∈ Π then π∞ is

a representation of

G(R) ≃

(

∏

ι∈J

GL(2, R)

)

×

(

∏

ι/∈J

G′(R)

)

whereG′(R) is themultiplicative group of theHamilton quaternion algebra. Wemay therefore

write π∞ = ⊗πι. If ι /∈ J we set m(πι) equal to 1 or 0 according as πι is or is not trivial; if

ι ∈ J thenm(πι) is to be −1 if πι is trivial, 1 if it is the first member of the discrete series, and

0 otherwise. Observe that if πι is trivial for one i ∈ J then it is trivial for all i. Let

m(π∞) =
∏

ι∈I

m(πι).

Finally, m(π, K) is the product of m(π∞) with m(πf , K), the multiplicity with which the

trivial representation of K occurs in πf ; it is 0 for all but finitely many π. We shall show that

if the solution of (b) is granted, then

(3) Zp(s, SK) =
∏

π∈Π

Lp(s −
q

2
, π, r)m(π,K)
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for almost all p. Here q is the number of elements in the set J .

Let Ap
f be the ring of adèles which are 0 at infinity and at p. For almost all p, K = KpKp

with Kp ⊆ G(Ap
f ) and with Kp equal to G(Zp). We calculate the logarithm of the right side

of (3) for such p. We write πf = πp
f ⊗ πp and let m(πp

f , Kp) be the multiplicity with which

the trivial representation of Kp occurs in πp
f . The integerm(π, K) is 0 unless πp contains the

trivial representation ofKp, when it equalsm(π∞)m(πp
f , Kp). There is a smooth function f∞,

with support which is compact modulo Z(R), so that if π∞ is trivial on Z(R) and

π∞(f∞) =

∫

Z(R)\G(R)

f∞(g)π∞(g)dg

then

m(π∞) = trace π∞(f∞).

Otherwisem(π∞) is 0. If fp is the characteristic function ofKp divided by its measure then

m(πp
f , Kp) = trace πp

f (fp).

If πp contains the trivial representation ofKp then

log Lp(s −
q

2
, π, r) =

∞
∑

n=1

1

npns
pnq/2 trace r(g(πp))

n.

According to our introductory remarks there is for each n an element f
(n)
p of the Hecke algebra

such that

pnq/2 trace r(g(πp))
n = traceπp(f

(n)
p ).

If πp does not contain the trivial representation of Kp the right hand side is 0. Thus the

coefficient of 1/npns in
∑

π

m(π, K) logLp(s −
q

2
, π, r)

is

(4)
∑

π∈Π

trace π(f (n))

if

f (n)(g) = f (n)(g∞, gp, gp) = f∞(g∞)fp(gp)f (n)
p (gp)

for g ∈ G(A).
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The Selberg trace formula immediately yields a formula for (4). Exploiting our knowledge

of the harmonic analysis on G(R) we obtain the sum over conjugacy classes {γ} in the set

G(Q) ∩ Z0\G(Q) which are elliptic at infinity of the product

(5)
(meas Z(R)\Z0)(meas Z0Gγ(Q)\Gγ(A))

meas Z(R)\G′
γ(R)

and

(6)

{

∫

Gγ(Ap
f
)\G(Ap

f
)

fp(g−1γg)dg

}{

ǫ(γ)

∫

Gγ(Qp)\G(Qp)

f (n)
p (g−1γg)dg

}

.

Gγ is the centralizer of γ and G′
γ is the twisted form of Gγ over R for which Z(R)\G′

γ(R) is

compact. ǫ(γ) is1 ifγ is not central, otherwise it is (−1)q if q is the number of elements inJ . The

important term in (5) and (6) is the orbital integral of f
(n)
p , which defines its HarishChandra

transform.

The restriction of the representation r to LG0 ×ΦZ
p decomposes into a direct sum indexed

by the double cosets

G(F ′\E)\G(F ′\Q)\ΦZ
p .

The function f
(n)
p is then also a sum over these double cosets, which may be identified with

the primes p of E dividing p; so we write

f (n)
p =

∑

f
(n)
p .

Moreover

log Zp(s, SK) =
∑

p|p

log Zp(s, Sk)

if Zp(s, SK) is the zetafunction of SK over the residue field κ of E at p. What we want to

show is that the result of substituting f
(n)
p for f

(n)
p in the expression obtained for (3) is equal

to log Zp(s, SK).

According to the conjectural solution of (b) described in [5] the set SK(κ) can be decom

posed into a disjoint union of sets, each of which can be represented in the form

YK = H(Q)\G(Ap
f ) × X\Kp.

The groups H appearing here are not those mentioned earlier. The parameter set for these

double cosets is a little difficult to describe, as is the structure of X . However, Kp acts on

G(Ap
f ) and hence on G(Ap

f ) × X to the right. Moreover H is a group over Q; H(Ap
f ) comes
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provided with an injection into G(Ap
f ); and H(Qp) acts on X . This yields an action of H(Q)

on G(Ap
f ) × X . Each YK is left invariant by the Frobenius, whose action is obtained from a

map Φ : X → X which commutes with the action ofH(Qp).

The coefficient of 1/npns in log Zp(s, SK) is the number of fixed points of Φn
p on SK(κ),

which we can represent as the sum over Y of the number Nn(YK) of fixed points in YK . It is

convenient to express the formula forNn(YK) in terms of a group G(Qp), containingH(Qp),

which also acts onX .

If n > 0 and χ ∈ X set

Tn
χ = {g ∈ G(Qp) | Φnχ = gχ}

and let δn
χ be the characteristic function of T

n
χ . If {χι} is a set of representatives for the orbits

ofG(Qp) inX set

ϕ(n)(γ) =
∑

ι

1

meas Gι

∫

Gγ(Qp)\G(Qp)

δn
χι

(h−1γh)dh.

HereGι, is the stabilizer of χι inG(Qp). I hasten to reassure the reader that the structure ofX

is such that the right hand side makes sense. A formal settheoretic argument yields Nn(YK)

as a sum over conjugacy classes inH(Q) ∩ Z0\H(Q), forH will contain Z, of

(7) m(Z0 ∩ G(Af ))(mZ0Hγ(Q)\Hγ(Af ))ϕ(n)(γ)

∫

Hγ(Ap

f
)\G(Ap

f
)

fp(g−1γg)dg.

Moreover every conjugacy class {γ} in H(Q) will determine a conjugacy class {γ′} in G(Q).

In G(Ap
f ), γ and γ′ will be conjugate, γ′ = h−1γh, Gγ′(Ap

f ) will be h−1Hγ(Ap
f )h, and the

group Hγ will be a twisted form of Gγ′ over Q. Comparing (7) with (5) and (6), we see that,

if the properties of Tamagawa numbers are taken into account, the problem is reduced to a

comparison of the functions ϕ(n)(γ)with the orbital integrals.

The orbital integrals can without much difficulty be computed explicitly for the groups

under consideration; so the burden of the problem is to compute the functions ϕ(n)(γ). The

sets YK are indexed by equivalence classes of pairs of Frobenius type [5]. To define these one

fixes an imbedding of Q in Qp which defines the prime p. The orbits of Φp in I correspond

to primes q of F dividing p. Let bq be the number of points in the orbit q which lie in J .

Working out the definition of [5] one finds that there is one YK corresponding to each triple

consisting of: a totally imaginary quadratic extension F ′ of F ; a nonempty subset S of the

primes dividing p at which F ′ splits, which is such that bq is even if F
′ splits at q and q is not in

S; and, for each q ∈ S, a pair of nonnegative integers kq, k
′
q with kq 6= k′

q, kq +k′
q = bq. There
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is also one additional YK . To be more precise, kq, k
′
q are associated to the two primes of F

′

dividing q, and two triples which can be obtained from each other by an automorphism over

F are not to be distinguished. For the YK defined by a triple,H is the group associated to the

multiplicative group ofF ′; for the remaining YK it is the group associated to the multiplicative

group of a quaternion algebra over F , ramified everywhere at infinity, at the primes at which

D ramifies, and at the primes for which bq is odd, but nowhere else.

The spaceX is a product

X =
∏

Xq

and so is the auxiliary group G(Qp)

G(Qp) =
∏

Gq(Qp).

Fix a point ι in the orbit q; then Xq consists of sequences {Li | i ∈ Z} of lattices in the

twodimensional space over the maximal unramified extension Qun
p of Qp with the following

properties:

(i) Li−1 = Li if Φ
1−iι /∈ J ;

(ii) Li ⊃
6=

Li−1 ⊃
6=

pLi if Φ
1−iι ∈ J ;

(iii) ifm = mq is the number of elements in the orbit and σ is the Frobenius on Qun
p then

dLj+m = σ−mLj .

Here d is a twobytwo matrix. For a YK parametrized by a triple,

d =

[

pkq 0
0 pk′

q

]

if q ∈ S and

d =

[

pbq/2 0
0 pbq/2

]

if q /∈ S but F ′ splits at q. In the first caseGq(Qp) is the group of diagonal matrices over Fq. In

the second it is GL(2, Fq). If F
′ does not split at q or if we are dealing with the extra YK then

d is some fixed element ofGL(2, Fq)whose order is bq. The groupGq(Qp) isGL(2, Fq) or the

multiplicative group of a quaternion algebra over Fq according as bq is even or odd. There is

one condition omitted from the description ofX in [5]. If χ inX corresponds to g ∈ G(k) then

it must also be demanded that

|λ(bσg)| = |p〈λ,µˆ〉||λ(g)|
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if λ is a rational character ofG over k. I also observe that all references to projective limits over

K should be expunged from [5].

Each point ofXq defines an infinite path in the tree associated by BruhatTits to the group

GL(2, Qun
p ) and the computation of the functions ϕ(n)(γ) becomes thereby a combinatorial

exercise, not however a completely trivial one.

†My first attempts to master the techniques described above were presented in a report in

the Antwerp Summer School onModular Functions (Springer Lecture Notes 349). That report

is complicated, partly because I was dealing with unfamiliar material, and partly because a

great deal of extra discussion is required in order to deal with the cusps or with the ramified

primes. A case, perhaps the only one, which is transparent in its representationtheoretic or

combinatorial aspects is that of the present paper when F = Q. It is to be hoped that a suitable

occasion will be found to discuss it. My ambition now is to publish in this Journal, the Editors

willing, a detailed treatment of the results for an arbitrary totally real field. Several papers will

be required. The central one, On the zeta-functions of some simple Shimura varieties, will

treat the combinatorics and representation theory carefully. However, since I want to show at

the same time how it happens that Lfunctions associated to groups other than G itself must

be used to obtain the zetafunction of SK , this paper has to be preceded by another, written

jointly with J.P. Labesse and entitled Lindistinguishability for SL(2). If we are ever to be

able to treat zetafunctions for general Shimura varieties, the notion of Lindistinguishability

will have to be defined for all reductive groups. Some simple definitions and lemmas to

this purpose, employed even in the study of SL(2), will be collected in Stable Conjugacy:

Definitions and Lemmas. Finally one paper will have to be devoted to a detailed statement

of the conjectures of [5], and perhaps another to establishing them in the cases accessible to

present techniques.

† Added at the request of the referee
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