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1. Introduction.

In an earlier paper [14] I have adumbrated amethod for establishing that the zeta­function

of a Shimura variety associated to a quaternion algebra over a totally real field can be expressed

as a product of L­functions associated to automorphic forms. Now I want to add some body

to that sketch. The representation­theoretic and combinatorial aspects of the proof will be

given in detail, but it will simply be assumed that the set of geometric points has the structure

suggested in [13]. This is so at least when the algebra is totally indefinite, but it is proved by

algebraic­geometricmethods that are somewhat provisional in the context of Shimuravarieties.

However, contrary to the suggestion in [13] the general moduli problem has yet to be treated

fully. There are unresolved difficulties, but they do not arise for the problem attached to a

totally indefinite quaternion algebra, which is discussed in detail in [17].

It does not add to the essential difficulties if we enlarge our perspective a little and

consider not only the zeta­function defined by the constant sheaf but also that defined by the

sheaves associated to finite dimensional representatives of the group defining the variety, and

wemight even dissipate some of the current misconceptions about the nature of these sheaves.

Their existence is a formal consequence of Shimura’s conjecture. We should moreover not

confine ourselves to the multiplicative group of the quaternion algebra, but should in addition

consider subgroups lying between the full multiplicative group and the kernel of the norm, for

then we can see the effect of L­indistinguishability [7] in the place where it was first noticed.

In this introduction the results of [7], to which [22] is meant to serve as a kind of exegesis,

are used in conjunctionwith facts about continuous cohomology to arrive at an assertion about

the zeta­function which the remainder of the paper is devoted to proving. Some readers will

find that I have given too free rein to a lamentable tendency to argue from the general to

the particular, and have obfuscated them by interjecting unfamiliar concepts of representation

theory into what could be a purely geometric discussion. My intention is not that, but rather to

equip myself, and perhaps them as well, for a serious study of the Shimura varieties in higher
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dimensions. We are in a forest whose trees will not fall with a few timid hatchet blows. We

have to take up the double­bitted axe and the cross­cut saw, and hope that our muscles are

equal to them.

The method of proof has already been described in [14]. It is ultimately combinatoric.

The Bruhat­Tits buildings, which arise naturally in the study of orbital integrals and Shimura

varieties, are used systematically. However the automorphic L­functions used to express

the zeta­functions of the varieties are unusual and most of §2 is taken up with the attempt

to understand them and express their coefficients in manageable, elementary terms. The

appearance of L­indistinguishability complicates the task considerably.

The meaning of the conjectures of [13] is also obscure, even to their author, and consid­

erable effort is necessary before it is revealed sufficiently that a concrete expression for the

coefficients of the zeta­functions is obtained. Once this is done, in §3 and the appendix, the

equality to be proved is reduced to elementary assertions which are proved by combinatorial

arguments in §4.

A connected reductive groupG overQ and a weight µ of the associate group LG0 are the

principal data specifying a Shimura variety. The conditions they must satisfy are described

in [4]. If Af is the group of finite adèles one needs an open compact subgroup K of G(Af )

as well. µ is the weight of LG0 defined by the co­weight h0 of [13]. The primary datum is

h0, rather than µ. To completely define S(K) one needs h0. The variety will be denoted by

S(K) and onlyK will appear explicitly, for G and µ are usually fixed. The group LG0 comes

provided with a Borel subgroup LB0 and a Cartan subgroup LT 0 in LB0. We may suppose

that µ is a positive weight of LT 0. Moreover if L is a large Galois extension ofQ thenG(L/Q)

acts on LG0, fixing the subgroups LB0 and LT 0. If G(L/E) is the stabilizer of µ then the

Shimura conjecture, which has been proved for the groups we shall consider, states that S(K)

has a model over E characterized by the arithmetic structure of its special points [4]. We will

always use this model. The set of complex points on S(K) is a double coset space

(1.1) G(Q)\G(A)/K∞K .

HereK∞ ⊆ G(R) and G(R)/K∞ is a finite union of Hermitian symmetric spaces.

Let Z0 be the intersection of the kernels of the rational characters over Q of the center Z

ofG and let ξ be a representation ofG on the vector space V which is trivial on Z0, both ξ and

V being defined over Q. IfK is sufficiently small, as we assume, then

V (Z) ×(G(Q),ξ) G(A)/K∞K → S(K)

defines a locally constant sheaf FK
ξ or Fξ on S(K). Using the étale coverings S(K ′) → S(K),

K ⊆ K ′, which are defined over E, and the formalism of [12], we may defined the sheaves Fξ

as l­adic sheaves in the étale topology.
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For the groups that occur in this paper the quotient (1.1) is compact and the varieties S(K)

are proper, and we introduce the cohomology groups

Hi(S(K), Fξ) .

They can be taken over Q or over Ql, according to the exigencies of the context. If g ∈ G(Af )

the formalism of [12], which is the usual formalism, associates to g a linear transformation

T i(g): Hi(S(K), Fξ) → Hi(S(K), Fξ) .

The T i(g) act to the right and commute withG(E/E)which acts to the left. I recall that in the

theory of Shimura varieties E is given as a subfield of C.

We shall be concerned with the zeta­function of Fξ as a formal rather than as an analytic

object, and so we shall only be interested in the individual local factors, and these only at the

primes p of E for which the suggestions of [13] apply. If Φp is the Frobenius at p and τ
i the

representation of G(E/E) on Hi(S(K), Fξ) then the logarithm of the zeta­function is given

by

log Zp(s, S(K), Fξ) =
∞∑

n=1

n−1
∑

i

(−1)ttrace τ i(Φn
p )|̟p|

ns .

If q is the number of elements in the residue field then

|̟p| = q−1 .

We shall be more interested in

Zp(s, S(K), Fξ) =
∏
p|p

Zp(s, S(K), Fξ) .

We want to show that the zeta­function can be expressed in terms of the L­functions

associated to automorphic forms. Considerations that will be explained shortly suggest an

elegant conjecture. It is false and, in general, meaningless, but it is meaningless for interesting

reasons, stemming from L­indistinguishability, and for the groups treated in this paper we

will be able to modify and correct it, by taking the results of [7] into account. I will present it in

a slicker form than it at first appeared, even though its genesis is thereby somewhat obscured.

Some auxiliary objects must be introduced. To simplify our considerations we suppose

that the restriction of ξ to the center Z ofG is of the form

ξ(z) = ν(z)I
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where ν is a rational character. This does not affect the generality, since ξ can be decomposed

into a direct sum of representations satisfying this condition.

If T is a Cartan subalgebra of G over R, γ is a regular element of T (R), δ belongs to

D(T/R) (the explanation of this and other notation used below will be found in [16]), and f is

a smooth function inG(R) which is compactly supported modulo Z(R) and satisfies

f(zg) = ν(z)f(g) z ∈ Z(R)

we may introduce

Φδ(γ, f) =

∫

T h(R)\G(R)

f(g−1h−1γhg)dg

as in [7]. Here h in A(T ) represents δ. We may also introduce the stable orbital integrals [7]

ΦT/1(γ, f) =
∑

D(T/R)

Φδ(γ, f) .

Choose f = fξ so that

ΦT/1(γ, fξ) = 0

unless T (R) is fundamental, that is, unless Z(R)\T (R) is compact, and so that

ΦT/1(γ, fξ) =
trace ξ(γ)

measZ(R)\T (R)

if T (R) is fundamental. It has to be shown that fξ exists, but for the groupswe shall ultimately

consider this has been done (cf. [15], §4).

If π∞ is a representation ofG(R) set m(π∞) = m(π∞, ξ) equal to 0 unless

π∞(z) = ν−1(z)I z ∈ Z(R) .

Otherwise let m(π∞) be the trace of

π∞(fξ) =

∫

Z(R)\G(R)

fξ(g)π∞(g)dg .

We temporarily disregard the circumstance that m(π∞) is in fact not well­defined. If πf is

a representation of G(Af ) let m(πf ) = m(πf , K) be the multiplicity with which the trivial

representation ofK occurs in πf .
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Thenumbersm(π∞) andm(πf )will occuras exponents in theexpressionofZ(s, S(K), Fξ)

as a product of L­functions associated to automorphic representations π = π∞ ⊗ πf , but to

specify an L­function one needs a representation of LG as well. Let r0 be the representation

of LG0 with highest weight µ. The element µ, or rather its restriction to the derived group, is

a poids minuscule in the terminology of Bourbaki. Thus the weights of r0 are the ωµ with ω

in the Weyl group Ω(LT 0, LG0) of LT 0 in LG0. Let LM0 be the group generated by LT 0 and

the coroots α∨ orthogonal to µ. The stabilizer of µ is Ω(LT 0, LM0) and the dimension of r0 is

[Ω(LT 0, LG0): Ω(LT 0, LM0)] .

Let x be a non­zero vector transforming according to the weight µ. There is exactly one way

on extending r0 to a representation, again denoted r0, of

LG0 × G(L/E)

on the same space so that

r0(σ)x = x σ ∈ G(L/E) .

L is here just some large Galois extension of Q, and could be taken to be Q. Let

r = Ind(LG, LG0 × G(L/E), r0) .

The group LG is a semi­direct product

LG0 × G(L/Q) .

Let q be the dimension of S(K). If the phenomenon of L­indistinguishability did not

manifest itself, one might suspect that

(1.2) Z(s, S(K), ξ) =
∏
L(s− q/2, π, r)m(π)m(π∞)m(πf ) .

The zeta­function on the left is the product of the local zeta­functions, including a factor from

the infinite places. The product on the right is over all automorphic representations of G(A)

and m(π) is the multiplicity with which π occurs in the space of automorphic forms. The

grounds for the suspicion are initially flimsy, but I shall try to explain them. If the conjectures

of Weil and Ramanujan are compatible the shift in the variable form from s to s− q/2must be

present.

LetN be the number of absolutely irreducible components of ξ, countedwithmultiplicity,

and let λ1, . . . , λk be the highest weights of the distinct components ξ̃1, . . . , ξ̃k of the contra­

gredient representation ξ̃ with respect to some order on the roots of a fundamental Cartan
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subgroup T (R) in G(R). Let g be one­half the sum of the positive roots with respect to this

order, and for every ω in the complex Weil group Ω(T (C), G(C)) set

Λi
ω = ω(λi + g) .

For each Λi
ω there is a discrete series representation π(Λi

ω). We set

Π(ξ) = {π(Λi
ω)|1 ≤ i≤ k, ω ∈ Ω(T (C), G(C))} .

It is a union of the L­indistinguishable classes [11]

Π(ξi) = {π(Λi
ω)|ω ∈ Ω(T (C), G(C))} .

fξ has been so chosen that ∑

π∞∈Π(ξ)

m(π∞) ,

which is well­defined, is equal to (−1)1dN if

d = dimension r0 .

In the notation of [2]

⊕π∞∈Π(ξ)H
i(g, k∞, π∞ ⊗ ξ)

is 0 unless i = q when its dimension is dN , for by the results of those notes

⊕π∞∈Π(ξj)H
i(g, k∞, π∞ ⊗ ξj ′)

is 0 unless j = j′ and i = qwhen its dimension is d. To see this one has to observe, among other

things, that Ω(T (C), G(C)) is isomorphic to Ω(LT 0, LG0), that Ω(LT 0, LM0) is isomorphic to

Ω(T (R), K∞), and that the restriction of

⊕π∞∈Π(ξj)π∞

to the connected component ofG(R) is therefore the direct sumofd irreducible representations,

namely the discrete series representations with the same infinitesimal character as ξ̃j .

If, as occasionally happens ([12], [14]), Π(ξ) consisted of a single element π∞, then each

time that

π = π∞ ⊗ πf
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occurred in the space of automorphic forms it would contribute a subspace to the cohomology

groupHq(S(K), Fξ) overC of dimension dm(πf ). A correspondingL­function should appear

as a factor of the zeta­function. The degree of the factors appearing in its expression as an

Euler product should be

[E: Q]dm(πf ) = m(πf ) dimension r

for almost all p. The L­function should appear in the numerator or denominator according as

q is even or odd. We are led to guess that it is

L(s− q/2, π, r)(−1)qm(πf ) = L(s− 1/2, π, r)m(π∞)m(πf ) .

Occam’s razor and the ordinary Eichler­Shimura theory then suggest (1.2). Unfortunately∏
(ξ) generally consists of several elements.

Wemight still be able toholdonto (1.2) ifwheneverπ∞ andπ
′
∞were twoL­indistinguishable

representations ofG(R) the representations

π = π∞ ⊗ πf and π
′ = π′

∞ ⊗ πf

occurred in the space of automorphic forms with the same multiplicity. We would just have to

choose a representative from each L­indistinguishable class and agree that the product in (1.2)

was to be taken over those π = π∞ ⊗ πf for which π∞ belonged to our set of representatives.

But we would have to search for another definition of the exponent m(π∞), because, as it

stands, different choices of fξ lead to different values for trace π∞(fξ). It does not matter, for

π and π′ do not always occur with the same multiplicity [7]. One may occur while the other

does not. This clearly means that the degrees of the Euler products L(s − q/2, π, r) are then

too large. We must seek Euler products of smaller degree.

L­indistinguishability appears when the sets D(T )of [16] have more than one element.

If, as we may assume, the center of LG0 is connected then we may use the definitions of [16]

to introduce groups H over Q and homomorphisms ψ: LH → LG. Suppose the principle of

functoriality applies and the L­indistinguishable class of π is the image under ψ∗ of that of π
′.

Then

L(s, π, r) = L(s, π′, r ◦ ψ) .

In general r is irreducible but r ◦ ψ is often reducible

r ◦ ψ = ⊕ri .

We must expect that the functions L(s − q/2, π′, ri) will appear in the ultimate, correct form

of (1.2). The definition ofH leads naturally to such a decomposition of r ◦ψ. The constituents
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ri might not be irreducible, but they seem nonetheless to yield the L­functions necessary for

an analysis of Z(s, S(K), Fξ).

Without repeating the definition of the groups H , we recall that each of them is attached

to a triple (T, κ, g1). If Tsc is the Cartan subgroup of the simply connected form of G defined

by T the term κ is a homomorphism of its lattice of coweights X∗(Tsc) into C×. Moreover

g1 allows an identification of X∗(Tsc) with the lattice X
∗(LT 0

sc) of rational characters of the

Cartan subgroup of the L­group LG0
sc and κ can therefore be transported ot a homomorphism

κ′ of ∗(LT 0
sc) into C×. We may extend κ′ to a G(K/Q)­invariant homomorphism

ǫ: X∗(LT 0) → C× .

Since
LT 0 = Hom(X∗(LT 0),C×) ,

ǫ is an element of LT 0 and lies in the center ofψ(LH). The representation r◦ψ is the direct sum

of its restrictions ri to the eigenspaces of r(ǫ), but these may not be irreducible. Since any two

choices of the extension ǫ differ by a central element in LG, these subspaces are well­defined.

We now try to modify (1.2) by including the L(s− q/2, π′, ri) in such a way that at least

the local factors at infinity of the hypothetically equal Euler products, Z(s, S(K), Fξ) on the

left and some combination of the L(s, π′, ri) on the right, are likely to be the same. It seems to

be sufficient to considerH defined by a T for which T (R) is fundamental.

The representation r0 may be regarded as a subrepresentation of the restriction of r to
LG0 ⋊ G(Q/E). It is clear that the eigenspaces of r(ǫ) also decompose r0 into

⊕r0i

and that

ri = Ind(LG, LG0 ⋊ G(Q/E), r0i ) .

To define L(s, π∞, ri) we need only know the restriction of ri to the local associate group at

infinity, LG∞ = LG0 × G(C/R).

Implicit in the definition ofE is an imbeddingQ →֒ C, and henceE is a subfield ofC and

G(C/R) is a subgroup of G(Q/Q). The double cosets

G(C/R)\G(Q/Q)/G(Q/E)

parametrize the infinite places v of E, the coset represented by r defining the valuation

x→ |τ(x)| .
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The decomposition groupGv at v = v(τ) is

G(Q/E) ∩ τ−1G(C/R)τ

and the restriction of ri to
LG∞ is

⊕v Ind(LG∞,
LG0 × gv, r

0
i |τGvτ

−1) = ⊕ri(v) .

Consequently

L(s, π′
∞, ri) =

∏
v
L(s, π′

∞, ri(v)) ,

and we attempt to arrange that the contributions from the L(s− q/2, π′
∞, ri(v)) for a given v

yield the local factor of Z(s, S(K), Fξ) at the same place.

However, our primary interest in this paper is not with equality of the Euler factors at

infinity, but with equality at almost all finite places, and we are only using the infinite places as

a guide to the correct statement. The one place given by the imbeddingE ⊆ Q →֒ C provided

by the definition of E will serve.

The weights of r0 on LT 0 are the elements of

{ωµ|ω ∈ Ω(LT 0, LG0)}

and the differences of any two µ1, µ2 of these weights is an integral linear combination of roots

of LT 0. Thus

µ1(ǫ)/µ2(ǫ) = κ′(µ1 − µ2) = ±1 ,

because T (R) is fundamental and κ′ therefore of order one or two. Thus there are one or two

r0i and, at the cost of adding a second of dimension zero, we suppose there are two, r
0
1 and r

0
2 .

We are also going to decompose the set Π(ξ) into two subsets Π1(ξ) and Π2(ξ), with r0i and

Πi(ξ)matched. We first see how to distinguish between r01 and r
0
2 .

The L­indistinguishable class Π(ξj) is equal to Πϕj
, where

ϕj : WC/R → LG .

The notation is that of [11]. Suppose ϕj = ψ ◦ ϕ′
j where

ϕ′
j : WC/R → LH

and that π′
∞ lies in Πϕ′

j
. Then

L(s, r ◦ ϕj) = L(s, π∞, r) = L(s, π′
∞, r ◦ ψ) = L(s, r ◦ ψ ◦ ϕ′

j) .



Zeta­functions of some simple Shimura varieties 10

If T (R) is fundamental we may suppose [11] that ϕ′
j takes C

× ⊆ WC/R to
LT 0 and then

ϕ′
j(z) = zΛ′

zσΛ′

, z ∈ C× .

Here Λ′ is one of the Λj
ω , at least if we use the identification ofX

∗(T )withX∗(
LT 0) provided

by g1, and σ is the non­trivial element of G(C/R). Λ′ is non­singular and there is exactly one

weight µ′ of r0 which lies in the closure of the Weil chamber opposite to that containing Λ′.

Since any other weight µ′′ is of the form ωµ′,

〈Λ′, µ′′〉 = 〈Λ′, µ′′ − µ′〉 + 〈Λ′, µ′〉 > 〈Λ′, µ′〉

if µ′′ 6= µ′. Given π′
∞ we take r

0
1 to be the representation with µ

′ as a weight, and r02 to be the

other. Observe that the labeling depends on the L­indistinguishability class of π′
∞, and hence

on the class in Φ(H) represented by ϕ′
j , but not directly on Λ′.

We now decompose
∏

(ξ) into two subsets
∏1

(ξ),
∏2

(ξ), matching
∏i

(ξ)with ri. Since

T (R) is taken to be fundamental µ is defined by a coweight

µ∨ = h′0

of T . Here h′0 is conjugate under G(R) to h0, and if we use g1 as in [16] to introduce an

isomorphism

X∗(T ) ∼−→X∗(LT 0)

then µ lies in the orbit of µ∨ under the Weyl group. For each j let Λj be an element of

{Λj
ω|ω ∈ Ω(T (C), G(C))} which is such that it and µ∨ lie in opposing closed Weyl chambers.

Since any two choices of Λj lie in the same orbit under Ω(T (R), G(R)), the representation

π(Λj) = πj(µ∨) is well­defined and independent of the choice of Λj . Every element w of the

normalizer of T (C) inG(C) lies in A(T/R) [21] and

w → {aτ = τ(w)w−1|τ ∈ G(C/R)}

yields an injection

Ω(T (C), G(C))/Ω(T (R), G(R)) →֒ E(T/R) .

The image is D(T/R), but that does not matter. If ω is represented by w we put π(ω−1Λj)

in
∏1

(ξ) or in
∏2

(ξ) according as κ({aτ}) is 1 or −1. The assignment does depend on the

choice of Λj , but that may be inevitable. I observe that it is not difficult to see [21] that under

the isomorphism

H−1(G(C/R), X∗(T )) ∼−→H1(G(C/R), T (C))
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the cocycle {aτ} corresponds to ωµ
∨ − µ∨.

One point on which we have insisted when assigning the elements of
∏

(ξ) to the two

sets
∏1

(ξ) and
∏2

(ξ) is that π(Λj) lie in
∏1

(ξ) for each j. In order to justify this we recall the

way in which the complex structure on S(K) is introduced as well as the form suggested by

Serre [20] for the local factors Zv(s, S(K), Fξ) in the case of trivial ξ.

IfK ′
∞ is the centralizer of h

′
0 then

G(R)/K ′
∞ ≃ G(R)/K∞

and the complex structure defining that on S(K) is obtained from an imbedding

G(R)/K ′
∞ →֒ G(C)/P (C)

if P is the parabolic subgroup whose Lie algebra is spanned by thoseX for which

µ∨(z)X ≡ X or µ∨(z)X = z−1X

for z ∈ GL(1).

We choose the order on the roots of T with respect to which Λj lies in the positive Weyl

chamber. SupposeU is a subspace ofL2(G(Q)\G(A)/K) transforming underG(R) according

to π(Λj). It is explained in [12] (cf. also [2]) how to pass from an element of

HomK′
∞

(Λqg/k′∞, U ⊗ ξ) = ⊕jHomK′
∞

(Λqg/k′∞, U ⊗ ξj)Nj

to a q­form on S(K) with values in Fξ . Here Nj is the multiplicity with which ξ
j occurs in ξ.

It is easier to work with

HomK′
∞

(Λqg/k′∞ ⊗ ξ̃j, U) .

Clearly

g/k′∞ = p+ ⊕ p−

where p+ is spanned by the image of the root vectors associated to noncompact positive roots.

The elements of p− yield holomorphic tangent vectors; those of p+ yield anti­holomorphic

tangent vectors. We have

HomK′
∞

(Λqp+ ⊗ ξ̃j , U) ⊆ HomK′
∞

(Λqg/k′∞ ⊗ ξ̃j, U) ,

and it is the elements of the first space which yield forms of Hodge type (q, 0).

Let ρP be one­half the sum of the non­compact positive roots and ρK one­half the sum

of the compact positive roots. The space Λqp+ is one­dimensional and transforms under K ′
∞
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according to the weight 2ρP . The highest weight of ξ̃
j is Λj − ρP − ρK and that of Λ

qp+ ⊗ ξ̃j

is therefore Λj + ρP − ρK . However, it is a fundamental fact [5] that the restriction of π(Λj)

toK ′
∞ has an irreducible component with highest weight Λ

j + ρP − ρK . Thus

Hom(Λqp+ ⊗ ξ̃j, U) 6= 0

and U or π(Λj) contributes cohomology of type (0, q). No other element of
∏

(ξj) does so.

On the other hand, we have written the restriction of ϕ′
j to C× ⊆WC/R as

z → zΛ′

zσΛ′

and we have taken µ′ and Λ′ to lie in opposingWeyl chambers. If ξ is trivial and g′ is one­half

the sum of the roots α for which 〈Λ′, α〉 < 0, then Λ′ = −g′ and

µ′(ϕ′
j(z)) = z−〈g

′,µ′〉z−〈σg′,µ′〉 = z2〈g′,µ′〉(zz)−〈g
′,µ′〉 .

If q is the dimension of S(K) then

〈g′, µ′〉 = q/2 .

[ Added in proof (November, 1979). It appears that the local zeta­functions at p calculated
in this paper are those associated to ξ̃ andnot to ξ. The correct definitionswould entail replacing

r by its contragredient r̃ and r(v) by

r̃(v) = r̃1(v) + r̃2(v) ,

if v is the place of E defined by E ⊆ Q ⊆ C. If α is the composite of

WC/R →WR/R = R×

with the absolute value, then

L(s− q/2, π′
∞, r̃(v) ◦ ϕ) = L(s, α−q/2 ⊗ (r̃(v) ◦ ϕj)) .

The one­dimensional subspace corresponding to the weight−µ′ transforms under the restric­

tion of α−q/2 ⊗ (r̂(v) ◦ ϕj)) to C×, ξ being trivial, according to the character

z−2〈g′,µ′〉 = z−1 ]

We have been led to our labeling by the principle that the π(Λj), as the representations

giving rise to forms of type (0, q), should be matched with the weight−µ′, which yields, when

ξ is trivial, the character z → z−q . One is led to this principle by a suggestion of Serre [20].
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If S is a variety over the number field E the factor at infinity of its zeta­function can

of course be expressed in terms of Γ­functions and is a product over the infinite places of E

of local zeta­functions. For each place v we take a corresponding imbedding E →֒ C and

introduce the set S(C) of complex points on

S ⊗E C .

The local zeta­function at the place v may be expressed as

∏
i L(s, ρi)

(−1)i

where ρi is a representation of the Weil groupWC/Ev
on the cohomology group

Hi(S(C)) = ⊕p+q=iH
p,q(S(C)) .

Here, in order to conform to custom, q loses temporarily its significance as the dimension of

S(K). The restriction of ρi to C× is defined by demanding that ρi(z) act on H
p,q(S(C)) as

z−p z−q . If Ev is complex there is nothing more to be said. If it is real we have to define

ρi(w) if w is an element of WC/Ev
which maps to the complex conjugation in G(C/Ev) and

has square −1. When Ev is real, complex conjugation defines an involution ι of S(C) and an

associated map ι∗ on cohomology. We let ρi(w) act onHp,q(S(C)) as (−1)pι∗.

Now we must bring these puzzling divagations to bear upon some simple examples.

Suppose F is a totally real field and G̃ is the multiplicative group of a quaternion algebra D

over F . The split algebra is excluded. Let A be a connected subgroup of G1 = ResF/QGL(1)

which is defined over Q and letG be the inverse image ofA in G̃1 = ResF/QG̃with respect to

the norm.

The group LG is a quotient of

(∏
G(Q/F )\G(Q/Q)

GL(2,C)

)
× G(K/Q) = LG0 × G(K/Q)

by a subgroup of the center of LG0, namely by the set of (zσ) for which

∏
G(K/F )\G(K/Q)

λσ(zσ) = 1, (λσ) ∈ Y∗,

with Y∗ defined as in §6 of [7].
LT 0 is the image of the diagonal matrices andX∗(LT 0) is

{(aσ, bσ)|aσ, bσ ∈ Z , (λσ) ∈ Y∗ if λσ = aσ + bσ} .
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We have supposed that F ⊆ Q ⊆ C. Then µ will be (µσ) and (µσ) will be 0 unless the

imbedding x → σ(x) of F in C splitsD, when it is (1, 0). Observe that (λσ) with λσ equal to

1 if the quaternion algebra splits at σ and 0 otherwise must belong to Y∗. This is to be treated

as a condition on A, because µ is determined byD alone.

For suchaGandµwewant topresent a correct andverifiable expression forZ(s, S(K), Fξ)

as a product of L­functions associated to automorphic forms. Two representations π = ⊗πw

and π′ = ⊗π′
w will be said to be L­indistinguishable if πw and π

′
w are L­indistinguishable for

all w and equivalent for almost all w. Our expression for Z(s, S(K), Fξ) will be given as a

product over L­indistinguishable classes. We must describe the contribution from each class.

Suppose that m(π′), the multiplicity with which π′ occurs in the space of automor­

phic forms, is constant within the L­indistinguishability class Π of π. If Πw is the L­

indistinguishability class of πw then

̟ = ⊗w (⊕Πw
π′

w) = ⊗w̟w = ̟∞ ⊗̟f

is a representation which contains each π′ in Π exactly once. We set

m (Π∞) =
∑

π∞∈Π∞

trace π∞(fξ)

provided

π∞(z) = ν−1(z)I, z ∈ Z(R),

for one, and hence all elements of Π∞. Otherwise m(Π∞) is to be 0. m(Π∞) is well­defined,

and is easily seen to be 0, or−1when ξ is absolutely irreducible. Letm(Πf ) be the multiplicity

withwhich the trivial representation ofK occurs in̟f ; and letm(Π) bem(π). The contribution

of the class Π to the zeta­function is

L(s− q/2, π, r)m(Π)m(Π∞)m(Πf ) .

If m(π′) is not constant within Π there is a Cartan subgroup T ofG with

(1.3) [E(T/A),E(T/F )] = 2

and a character θ of T (Q)\T (A) such that Π = Π(θ) [7]. Let γ → γ be the automorphism of

T (A) deduced from conjugation on the corresponding quadratic field, and define θ̄ by

θ̄(γ) = θ(γ) .
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We suppose not only that T satisfies (1.3) but also that T (R) is fundamental and that θ 6= θ̄

for otherwise m(Π∞) = 0 and the L­indistinguishability class Π does not contribute to the

zeta­function.

We introduce S0 ⊆ S as in §8 of [7], or as in [22]. Then S0\S is of order two. Let ǫ

represent the non­trivial element. As we know, ǫ is associated to

κ′: X∗(Tsc) → C× .

Let 〈ǫ, π∞〉 be the pairing of [7]. It is easily seen that there is a constant η = ±1 such that

(−1)i−1 = η 〈ǫ, π∞〉 , π∞ ∈
i∏
(ξ) .

The reason can be briefly given. In SL(2) over R we take

T =

{(
a b

−b a

)∣∣∣∣ a
2 + b2 = 1

}
.

The non­trivial element of the normalizer of T is represented by

(
i 0
0 −i

)

in SL(2,C) and by (
1 0
0 −1

)

inGL(2,R). The cocycle associated to the first matrix is

a1 =

(
1 0
0 1

)
, aσ =

(
−1 0

0 −1

)
,

and the determinant of the second is −1. Thus 〈ǫ, π∞〉 is constant on each Πi
∞.

Πf is of course the set of πf for which π∞ ⊗ πf lies in Π for some π∞. If πf = ⊗πw set

〈ǫ, πf 〉 =
∏

w

〈ǫ, πw〉 .

Let

Πi
f = {πf ∈ Πf | 〈ǫ, π∞〉 〈ǫ, πf 〉 = 1 for π∞ ∈ Πi

∞}
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and let mi(Πf ) be the multiplicity with which the trivial representation ofK occurs in

̟i
f = ⊕Πf∈Πi

f
πf .

Letm′(θ) be 0 unlessΠ(θ∞) is contained in aΠ(ξj), when it is to be (−1)qN j . Recall that

N j is the multiplicitywith which ξj occurs in ξ. On the set of π ∈ Π for whichm(π) > 0,m(π)

is constant. Denote this constant value by m(Π). When m(Π) is not constant on all of Π the

contribution of Π = Π(θ) to the zeta­function Z(s, S(K), Fξ) is

(1.4)
∏

π
L(s− q/2, θ, ri)

m′(θ∞)mi(Πf )m(Π) .

We should recall that although the collection {ri} is the same for all θ∞ the labeling may vary.

Moreover

m′(θ∞) = m(Π∞) .

If im(π) is not constant on Π then the stable multiplicity n(π), which we also write as

n(Π), introduced in [7] ism(Π)/2 and (1.4) may be written as

L(s− q/2, π, r)n(Π)m(Π∞)m(Πf )

{
L(s− q/2, θ, r1)

L(s− q/2, θ, r2)

}(m(Π∞)/2)(m1(Πf )−m2(Πf ))m(Π)

if

m(Πf ) = m1(Πf ) + m2(Πf )

If, perchance, there is only one ri wemust as above introduce a second of dimension 0 in order

to employ this notation. Whenm(π) is constant on Πwe define

m1(Πf ) − m2(Π2) = 0 .

If m(π) is constant on Π then m(Π) = n(Π). Thus we are asserting that the zeta­function

Z(s, S(K), Fξ) can be presented as the product of a stable part

(1.5)
∏

Π
L(s− q/2, π, r)n(Π)n(Π∞)m(Πf )

and a labile part. The labile part is itself a product over the stable conjugacy classes of Cartan

subgroups T with [E(T/A): Im E(T/F )] = 2. We want to represent the labile contribution

from T as a product over characters of T (Q)\T (A), but wemust rememvber that two different

θ̄ can yield the same L­indistinguishable class Π(θ). Since m(Π∞) will be 0 if θ is not of type
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(a) in the sense of [7] and sincem1(Πf )−m2(Πf )will be 0 if θv = θ̄v for some finite v, we may

apply Lemmas 6.7 and 7.1 of [7]. They allow us to write, in the notation of that paper,

m(Π) =
e(π)

2
µ(T ) .

Since e(π) is hte number of different θ yielding the same Π(θ), the contribution from T is

(1.6) Πθ

(
L(s− q/2, θ, r1)

L(s− 1/2, θ, r2)

)(m(Π∞)/4)(m1(Πf (θ))−m2(Πf (θ)))µ(T )

To prove the assertion one proves, in particular, that if we substitute Lp(s− q/2, π, r) for

L(s− q/2, π, r) in (1.5) and Lp(s− q/2, θ, ri) for L(s− q/2, θ, ri) in (1.6) and take the product

with the same exponents then the result is Zp(s, S(K), Fξ). We shall takeK sufficiently small,

and prove that this is so for almost all p. The restriction onK is ultimately of no consequence.

Before beginning I take this opportunity to mention that while studying the problems

arising from Shimura varieties I have frequently been instructed by Deligne’s conversation

and correspondence., His comments on the structure of the set of geometric points over F p on

a Shimura variety associated to a quaternion algebra over a real quadratic fieldwere invaluable.

2. The trace formula.

The procedure to be followed is that of [12] and [14]. We apply the trace formula to

calculate the coefficients of the logarithms of the products in (1.5) and (1.6), and then compare

with the coefficients of the logarithm of the zeta­function, which are obtained from the explicit

description of the sets S(κ̄p).

We first turn our attention to the problem of expressing the logarithms of (1.5) and (1.6)

in a form suitable for the final comparison. The expressions both are defined for all ξ, whether

defined over Q or not. Since they are multiplicative in ξ, we may as well suppose that ξ is

absolutely reducible, for that will simplify some of our considerations. The logarithm of (1.6)

demands themostmodification, andwe beginwith it. We are really interested in the logarithm

of the product of the local L­functions at p, and it is

(2.1) µ(T )
∑

θ

m(
∏

∞(θ))

4

(
m1(Πf (θ)) − m2(Πf (θ))

)
× log Lp(s− q/2, θ, r1 − r2) .

The first step in the transformation of this expression leads to a clumsy, intermediate result,

whichwewill be able to put in a useful form only after applying the trace formula to the group

T .
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In its role as carrier of θ, T is appearing as one of the groups H of [16]. This means in

particular that the element g1 of that note, which allows us to identifyX
∗(T ) with X∗(

LT 0),

is fixed. Moreover it is fixed in a manner consonant with the remarks at the end of that paper.

Then, as in the discussion at the end of §6 of [7], the given g1 leads to

ψ: LT → LG .

The map ψ was denoted ξ in [16].

The following lemma has been implicit in the earlier discussion, and may seem to be a

matter of definition, but so far as I can see it needs a proof.

Lemma 2.1. Suppose ϕ′: WC/R → LT , ϕ is ψ ◦ ϕ′, and θ∞ ∈ Πϕ′ . Then Πϕ′ = {θ∞} and

Πϕ = Π(θ∞) .

ThatΠϕ′ consists of the single element θ∞ does indeed follow from the definitions of [11],

which show in addition that is enough to verify the equality Πϕ = Π(θ∞) when T is not split

and G = GL(2). In this case, one must compare the definitions of [5] and [11].

In general the explicit description ofLG in [7] givesLT 0 as a quotient of the groupmatrices

(
α1 0
0 β1

)
× . . .×

(
αn 0
0 βn

)
, αi, βi ∈ C× .

The co­weights are given by n pairs of integers, (ai, bi), and the co­weight is positive if and

only if ai ≥ bi for all i.

Taking T to be non­split and G to be GL(2), we let

ϕ′: z →

(
za zb 0

0 zb za

)
, z ∈ C× .

It is easily verified that the class of ϕ′ is determined by its restriction to C×. Let γ1 and γ2 be

the co­weights (1, 0) and (0, 1) of LT 0. They are also weights of T . The definition of [11] gives

θ∞: t→ γ1(t)
aγ1(t)

b, t ∈ T (R),

as the unique element of Πϕ′ . Note that γ1(t) = γ2(t)when t ∈ T (R).

Πϕ also consists of a single element. Ifa = b thenϕ factors throughWC/R →WR/R → R×

and, in terms of R×,

ϕ: x→

(
|x|a 0
0 (sgnx)|x|a

)
.
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The unique element of Πϕ is the representation of the principal series corresponding to the

two characters ofR× appearing here. According to the remark preceding Corollary 5.14 of [6],

this is also π(θ∞).

If a 6= b then Πϕ consists of a representation π in the discrete series. It does not change if

a and b are interchanged. It will be simpler to be explicit if we assume a > b. According to the

definitions of §3 of [11], the character of π on T (R), viewed now as a subset ofG(R), is

−
{γ1(t)

a−1/2γ1(t)
b+1/2 − γ2(t)

a−1/2γ2(t)
b+1/2γ2(t)γ

−1
1 (t)}

1 − γ2(t)γ
−1
2 (t)

.

This may be written as

−
γ2(t)

|γ2(t)|

∑
ω∈Ω(T (C),G(C)) sgnωθ0

∞(ω(t))

1 − γ2(t)γ
−1
1 (t)

(2.2)

It follows from Corollary 5.14 of [6] that if µ1 and µ2 are the two characters ofR
× defined

by

µ1(x) = |x|a, µ2(x) = |x|b(sgnx)a−b+1 ,

then the character of π(θ∞) on T (R) is the negative of the character of the finite­dimensional

representation π(µ1, π2). Lemma 5.7 of [6] allows one to compute easily the character of

π(µ1, µ2) on T (R), and it is seen to equal the negative of (2.2).

For the purposes of the following corollary and lemma we choose an order on roots of

T with respect to which µ∨ lies in the closed negative Weyl chamber. Otherwise we use

the customary parameters to represent roots and weights. For example, let ζ be the weight,

dominant with respect to this order, represented by

ζ = (1, 0) × . . .× (1, 0) .

Let λ be the highest weight of ξ and set

θ0
∞(t) = λ(t)(ζ(t)/|ζ(t)|) .

Corollary 2.2. Π(θ∞) is Π(ξ) if and only if θ∞ is conjugate under Ω(T (C), G(C)) to θ0
∞.

Once again it is enough to verify the assertion for G = GL(2). Then
∏

(ξ) consists of a

single element π and on T (R) the character of π is

t→ −trace ξ̃(t) .
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If λ = (a, b), a > b, this is

−
γ1(t)

aγ2(t)
b − γ1(t)

bγ2(t)
aγ2(t)γ

−1
1 (t)

1 − γ2(t)γ
−1
1 (t)

.

Since γ1(t) = γ2(t), this is equal to

−
γ2(t)

|γ2(t)|

∑
ω sgnωθ0

∞(ω(t))

1 − γ2(t)γ
−1
1 (t)

.

Comparing this with (2.2), we obtain the corollary.

It will be useful to have the following lemma on record.

Lemma 2.3. Let Λ ∈ {Λω} be λ + g, wehre g is one-half the sum of the positive roots. If

ϕ′: WC/R → LT and its restriction to C× is

z → zΛ zσΛ

then
∏

ϕ′ = {θ0
∞} .

Wemay write an element of T (R) as t = eH with σ(H) = H . The unique element of Πϕ′

takes t to

eΛ(H) = eλ(H)eg(H) .

Since

λ(t) = eλ(H)

we need only verify that

eg(H) = ζ(t)/|ζ(t)| .

It is enough to do this when G = GL(2). If

γ1(H) = z , γ2(H) = z

then

γ1(t) = ez , γ2(t) = ez

and

eg(H) = ez/2−z/2 = ez/|ez| = ζ(t)/|ζ(t)| .

We know that T is associated to a quadratic extension L of F . ifL is not totally imaginary

then m(Π(θ∞)) is 0 for all characters of T (Q)\T (A); hence the product (1.6) is equal to 1, and

of no interest. Suppose that L is totally imaginary, and let κ be the associated character of IF .
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It is also a character of Z(A) and Z(R). We set m(θ∞) equal to 0 unless the restriction of θ∞
to Z(R) is

z → ν−1(z)κ(z) ,

and then we take

m(θ∞) =

∫

Z(R)/T (R)

θ∞(t)fT
ξ (t)dt

with

fT
ξ (t) = (−1)q

∑
Ω(T (C),G(C)) sgnωθ0

∞(ω(t−1))

measZ(R)\T (R)
.

Lemma 2.4. The number m(θ∞) is 0 if and only if m(Π(θ∞)) is 0, and m(Π(θ∞)) is not 0

if and only if Π(θ∞) is Π(ξ). If θ∞(t) ≡ θ0
∞(ω(t)) then

m(θ∞) = sgnωm(Π(θ∞)) .

The first assertion is a consequence of the Weyl integration formula, and the explicit

formula for the restriction of ∑

π∈
Q

(θ∞)

χπ

to T (R). The same formulae also show that m(Π(ξ)) = (−1)q . It is clear that m(θ∞) has been

so defined that

m(θ∞) = (−1)qsgnω

when

θ∞(t) ≡ θ0
∞(ω(t)) .

If m(Π(θ∞)) is 0 the corresponding factor of (1.6) is 1, and there is nothing to be said.

Suppose therefore that Π(θ∞) = Π(ξ). Then Πi
∞ =

∏i
(ξ) may be introduced. We have

agreed that Π1
∞ will contain the representation π(Λ1). Let φ be the characteristic function of

K ⊆ G(Af ) divided by the measure of ZK\K with

ZK = Z(Af ) ∩K .

We are supposing that

[E(T/A)ImE(T/Q)] = 2 ,
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and we regard κ as the non­trivial character of this quotient. Following §2 of [7], we set

ΦT/κ(t, φ) equal to

{∏
v

(
λ(Lv/Fv, ψv)κv

( t1 − t2
t01 − t02

) |(t1 − t2)
2|v1/2

|t1t2|
1/2
v

)}
×

{ ∑

C(T/Af )

κ(δ)Φδ(t, φ)

}
.

Here the product is over all finite places of F . If δ is represented by h in A(T/Af ) =∏
w A(T/Aw), the product now being taken over all finite places of Q, then

Φδ(t, φ) =

∫

T h(Af )G\(Af )

φ(g−1thg)dg .

It is a consequence of the definitions and principles of [7] that if π∞ ∈ Π1
∞ then

〈ǫ, π∞〉 {m1(Πf (θ)) − m2(Πf (θ))}

is equal to ∫

ZK\T (Af )

θf (t)ΦT/κ(t, φ)dt =
〈
θf ,Φ

T/κ( · , φ)
〉
.

It should not be forgotten that the pairing 〈ǫ, π∞〉 depends on θ∞. The representations r1
and r2 do also. In order to have a pair of representations that do not depend on θ∞, we let r

+

be that ri for which Xi contains µ
∨, and r− the other. If θ∞ = θ0

∞, then Lemma 2.3 implies

that

r1 − r2 = r+ − r− .

In general if θ∞(t) = θ0
∞(ω−1(t)) then {θ∞} = Πϕ′ if ϕ′ restricted to C× is

z → zωΛ zσωΛ .

Since

〈ωΛ, ωµ∨〉 = 〈Λ, µ∨〉 ,

the labeling must be such that r01 contains the weight ωµ
∨. Thus

r1 − r2 = κ′(ωµ∨ − µ∨)(r+ − r−) .

In order to stress its dependence on θ∞, rather than on ω, we denote the coefficient κ
′(ωµ−µ)

appearing here by η(θ∞).
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Lemma 2.5. If we take θ∞(t) = θ0
∞(ω(t)) then

α = 〈ǫ, π∞〉 η(θ∞)sgnω ,

with π∞ ∈
∏1

∞, is independent of ω.

Before verifying the lemma, we observe that the pairing 〈ǫ, π∞〉 depends not only on θ∞
but also on the choice of an additive character and a regular element in T (R). Eventually we

will be forced to recognize this, but not yet.

To prove the lemma we show that α does not change if ω is replaced by ω′ω, where ω′ is

the reflection defined by a simple root. For each real place of F there is one such reflection.

a) If the division algebra definingG is not split at the place then, according to the defini­

tions of [7], replacing ω by ω′ω changes the sign of 〈ǫ, π∞〉. It does not affect η(θ∞).

b) If the division algebra splits at the place then 〈ǫ, π∞〉 remains the same but η(θ∞)

changes sign.

Putting all these lemmas together, we conclude that the sum (2.1) is equal to

(2.3)
1

4
αµ(T )

∑

θ

m(θ∞)
〈
θf ,Φ

T/κ( · , φ)
〉

log Lp(s− q/2, θ, r+ − r−) .

The sum here is taken over those θ for which

θ(z) = ν−1(z)κ(z), z ∈ Z(R),

θ(z) = κ(z), z ∈ ZK .

If we are to put (2.3) in a form to which the trace formula can be applied, we must view

the Hecke algebra in the manner of [9]. We are now going to assume thatK = KpKp, where

Kp ⊆ G(Ap
f ) andKp is a special maximal compact ofG(Ap). According to §2 of [7]

ΦT/κ(φ) = 0

unless L is unramified at every place of F dividing p. This we may as well assume. We also

assume that F is itself unramified over p. Then

〈
θf ,Φ

T/κ( · , φ)
〉

= 0
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unless θp, the restriction of θ to T (Qp), is unramified. To such a θp is associated a conjugacy

class {t(θp)} in
LT , and

log Lp(s− q/2, θ, r+ − r−) =
∞∑

j=1

(|̟j|s−q/2/j)
{
trace r+(tj(θp)) − trace r−(tj(θp))

}

if̟ is a uniformizing parameter forQp. In addition there is an element f
j
p of the Hecke algebra

of T (Qp) such that

|̟j|−q/2
{
trace r+(tj(θp)) − trace r−(tj(θp))

}
=

∫

ZpT\(Q
p
)

θp(t)f
j
p(t)dt

for all unramified θp. Here

Zp = Z(Qp) ∩Kp .

If t = (tp, tp) ∈ T (Af ) = T (Ap
f )T (Qp), we write

φ(t) = φp(tp)φp(tp) ,

where, for example, φp is the characteristic function ofKp divided by the measure of Zp\Kp.

We may also write

ΦT/κ(t, φ) = ΦT/κ(tp, φp)ΦT/κ(tp, φp) .

For brevity we denote the second factor by ϕp(tp). It is+1 times the characteristic function of

the maximal compact Up of T (Qp) divided by the measure of Zp\Up.

Applying the trace formula on Z(R)ZKT (Q)\T (A) to the function

t = (t∞, t
p, tp) → fT

ξ (t∞)φT/κ(tp, φp)ϕ∗
pf

j
p(tp) ,

we see that the coefficient of |̟j|s/j in the expansion of (2.3) is

(2.4)
αµ(T )

2
meas(Z(R)ZKT (Q)\T (A))

∑
fT

ξ (t)ΦT/κ(t, φp)ϕ∗
pf

j
p(t) .

The sum is over T (Q) ∩ Z(R)ZK\T (Q).

The first thing to observe is that the term corresponding to a t in Z(Q) is 0 because fT
ξ

vanishes on Z(R). If t is not central we write ΦT/κ(T, φp) as the product of

Φ
T/κ
0 (t, φp) =

∑

E(Ap

f
)

κ(δ)Φδ(t, φ)

and
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∏
λ(Lv/Fv, φv)κv

(
t1 − t2
t01 − t02

)
|(t1 − t2)

2|
1/2
v

|t1t2|
1/2
v

.

The product is over all finite places of F which do not divide p. Using various product

formulae, we may replace it by the inverse of the same product taken over the infinite primes

and the primes dividing p.

The expression

(2.5) α

{∏
λ(Lv/Fv, ψv)κv

(
t1 − t2
t01 − t02

)
|(t1 − t2)

2|
1/2
v

|t1t2|
1/2
v

}−1

fT
ξ (t) ,

in which the product is taken over the infinite places, depends on t and on µ∨, but it does not

depend on the choice of t0 or of the ψv .

Lemma 2.6. If t lies in T (R) and is regular then the expression (2.5) is equal to

trace ξ(t)

meas Z(R)\T (R)
.

It is clear that we could define the expression (2.5) for any group lying between

∏
v
Sv(R) ,

and

{(gv) ∈
∏

v
Gv(R)|

∏
v
Nm gv > 0} .

Here the product is over the infinite places of F . Gv(R) is GL(2,R) if the quaternion algebra

definingG splits at v and themultiplicative group of a quaternion algebra of it does not. Sv(R)

consists of the elements of norm 1 inGv(R). It is certainly enough to prove the lemma for the

largest of these groups. Since the group

{
(gv) ∈

∏
v
Gv(R)|det gv > 0 for all v

}

contains T (R) and supports the character of ψ∞, we may work with it instead. This yields a

situation that factors, and we may finally suppose that there is only one place.

We take the additive character ψv to be x→ e2πix and define t0 by

t01 = γ1(t
0) = i .
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We choose γ1, γ2 so that γ1 − γ2 and µ
∨ lie in opposite Weyl chambers, and set

t1 = γ1(t) = reiθ .

According to [10],

λ(Ev/Fv, ψv) = i .

Thus

λ(Ev/Fv, ψv)κ

(
t1 − t2
t01 − t02

)
|(t1 − t2)

2|
1/2
v

|t1t2|1/2
= eiθ − e−tθ .

IfD does not split and ω is the non­trivial element of the Weyl group,

θ0
∞(t) − θ0

∞(ω(t))

eiθ − e−iθ
=
λ(t)eiθ − λ(ω(t))e−iθ

eiθ − e−iθ
= trace π∞(t) .

Consequently the value of 〈ǫ, π∞〉, defined with respect to θ0
∞, is −1. Since η(θ∞) is clearly

also 1, the value of α is 1. Since π∞ is ξ̃ in this case, the assertion of the lemma now follows

from the definition of fT
ξ .

Suppose D splits at v. There is a unique element π∞ in Π1(ξ) and it contains a lowest

weight of T (R)with respect to the order making γ1−γ2 positive. The character of π∞ is easily

calculated and is found to be

−θ0
∞(t)/(eiθ − e−iθ) .

If π̃∞ is the corresponding element of the holomorphic discrete series, then

χπ∞
(t) − χeπ∞

(t) = −
θ0
∞(t) + θ0

∞(ω(t))

eiθ − e−iθ
.

As a consequence

〈ǫ, π∞〉 = 1 .

Since η(θ0
∞) = 1, the number α is −1. Once again, the assertion of the lemma follows from

the definition of fT
ξ .

The expression

(2.6)

{∏
v|p
λ(Lv/Fv, ψv)κv

(
t1 − t2
t01 − t02

)
|(t1 − t2)

2|
1/2
v

|t1t2|
1/2
v

}−1

ϕ∗
pf

j
p(t)

depends on the regular element t in T (Qp) and on the order on the roots of T provided by the

identification ofX∗(T ) andX∗(LT 0). It is easily seen that r0, the restriction to LT 0×G(Q/E)
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of the representation of LG0 × G(Q)/E) that appeared in the construction of r, is the direct

sum of two representations r+0 and r
−
0 such that

r+ = Ind(LT, LT 0 × G(Q/E), r+0 )

r− = Ind(LT, LT 0 × G(Q/E), r−0 ) .

The restriction of r+ or r− to the local associate group LTp = LT 0 × G(Qp/Qp) is therefore

the direct sum of induced representations parametrized by the double coset space

G(Q/E)\G(Q/Q)/G(Qp/Qp) .

We had fixed E ⊆ Q ⊆ C and we have now fixed Q → Qp as well. This double coset space

also indexes the primes p ofE dividing p, the coset containing σ yielding the valuation defined

by the imbedding x→ σ−1(x) of E in Qp. We write

r+ = ⊕r+p r− = ⊕r−p

and define f j
p in the Hecke algebra by

|̟j|−q/2{trace r+p (tj(θp)) − trace r−p (tj(θp))} =

∫

Zp/T (Q
p
)

θp(t)f
j
p(t)dt .

Then

f j
p =

∑
p
f j

p .

The representation of f j
p as a sum yields a representation of (2.6) as a sum, the terms being

obtained by replacing f j
p with f

j
p . Although we should consider each of them, there is no loss

of generality in fixing our attention on the prime p defined by the imbedding E → Q → Qp.

The groupG(F ) is a subgroup of G̃1(F ), if G̃1 = ResF/QGL(2), and LG0 is a quotient of
LG̃0

1. Let T̃1 be the centralizer of T in G̃1, and then
LT 0 is a quotient of LT̃ 0

1 . If Ũp and Up are

the maximal compact subgroups of T̃1(Qp) and of T (Qp)wemay define an imbedding f → f ′

of the Hecke algebraHp(T ) of T (Qp) intoHp(T̃1). The value of f
′ at t is 0 unless t = suwith

u ∈ Ũp and s ∈ T (Qp) and then

f ′(t) =
measUp

meas Ũp

f(s) .
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If we take LT and LT̃1 to be
LT 0 × G(Qun

p /Qp) and
LT̃ 0

1 × GQun
p /(Qp), then Hp(T ) and

Hp(T̃1)may be regarded as algebras of funcitons on
LT 0 × Φp and

LT̃ 0
1 × Φp, with Φp being

the Frobenius. The map f → f ′ may also be obtained by pulling back functions by means of

LT̃ 0
1 × Φp → LT 0 × Φp .

The representations r+p and r
−
p may be lifted to

LT , and it will be advantageous for us to regard

f j
p as an element ofHp(T̃1).

We have supposed that the totally real field used to defineG is imbedded inQ and hence

in C and Qp. The set

Q = G(Q/F )\G(Q/Q)

parametrizes the imbeddings of F in R ⊆ C and in Qp. We represent it as a set of crosses

and circles, the crosses denoting the infinite places at which the quaternion algebra definingG

splits.

©× . . .×© . . .×
We decompose the set into orbits under Φp, and suppose that the action of Φp on each orbit is

by a cyclic shift to the right

× . . .©︸ ︷︷ ︸
Qv1

©× . . .×︸ ︷︷ ︸
Qv2

. . .

Let nv be the number of elements in the v
th orbit. Then

∑
nv = n = [F : Q] .

We letmv be the number of points in the v
th orbit which are marked by a cross. The orbits also

parametrize the places of F dividing ρ, and so we may label an orbit by the place it defines.

That is why we have chosen the symbol v.

Over Qp

T̃1 ≃
∏

v|p

Tv

with

Tv(Qp) = L×
v

if

Lv = L⊗F Fv .

ThusHp(T̃1) ≃ ⊗vHp(Tv).
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Since t = t(θp) ∈
LT 0 × Φp and r

+
p and r

−
p are induced,

trace r+p (tj) − trace r−p (tj) = 0

if j is not divisible by k = [Ep : Qp]. Consequently f
j
p is then to be 0. Let t = a × Φp with

a ∈ LT 0. Then

tk = aΦp(a) . . .Φ
k−1
p (a) × Φk

p

and

Φpt
kΦ−1

p = a−1tka

is conjugate under LG0 to gk. Hence if k|j

trace r+p (tj) − trace r−p (tj) = [Ep : Qp]{trace r+0 (tj) − trace r−0 (tj)} .

The representations r+0 and r
−
0 are, for the present purposes, to be treated as representations

of LT 0 ×G(Qun
p /Ep) or of

LT̃ 0
1 ×G(Qun

p /Ep). For each i inQ, let γi
1, γ

i
2 be the weights of

LT̃ 0
1

or of LT given by

γi
1 = (0, 0) × . . .× (0, 0) × (1, 0) × (0, 0)× . . .× (0, 0),

γi
2 = (0, 0) × . . .× (0, 0) × (0, 1) × (0, 0)× . . .× (0, 0) .

There is one non­zero factor and it is at the ith place. For the moment we will not be too

concerned about which order makes the roots γi
1 − γi

2 positive. We take it to be that coming

from the identification ofX∗(T ) andX∗(LT 0).

Let Q ⊆ Q be the set of marked spots. It is easily seen that

(2.7) r+0 − r−0 = + ⊗i∈Q (γi
1 − γi

2)

on LT̃ 0
1 . To examine this difference on

LT̃ 0
1 × G(Qun

p /Qp) we must not only describe r0 on
LG0 × G(Q/E) but also explicitly describe the lifting of ψ: LT → LG to ψ̄1:

LT̃1 → LG̃1.

We lift r0 and regard it as a representation of
LG̃0

1 ×G(Q/E). The group LG̃0
1 is a product

∏
i∈Q

GL(2,C) .

Let ri be the representation obtained byprojecting on the ith factor and then taking the standard

representation ofGL(2,C) on the spaceX i of column vectors of length two. The restriction of

r0 to
LG̃0

1 is

⊗i∈Q ri ,

acting on
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⊗i∈Q X i .

Recall that Q is a homogeneous space on which G(Q/Q) acts to the right. By its definition

G(Q/E) consists of those elements of G(Q/Q) that leave E invariant. If σ ∈ G(Q/E) then

r0(σ): ⊗i∈Q x
i → ⊗i∈Q x

iσ

.

On LT̃ 0
1 the homomorphism ψ̄1 is easily described. It takes

t→
∏

i∈Q

(
γi
1(t) 0

0 γi
2(t)

)
.

To define it explicitly on LT̃1 we need to choose a set of representatives zi for the cosets in Q.

If we examine the constructions in [16], we see that this entails choosing g1 correctly, but we

are in fact allowed to choose g1 anew continually. We let

τiσ = dτi
(σ)τj, dτi

(σ) ∈ G(Q/F ) .

Set

a(ρ) =





(
1 0
0 1

)
, ρ ∈ G(Q/L),

(
0 1
1 0

)
, ρ ∈ G(Q/F ), ρ /∈ G(Q/L) .

Then

ψ̄1(σ) =
∏

i
a(di(σ)) × σ .

Lemma 2.7. The function f j
p is 0 if for some v0 the algebra Lv0

= L⊗F Fv0
is a field and

Qv0
has marked points.

We may suppose that [Ep : Qp] divides j. Let lv be the greatest common divisor of

nv and j. Up to equivalence the representation r0 and the representations r
+
0 and r

−
0 , as

representations of LT̃1, do not depend on the choice of coset representatives. In an orbit under

ρ = Φj
p we take the representatives to be

τ, τρ, τρ2, . . . , τρev−1, ev = nv/lv .

Then

dτρi(ρ) =

{
1, 0 ≦ i < ev − 1,
τρevτ−1, i = ev − 1 .
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Certainly

τρevτ−1 = τΦ
nvj/lv
p τ−1

is the Frobenius over Fv to the power j/lv . If Lv is a field, then it is quadratic over Fv and,

with the assumption under which we are working at present, unramified. Thus τρevτ−1 lies

inG(Q/L) if and only if 2|j/lv.

Let {xi
1, x

i
2} be the standard basis ofX

i. The collection

⊗i∈Q xi
j(i), j(i) = 1, 2

is a basis for the space in which r0 acts. The representation r
+
0 acts on the span of those

elements for which

(−1)
P

i∈Q
j(i) = ±(−1)|Q| ,

and r−0 on the span of the other elements. The sign is determined by (2.7). It is clear that r0(Φ
j
p)

permutes the basis elements amongst themselves, and that the element indexed by {j(i)} is

fixed if and only if j(i) is constant on orbits of Φj
p and

a(τρevτ−1) =

(
1 0
0 1 .

)

Since each basis element is an eigenvector for LT̃ 0
1 , we have

trace r+0 (tj) = trace r−0 (tj) = 0,

and

trace r+0 (tj) − trace r−0 (tj) = 0,

if 2lv0
does not divide j and t = a× Φp, a ∈ LT̃ 0

1 . Thus in this case at least, f
j
p = 0.

We now suppose that 2lv0
divides j, and make a different choice of coset representatives.

We take the representatives of the cosets inQv to be of the form

τ, τΦp, . . . , τΦ
nv−1
p .

If ρ = Φp then

dτρi(ρ) =

{ 1, 0 ≦ i < nv − 1,

τρnvτ−1, i = nv − 1 .

It helps to picture Qv as

lv

××© . . .×××© . . .×© . . .
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There are lv orbits underΦ
j
p and each orbit consists entirely of marked or entirely of unmarked

points. If kv is the number of marked orbits then

mv/kv = nv/lv .

We may write

r+0 (tj) − r−0 (tj) = ±⊗z (r+z (tj) − r−z (tj)) .

The tensor product is taken over the marked orbits and the meaning of r+z (tj) and r−z (tj) is, I

hope, clear. We show that

trace r+z (tj) = trace r−z (tj)

if z ∈ Qv0
.

All our calculations will be withinQv0
. So wemay as well take the indices of the points in

this set to be 1, . . . , nv0
, agreeing that indices in the formulae to follow are to be read modulo

nv0
. If tj = b× Φj

p, then

γi
e(b) = γi

e(a)γ
i+1
e (a) . . . γ

nv0

e (a)γ
nv0

+1

e′ (a) . . . γ
2nv0

e′ (a)γ
2nv0

+1
e (a) . . .

Here e′ 6= e, and the subscripts, except perhaps at the beginning and end, appear in blocks of

length nv0
. There are exactly two vectors of the form

⊗i∈zx
i
j(i)

fixed byΦj
p, but since we have chosen a new set of coset representations the subscripts j(i) are

no longer constant. At all events,

trace r+z (tj) − trace r−z (tj) =
(∏

i∈z
γi

j(i)(b) −
∏

i∈z
γi

j′(i)(b)
)
.

Since

Φp(b) = a−1bΦj
p(a),

the character

a→
∏

i∈z
γi

j(i)(b)

is invariant under Φp. It is therefore a power of

a→ γ1
1(a) . . . γ

nv0

1 (a)γ1
2(a) . . . γ

nv0

2 (a) ,

and the power must clearly be
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jnv0

2nv0
lv0

=
j

2lv0

.

We conclude that ∏
i∈z

γi
j(i)(b) =

∏
i∈z

γi
j′(t)(b) .

The lemma follows.

Our purpose has been to find an explicit expression for (2.6), with f j
p replacing f

j
p , when

every prime of F dividing p is unramified in L. We are still not finished, but we have shown

that it is 0 unless v splits in L whenever Qv contains a marked point. If we pass fromHp(T )

toHp(T̃1)we replace ϕp by ϕ
′
p and ϕ

′
p is a product

ϕ′
p(t) =

∏
v
ϕv(tv)

if t = (tv), tv ∈ Tv(Qp). The expression

(2.8) λ(Lv/Fv, ψv)κv

(
tv1 − tv2
t01 − t02

)
ϕv(tv)

does not depend on the choice of t0 or of ψv . For lack of space, the image of the global element

t0 in Tv(Qp) is also denoted t
0.

Lemma 2.8. Let Uv be the maximal compact subgroup of Tv(Qp) and let δv be the character-

istic function of Uv divided by its measure. If v splits in L then (2.8) is equal to δv(t
v). If

v does not split and Uv and Kp are contained in a common maximal subgroup of G̃1(Qp),

then (2.8) is equal to δv(tv) if the order of tv1 − t
v
2 in Lv is even and to −δv(tv) if the order

of tv1 − tv2 in Lv is odd.

The assertion pertaining to split v is clear. If v is not split we take ψv to be such that the

largest ideal on which it is trivial is the ring of integers of Fv and we take t
0 to be such that

t01 − t02 is a unit in Lv . Then

λ(Lv/F, ψv) = 1

and

κv

(
tv1 − tv2
t01 − t02

)

is 1when the order of tv1 − tv2 is even and−1 when it is odd. However, it is observed after the

proof of Lemma 2.2 of [7] that with these choices of ψv and t
0, and the assumption that Uv and

Kp are contained in a common maximal compact subgroup K̃p of G̃1(Qp), the function

ϕv(t) = ΦTv/κv (t, φv)
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is the characteristic function of Uv divided by its measure. Here we write

K̃p =
∏

v
Kv

and take φv to be the characteristic function ofKv divided by its measure.

We return to the functions f j
p , which we regard as elements of

Hp(T̃1) ≃ ⊗vHp(Tv) .

We suppose now that Qv contains no marked points if v does not split in L. If we regard r
+
0

and r−0 as representations of the associate group of T̃1 over Qp then we may factor r
+
0 and r

−
0

as a tensor product

⊗v|p(r
+
v − r−v ) .

In order to specify r+v and r
−
v conveniently we choose the γ

i
1 and γ

i
2 in such a manner that all

of the γi
1 − γi

2 are positive with respect to an order that puts µ
∨ in the closed negative Weyl

chamber. This is a choice that refers only to T and not to the identification of X∗(T̃1) and

X∗(LT̃1).

IfQv contains nomarked points then r
+
v is the trivial one­dimensional representation and

r−v is zero­dimensional. If v splits in L then r
+
v ⊕ r−v acts on the span of

⊗i∈Qv
xi

j(i) .

The action of Φp = σ sends

⊗i∈Qv
xi

j(i) → ⊗i∈Qv
xi

j(iσ)

and a ∈ LT̃ 0
1 acts as

⊗xi
j(i) →

(∏
i∈Qv

γi
j(i)(a)

)(
⊗xi

j(i)

)
.

If we write

µ∨ =
∑

µv
∨,

then

µv =
∑

i∈Qv

γi
2 .

The vector ⊗xi
j(i) lies in the space of r

+
v or r

−
v according as (−1)

P
j(i) is 1 or −1.

The following lemma is in any case clear.
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Lemma 2.9. The function f j
p is a product

∏
f j

p,v with f j
p,v in Hp(Tv).

In order to save on subscripts we suppose for the purposes of describing the f j
p,v that p

remains prime in F and that F splits in L. This allows us to drop the v when we choose.

Suppose µ is a weight of r+0 + r−0 . Then there is a partition ofQ into two disjoint subsets

Q ′ and Q ′′ withm′ and m′′ elements respectively, and

µ =
∑

i∈Q ′
γi
2 +

∑
i∈Q ′′

γi
1 .

Moreover m′ + m′′ = m (= mv). Let

δe =
∑

i∈Q
γi

e

and set

ν = m′δ2 + m′′δ1 .

If kp is a large unramified Galois extension of Qp then

Nmkp/Qp
µ = [kp : Qp]ν/n .

We set

β(ν) = κ(µ− µ∨) = (−1)k′′

.

Lemma 2.10. Suppose there is only one prime v of F dividing p and that it splits in L. Let

n = nv, l = lv, k = kv. If j|[Ep : Qp] and t = a× Φp then

trace r+0 (tj) − trace r−0 (tj)

is equal to
∑

m/k|m′

k′

k′!k′′!
β(ν)ν(a)j/n .

Here

k′ =
m′

m
k k′′ =

m′′

m
k .

Notice that
j

n
ν =

j

l

(n

l
ν
)

=
j

l

(
k

m
ν

)

is a weight if m/k|m′, and so the terms of the sum appearing in the lemma are well­defined.
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The argument used to prove Lemma 2.7 shows that

trace r+0 (tj) − trace r−0 (tj) =
∏

z

(trace r+z (tj) − trace r−z (tj)) .

The basis vectors ⊗i∈zx
i
j(i) for z

+
z ⊕ r−z are permuted amongst themselves by Φj

p. The only

fixed vectors are

⊗i∈z x
i
j , j = 1, 2 .

Thus

trace r+z (tj) − trace r−z (tj) = δ2(a)
j/l + (−1)n/lδ1(a)

j/l

Since there are k orbits, wemust raise the right side t the kth power. Expanding by the binomial

theorem and recalling that

m/k = n/l ,

we obtain the lemma.

If ̟ is a local uniformizing parameter for Qp then the element of the Hecke algebra

corresponding to the function

a× Φp → ν(a)j/n

is the characteristic function of

̟jν/nŨp

divided by its measure. We denote this function by θjν/n.

Before summarizing our results on the sum (2.1) we observe that since Z(R)\T (R) is

compact the image of T (Q) in

T (R)ZK\T (A) ≃ ZK\T (Af )

is discrete. Clearly

meas(ZKT (Q)\T (Af )) =
meas(Z(R)ZKT (Q)\T (A))

meas Z(R)\T (R)
.

Summary of the discussion of the sum (2.1).

(a) It can be expressed as a sum over the primes p of E dividing p.
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(b) If p is such a prime let ̟p be a uniformizing parameter for Ep. The term of the sum

corresponding to p, which is now our only object of interest, may be expanded in powers of

|̟p|
s = |̟|se

if e = [Ep : Qp].

(c) The coefficient of j−1|̟p|
js is 0 if, for some v|p, v does not split in L and there is a

marked place in Qv . It contains the factor

µ(T )

2[E(T/A) : Im E(T/F )]
meas(ZKT (Q)\T (Af )) .

(d) To obtain the coefficient this factor has to be multiplied by a sum over the non­central

elements of

T (Q) ∩ Z(R)ZK\T (Q) = T (Q) ∩ ZK\T (Q)

and over the possible ν arising from collections {(m′
v,m

′′
v)|m′

v + m′′
v = mv}. In the quotient

on the right, T (Q) is regarded as a subgroup of T (Af ). The terms of the sum are themselves

the product of three factors. The first is trace ξ(t), and depends only on ξ and t. The second is

Φ0T/K(t, φp), and depends only on the image of t in T (Ap
f ).

(e) The third factor may be represented by meas Ũp/measUp times a product over the

places v of F dividing p of further factors, each depending only on the image of t in Tv(Qp),

times β(ν) = κ(µ− µ∨). Here µ is any weight of r0 such that, for some large Galois extension

kp of Qp,

Nmkp/Qp
µ

is a multiple of ν.

(f) The factor corresponding to a given v is 0 unless v splits in F or there are no marked

places inQv .

(g) If there are no marked places in Qv and v does not split in F then the corresponding

factor is
±1

measUv
·

|t1t2|
1/2
v

|(t1 − t2)2|
1/2
v

.

The sign ±1 may be expressed as a product of two factors. The first is (−1)ord(t1−t2). To

obtain the second we write

G̃1(Qp) =
∏

v|p

Gv(Qp) ,

with
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Gv = ResFv/QG̃ ,

and let K̃p =
∏
Kv be amaximal compact subgroup of G̃1(Qp) containingKp. If g ∈ Gv(Qp)

and g−1Uvg ⊆ Kv then the second factor is (−1)ord Nmg .

(h) We write ν =
∑
νv . If v splits in F , the corresponding factor is 0 unless kvνv/mv is a

weight. If it is, the corresponding factor is to be

kv!

k′v!k
′′
v !
pjemv/2θν′

v
(t)

|t1t2|
1/2
v

|(t1 − t2)2|
1/2
v

.

Here

k′v = m′
vkv/mv k′′v = m′′

vkv/mv ν′v = jeνv/nv .

Notice that lv must now be taken to be the greatest common divisor of nv and je. Moreover if

m′
v + m′′

v , θν′
v
(t) 6= 0, and qv is the smallest of m

′
v and m′′

v then

pjemv/2 |t1t2|
1/2
v

|(t1 − t2)2|
1/2
v

= pjeqv .

The logarithm of (1.5) has to be subjected to a similar treatment. Fortunately, we can

handle it with more dispatch, aprtly because we can rely to some extent on our discussion of

(1.6), and partly because (1.5) has been so set up that the trace formula, in its stabilized form

[7], is immediately applicable and quickly leads to the expressions needed for the comparison.

The logarithm of the local factor at p of (1.5) is

(2.9)
∑

Q n(Π)m(Π∞)m(Πf ) log Lp(s− q/2, π, r) ,

where π ∈ Π. The number n(Π) is the common value of n(π), π ∈ Π. Moreover we may as

well agree that the sum is to be taken only over those Π such that

π∞(z) = ν−1(z)I, z ∈ Z(R),

πf (z) = I, z ∈ ZK ,

if π = π∞ ⊗ πf ∈
∏
, for otherwise either m(Π∞) or m(Πf ) is 0. This said, we may replace

m(Π∞) by its value ∑
Q

∞
∈Π∞

trace π∞(fξ) .

We also may write

m(Πf ) =
∑

πf∈Πf

m(πf ) .
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Then m(πf ) is non­zero only if πp contains the trivial representation of Kp. Thus we may

replace

log Lp(s− q/2, π, r)

by

∑
p|p

∞∑

j=1

|̟|js

j
trace πp(h

j
p) ,

where hj
pk is an appropriate element of the Hecke algebra ofG(Qp). It is defined by

trace πp(h
j
p) = |̟|−jq/2trace rp(g(πp)) ,

whenever πp is an irreducible representation ofG(Qp) containing the trivial representation of

Kp. Here rp = r+p ⊕ r−p and g(πp) is an element of the conjugacy class in
LG0 ×Φp associated

to πp. We conclude that (2.9) may be written as the sum over p|p and the sum of j from 1 to∞

of |̟|js/j times

(2.10)
∑

π
n(π)trace π∞(fξ)trace πp(φp)trace πp(h

j
p) .

Recall that φp is the characteristic function ofKp ⊆ G(Ap
f ) divided by its measure.

We may apply the stabilized trace formula forG(Q)Z(R)ZK\G(A) to the function

g → fξ(g∞)φp(gp)hj
p(gp)

to obtain the form for (2.10) that we need.

In order to write down the contribution from the scalars we need to draw on our knowl­

edge of harmonic analysis on real groups, namely on the limit formula of Harish­Chandra, to

see that

fξ(z) = (−1)qtrace ξ(z)
/
meas Z(R)\G′(R), z ∈ Z(R) .

HereG′ is a form ofG overR, the one for which Z(R)\G′(R) is compact, and the measure on

Z\G′ is obtained from that onZ\G by transporting invariant forms of highest degree as in §15

of [6]. To tell the truth, I am unable to supply a reference to the appropriate computation. The

method to be used is described in [8], and the reader can verify for himself that the constant is

correct. Appealing to §7 of [7], we see that the contribution of the scalar matrices to (2.10) is

(2.11)
∑

Z(Q)∩Z(R)ZK\Z(Q)

meas(Z(R)ZKG(Q)\G(A))

meas(Z(R)\G(R)
× (−1)qtrace ξ(z)φp(z)hj

p(z) .



Zeta­functions of some simple Shimura varieties 40

It will remove some complication from the discussion of the remaining terms of the trace

formula if we take advantage of the possibility we have allowed ourselves of only working

with sufficiently smallK . It is convenient so to arrange matters that the equation

r−1tg = zt

with g ∈ G(Q), t ∈ G(Q), and z ∈ Z(Q)∩Z(R)ZK implies that z = 1. The equation certainly

implies that z lies in the center of the derived group. Since this is finite, its intersection with

Z(R)ZK will be {1}whenK is small.

The remaining contribution to the stabilized trace formula is a sum over a set of represen­

tatives T for the stable conjugacy classes of Cartan subgroups of

1

2

∑′

T (Q)∩Z(R)ZK\T (Q)

meas(T (Q)Z(R)ZK\T (A))µ(T )

[E(T/A) : ImE(T/F )]
×ΦT/1(t, fξ)Φ

T/1(t, φp)ΦT/1(t, hj
p) .

The prime indicates that scalars are excluded from the sum. SinceΦT/1(t, fξ) is 0 unless T (R)

is fundamental, we agree to sum only over such T . Then

ΦT/1(t, fξ) = trace ξ(t)
/
(Z(R)\T (R)) .

By appealing to our earlier discussion and to the formalism of Hecke algebras, we easily

see that the following assertions are valid.

(i) hj
p = 0 if e = [Ep · Qp] does not divide j.

(ii) If

Gv = ResFv/Q
p
G̃

there is a natural imbedding ofHp into ⊗v/pHp(Gv).

(iii) The image of hj
p under this imbedding is a product of ⊗h

j
p,v .

(iv) If Tv is a split Cartan subgroup ofGv and t1, t2 the eigenvalues of t ∈ Tv(Qp) ≃ L×
v ,

then, when e|j,

∫

Tv(Q
p
)\Gv(Qcurp)

hj
p,v(g

−1tg)dg

is equal to

|t1t2|
1/2
v

|t1 − t2|v

∑
mv/kv|νv

kv!

k′v!k
′′
v !
θν′

v
(t)

(
ν′v =

j

nv
νv

)
.
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The last assertion is, of course, a consequence of the definition of the Satake homomor­

phism, and the relation of the Satake homomorphism with the formalism of the associate

group. Here νv is defined by a pair of non­negative integers m
′
v , m

′′
v withm′

v + m′′
v = mv , and

the sum is over those for which

k′v = kvm
′
v/mv k′′v = kvm

′′
v/mv

are integral.

For any T let Up be, as before, the maximal compact subgroup of T (Qp), and Ũp =
∏
Uv

themaximal compact subgroup of T̃1(Qp). Let K̃p =
∏
Kv be themaximal compact subgroup

of G̃1(Qp) containing Kp. Replacing T̃1 by a conjugate if necessary, suppose Ũp ⊆ K̃p and

define

u(T ) = [K̃p : KpŨp] .

Then

u(T )meas UpΦ
T/1(t, hj

p)

is equal to
∏

v
meas Uv

∫

Tv(Q
p
)\Gv(Q

p
)

hj
p,v(g

−1tg)dg .(2.12)

To verify this we observe that both sides are independent of themeasures chosen, and that

it therefore suffices to work with one convenient choice of measure. Let h be (meas Kp)h
j
p,

where hj
p is taken inHp(G) and let h′ be (meas K̃p)h

j
p, with h

j
p now regarded as an element

ofHp(G̃1) = ⊗ιHp(G). Then h is the restriction of h′ toG(Qp).

ΦT/1(t, h) =
∑

eT (Q
p
)G(Q

p
)\ eG1(Qp

)

∫

T (Q
p
)\G(Q

p
)

h(g−1tg)dg .

If we take the measure on T (Qp)\G(Qp) to be the same as that on its image T̃1(Qp)\

T̃1(Qp)G(Qp) in T̃1(Qp)\G̃1(Qp), the right side is equal to

∫

eT1(Qp
)/ eG1(Qp

)

h′(g−1tg)dg .

To check the assertion completely we need to show that with this choice

u(T )meas Jp\Kp = meas Ũp\K̃p .

However
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meas Up\Kp = meas Ũp\ŨpKp

and

meas Ũp\K̃p = u(T )meas Ũp\ŨpKp .

We have only to evaluate the individual integrals on the right of (2.12). They have been

given in §6 of [12], albeit for the group GL(2,Qp) and not for Gv(Qp) = GL(2, Fv), but the

formulae and the proofs are valid without change. In order to disencumber ourselves of the

subscript v when stating the results, we suppose that p remains prime in F .

We start fromGv(Qp) = GL(2, Fv) and a

ν = a′δ2 + a′′δ1 .

Let

ν̃ = a′δ1 + a′′δ2

and let h be a spherical function on GL(2, Fv) for which

(|t1 − t2|v/|t1t2|
1/2
v )

∫

A(Fv)\GL(2,Fv)

h(g−1tg)dg =
1

2
{θν(t) + θν̃(t)}

if A is a split torus in GL(2). If a′ = a′′ and Kv the maximal compact subgroup containing

Kp, then h is the characteristic function of

(
̟a′

v 0
0 ̟a′′

v

)
Kv

divided by the measure of Kv. There will be no need for an explicit evaluation of the other

orbital integrals in this case.

In general set

ΦTv (t, h) =

∫

Tv(Q
p
)\Gv(Q

p
)

h(g−1th) .

If a′ 6= a′′ these integrals can be computed directly, along the lines of §3 of [15] or of §7 of [6],

but I prefer to apply themethod of §6 of [12]. Lemma 6.4 of that paper and theWeyl integration

formula imply that
1

2

∑′

Tv

∫

Tv(Q
p
)

χπ(t)ΦTv(t, h)∆2(t)dt = 0

if π is an absolutely cuspidal representation ofGv(Qp). The sum is over a set of representatives

for the non­split Cartan subgroups and

∆(t) = |(t1 − t2)
2|1/2

v /|t1t2|
1/2
v .
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In addition ΦTv (t, h) is 0 unless

|det t|v = |̟v|
a a = a′ + a′′ .

LetG′
v(Qp) be the multiplicative group of the quaternion algebra over Fv . Exploiting the

relation between characters ofGv(Qp) and characters ofG
′
v(Qp) provided in [6], and using as

well theWeyl integration formula forG′
v(Qp) and orthogonality of characters, we deduce that

there is a function ϕ(x) on F× such that

ΦTv (t, h) = meas(Tv(Qp)\G
′
v(Qp))ϕ(det t)

if Tv is not split. The measure onG
′
v(Qp)may be assumed to be obtained by transferring that

ofGv(Qp).

Letχ be the representation g → χ(det g). If we use the Satake homomorphism to compute

the trace of χ(h) we obtain

0 χ ramified

1
2

(
|̟v|

a′−a′′/2 + |̟v|
a′′−a′/2

)
χ(̟v)

a χ unramified .

We may also compute it by using the Weyl integration formula. This yields the sum of

1

2

∑′

Tv

meas(Tv(Qp)\G
′
v(Qp))

∫

Tv(Q
p
)

χ(det t)ϕ(det t)∆2(t)dt

and
1

2

∫

Av(Q
p
)

χ(det t)θν(t)∆(t)dt .

The second expression is 0 unless χ is unramified, but then it equals

1

2
|̟v|

−|a′−a′′|/2χ(̟v)
a .

This yields a value for the first expression. Applying the orthogonality relations and the Weyl

integration formula to the characters of the one­dimensional representations of G′
v(Qp), we

conclude that ϕ(x) is 0 unless |x| = |̟v|
a and that then

ϕ(x) =
|̟v|

|a′−a′′|/2

2 measK ′
v
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ifK ′
v is the maximal compact subgroup ofG

′
v(Qp). In order to have a convenient notation we

let Ξa be 0 unless |det t| = |̟|a when Ξa(t) is to be 1.

Finally we deduce from Lemma 4.1 of [15] that if z is a scalar then h(z) = 0 unless

|det z| = |̟v|
a but then

h(z) = −
|̟v|

|a′−a′′|/2

2 measK ′
v

.

All the information we need is now at our disposal. It will be a help to review it once

again, and display it in a form convenient for reference.

Summary of the discussion of the sum (2.9).

(a) It can be expressed as a sum over the primes p of E dividing p and over the possible

ν, defined by {(m′
v,m

′′
v)|m′

v + m′′
v = mv}. The m′

v , m
′′
v are to be integral except perhaps when

m′
v = m′′

v = mv/2, and then we allow them to be half­integral.

(b) The termcorresponding topandνmay itself be expanded inpowersof |̟p|
s = |̟p|

se,

e = [Ep : Qp]. We now fix a p and a ν and consider the coefficients of |̟p|
j/j.

(c) We treat the case that m′
v 6= m′′

v for at least one v first. Then the coefficient is a double

sum, over the stable conjugacy classes of Cartan subgroups T fundamental at infinity and split

at every v for whichm′
v 6= m′′

v , and over non­scalar t in T (Q)∩Z(R)ZK\T (Q). The individual

terms are given as products. One factor is

µ(T )

2[E(T/A) : Im E(T/F )]
meas(T (Q)ZK\T (Af )) .

A second is

ΦT/1(t, φp)trace ξ(t) · u(T )
meas Ũp

measUp

.

The third may again be written as the product over the places of v dividing p of factors

depending only on the image of t in Tv(Qp). If Tv is split, the factor is 0 unlessmv/kv divides

m′
v and m′′

v . Otherwise it is

mjemv/2 kv!

k′v!k
′′
v !
θν′

v
(t)

|t1t2|
1/2
v

|t1 − t2|v
.

If Tv is not split the expression is more complicated. It is the sum of two terms. The first is

{∑
0 ≦ i<kv/2

pjemvi/kv

(
kv

i

)}
measTv(Qp)\G

′
v(Qp)

measK ′
v

Ξjemv/nv
(t) .
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The second is 0 unless kv is even, but it is then

pjemv/2

(
kv

kv/2

)
1

measKv

∫

Tv(Q
p
)\Gv(Q

p
)

ϕmv
(g−1tg)dg

if ϕmv
is the characteristic function of

(
̟mv/2 0

0 ̟mv/2

)
Kv .

The point is that for split Tv there are several possible νv , and we can decompose the contri­

butions from the orbital integrals of hj
p into parts labeled by them; but for a Tv that is not split

there is only one reasonable νv and we have to take the orbital integral in one piece.

(d) Whatever is not included in the terms gathered in (c) must now be put together and

credited to that ν for which m′
v = m′′

v for all v. There are two contributions; the first is a sum

over z in Z(Q) ∩ Z(R)ZK\Z(Q). Each term of the sum is a product, the first factor being

measZ(R)ZKG(Q)\G(A)

measZ(R)\G′(R)
trace ξ(z)φp(z)

meas K̃p

measKp

.

The second factor is itself a product over the places v dividing p of terms depending only on

the image of z in the group Gv(Qp). It will be easier to write them down if we first observe

that a simple calculation, which can be left to the reade4r (cf. §15 of [6]), shows that

measKv =
(
|̟v|

−1 − 1
)
measK ′

v .

The factor at v is itself a sum of two terms. The first is

−(−1)mv

(
|̟v|

−1 − 1
)

measKv
Ξjemv/nv

(z)

{∑
0 ≦ i<kv/2

(
kv

i

)
pjemvi/kv

}
.

The second is 0 unless kv is even, when it is

(−1)mv

measKv
Ξjemv/nv

(z)

(
kv

kv/2

)
pjemv/2 .

The second contribution is a sum over the stable conjugacy classes of Cartan subgroups

T with T (R) fundamental of a sum over the non­scalar elements in T (Q) ∩ Z(R)ZK\T (Q).

The terms of the sum are themselves products. The first factor of the product is

µ(T )

2[E(T/A) : Im E(T/F )]
meas(T (Q)ZK\T (Af ))ΦT/1(t, φp) × trace ξ(t) · u(T )

meas Ũp

measUp

.
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The second is a product over v dividing p of terms that once again depend only on the image

of t in Tv(Qp). If Tv is split the first factor is 0 unless kv is even, but then it is

pjemv/2

(
kv

kv/2

)
Θν′

v
(t)

|t1t2|
1/2
v

|t1 − t2|v
, ν′v =

je

nv
νv .

If Tv is not split, the factor is the same as in (c).

3. The zeta-function.

The next step in the proof is to use the structure of the set of geometric oints on S(K) over

the algebraic closure κ̃p of the residue field κp of E at p to obtain a formula for

log Zp(s, S(K), Fξ)

which can be compared with the formulae of the preceding paragraph. This logarithm has a

power series expansion

∑∞

j=1
M(j)

|̟p|
js

j

with

M(j) =
∑

i
(−1)itrace τ i(Φ) ,

and we shall be concerned only with the coefficientsM(j).

According to [13] the set S(K, κ̃p) is a union of subsets indexed by equivalence classes

of Frobenius pairs (γ, h0). These must be described. Recall that we have supposed that the

totally real field F used to define G is imbedded in Q ⊆ C. The set of imbeddings of F in Q

or C is then represented by the finite homogeneous space

Q = G(Q/F )\G(Q/Q) .

To nourish our intuition we wrote this set as

×× . . .×© . . .©× .

The infinite places at which the algebra splits are marked by a cross; the others are not marked,

but represented by circles. We assumed that F is unramified at p. Hence the Frobenius Φp

acts, and we decomposed the set into its orbits.

× . . .© . . .×︸ ︷︷ ︸
Qv1

;© . . .× . . .©︸ ︷︷ ︸
Qv2

;
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let nv be the number of elements in the orbit labelled by v. Then

∑
nv = n = [F : Q] .

To be definite we viewed the Frobenius as acting on each orbit by a cyclic shift to the right. We

also let mv be the number of marked points in the orbit, and observed that the orbits or the

indices v also label the primes of F dividing p.

There are two kinds of Frobenius pairs, or rather of equivalence classes of such pairs.

To describe one of the first type we start from a totally imaginary quadratic extension L of

F which splits at least one prime of F dividing p. We choose a set of representatives for

the isomorphism classes over F of such fields. Each L determines a stable conjugacy class of

Cartan subgroups ofG overQ. Choose a representative TL for each such class. TL is contained

in a unique Cartan subgroup T̃L of G̃1. it will be less taxing on my powers of abstraction if I

fix an isomorphism of T̃L with the algebraic group overQ defined by the multiplicative group

of L. In particular T̃L(Q) will be identified with L×, and every imbedding of L in Q defines

a rational character of T̃L and as such it is a basis of the lattice of all rational characters. The

dual basis of the lattice of coweights is also indexed by P .

We fix, to have a point of reference, hL: R→ TL which is conjugate under G(R) to the h

defining the Shimura variety. Suppose g ∈ A(T/Q). Let

T = T g
L = g−1Tg .

An h0: R→ T must be of the form

hx
L: r → x−1hL(r)x, x ∈ G(R) .

The diagram

T
L

x g-1
h
L

h
0

R

T

g

is commutative. SinceD(T/F ) → D(T/R) is surjective we may by a suitable choice of x and

g arrange that hxg−1

L is any element in the orbit of hL under the Weyl group of TL(C) inG(C).

However, hL itself can only vary within an orbit of the Weyl group of T (R) inG(R).

As in [13] h0 defines a coweight µ∨ of T . Since g has been fixed for now, we may pull µ∨

back to a coweight of TL and hence of T̃L, which I again denote by µ
∨. It may be written in
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terms of the dual basis we have chosen. The coefficients will be 0 or 1. It will help to have a

pictorial way of representing these coefficients.

Let Pv be the inverse image of Qv in P . The group G(Qp/Qp) acts on Pv . If v splits in L

then Pv falls into two orbits and we represent the map Pv → Qv by the diagram:

Pv

{
×© . . .© . . .×
©× . . .© . . .×

y

Qv ×× . . .© . . .× .

Each horizontal line represents an orbit. A point is marked by an× if the coefficient of

the corresponding element of the dual basis is 1 and is left unmarked if the corresponding

coefficient is 0. Above amarked point ofQv there is onemarked and one unmarked point, and

above an unmarked point there is no marked point. let m′
v and m′′

v be the number of marked

points in the two orbits. Then

m′
v + m′′

v = mv .

If v does not split in Lwe may still represent Pv → Qv as

{
© . . .× . . .©
© . . .© . . .×

y

© . . .× . . .× .

However there is only one orbit inPv and no significance is to be attached to the two horizontal

rows inits pictorial representation.

Starting from L, g, and h0 we set about defining Frobenius pairs (γ, h0) of the first kind.

We must suppose that m′
v 6= m′′

v for at least one v with v split. If kp is a sufficiently large but

finite Galois extension of Qp we set

Nmkp/Q
p
µ∨ = ν∨

and write ν∨ as an integer linear combination of the elements of the dual basis. If l = [kp : Qp]

the coefficient of a coweight in Pv is lmv/2nv if v does not split in L. If v splits the coefficient

is lm′
v/nv in the first row and lm

′′
v/nv in the second.
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We first construct an appropriate γ1 in TL(Q) ⊆ L× and then take γ = g−1γ1g. If v splits

let av and bv be the two prime ideals in L dividing it. If it does not let gv be the ideal of L

generated by the prime ideal in F defined by the valuation v. Set

a =
(∏

gmv
v

)(∏
a
2m′

v
v b

2m′′

v
w

)
.

Some power as of a is principal. Let

as = (δ1) .

δ1 lies in T̃L(Q). Recall that G was defined as the inverse image of A in ResF/QGL(1). If B is

the quotient of these two groups we have injections

TL(Q)\T̃L(Q) →֒ B(Q) A(Q)\F× →֒ B(Q) .

Let δ̄1 be the image of δ1. Since µ
∨ and ν∨ are coweights of TL, χ(δ̄1) is a unit for all weights

of B and some power δ̄t
1 of δ̄1 is the image of a unit β in F

×. Set

γ1 = δ2t
1 /β .

The pair (γ, h0) is then of Frobenius type.

Suppose γ lies in T and (γ, h0) is also of Frobenius type. Let

γ = g−1γ1g .

By the definition of pairs of Frobenius type there are positive integers c and d for which

|γd
1|v = |γc

1|v

at every finite place v of L. Thus γ−c
1 γd

1 is a unit. Since L is a totally imaginary extension of F

we may even arrange, by multiplying c and d by a common factor, that γ−c
1 γd

1 is a unit in F .

Consequently (γ, h0) and (γ, h0) are equivalent, and the critical data for the construction of a

pair of the first kind are L, g, and h0, or, if one prefers,hxg−1

L . Actually, hxg−1

L is determined by

µ∨, regarded as a coweight of TL, and we use µ
∨ rather than h0. It is also clear that the class of

(γ, h0) depend sonly on the image δ of g in D(T/Q), and it is finally most convenient to take

L, δ, and µ∨ as the fundamental data. I note in passing that, because m′
v 6= m′′

v for some i, no

power of γ is central and the groupH0 of [13], now denoted by I0, is T .

The use of the symbolH in [13] conflicts with its use in [7]. Since the construction of those

two papers appear simultaneously in the study of Shimura varieties, it will be best to use I0



Zeta­functions of some simple Shimura varieties 50

and I for the groups denoted H0 and H in [13]. It will also be best to denote the groups G
0

and G of that paper by J0 and J , and not overburden the letter G.

Not every pair δ, µ∨ can arise, and it may save us some confusion if we describe now the

relation between δ and µ∨ that must be satisfied. Observe first that µ∨ must lie in the orbit of

µL
∨ under the Weyl group if µL

∨ is the coweight associated to hL. Since the image of TL is

anisotropic, µL
∨ − µ∨ defines an element of H−1(G(C/R), X∗(TL)) and hence, by the Tate­

Nakayama theory, an element α∞(µ∨) of H1(R, TL). On the other hand δ lies in D(TL/Q)

which may be mapped to D(TL/R) ⊆ H1(R, TL). The condition is that the image of δ is

α∞(µ∨). To verify this we observe that the image of δ is the class ofH1(R, TL) corresponding

to

µL
∨ − gx−1(µL

∨) = µL
∨ − µ∨ .

Lemma 3.1. Suppose L, TL, and hL are given. Then L, δ, µ∨ are possible data for the

construction of a Frobenius pair if and only if α∞(µ∨) is the image of δ in D(T/R).

The necessity has just been verified. On the other hand if g represents δ, the image of δ is

α∞(µ∨), and µ∨ = ω(µL
∨), with ω in the Weyl group over C, then there is an x in G(R) such

that gx−1 normalizes T and represents ω. We then define h0 by

h0(r) = x−1hL(r)x .

We next describe sufficient conditions for the class of pairs associated toL, δ, and µ∨ to be

the same as that associated toL, δ̄, and µ̄∨. We continue to assume that the pairs are of the first

kind. Let Ω(TL, G; Q) be the quotient of the intersection of A(T/Q) with the normalizer of T

by T (F ). It is a group and may be properly larger than Ω(TL(Q), G(Q)), the Weyl group over

Q. It acts onD(TL/Q) to the right, and in the present circumstances consists of two elements,

corresponding to the two automorphisms of L over F .

Lemma 3.2. Suppose δ, µ∨ and δ̄, µ̄∨ are given, and yield classes of Frobenius pairs of the

first kind. These classes are the same if the following conditions are satisfied:

(i) There is an ω in Ω(TL, G; Q) such that

Nmkp/Q
p
(µ̄∨ − ω(µ∨)) = 0

if kp is any sufficiently large Galois extension of Qp.

(ii) If (i) is satisfied then µ̄∨ − ω(µ∨) defines an element of H−1(G(kp/Qp), X∗(TL))

and hence, by the Tate-Nakayama theory, an element αp(µ̄
∨, ω(µ∨)) of H1(Qp, T). The

equation

ωδαp(µ̄
∨, ω(µ∨)) = δ̄
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is to obtain.

(iii) If l is a finite prime different from p then ωδ and δ̄ have the same image in

D(T/Ql).

Let δ and δ̄ be represented by g and g. Because of the first condition we may take

γ = g−1γ1g, g−1ω(γ1)g,

with a common γ1 in TL(Q). If ω is represented by w the third condition implies that for l 6= p

g = twgu, t ∈ TL(Ql), u ∈ G(Ql),

and, consequently, that

γ = u−1γu .

There is one more condition to be verified if equivalence is to be established. It is a

condition on b, the element associated to (γ, h0) in [13] and discussed at length in the appendix

of this paper, and on b, the element associated in the same way to (γ, h̄0). The elements γ and

γ are conjugate over G(Q) and hence, by the corollary on p. 170 of [18] over G(Qun
p ). Let

γ = u−1γu u ∈ G(Qun
p ) .

In order to establish equivalence we must show that there is a t in T (k) for which

b = t−1u−1bσ(u)σ(t)

if σ is the Frobenius on Qun
p or k.

Since no power of γ1 is central

g = swgu, s ∈ TL(Qun
p ) .

Thus δ̄ is represented by the cocycle

{τ(w)τ(g)τ(u)u−1g−1w−1}, τ ∈ G(Qp/Qp),

and

δ̄ = ωδβ

inD(T/Qp) if

β = wgτ(u)u−1g−1w−1 .
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Notice that β is represented by the inflation of a cocycle of G(Qun
p /Qp) and is completely

determined by

wgσ(u)u−1g−1w−1aσ .

It is a consequence of the definitions and the corollary on p. 170 of [18] that, after

multiplying b and b by yσ(y−1) and yσ(y−1), y ∈ T (k), y ∈ T (k), we may suppose that

αp(µ̄
∨, ω(µ∨)) is represented by the inflation of a cocycle {ατ} of G(Qun

p /Qp) and that

gbg−1 = wgbg−1w−1aσ .

Thus

ubu−1 = bg−1w−1aσwg .

The second assumption is that

β ∼ αp(µ̄
∨, ω(µ∨)) .

Thus we may even assume that

g−1w−1aσwg = σ(u)u−1 .

Then

b = u−1bσ(u) .

Lemma 3.3. Suppose the classes of Frobenius pairs associated to L, δ, µ∨ and L̄, δ̄, µ̄∨ are

of the first kind and the same. Then L = L̄ and the conditions of the previous lemma are

fulfilled.

If the classes are the same then L ⊗ Fv and L̄ ⊗ Fv are isomorphic for all finite places v

of F which do not divide p. Consequently L and L̄ are isomorphic. Since we are working

within a set of representatives for the isomorphism classes of quadratic extensions, L = L̄ and

TL = TL̄.

Let δ and δ̄ be represented by g and g and let (γ, h0) and (γ, h0) be corresponding

Frobenius pairs. We suppose they are equivalent. Replacing γ and γ by appropriate powers

of themselves and perhaps multiplying by an appropriate central element as well, we may

suppose they are conjugate inG(Ql) for l 6= p and hence inG(Q). As usual let

γ = g−1γ1g γ = g−1γ1g .

Then γ1 and γ1 are also conjugate inG(Q) and there is an ω in Ω(TL, G,Q) such that

γ1 = ω(γ1) .
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Recall that if λ is a rational character of TL then

|λ(γ1)| = |̟|τ〈λ,ν∨〉

and

|λ(γ2)| = |̟|τ〈λ,ν̄∨〉 .

Here r and r are two positive rational numbers and

ν∨ = Nmkp/Q
p
µ∨, ν̄∨ = Nmkp/Q

p
µ̄∨ .

Consequently

rν̄∨ = rω(ν∨) .

Since the sum of the coefficients in the expression of ν∨ as a linear combination of the elements

in the dual basis is the same as the sum of the coefficients for ν̄∨, r = r and

Nmkp/Q
p
µ̄∨ = Nmkp/Q

p
ω(µ∨) .

This is the first condition of the previous lemma. To verify the second we have only to observe

that if ω is represented by w then

γ = g−1γ1g = g−1w−1γ1wg

and

γ = g−1γ1g

are conjugate inG(Ql), and hence

wg = tgu, t ∈ T (Ql), u ∈ G(Ql) .

As in the proof of the previous lemma

g = swgu, s ∈ TL(Qun
p ), u ∈ G(Qun

p ),

and

γ = u−1γu .

Since γ is not central, u is determined modulo T (Qun
p ) and the class of the cocycle in TL

{wgτ(u)u−1g−1w−1 | τ ∈ G(Qun
p /Qp)}

is well­defined. As we observed before

δ̄ = ωδβ .
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Moreoverwemay once again suppose thatαp(µ̄
∨, ω(µ∨)) is obtained by inflating a cocycle

{ατ} of G(Qun
p /Qp) and that

ubu−1 = bg−1w−1aσwg .

Since we are assuming the two Frobenius pairs equivalent, there is a t in T (k) for which

b = t−1u−1bσ(u)σ(t)

and

(ut−1u−1)bσ(u)u−1(uσ(t)u−1) = bg−1w−1aσwg .

Canceling b and taking

z = wgutu−1g−1w−1,

we obtain

zwgσ(u)u−1g−1w−1σ(z−1) = aσ .

Since {aτ} and {τ(u)u
−1} are both continuous cocycles, it follows readily from this equation

that z ∈ TL(Qun
p ) and that

β = αp(µ̄
∨, ω(µ∨)) .

We introduce next another type of Frobenius pair, whichwewill say is of the second kind.

We again start from the totally imaginary quadratic extensionL of F , the Cartan subgroup TL,

an element g inA(T/Q), and an h0, but suppose thatm′
v = m′′

v for every place v of F dividing

p and splitting in L. Such data exist, for we may so choose L that no place dividing p splits

in it. We construct γ as before. The ideal a is now an ideal in F , and so some power of γ is

central.

Lemma 3.4. Any two Frobenius pairs of the second kind are equivalent.

Suppose (γ, h0) and (γ, h̄0) are two pairs of the second kind. We take γ and γ central.

Choosing kp so large that it splits both TL and TL̄ and noting that

m′
v = m′′

v = m̄′
v = m̄′′

v = mv/2

we see easily that there are two positive integers c and d and a unit ξ in F× for which

ξγc = γd .

Replacing γ by ξγc and γ by γd we may suppose γ = γ. The equivalence now follows from

the fact that b is well­defined (cf. Lemma A.2).

It is clear that a pair of the second kind cannot be equivalent to a pair of the first kind.

With the following lemma, which is really a matter of definition, our classification of Frobenius

pairs is complete.
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Lemma 3.5. Every Frobenius pair is equivalent to one of the first or second kind.

Thedefinitionof (γ, h0) involves the introductionof a subgroup I0 ofG [13], and the choice

of a Cartan subgroup T of I0which is defined overQ and throughwhich h0 factors. Replacing

γ by a conjugate over Q if necessary, we may suppose that, for one of the representatives L

and some g in A(T/Q),

T = g−1TLg .

If we also suppose, as we may, that the image of T in I0
ad is anisotropic over Qp then, by the

very definitions, (γ, h0)must be a Frobenius pair associated to L, g, and h0.

In addition to the group I0 there is a group I over Q and groups J0 and J over Qp

attached to a Frobenius pair (recall that J0 and J are denoted by G0 and G in [13]). I is an

inner twisting of I0. For a pair of the first kind, I0 is T and the twisting is trivial. For a pair of

the second kind I0 isG. An inner twisting ofG is obtained from an inner twisting ofResF/QG̃

or a twisting of the quaternion algebra D defining G̃. Thus for pairs of the second kind, I

will be defined by the same subgroup A of ResF/QGL(1) and a new quaternion algebra D′.

According to the prescription for passing from I0 to I we are not to twist away from infinity

and p, but D′ must be ramified at every infinite place. Since the number of infinite places at

whichD splits is

m =
∑

v
mv

the invariant will be changed at m infinite places. Once we decipher the prescription given in

[13] for the twisting at p, we will see that the invariant ofD at v is to be changed if and only if

mv is odd. In particular, the total number of places at which the invariant is to be changed is

even, and the prescription can actually be carried out.

Over Qp

ResF/QG̃ =
∏

v
ResFv/Q

p
G̃ =

∏
v
Gv .

The centralizer of T in this group is a product
∏
T v , and if we regard µ∨ as a coweight of the

product it may be factored as

∏
µ∨

v (multiplicative notation) .

The cocycle which defines the twisting is also a product and the vth factor lifts to the cochain

σ → av
σ =

∏
τ∈G(kp/Q

p
)
aστµ∨

σ,τ

inG∨. Here {aσ,τ} is a representative of the fundamental class of the extension kp/Qp.
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A straightforward calculation shows that

H1(Qp, G
v
ad) ≃ H1(Fv, G̃ad) .

The isomorphism is obtained by writingGv
ad over Qp as a product

∏
G(Q

p
/Q

p
)/G(Q

p
/Fv)

σG̃ad,

and then restricting a cocycle ofG(Qp/Qp)with values inG
v
ad toG(Qp/Fv) and projecting to

the factor 1G̃ad. We also have the familiar imbedding

H1(Fv, G̃ad) →֒ H2(G(Qp/Fv),Qp) .

We have to show that, starting from the given element in H1(Qp, G
v
ad), we finish with

the element ofH2(G(Qp/Fv),Qp)with invariant mv/2. We may restrict and project before or

after taking the co­boundary of {av
σ}, and it is convenient to take the co­boundary first. We

obtain {∏
τ
a

ρτµ∨

v
ρ,τ

}{∏
τ
ρ(aσ,τ )ρστµ∨

v

∏
τ
a
−ρστµ∨

v
ρσ,τ

}
.

The products run over τ ∈ G(kp/Qp). substituting στ for τ in the first factor and using the

co­cycle relation

aρ,σ = ρ(aσ,τ )aρ,στa
−1
ρσ,τ

we see that this co­boundary equals

{a
ν∨

v
ρ,σ}

with

ν∨v = Nmkp/Q
p
µ∨

v .

The invariant of the restriction of {aρ,σ} to G(kp/Fv) is

nv/[kp : Qp] ,

and the invariant of the image of the composite homomorphism is therefore

mv[kp : Qp]

2nv
·

nv

[kp : Qp]
=

mv

2
.

For the pairs of the second kind J0 = I0 and J = I . For pairs of the first kind J0, a group

over Qp is the inverse image of A in ∏
Jv
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where Jv is T v if v splits in L and m′
v 6= m′′

v and is G
v otherwise. J is obtained in the same

manner withD′ replacingD.

There is also a space X and a multiplicity d to associate to a pair (γ, h0) or, rather, to a

class of such pairs. For the moment we ignore the multiplicity and forego a detailed analysis

of the space X . The group K is taken to be a product KpKp with K
p ⊆ G(Ap

f ) and Kp a

special compact subgroup ofG(Qp), that is, the stabilizer of a special vertex in the Bruhat­Tits

building. X depends onKp. The set of points in S(κ̄p) corresponding to the class of (γ, h
0) is

formally d copies of

YK = H(Q)\G(Ap
v) ×X/Kp .

The group Kp acts on the right through its action on G(Ap
f ). I(Q) acts on both factors, and

the Frobenius Φp acts on Y through its action onX .

As in [12] we use the Lefschetz fixed point formula to compute the alternating sum of the

traces of Φj
p, j > 0, on the cohomology of Fξ . We take the sum over the fixed points of the

traces on the fibers. The fibers over Ql are obtained by first taking the fibers of the sheaves

over Z/lkZ, then letting k → ∞ to obtain fibers over Zl, and then tensoring with Ql. Since

the fixed points lie in S(κ̄p) = SK(κ̄p), the only thing that really matters is the resulting sheaf

over S(κ̄p), a set with the discrete topology, and the action of Φp on it.

We first look at the points inYK , and find a formula for their contribution to the alternating

sum. IfK = KpKp withK
p ⊆ Kp then the inverse image of YK in SK(κ̄p) is

YK = H(Q)\G(Ap
v) ×X/Kp .

The map is the obvious one. Consequently [12] the sheaf over YK is

(H(Q)\G(Ap
f ) ×X) ×Kp V (Ql) .

Here Kp acts on V (Ql) through its projection on G(Ql). The action of Φp on the sheaf is

obtained by letting it act onX .

The point y ∈ YK represented by (g, x) is fixed by Φj
p if

(g,Φj
px) = (hgk, hx), k ∈ Kp, h ∈ I(Q) .

There are really two equations here

Φj
px = hx and k = g−1h−1g .

The map from the fiber at Φj
p to the fiber at y is

(g,Φj
px) × v → (g, x)× v .
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At a fixed point,

(g,Φj
px) × v = (hgk, hx) × v = (g, x)× kv

and the trace is

trace ξ(k−1) = trace ξ(h) .

There is a lemma to be proved before we can find an expression for the contribution of

the points on YK to the alternating sum of the traces. If h1, h2 lie in I(Q) and k1, k2 lie inK
p,

the equation

(h1gk1, h1x) = (h2gk2, h2x)

is equivalent to the two equations

h−1
1 h2 = gk1k

−1
2 g−1 and h−1

1 h2x = x .

Since the center Z ofG is contained in I0 and I is obtained from I0 by an inner twisting, Z is

also a subgroup of I .

Lemma 3.6 There is an open compact subgroup K0 of G(Af ) such that if K ⊆ K0 then for

any Frobenius pair the equations

h = gkg−1, hx = x,

with h ∈ I(Q), g ∈ G(Ap
f ), k ∈ Kp, x ∈ X imply that h lies in Z.

We may as well divide by Z, and consequently suppose that Z is {1}. Since I(R) is

compact, h is semi­simple. Let it lie in the torus T over Q. I claim that if λ is a rational

character of T and v any valuation of Q, then

|λ(h)|v = 1 .

If v is archimedean, this is a consequence of the compactness of I(R). If v is non­archimedean

but prime to p, it is a consequence of the first of the assumed equations. If v divides p, it

is a consequence of the second assumed equation and the definition of X [13]. We conclude

that λ(h) is a root of unity. Since λ(h) lies in a Galois extension whose degree is at most the

product of the order of the Weyl group ofG with the order of the group of automorphisms of

the Dynkin diagram, it is one of a fixed finite set of roots of unity. We have merely to takeK0

sufficiently small that the ensuing congruence conditions force it to be 1.

We assume henceforth thatK ⊆ K0. There is another vexatious possibility with which I

would prefer not to have to deal, simply because it encumbers the notation. Supposeh ∈ I(Q),
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g ∈ I(Q) and g−1hg = zh with z ∈ (Q) ∩K . Then z certainly must lie in the center of the

derived group which is finite. I takeK0 so small that this equation implies z = 1.

If z ∈ Z(Q) ∩K then (zg, zx) = (gz, x). If

(g,Φj
px) = (hgk, hx)

and h1 ∈ I(Q), k1 ∈ K ′′, then

(h1gk1,Φ
j
ph1x) = ((h1hh

−1
1 )h1gk1(k

−1
1 kk1), (h1hh

−1
1 )h1x) .

Thus to each fixed point in YK is associated a conjugacy class {h} in Z(Q) ∩K\I(Q), and if

N j(h) is the number of fixed points yielding the conjugacy class {h} then the total contribution

of YK to the alternating sum of the traces is

∑
(h)

N j(h)trace ξ(h) .

If x ∈ X and j > 0, set

T j
x = {g ∈ J(Qp) | Φj

px = gx} .

Lemma 3.7. If h lies in I(Q) and in T j
x , j > 0, then the centralizer I(h,Qp) of h in I(Qp)

is the same as its centralizer J(h,Q)p) in J(Qp).

The proof of this lemma will have to be postponed until we have examined the sets T j
z

more closely.

Let ψj
x be the characteristic function of T

j
z , and if {x} is a set of representatives for the

orbits of J(Qp) inX , set

ϕj(h) =
∑

{x}

1

meas J(x)

∫

J(h,Q
p
)\J(Q

p
)

ψj
x(g−1hg)dg .

Here h is an arbitrary element of J(Qp) and J(x) is the stabilizer of x in J(Qp). We shall

eventually see that the integrals are finite and that, for each j, all but finitely many of the ψj
x

are identically zero.
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Lemma 3.8. Suppose φp is the characteristic function of Kp divided by its measure, and let

ZK = Z(Af ) ∩K .

Then N j(h) is equal to

meas(ZKI(h,Q)\I(h,Af ))ϕj(h)

measZK

∫

I(h,Ap

f
)\G(Ap

f
)

φp(g−1hg)dg .

This lemma is amore general form of some of the lemmas in §5 of [12]. The numberN j(h)

is equal to the sum over i of
∑

h1

∑
(g,g)

measKpφ(g−1h1g)ψ
j
xi

(g−1h1g) .

Here h1 runs over the conjugates of h in I(Q)modulo Z(Q) ∩K and (g, g) runs over

I(Q)\G(Ap
f ) × J(Qp)/K

p × J(xi) .

We may drop the sum of h1 if we divide on the left, not by I(Q), but by I(h,Q). Since

ZKI(Q) ∩ (gKpg−1 × gJ(xi)g
−1) = ZK ,

we may also replace the sum by an integral over ZKI(h,Q)\G(Ap
f ) × J(Qp) provided we

multiply by

measZK/(measKp)(measJ(xi)) .

The integration may be taken first over ZKI(h,Q)\I(h,Af ) and then over

I(h,Ap
f )\G(Ap

f ) × I(h,Qp)\J(Qp) .

Appealing to Lemma 3.7, we replace the denominator in the second factor by J(h,Qp). The

first integration simply yields a factor

meas(ZKI(h,Q)\I(h,Af )) .

The lemma follows.

Wemust next consider themultiplicityd attached to a Frobenius pair. I have first to confess

that the multiplicity suggested in [13] is not quite correct. It was suggested that it could be

incorrect because insufficiently many examples had been studied, and that is still a possibility,

but the error to be mentioned now arises from a difference source, a misinterpretation of

my calculations for the special cases. Such mistakes — another is correction [14] — must be

annoying to anyone who is seriously attempting to understand this sequence of papers. I can

only apologize and assure him that they do not seem serious. I hope to have a fairly thorough

discussion of the conjectures and the examples available sooner or later. It appears to be safe

for now to take d to be the number of elements inH1(Q, I)which become trivial inH1(Qv, I)

for all places v of Q and which have trivial image in H1(Q, Gder\G). In [13] triviality in

H1(Qp, I) was not demanded. I observe as well that in [13] a rather eccentric notation was

employed. The setH1(G(Q/Q), I(Q)) was denoted byH1(Q, I) and not byH1(Q, I).

With this definition of d, we have the following simple lemma.
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Lemma 3.9 (a) For Frobenius pairs of the second kind d = 1.

(b) For Frobenius pairs of the first kind d is equal to µ(T ), if T = I0, a Cartan

subgroup, and µ(T ) is the order of the kernel of E(T/Q) → E(T/A).

For a pair of the second kind,

Gder\G ≃ Ider\I

and Ider is a simply­connected group. Thus it follows from the Hasse principle or, more

directly, from the fact that H1(Q, Ider) = 1 that d = 1. For pairs of the first kind, T = I0 = I

and the kernel of

H1(Q, T ) → H1(Q, Gder\G)

is E(T/Q). The lemma is verified.

In order to compare the alternating sum of the traces with the results of §2, we need to

express it as the sum of a stable and labile part. We begin with the contribution from the

Frobenius pairs of the first kind attached to a given totally imaginary quadratic extension of

F .

Earlier we fixed TL and µ
∨

L and, when g ∈ A(T/Q) and h0 were given, regarded µ∨ as a

coweight of TL. There is more than one possibility for

ν∨ = Nmkp/Q
p
µ∨ .

Let ν∨

1 , ν
∨

2 , . . . be the finitely many possibilities. For each of them we choose a µ
∨

j with norm

ν∨

j and a gj ∈ A(TL/Q) with image δj in D(TL/Q) so that δj and µ
∨

j satisfy the condition of

Lemma 3.1. It follows from the density ofD(Q) inD(R) that gj exists. Set Tj = g−1
j TLgj and

regard µ∨

j now as a coweight of Tj . Rather than working with TL and µ
∨

L we prefer now to

work with Tj ,g ∈ A(Tj/Q), and those µ∨ for which

Nmkp/Q
p
µ∨ = Nmkp/Q

p
µ∨

j .

However, when we come to assemble the contributions from the various Tj , we must divide

by 2, the order of the group Ω(TL, G; Q), because, by Lemma 3.2, ν∨

i and ν
∨

j yield the same

classes of Frobenius pairs if

ν∨

j = ω(ν∨

i ), ω ∈ Ω(Tj , G; Q) .

If

Nmkp/Q
p
µ∨ = Nmkp/Q

p
µ∨

i
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then by the Tate­Nakayama theory µ∨ − µ∨

i defines elements αp(µ
∨, µ∨

i ) and α∞(µ∨, µ∨

i ) in

H1(Qp, Ti) andH
1(Q∞, Ti). By LemmaA.9 there is an element α(µ∨, µ∨

i ) inH1(Q, Ti)whose

image in H1(Qv, Ti) is α
−1
∞ (µ∨, µ∨

i ) if v = ∞, αp(µ
∨, µ∨

i ) if v = p, and 1 otherwise. If g and

µ∨ actually define a Frobenius pair then δα−1(µ∨, µ∨

i ) is trivial at∞, and, by Lemma 3.2, the

class of the Frobenius pair is determined by its local behavior at the finite places. Conversely

Lemma 3.3 shows that, for a given i, the cohomology class of δα−1(µ∨, µ∨

i ) is determined

locally by the Frobenius pair. To free ourselves of any ambiguity we first of all agree to take

µ∨ = µ∨

i , and then to choose g from a set of representatives {g} for those elements A(Ti/Q)

which are trivial at∞modulo those which are trivial everywhere.

For such g set T g
i = g−1Tig. A datum such as a measure may be transported from Ti

toT g
i . The part of the contribution to the alternating sum of the traces corresponding to Ti is

the product of

(d/2) meas(ZKTi(Q)\Ti(Af ))/measZK

and
∑

{g}

∑
h∈Ti(Q)

ϕj
g(h)

∫

T g(Ap

f
)\G(Ap

f
)

φ(x−1hgx)dx .(3.1)

Here ϕj
g is ϕ

j , but for the Frobenius pair attached to g. I have not stressed this before, but it is

understood that any term of this sum is zero if the first factor is zero, even when the second

factor is infinite. It will eventually be clear that if the first factor is not zero, then the second

factor is finite.

If E(Ti/Af ) is the set of elements in E(Ti/A) which are trivial at∞, then

E(Ti/Af )/E(Ti/Af ) ∩ Im E(Ti/Q) ≃ E(Tk/A)/ImE(Ti/Q) .

Thus it should be possible to write (3.1) as a sum over the characters κ of E(T/A)/Im E(T/Q)

of

[E(Ti/A) : ImE(Ti/Q)]−1
∑

h

∑
{g}

κ(δ)ϕj
g(h

g) ×

∫

T g

i
(Ap

f
)\G(Ap

f
)

φ(x−1hgx)dx .

Here g runs over a set of representatives for E(Ti/Af ) and δ in E(Ti/Af ) is the image of g.

However we do have to observe that in the definition of X and J it was not essential that g

lie in A(Ti/Q). It need only lie in A(Ti/Qp). Thus ϕ
j
g is defined for g ∈

∏
v A(T/Qv) by its

coordinate in A(Ti/Qp). We set

ϕj
g(h

g) = ϕj
δ(h) ,

sometimes taking δ inD(Ti/Q) and sometimes inD(Ti/Qp).
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The inner sum may be written as the product of

ΦTi/κ(h) =
∑

E(Ti/Ap

f
)
κ(δ)Φδ(h, f)

and ∑
E(Ti/Q

p
)
κ(δ)ϕj

δ(h) .

The first of these two factors we have met before, and there is little to be said about it. It is the

second which must be studied carefully.

Let k be the completion of the maximal unramified extension ofQp. If bi is the element of

Ti(k) associated to µ
∨

i by the procedure of the appendix, then the element b of T
g(k) associated

to µ∨

i by the same procedure is bg = g−1btg. We recall the manner in which bg is used to

construct the spaceX [13]. To stress that it depends on g, I writeXg instead ofX .

The group G(k) is contained in G̃1(k), and ifQ = G(Q/F )\G(Q/Q) then

G̃1(k) =
∏

Q GL(2, k) .

Since F is unramified at p the action of G(Qp/Qp) onQ factors through G(Qun
p /Qp), which is

also the group of continuous automorphisms of k and contains σ as Φp. To obtain the action of

σ on G̃1(k) we choose a set of representatives {τ} for the cosets of Q and write τσ = dτ (σ)τ ′

with dτ (σ) ∈ G(Q/F ). Then

σ : (gτ ) → (g′τ )

with g′τ = dτ (σ)(g′τ). Observe that in fact dτ (σ) is determined only modulo the inertial group

of F ⊆ Qp, but that does not matter, for dτ (σ) is acting on g′τ ∈ GL(2, k) in the usual way.

Let ok be the ring of integers in k. The element σ acts in the same way on the collection

of (Mi), i ∈ Q, where, for each i,Mi is an ok­lattice in the space of column vectors of length

two over k. Let (M0
i ) be a fixed point of σ and let K̃p(k) be the stabilizer of (M

0
i ) in G̃1(k). We

may so choose (M0
i ) that if

K̃p = K̃p(k) ∩ G̃1(Qp)

then

Kp = K̃p ∩G(Qp) .

Observe that G̃1(Qp) is taken to be the set of points in G̃1(k) fixed by σ.

We introduce the set

X = G(k)/Kp(k) ⊆ X̃ = G̃1(k)/K̃p(k)

with
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Kp(k) = K̃p(k) ∩G(k) .

X̃ is just the set of (Mi). the action of σ on X is given by its action on G(k) or by its action on

the sequences (Mi). We introduce the transformation Fv of X which sends c to bgσ(c).

Let x in X be (Mi) and let Y = Fgx be (Ni). According to the definition of [13], sup­

plemented by the correction in [14], the point x lies in Xg if and only if the following two

conditions are satisfied.

(i) Mi = Ni if i is an unmarked point.

(ii) Mi ) Ni ) pMi if i is a marked point.

It will be easier to make the comparison of the following paragraph if we can express

(3.2)
∑

E(Ti/Q
p
)
κ(δ)ϕj

δ(h)

entirely in terms of the set X̃. By the corollary on p. 170 of [18]

H1(Qp/Q
un
p , Ti) = 1 .

Thus we may choose the g to lie inG(Qun
p ) and then write

g = tu, t ∈ T̃i(Q
un
p ), u ∈ G̃1(Qp) .

Here T̃i is the centralizer of Ti in G̃1. Thus

T g
i = u−1Tiu

and

bg = u−1biu .

We let Fi be the operator on X̃ which takes the point represented by x in G̃1(k) to the

point represented by biσ(x), and define X̃iP in the same way that we defined Xg except that

Fi replaces Fg . Then

uXg = uX ∩ X̃i .

As in [7], E(Ti/Qp)may be identified with

G̃1(Qp)/T̃i(Qp)G(Qp) ≃
∏
v|p

F×
v A(Qp)

∏
v|p

NmL×
v

with
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Lv = L⊗F Fv .

We may therefore regard κ as a character of G̃1(Qp). If

J(Qp) = {g ∈ G(Qp) | bσ(g)b−1 = g}

the sum (3.2) is equal to
∑

u∈ eG1(Qp
)/Ti(Qp

)G(Q
p
)

∑
{x}

κ(u)

meas J(X)

∫

Ti(Qp
)\(Q

p
)

ψj
x(g−1hg)dg .(3.3)

Here {x} is a set of representatives for the orbits ofJ(Qp) in uX∩X̃i andψ
j
x is the characteristic

function of

{g ∈ J(Qp) | Φj
px = gx}

with Φp = Fe
i if e = [Ep : Qp]. I observe that, by the definition of E, the operator Φp must

take the set of marked points to itself, and does in fact operate on X̃i.

It is manifest that G̃1(Qp) ∩ K̃p(k) takes uX to itself for all u, and hence that (3.3) is 0

unless κ is unramified. We assume then that κ is unramified. For a given Ti there are at most

two possibilities for κ. If it is not trivial, it can be unramified only if L is unramified at every

place of F dividing p.

We want to transform the expression (3.3), and in order to do so we need the following

lemma.

Lemma 3.10. The set X̃i is contained in G̃1(Qp)X.

IfG1 = ResF/QGL(1) then

Nm : G̃1(Qp) → G1(Qp)

is surjective. Let g ∈ G̃1(k) and let a = Nm g. We want to show that if the image of g in X̃ lies

in X̃ then

g ∈ G̃1(Qp)G(k)K̃p(k) .

SinceG is the inverse image of A in G̃1, all we need do is show that

a = a1a2a3

with a1 ∈ G1(Qp), a2 ∈ A(k), a3 ∈ G1(k), and |λ(a3)| = 1 for every rational character ofG1.

The composition of µ∨

i with Ti → A is a coweight µ̄∨

i of A and thus of G1. Both A and

G1 are split over Qun
p because F is assumed to be unramified at p. Consequently ̟

µ′

i lies in



Zeta­functions of some simple Shimura varieties 66

A(Qun
p ) if̟ is a uniformizing parameter ofQp. Let b = Nm bi. The condition for the image of

g to lie in X̃ which was added in [14] and used to deduce conditions (i) and (ii) above is that

aσ(a−1) = b̟−µ∨

i b3

with |λ(b3)| = 1 for every rational character ofG1. A simple variant of Lemma A.7 allows us

to establish that b3 = a3σ(a−1
3 ) with a3 of the desired form. For simplicity we replace a by

aa−1
3 and suppose that b3 = 1.

The considerations of the appendix apply to the group A and the coweight µ̄∨

i . There are

two ways to construct an element bA, that is, the element b of the appendix when A replaces

G. On one hand, we can take b. On the other, we can observe that A splits over an unramified

extension lp of Qp with Galois group generated by σ, and that the fundamental cocycle of

lp/Qp may be taken to be

aσj,σk =

{
1, 0 ≦ j, k < [lp : Qp], j + k < [lp : Qp],

̟, 0 ≦ j, k < [lp : Qp], j + k ≧ [lp : Qp]

This leads to̟ µ̄∨

i . The considerations of the appendix show that

b̟−µ∨

i = a2σ(a−1
2 ), a2 ∈ A(k) .

Thus

a1 = aa−1
2 ∈ G1(Qp) .

We may now regard x as a function on X̃i, defined by

κ(x) = κ(u)

if x ∈ uX. It is constant on orbits of T̃i(Qp). Let

J̃1(Qp) = {g ∈ G̃1(Qp) | bσ(g)b−1 = g} .

This group contains T̃i(Qp) and the usual bijection

Ti(Qp)\J(Qp) ≃ T̃i(Qp)\(Q)J(Qp) ⊆ T̃i(Qp)\J̃1(Qp)

is defined. We choose measures on T̃i(Qp) and J̃1(Qp) in such a way that the restriction of

the quotient measure to the image of the arrow corresponds by transport of structure to the

measure on Ti(Qp)\J(Qp) appearing in (3.3).
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Recall the definition of the number u(Ti) (p. 1156). Replacing Ti by a conjugate if

necessary, we suppose that Kp ⊆ K̃p ⊆ Ũp where K̃p is a maximal compact subgroup of

G̃1(Qp) and Ũp the maximal compact subgroup of T̃i(Qp). Let J̃1(x) be the stabilizer of x in

J̃1(Qp). We want to show now that the expression (3.3) is equal to

u(Ti)
meas Ũp

measUp

times
∑ κ(x)

meas J1(x)

∫

eTi(Qp
)\ eJ1(Qp

)

ψj
x(g−1hg)κ(g)dg .(3.4)

The sum is over a set of representatives for the orbits of J̃1(Qp) in X̃i, and Up, Ũp are the

maximal compact subgroups of Ti(Qp) and T̃i(Qp).

We described J(Qp) explicitly above. It is clear that J̃1(Qp) admits a similar description.

It follows from these descriptions that

Norm J(Qp) = Norm G(Qp),

Norm J̃1(Qp) = Norm G̃1(Qp) .

Consequently the outer sum in (3.3) may be taken over

T̃1(Qp)J(Qp)\J̃1(Qp)

and the index in the inner summay be taken to be uxwhere x runs over a set of representatives

for the orbits of J(Qp) in X ∩ X̃i. Changing the order of summation and combining the new

inner sum and the integral into a single integral, we obtain

∑
{x}

κ(x)

meas J(x)

∫

eT1(Qp
)\ eJ1(Qp

)

ψj
x(g−1hg)κ(g)dg .

The sum is over a set of representatives for the orbits.

Every orbit of J̃1(Qp) in X̃ meets X, and so the set {x} does meet every orbit of J̃1(Qp).

The difficulty with which we have to contend is that it may contain several points from the

same orbit. Given x in {x}, choose amaximal compact subgroup C̃ of J̃1(Qp) containing J̃1(x)

and let C = C̃ ∩ J(Qp). If g ∈ J̃1(Qp) then gx ∈ X if and only if g ∈ J(Qp)C̃. The number of

orbits of J(Qp) in

J̃1(Qp)x ∩ X

is
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[J(Qp)C̃ : J(Qp)J̃1(x)] = [C̃ : CJ̃1(x)] .

Thus we are free to sum over a set of representatives for the orbits of J̃1(Qp), provided we

incorporate the factor

[C̃ : CJ̃1(x)]/measJ(x) .

What we must do is show that this equals

u(Ti)meas Ũp/measUpmeas J̃1(x) .

Let T̃i(x) and Ti(x) be the stabilizers of x in T̃i(Qp) and Ti(Qp). Then

[C̃ : CJ̃1(x)]

meas J(x)
=

[C̃ : CT̃i(x)]

[J̃1(x) : J(x)T̃i(x)]
·

1

measTi(x)\J(x)
·

1

measTi(x)
.

The middle factor on the right combines with the denominator of the first factor to give

(meas T̃i(x)\J̃1(x))
−1 = meas T̃i(x)/meas J̃1(x) .

On the other hand,

[C̃ : CT̃i(x)] = u(Ti)[Ũp : UpT̃i(x)]

and

[Ũp : UpT̃i(x)] =
[Ũp : T̃i(x)]

[Up : Ti(x)]
=

meas Ũp

measUp

·
measTi(x)

meas T̃i(x)
.

The desired equality follows.

We started with a particular quadratic extension L, chose TL, and then ν
∨

1 , ν
∨

2 , . . . , and

g1, g2, . . . , as well as T1, T2, . . . . On the other hand, in the previous paragraph we expressed

at leaast part of the contribution to the sums (2.1) and (2.9) as a sum over T and ν. We may as

well assume the T are the TL. Moreover the ν
∨

i and the ν are essentially the same. If

ν∨

i =
∑

v
ν∨

v and ν =
∑

νv

then

ν∨

v =
nv

[kp : Qp]
νv .

Since we are dealing with Frobenius pairs of the first kind, m′
v 6= m′′

v for at least one v.
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Let δi be the image of gi inD(T/Q)(T = TL) and δi
∞ and δ

i
p the images of δi inD(T/R)

andD(T/Qp). Then

ΦT/κ(t, φp) = κ(δi
∞)κ(δi

p)Φ
Ti/κ(t, φp) .

The term κ(δi
∞) is 1 if κ is trivial and cancels the term β(ν) if κ is not trivial. The term κ(δi

p) if

1 if κ is trivial. Otherwise it is just what is needed to allow us to refer the definition of the sign

appearing in part (g) of our summary of the discussion of (2.1) to Ti rather than T .

Observe that u(T ) is 1 when every place v of F dividing p is unramified, that the space

X̃i, together with the action of Φp, may be represented as a Cartesian product over the v

dividing p, and that the expression is then also a product. A comparison of the summaries

in the previous paragraph with our results for Frobenius pairs of the first kind shows that,

in order to have perfect cancellation of the contributions of these pairs with the contributions

from the Selberg trace formula parametrized by the ν withm′
v 6= m′′

v for some v, we need only

verify the combinatorial facts to be reviewed below.

Combinatorial facts to be proved. Before describing these facts, we recapitulate the rel­

evant definitions in the form and with the notation that is now appropriate. Fv ⊆ Qun
p ⊆ Qp

is an unramified extension of Qp and we take G to be ResFv/Q
p
GL(2). The imbeddings of Fv

in Qp are indexed by

G(Qun
p /Fv)\G(Qun

p /Q)

and the imbedding x → Φ−i
p (x) will also be labelled by the integer i. Let M0 be a lattice

in the space of column vectors of length two over Ov invariant under G(Fv/Qp) and let

K ⊆ GL(2, Fv) = G(Qp) be the stabilizer ofM
0. K is a maximal compact subgroup. Let k be

be completion of Qun
p . Then

G(k) = {(gi) | 1 ≦ i≦n, g1 ∈ GL(2, k)} .

LetM0 also denoteM0 ⊗ ok and let

K(k) = {(gi) ∈ G(k) | giM
0 = M0 for all i} .

A point x in

X = G(k)/K(k)

is a sequence (Mi), 1 ≦ i≦n, whereMi is an ok­lattice in the space of column vectors of length

two over k. The action of σ, the Frobenius of k, on (Mi) is σ : (Mi) → (M ′
i) withM

′
i = Mi=1,

2 ≦ i≦n, and M ′
1 = σn(Mn), if in the last equation σn denotes the usual action of σn on

ok­lattices.
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Suppose J0 is either a split Cartan subgroup ofG orG itself, and T is a Cartan subgroup

of J0 whose image in J0
ad is anisotropic. Let µ be a coweight of T of the form

n∑

i=1

aiγ
i
j(i) ,

with j(i) equal to 1 or 2 and ai equal to 0 or 1. The set {γi
j} is the standard basis of the lattice

of coweights. We suppose that

Nmkp/Q
p
µ

factors through the center of J0, but if J0 6= G not through the enter ofG, and use µ as in the

appendix to define b, and then let F be the operator x → bσ(x).

The set X is a subset of X. If x = (Mi) andY = Fx = (Ni), then x lies inX if and only if

the following two conditions are satisfied:

(i) M8 = Ni if i is an unmarked point.

(ii) Mi ) Ni ) pMi if i is a marked point.

Observe in particular that if (Mi) and (M ′
i) with M

′
i = giMi lie in X then ord(det gi) is

independent of i.

If we fix an index i0, 1 ≦ i0 ≦ n, we may define a function κ onX by

κ(x) = ǫord(det gi0
),

if x = (Mi) andMi = giM
0
i . Here ǫ is 1 if J

0 is a split Cartan subgroup and ±1 if J0 is G. If

g = gxwith g = (gi) in J(Qp) and u = ord(det gi), then

κ(g) = ǫuκ(x) .

If there are no marked places κ is independent of i0 even when ǫ = −1. If there are marked

places a different choice of i0 may change its sign, but that does not matter.

If e = [Ep : Qp] then Φp = Fe mapsX to itself and we set

T j
x = {g ∈ J(Qp) | Φj

px = gx} .

J is obtained from J0 by the usual inner twisting. Finally, if {x} is a set of representatives for

the orbits of J(Qp) inX and ψ
j
x is the characteristic function of T

j
x , we set

ϕj
κ(h) =

∑
{x}

κ(x)

meas J(x)

∫

J(h,Q
p
)\J(Q

p
)

ψj
x(g−1hg)κ(g)dg
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with κ(g) = ǫord(Norm g). We must assume that g → x(g) is trivial on J(h,Qp).

Here is what we must establish.

(a) Suppose J0 is a split Cartan subgroup and ǫ = 1. Let

Nmkp/Q
p
µ =

[kp : Qp]

n
(m′′δ1 + m′δ2)

with

δc =

n∑

i=1

γi
c, c = 1, 2 ,

m′ 6= m′′, and m′ + m′′ = m, the number of marked places. Let l be the number of orbits

under Φj
p and k the number of marked orbits. Then ϕ

j
κ(h) is 0 unlessm/k dividesm′ and m′′.

However, if k′ = m′/km and k′′ = m′′k/m are integral, then

ϕj
κ(h) =

k!

k′!k′′!
pjeqθv(h)

with q equal to the smallest of m′ and m′′ and

ν = jcn−1(m′′δ1 + m′δ2)

(b) Suppose m′ = m′′ and they are both integral. Then J0 = J = G. Let t lie in the split

Cartan subgroup T and have distinct eigenvalues t1, t2. Let ǫ be 1. If k′ = m′k/m = k/2 and

k′′ = m′′/m = k/2 are not integral, then ϕj
κ(t) is 0. Otherwise it is

(
k

k/2

)pjem/2
|t1t2|

1/2

|t1 − t2|1/2
θν(t)

with

ν = jen−1(m′δ2 + m′′δ1) .

Suppose t lies in a Cartan subgroup T that is not split. If ǫ = −1, only the case of a T

associated to an unramified quadratic extension matters. If m 6= 0, then ϕj
κ(t) must be 0. If

m = 0, then b = 1 and

ϕj
κ(t) =

±1

measU

|t1t2|
1/2

|(t1 − t2)2|1/2
.

Here U is the maximal compact subgroup of T (Qp), and the sign is to be determined by the

rule given in part (g) of the summary of our discussion of (2.1).
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If ǫ = 1 but the eigenvalues are still distinct, then ϕj
κ(t) is a sum of two terms. The first is

{∑
0 ≦ i<k/2

pjem/k

(
k

i

)}
measT (Qp)\G

′(Qp)

measK ′
Ξjem/n(t) .

Here G′ is the group obtained from the quaternion algebra over Fv , and K
′ is a maximal

compact subgroup ofG′(Qp). The second term is 0 unless k/2 is integral, when it is

pjem/2

(
k

k/2

)
1

measK

∫

T (Q
p
)\G(Q

p
)

ϕejm/n(g−1tg)dg

if ϕejm/n is the characteristic function of

(
̟ejm/2n 0

0 ̟ejm/2n

)
K .

(c) The final case to consider is that m′ = m′′, and they are both half­integral. The

formulae are to be the same as before. Notice, however, that split T no longer come into

question, and that k/2 can no longer be integral.

Notice also that Lemma 3.7 is a consequence of part (a).

Finally, we have to examine the contribution of Frobenius pairs of the second kind to the

alternating sum of the traces and compare it with the results of §2. We take the sum over

conjugacy classes {h} in I(Q) of the contributionsN j(h) given by Lemma 3.8 and decompose

it into stable and labile parts. The group I is nowG′, defined in the same manner asG, but in

terms of a different quaternion algebra D′. The Hasse invariants of D′ are the same as those

of D at all finite places that do not divide p, but they are 1
2
at every infinite place, and the

invariant at a place v dividing p ismv/2.

The contribution of the scalar matrices is already stable. It is a sum over Z(Q)∩K\Z(Q).

The terms of the sum may be represented as products. The first factor is

meas(ZKG
′(Q)\G′(Af ))

measZk
φp(h) .

In order to make the comparison with the results of §2, we must recall a simple property of

Tamagawa numbers, viz.,

meas(ZKZ(R)G(Q)\G(A)) = meas(ZKZ(R)G′(Q)\G′(A)) .

The measure on the right is equal to

meas(Z(R)\G′(R))meas(ZKG
′(Q)\G′(Af ))
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The second factor is ϕj(h), defined with respect to the space X associated to G. Since it

is X̃ , the space associated to G̃1, that factors as a Cartesian product, we want to replace ϕ
j(h)

by ϕ̃j(h). Lemma 3.10 is still valid, and hence every orbit of J̃1(Qp) = G̃′
1(Qp) in X̃ meetsX .

The number of orbits of J(Qp) = G′(Qp) contained in the J̃1(Qp)­orbit of x is

[C̃ : CJ̃1(x)] .

Here C̃ is again a maximal compact subgroup of J̃1(Qp) containing J̃1(x). Since

[C̃ : CJ̃1(x)] =
[C̃ : J̃1(x)]

[C : J1(x)]
=

meas C̃

measC

meas J1(x)

meas J̃1(x)

and

meas C̃

measC
=

meas K̃p

measKp

,

we may replace ϕj(h) by ϕ̃j(h), provided that we multiply by the quotient

meas K̃p/measKp .

If we observe that
∑

mv is the dimension of the Shimura variety, we see that, to establish

that the contribution of the scalar matrices is equal to their contribution to (2.9), we need only

the following:

Additional combinatorial facts. Wemust revert to the notations uedwhen describing the

other combinatorial facts to be proved.

(d) Let κ be identically 1 and let z lie in the center of G′(Qp). If k is odd, then ϕ
j
κ(h) is

equal to

−
(|̟v|

−1 − 1)

measK
Ξjem/n(z)

{∑
0 ≦ i<k/2

(
k

i

)
pjemi/k

}
.

If k is even, it is the sum of this and

1

measK
Ξjem/n(z)

(
k

k/2

)
pjem/2 .

The contribution of the non­scalar elements in G′(Q) remains to be treated, but for it no

new combinatorial facts are needed. The treatment is by now routine. We obtain a double
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sum, over a set of representatives T for the stable conjugacy classes of Cartan subgroups, and

over the characters κ of

E(T/A)/ImE(T/Q) = E(T/Af )/\E(T/Af ) ∩ ImE(T/Q) .

Each term is itself a sum over h in ZKT (Q)\T (Q) of

µ(T )

2[E(T/A) : ImE(T/F )]
trace ξ(y)ΦT/κ(t, φp)

times ∑
δ∈E(T/Q

p
)
κ(δ)ϕj(hδ) .

This sum is basically the same as (3.2), except that ϕj(hδ) is here defined with respect to a fixed

X rather than with respect to varyingXg . It may, however, be treated in exactly the same way,

with the same conclusions.

This is the reason that no additional combinatorial facts are needed. Now m′
v = m′′

v for

all v, whereas earlier this happened only for some v. Since we factored the set into a product

over v, every possibility for the individual factors has had to be taken into account already.

4. Combinatorics.

The preparation over, we come now, with sighs of relief from reader and author, to the

amusing part of the paper. The combinatorial facts to be verified turn out to be statements

about a simple type of tree, the Bruhats­Tits buildings for SL(2). They may well be familiar to

combinatorialists, but a cursory glance at the standard texts yielded nothing of help.

The notation will now be that used when stating the facts to be proved. Once a few

preliminary remarks are out of the way, we will be able to dismiss most of the preceding

discussion from our minds, and indulge ourselves in a little elementary mathematics.

We have agreed to take b = 1 when µ = 0. Otherwise, we have not made any particular

choice of the element b used to define X . It will be convenient to do so for the calculations of

this paragraph. b lies in J0(k), but we are free to modify it to cbσ(c−1) with c in J0(k). Thus

we can suppose it is of the form b = (bi)with

b2 = . . . = bn = 1 and b1 = B .
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If J0 is a split torus, which we take to be the group of diagonal matrices, we may take

B =

(
pm′′

0
0 pm′

)
.

If J0 is G we may take

B =

(
pm/2 0

0 pm/2

)

when m is even and

B = pm−1/2

(
0 1
p 0

)

when m is odd. There is no real need for a specific choice of B, but it does no harm.

A point x ∈ X is represented by a sequence {Mi | 1 ≦ i≦n}. DefineMi for all i ∈ Z by

the periodicity condition

Bσn(Mi+n) = Mi .

In addition, extend the notion ofmarked or unmarked point by periodicity. Then {Mi} defines

a point ofX if and only if the following conditions are satisfied.

(o) Bσn(Mi+n) = Mi ;

(i) At an unmarked point i,Mi = Mi−1 ;

(ii) At a marked point i,Mi ) Mi−1 ) pMi .

The supplementary condition is absorbed into (i) and (ii). Because of the special form of b, it

states simply that, ifMi = giM
0
i , then

ord(det(gig
−1
i−1)) =

{
0, i unmarked,

−1, imarked .

The operation of Φj
p takes (Mi) to (M ′

i) with

M ′
i = Mi−ej .

The point h = (hi), 1 ≦ i≦n, lies in J(Qp) if and only if hi is independent of i and

Bσn(hi)B1 = hi
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for all i. It will be convenient to change the notation slightly and to write h = (h, . . . , h), that

is, we identify hwith any one of its coordinates. If x = (Mi), then h ∈ T j
x if and only if

Mi−ej = hMi

for all i.

If M and M ′ are two­dimensional lattices over ok, they are said to be homothetic if

M ′ = λM with λ ∈ kx. Let M be the class of lattices homothetic to M . The Bruhat­Tits

building for SL(2, k) is a tree whose vertices consist of the homothety classes of lattices, the

classesM and N being joined by an edge if, for some λ ∈ kx,

M ) λN ) pM .

σ acts on this building and the fixed point set of σj is the Bruhat­Tits building for SL(2, k) if k

is the unramified extension of Qp of degree j.

The point x inX determines an infinite path in the building

-1 0 = 21 MM M M

with vertices M i. If x and x
′ = (M ′

i) determine the same path then, because of conditions

(i) and (ii), there is a z ∈ Z(Qp) for which x
′ = zx, that is, M ′

i = zMi for all i. Since J(Qp)

contains Z(Qp), x and x
′ lie in the same orbit. Observe also that if we have a sequence (M i)

satisfying the following three conditions, then it may be lifted to a point ofX .

(o) BM i+n = σ−n(M i);

(i) M i = M i−1 if i is unmarked;

(ii) M i andM i−1 are joined by an edge if i is marked.

We may as well dispose immediately of the case that µ = 0 and B = 1. Then J(Qp) =

G(Qp) = GL(2, Fv), andMi = M is independent of i. SinceBMi+n = σ−n(Mi),L is actually

a lattice over Fv . There is only one orbit and wemay take it to be the point withM = M0 or, if

we were being extremely precise,M0 ⊗ ok, but at present it is best not to distinguish between
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a lattice over ov and the lattice over ok it determines. If ψ is the characteristic function of K ,

then

ϕj
κ(h) = (measK)−1

∫

G(h,Q
p
)\G(Q

p
)

κ(g)ψ(g−1hg)dg .

That ϕj
κ(h) has the desired value when h is regular and lies in a split torus follows form the

properties of the Satake homomorphism. That it has the desired value otherwise is immediate

for κ trivial, and follows from an observation in §2 of [7] when κ is not trivial.

It is also easy to show that, if there are marked points and κ is not trivial, then ϕj
κ(h) is

0. Suppose x = (Mi) is a point ofX . We may define another point x
′ = (M ′

i) by demanding

thatM ′
i = Mi′ whenever i is marked and i

′ is the first marked point following i. If h ∈ J(Qp)

and y = hx, then y′ = hx′. Moreover

κ(x′) = −κ(x) .

Since ϕj
κ(h) can be calculated by a sum over {x′} rather than a sum over {x}, we conclude

that ϕj
κ(h) = −ϕj

κ(h).

We suppose henceforth not only that there are marked points, but also that κ is trivial,

and fix our attention on a specific h in J(Qp). We observe first of all that ϕ
j
κ(h) is the sum over

the orbits of J(h,Qp), the centralizer of h in J(Qp), of

κ(x)ψj
x(h)/measJ(h, x) .

Here J(h, x) is the stabilizer of x in J(h,Qp). To see this start from the definition of ϕ
j
κ(h) as

∑
{x}

κ(x)

meas J(x)

∫

J(h,Q
p
)\J(Q

p
)

κ(g)ψj
x(g−1hg)dg .

This expression is equal to

∑
{x}

κ(x)

meas J(x)

∑
J(h,Q

p
)\J(Q

p
)/J(x)

κ(g)ψj
gx(h) × meas(J(h,Qp)\J(h,Qp)gJ(x)) .

Since

κ(g)κ(x) = κ(gx)

and
meas(J(h,Qp)\J(h,Qp)gJ(x))

meas J(x)
=

1

meas J(h, gx)
,

the assertion follows.
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We are therefore interested only in the set U of those x for which h ∈ T j
x . Suppose we

have a subset U ′ of U and an open subgroup J0 of J(h,Qp) satisfying the following three

conditions.

(i) Every orbit of J(h,Qp) in U meets U
′.

(ii) If x and y in U ′ lie in the same orbit of J(h,Qp), then x = gy with g ∈ J0.

(iii) For all x ∈ U ′, J(h, x) is a subgroup of J0.

It is then clear that

(4.1) ϕj
κ(h) = meas J0

∑
x∈U ′

κ(x) .

We also want to reformulate the two conditions of periodicity:

(a) σn(BMi) = Mi−n;

(b) hMi = Mi−ej .

Let uej + vn = l. I claim that (a) and (b) are equivalent to the conditions

(c) σejn/l(Mi) = B−ej/lhn/lMi;

(d) huBvσvn(Mi) = Mi−l.

From (b)

hn/lMi = Mi−enj/l .

Since σ(B) = (B), the relation (a) implies that

Mi−enj/l = σenj/lBej/lMi ,

and we deduce (c). Applying (a) and (b) again, we have

Mi−l = Mi−vn−uej = huMi−vn = huBvevn(Mi) .

Conversely, if we assume (d), we may write

Mi−n = Mi−ln/l = hun/lBvn/lσvn2/l(Mi)
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because h ∈ J(Qp) and

Bσn(h) = hB .

We then apply (c) to infer that the right side of

hun/lBvn/lσvn2/l(Mi) = hun/lBB−uej/lσn−uejn/l(Mi)

is equal to

Bσn(Mi) = σn(BMi) .

This is (a). To deduce (b) from (c) and (d), we write

Mi−ej = Mi−lej/l = huej/lBvej/lσvejn/l(Mi) ,

and replace the right side by

h−vn/lBvej/lσvejn/l(Mi) = Mi .

The conditions (c) and (d) will be more useful than (a) and (b), but there is still one useful

consequence to be drawn from (a). Consider the set Ā of pointsM in the Bruhat­Tits building

forwhich dist(M,σn(BM)) is aminimum. It is clear that Ā is invariant underM → σn(BM).

Moreover, Ā is convex, in the sense that every vertex on the path joining two points of Ā is

again in Ā. To prove this statement, we proceed by induction on the length of the path. Thus

it is enough to show that ifM and N lie in Ā but no other point on the path joiningM and N

does, thenM and N are adjacent.

We examine first the path connectingM and σn(BM)

M

L Mnσ B( )

ifM 6= σn(BM) and L̄ is the point in the path succeedingM then

dist(L̄, σn(BL̄)) ≦ dist(M,σn(BM)) .

Since we must have equality, σn(B,M) is on the path joining L̄ to σn(BI)

Mnσ B( )L

nσ LB( ) .
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Observe that L̄ lies in Ā.

Returning toM and N , we notice that we can construct a cycle of the form:

Mnσ B( )

nσ NB( )

M

N

IfM and N are not adjacent, the sides can have no edge in common with the top or bottom,

and the cycle is not trivial. This is impossible, because the building is a tree.

Suppose x = (Mi) lies inX . LetM i0 be such that

dist(M i0 , Ā) ≦ dist(M i, Ā)

for all i. I claim thatM i0 ∈ Ā. Otherwise, we could again construct a nontrivial cycle

M i
0

M i
0

+1 M i
0

+n

M B-1 n- M( )σ

HereM is the point in Ā closest toM i0 .

The skeleton S(x) of x = (Mi) inX will either be the set of integers i for whichM i ∈ Ā

or the path formed by joining these vertices in succession. Suppose, for example, that Ā is

. . .. . .
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andM → σn(BM) is a shift to the left by two. Let n be 8. Then the skeleton could be

M M51 = M 9

M6 M 8=

To form the full path we have to add subpaths which issue from Ā. Thus the full path, or at

least a representative part, could be

M6 M 8=

=M M2 4

M M51 = M 9

M 3

M7

The sets A are easily described explicitly. If J(Qp) is the split Cartan subgroup, then A

consists of the latticesM(u′, u′′) formed by the set of

(
̟u′

x
̟u′′

y

)

with x, y in ok. Here u
′ and u′′ are any two integers. The set Ā is an infinite line

. . .. . .

andM → σn(BM) is a shift of size |m′ − m′′|. We take it to be to the right.

If J(Qp) is GL(2, Fv), then A is the set of lattices defined over Fv and m → σn(BM)

acts trivially on Ā. If J(Qp) is G
′(Fv), then Ā consists of two points, the image of the lattice

formed by

(
x

y

)
, x, y ∈ ok,

together with the image of the lattice formed by
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(
x

̟y

)
, , x, y ∈ ok .

The mapM → σn(BM) interchanges the two points in Ā.

The sets A and Ā are invariant under J(Qp), and J(Qp) acts transitively on Ā. I now

introduce a convex subset D̄ of Ā, as well asD, the set of latticesM for whichM ⊆ D̄. D̄ will

be invariant under J(h,Qp). If h is central in J(Qp), then D̄will be Ā. Otherwise, J(h,Qp) is a

Cartan subgroup of J(Qp). We can pass to an extension bv , at most quadratic, of Fv that splits

J(h). The Bruhat­Tits building over Fv becomes, perhaps after taking the first barycentric

subdivision, a subset of the Bruhat­Tits building over Lv (cf. §3 of [15]). Over Lv we may

associate an apartment to J(h,Qp). D̄ is to consist of the points in Ā at a minimum distance

from this apartment. It is geometrically clear that D̄ can contain at most two points.

It is also easily seen (cf. §3 of [15]) that in all cases D̄ is a connected tree and that the

same number q0 + 1 of edges issue from each vertex. We tabulate the possibilities and give, in

addition, the number f of orbits in D̄ orD under the action of J(h,Qp).

(a) J0 = J is a split torus. Then q0 = 1 and f = 1.

(b) J0 = G and h is central. Then q0 = pn and f = 1.

(c) J0 = G and the centralizer of h is a split torus. Then q0 = 1 and f = 1.

(d) J0 = J = G and the centralizer of h is not a split torus. If the extension splitting J(h)

is unramified, then q0 = −1 and f = 1. If it is ramified, then q0 = 0 and f = 1.

(e) J0 = G but J = G′, and the centralizer of h is not a split torus. If the extension splitting

J(h) is unramified, then q0 = 0 and f = 2. If it is ramified, then q0 = 0 and f = 1.

The reduced skeleton RS(x) will either be the set of i on which dist(L̄i, D̄) attains its

minimum or the path obtained by joining these points in order. The reduced skeleton is

contained in the skeleton. We choose a set of representatives D1 for the orbits of J(h,Qp) in

D. Then D̄1 is a set of representatives for the orbits of J(h,Qp) in D̄. In all cases but one, D1

consists of a single element. All points ofD1 have the same stabilizer J0 and J0 is a maximal

compact subgroup of J(h,Qp).

We may now define the set U ′. For each possible reduced skeleton RS, we choose an

integer i(RS) in it. Then U ′ consists of those x = (Mi)which are such that ifRS = RS(x) and

i = i(RS), then the minimum distance from the path ( . . . ,M−1,M0,M1, . . . ) to D̄ is equal

to dist(M i, N)withN ∈ D1 andMi = gN with

order(det g) = dist(M i, N) .
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To verify that U ′ satisfies the three conditions imposed, we have only to observe that if g is any

element of J(h,Qp) and, for the sameMi and N ,

dist(gM i, N) = dist(M i, N) ,

then gN = N .

There are some remarks to bemade about the periodicity condition (c) beforewe examine

the set U ′ more closely. Since that condition is to be valid for all i, it implies in particular that

if ϕj
κ(h) 6= 0, the transformation

M → h−n/lBej/lσejn/l(M)

has a fixed point inD, because it fixes a point in the reduced skeleton and therefore the closest

point in D̄ to the reduced skeleton. Recalling that in all but a single case there is only one

orbit in D, and that in the exceptional case D̄ consists of two points, we conclude that the

transformation fixes every point of D. So does σejn/l. Thus, h−n/lBej/l fixes every point of

D.

Examining the various cases, we come to the following conclusions about the nature of

those h for which ϕj
κ(h) 6= 0.

(a) If J0 = J is a split torus, then

h =

(
α 0
0 β

)

with

|α| = |̟ejm′′/n|, |β| = |̟ejm′/n| .

In particular, nmust divide ejm′ and ejm′′, and consequently n/l = m/k must dividem′ and

m′′.

(b) If J = G and the centralizer of h is a split Cartan subgroup, then the eigenvalues α and β

of h have equal absolute values and

|α| = |β| = |̟|ejm/2n .

(d) J0 = G and the centralizer of h is not split, then

|Normh| = |̟|ejm/n .
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In all cases, the order of the determinant of huBv is

uejm/n + vm = ml/n = k .

The conditions described here are also sufficient for the transformation to fix every

element ofD. Moreover, thatϕj
κ(h) is 0when they are nto satisfied is a part of the combinatorial

facts to be proved. We suppose henceforth that the conditions are satisfied.

Suppose

M = h−n/lBej/lσejn/l(M) .

The set of points in the Bruhat­Tits building over k that can be joined toM by an edge may be

viewed as the projective line over the algebraic closure of the finite fieldFp. The transformation

N → h−n/lBej/lσejn/l(N)

allows us to put on it the structure of a projective line over Fpd , d = ejn/l. According to Lang’s

theorem, there is only one such structure. Thus the set ofN that are fixed by the transformation

and can be joined toM by an edge contains pejn/l + 1 elements.

If the minimum distance from { . . . ,M−1,M0,M1, . . .} to D̄ is positive, then the path

of the reduced skeleton consists of a single point, sayM i. Since D̄ is invariant underBσ
n and

under h, the periodicity condition

M i−1 = huBvσvn(M i) = huM i

implies thatM i−1 also lies in the reduced skeleton. HenceM i−1 = M i when the minimum

distance is positive, as we now assume. Since u and n/l are relatively prime, we deduce from

the two equations

huM i = M i and h−n/lM i = M i

that

hM i = M i .

Since there are k marked points in an interval of length l, the path from M i to M i−1 = M i

must have k edges. Consequently, points of the above type can exist only for k even.

It is now an easy matter to construct the points of U ′ for which the minimum distance

to D̄ is positive. Given a possible reduced skeleton RS and i = i(RS), we choose any M i

and Ā which is fixed by h, and construct a pathM i,M i−1, . . . ,M i−l, fromM i toM i−l. To
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construct it we must suppose that k is even. ThenM i′−1 = M i′ if i
′ is unmarked and one of

the pejn/l + 1 elements that can be joined toM i′ by an edge and satisfy

hn/lM i′−1 = bej/lσejn/l(M i′−1)

if i′ ismarked. We say that the edge fromMi′ toM i′−1 is progressive or retrogressive according

asM i′−1 is at a greater or a lesser distance from D̄ thanM i′ . We must be careful that at any

stage we have added at least as many progressive as retrogressive edges, for otherwise we

would approach too closely to D̄, and we must ultimately take as many retrogressive as

progressive steps, in order that we arrive back atM i = M i−l. Indeed we must be careful to

return to the initial M i at any i
′ that lies in the given rational skeleton. Finally, we have to

chooseM i so that the closest point to it in D̄ is anN withN inD1. We defineM i′ in general by

the periodicity condition (d), and we lift the full path to a point x = (Mi′) inX withMi = gN

and

order(det g) = dist(M i, N) .

Then x lies in U ′.

There are some observations to be made. First of all, the number W of points that are

yielded by a given choice ofM i and all possible choices of the reduced skeleton and all possible

paths fromM i toM i−l is independent ofM i. We shall show that

(4.2) W =

(
k

k/2

)
pejm/2 .

The minimum distance can be positive only when D 6= A, that is, only when J(Qp) =

G(Qp) and J(h,Qp) is a Cartan subgroup. Then A is just the Bruhat­Tits building over Fv .

The argument that led to (4.1) shows that if T (Qp) = J(h,Qp) and |deth| = |̟|ejm/n then

(4.3) (measKp)
−1

∫

T (Q
p
)\G(Q

p
)

ϕejm/n(g−1hg)dg

is (measUp)
−1 times the number of pointsM in the Bruhat­Tits building over Fv that are fixed

by h and satisfy

dist(M, D̄1) ≦ dist(M, D̄) .

However,
(

k
k/2

)
pejm/2 times (4.3) is the second term of the desired formula for ϕj

κ(h) when κ

is trivial. Therefore, the contribution to (4.3) of thoseM for which

0 ≦ dist(M, D̄1) ≦ dist(M, D̄)
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is yielded by those x for which the minimum distance from{ . . . ,M−1,M0,M1, . . . } to D̄ is

positive.

The equality (4.2) is a consequence of the next lemma, which will be proved towards the

end of the paragraph. Let T1 be a connected tree and suppose that from every vertex of T1

there issue q1 +1 edges, with q1 ≧ 0. Let k ≧ 0 be an even integer, and for each nonempty subset

S of Z with period l choose i = i(S) in S. Let P be a point of T1 and L an edge containing it.

Lemma 4.1. Let k be the set of pairs (x, S) where x = (Pi, Pi−1, . . . , Pi−k), with i = i(S),

is a path from P to P in T1 with no edge in L and with Pi′ = P if and only if i′ ∈ S. The

number of pairs in k is then (
k

k/2

)
q

k/2
1 .

The equality (4.2) follows upon taking q1 = pejn/l. This lemma will be proved at the

same time as another lemma fromwhichwe can deduce the combinatorial facts needed but not

yet proved. Suppose T0 ⊆ T1 is another connected tree and that there issue q0 + 1 points from

every vertex of T0. Let P and P
′ be two points in T0 a distance d apart and let r = (k − d)/2

be a non­negative integer.

Lemma 4.2. Let Q be the set of pairs (x, S) where x = (Pi, Pi−1, . . . , Pi−k) is a path from

Pi = P to Pi−l = P ′ and Pi′ ∈ T0 if and only if i′ ∈ S. The number of points in Q is

−
∑

0 ≦ a<r
(q0 − 1)

(
k

a

)
qa
1 +

(
k

r

)
qr
1 .

This lemma will enable us to count the number of paths in U ′ for which the minimum

distance to D̄ is 0. The reduced skeleton is then a path in D̄. The distance

d = dist(L̄, huBvσvn(L̄))

is constant on D̄. If J0 = G then d is 0 if k is even and is 1 if k is odd. If J0 is a split Cartan

subgroup, then

huBv =

(
αu̟vm′′

0
0 βu̟vm′

)

and ∣∣∣∣∣
αu̟vm′′

βu̟vm′

∣∣∣∣∣ = |̟|v(m′′−m′)+uej(m′′−m′)/n = |̟|(k
′′−k′) .

Consequently, d = [k′′ − k′] = k − 2r if r is the minimum of k′ and k′′.
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To construct the set U ′
0 of points of U

′ whose reduced skeleton lies in D̄, we have merely

to construct the associated path in the Bruhat­Tits building over k, for we can uniquely lift the

path to a point in U ′. If RS is the reduced skeleton, we have only to construct that part of the

path lying between i(RS) and i(RS) − l, for we may complete the part of the path to the full

infinite path by invoking the periodicity condition (d). Moreover, the unmarked points are

irrelevant, for at them we just mark time, and so we might as well discard them and obtain

the new period k. The reduced skeleton is also a path in D̄ labeled by the points of RS. That

part of it between i(RS) and i(RS)−k joinsM i(RS) = M in D̄1 toM i(RS)−k = huBvσvn(M).

We complete the reduced skeleton to the complete path segment from M i(RS) to M i(RS)−k

by adding flagella which project into the ambient Bruhat­Tits building. Thus, if n = 8 and

i = i(RS), the reduced skeleton could be

M i M i-1

M i-7

M i-2 M i-6
=

M i-8

. . .. . .

and the full path

M i M i-1

M i-7

M i-2 M i-6
=

M i-8

M i-3 M i-5

M i-4

=

Applying the lemma with q1 = pejn/l, we see that the number of points in U ′ for which

the reduced skeleton lies in D̄ is

(4.4) f

{(
k

r

)
pejnr/l − (q0 − 1)

∑
0 ≦ a<r

(
k

a

)
pejna/l

}
,

if f is the number of orbits of J(h,Qp) in D̄.

To see that this gives us all the combinatorial facts we needed, we just have to run

through the various possibilities, adding the occasional simple comment. If J(h,Qp)is a split
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Cartan subgroup, then q0 = 1, q0 − 1 = 0, and f = 1. Moreover, nr/l = q is the smallest ofm′

and m′′. Thus
|U ′

0|

meas J0
=

1

measUp

(
k

k′

)
pejq

is the anticipated value of ϕj
κ(h) if k′ 6= k′′. If k′ = k′′, it is exactly what is required to

supplement the contribution to ϕj
κ(h) from U ′ − U ′

0.

Suppose J(h,Qp) is a Cartan subgroup of J(Qp) but is not split. Then−f(q0 − 1) is 2 if

the corresponding extension is unramified and 1 if it is ramified. If T (Qp) = J(h,Qp), then

measT (Qp)\G
′(Qp)

measK ′
=

−f(q0 − 1)

measUp

.

Up is the maximal compact subgroup of T (Qp).

If k is odd, then U ′ = U ′
0. Moreover, the extension can be unramified only if m is odd;

but then J(Qp) = G′(Qp) and f = 2. The value of ϕj
κ(h) is seen to be exactly that stated in

the list of combinatorial facts to be proved. If k is even, the value of ϕj
κ(h) is given there as

a sum of two terms, the first a sum over 0 ≦ i < k/2. This term is yielded by the second part

of (4.4), a sum over 0 ≦a < r = k/2. The second part of ϕj
κ(h) was expressed in terms of the

integral (4.3). Most of it was accounted for by the contribution from U ′ − U ′
0. The remainder

is taken care of by the first term of (4.4). Notice that f must be 1 if k is even.

Suppose, finally, that h is central. Then U ′ = U ′
0 and q0 = |̟v|

−1. It is consequently

manifest that ϕj
κ(h) has the anticipated value.

We have still to prove Lemmas 4.1 and 4.2. Since there is nothing else to be done, all

symbols apart from those entering the statements of these two lemmas are free. The skeleton

of a pair (x, S) inP orQ is S. If (x, S) is inP, an edge will be called progressive if it is moving

away from P . If it is inQ, an edge will be called progressive if it is moving away from T0. An

edge that is not progressive will be called retrogressive. The sense of the path is from Pi to

Pi−l.

We represent that part of the skeleton lying between i = i(S) and i− l as

×
i
©××© © ©× . . .×

i−l

The points in S are unmarked. If there is to be any pair with S as skeleton, the gaps must all

be of even length. Let there be m = m(S) gaps of length 2s1, . . . , 2sm. Given a pair (x, S), we

add to S the integers j′ for which the edge from Lj′ to Lj′−1 is progressive if i≧ j ≧ i− l and
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j ≡ j′(mod k). The result will be called the frame F . We can recover S from F . To do this, let

ǫj be +1 or −1, according as j is or is not in F . If j2 ≦ j1, set

Nj1,j2 =

j1∑

j=j2

ǫj .

Then j1 ∈ S if and only if Nj1,j2 ≧ 0 for all j2. There are k − s points in a period of F and

k − s≧ k/2.

Conversely, suppose we start from a subset F of Z which is periodic of period l and

contains k−s≧ k/2 points in each period. Define ǫj andNj1,j2 as before, and let S be the set of

j1 for which Nj1,j2 ≧ 0 whenever j2 ≦ j1. We verify by induction that S is not empty. Choose

j1 ∈ F . If j1 ∈ S, there is nothing to prove. Otherwise, choose the largest j2 ≦ j1 for which

Nj1,j2 < 0. Then j2 < j1 because j1 ∈ F and Nj1,j2 = 1. Moreover, j2 > j1 − k because

Nj1,j2−l = (k − 2s) +Nj1,j2 .

Finally, the set {j2+1, . . . , j1}must contain an even number of elements becauseNj1,j2+1 = 0.

Discard this set and all sets congruent to it modulo k, and pull the remaining points together

to obtain a new set F ′ of period k − (j1 − j2). Since exactly half of the points {j2 + 1, . . . , j1}

lie in F , the set F ′ contains

k − s−
1

2
(j1 − j2)

points within a period and

k − s−
1

2
(j1 − j2) ≧

1

2
(k − (j1 − j2)) .

It is clear that F and F ′ have the same skeleton. The induction assumption guarantees that

the skeleton of F ′ is not empty.

The points in S immediately preceding the gaps, as one moves toward smaller integers,

will be called extremities. The integer j1 is an extremity if and only if Nj1,j2 = 0 for some

j2 ≦ j1. To a frame we can attach:

(i) the skeleton;

(ii) the number m of extremities within a period;

(iii) to each extremity iα, 1 ≦α≦ m, i− k < iα ≦ i the length 2sα of the succeeding gap;
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(iv) the spine, which is obtained from the skeleton bydiscarding the extremities. If s =
∑
sα,

the spine has k − 2s elements in a period and may therefore be empty.

Wewant to treat the two lemmas in a uniformmanner, and to this purpose we introduce,

when dealing with Lemma 4.1, the tree T0 consisting of P alone. We take P
′ to be P , and let

q = 0, q0 = −1. When dealing with Lemma 4.2, we take q to be q0. LetN(c) be the number of

paths of length c in T0 joining P to P
′. The number of elements inP orQ is

(4.5)
∑

(1 − q/q1)
mqs

1N(k − 2s) ,

the sum being taken over all possible frames. To see this we observe that to construct a path

x = (Pi, . . . , Pi−k), we first take one of the N(k − 2s) paths from P to P ′ in T0, with points

labeled by the integers between i and i − l lying in the spine, and then at each extremity add

one of the q1 − q possible edges from T0 into T1, and finally, at all other points of the frame,

add one of the q1 possible progressive edges.

The expression (4.5) is equal to

(4.6)
r∑

l=0

{∑
m ≧ l

(
m

l

)
(−q)lN(k − 2s)

}
qs−1
1 .

The inner sum is taken over all frames withm ≧ l. It can be put in a more manageable form.

If we have a frame F with k − s elements and m ≧ l, then s≧ l. We construct
(
m
l

)
new

frameswith k−(s− l) elements. Take any subsetE of the extremities with l elements (within a

period) and, for each element of the subset, add to F the last element of the gap in the skeleton

following it. Since the added elements do not lie in F , the result is a frame with k − (s − l)

elements. The added elements will not be extremities of F ′, because the skeleton S of F is

contained in the skeleton S′ of F ′. The extremities of F ′ are the extremities of F that do not

lie in E.

The procedure yields not only F ′ but also a subset E′ of its spine. E′ consists of the

added elements, and any two elements of E′ are separated by a point in the spine of F ′.

Conversely, suppose we start with F ′ and a set E′ of l separated points in its spine. Remove

these l points from F ′. The result is still a frame, and the skeleton S of F is contained in the

skeleton S′ of F ′. The points of E′ lie in the gaps of S. I claim that they are the last points of

the gaps in which they lie. Since we may argue by induction, we have only to show that if j is

a point of the spine, j′ is the smallest point of the spine with j < j′, j′ < j + l, and we remove

j from F ′ to obtain F , then the skeleton of F is obtained by removing all j1 with j ≦ j1 < j′

from the skeleton of F ′.
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Wemust certainly remove j. Let j1 with j < j1 < j+ l lie in the skeleton of F ′. Suppose

first that 0 < j1 < j′. Then j1 must be an extremity, and so N
′
j1,j2

= 0 for some j2. If j2 ≦ j,

then

N ′
j1,j2

= N ′
j1,j+1 +N ′

j,j2
≧N ′

j,j2
> 0 ,

because j lies in the spine. This is impossible and j < j2 < j1. If j3 < j2, then

0 ≦N ′
j1,j3 = N ′

j1,j2 +N ′
j2−1,j3 = N ′

j2−1,j3 .

Thus, j2 − 1 also lies in the skeleton. Iterating, we conclude that

N ′
j1,j+1 = 0 .

Hence, N ′
j1,j = −1, and j1 is not in the skeleton of F .

Now suppose that j′ ≦ j1 < j + l. If j1 ≧ j2 > j, then

Nj1,j2 = N ′
j1,j2

≧ 0 .

If j − l < j2 ≦ j, then

Nj1,j2 = N ′
j1,j2

− 1 = N ′
j1,j′+1 + (Nj′,j+1 − 1) + (Nj,j2 − 1) .

Since j and j′ lie in the spine, all summands on the right are positive or zero.

Let Sn,l be the number of ways of choosing l separated points from a cyclic set with n

elements. We now regard the inner sum in (4.6) as taken over all F ′ with k− (s− l) elements,

and all possible choices of E′. Since the spine of F ′ has k − 2(s − l) elements and there are(
k

s−l

)
possible choices for F ′, the sum (4.6) is equal to

∑r

l=0

∑r

s=l

(
k

s− l

)
(−q)lN(k − 2s)Sk−2(s−l),lq

s−l
1 .

We reverse the order of summation and replace s− l by l to obtain

∑r

s=0

∑s

l=0

(
k

l

)
(−q)s−lN(k − 2s)Sk−2l,s−lq

l
1 .

We then change the order of summation once again, and consider

∑r

s=l
(−q)s−lN(k − 2s)Sk−2l,s−l .
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Here we substitute s for s− l to obtain

(4.7)
∑r′

s=0
(−q)sN(k′ − 2s)Sk′,s

with r′ = r − l, k′ = k − 2l.

To establish the lemmas, we must show that the sum (4.7) has the following values.

(i) When q = 0 and q0 = −1, it is 0 unless r′ = 0, and then it is 1.

(ii) When q = q0, it is 1 if r
′ = 0 and −(q0 − 1) if r′ > 0.

Observe that in the first case d = 0 and k′ = 2r′. If q = 0, the sum reduces to

N(k′)Sk′,0 .

If q0 = −1, then N(k′) = 0 unless k′ = 0 and N(0) = S0,0 = 1. If q = q0 = −1, the k′ = 2r′

and the sum reduces to

N(0)S2r′,r′ = S2r′,r′ .

Since S2r′,∩′ is 2 if r′ > 0, the value of the sum is again correct. If q = q0 = 0, the sum reduces

to

N(k′)Sk′,0 .

SinceN(k′) is always 1when q0 = 0 and sinceSk′,0 = 1 for all k′ ≧ 0, the value is again correct.

Suppose that q = q0 > 0. We regard Sk′,s as the number of ways of choosing a set

of s points from 1, . . . , k′ which is cyclically separated. Let S0
k′,s be the number of ways of

choosing suchX which do not contain k′. We first show that

(4.8)
∑r′

s=0
(−q0)

sN(k′ − 2s)S0
k′,s = 1 .

Suppose thatX doe snot contain k′. Remove from {1, . . . , k′} the points ofX and their

immediate successors. This leaves k′−2s points which can be used ot label the edges of a path

of length k′ − 2s from P to P ′. Starting from this path and the labeling, we construct qs
0 new

paths of length k′. Choose any edge emanating from P and cal it the exceptional edge. The

exceptional edge at any other point will be the edge leading toward P . If i ∈ X and there is

no i′ < i not inX , then we add to the path an adge issuing from P and then the same edge in

the opposite direction. We are allowed to take any but the exceptional edge. These new edges

are labeled by i and i + 1. If there is such an i we take the largest and add an adge and its

opposite in just the same way, except that it must issue form the final point of the edge labeled
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by i− 1, and it must not be the exceptional edge. Carrying this out for each i ∈ X , we obtain

a path of length k′ from P to P ′ labeled by 1, . . . , k′.

The sum (4.8) is a sum over all paths from P to P ′ of length k′ of the sum over s of (−1)s

times the multiplicity with which it is obtained by the above construction. The sum over s

is easily evaluated. Given a path of length k′, let n be the number of subpaths of length two

which consist of a move out from a point along an edge which is not exceptional and a return.

Then the sum is ∑n

s=0
(−1)s

(
n

s

)
.

It is 0 unless there are no such subpaths, and then it is 1. A little reflection convinces one that

there are no such subpaths in only one case, that of the path which moves out from P along

the exceptional edge and returns r′ times, and then proceeds directly to P ′. This establishes

(4.8).

Let S1
k′,s be the number of ways of choosing X so that it does contain k

′. To complete

the proof of the lemma, we have only to show that

∑r′

s=1
(−q)s−1N(k′ − 2s)S1

k′,s = 1

if r′ ≧ 1 and k′ ≧ 2. A separated subset of {1, . . . , k′} that contains k′ yields, upon removal of

k′, a separated subset of {2, . . . , k′ − 1} that does not contain k′ − 1. Conversely, a separated

subset of {2, . . . , k′ − 1} that does not contain k′ − 1 yields, upon addition of k′, a separated

subset of {1, . . . , k′}. Thus

S1
k′,s = S0

k′−2,s−1 ,

and our sum is equal to
∑r′−1

s=0
(−q0)

sN(k′ − 2 − 2s)S0
k′−2,s−1 ,

which is have already seen to equal 1.
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Appendix.

Suppose (γ, h0) is a Frobenius pair [13]. We choose a Cartan subgroup T over Q such

that Tad, the image of T in I
0
ad, is anisotropic at infinity and p, and let kp be a finite Galois

extension of Qp which splits T . We suppose h
0 factors through T and let µ∨ be the coweight

h0
0 of T . We set

ν∨ =
∑

τ∈G(kp/Q
p
)
τµ∨ .

Let {aσ,τ} be a fundamental 2­cocycle of the extension kp/Qp. We define the Weil group

Wkp/Q
p
as the set of pairs (x, σ)with x ∈ k×p , and σ ∈ G(kp/Qp), multiplication being defined

by

(x, σ)(y, τ) = (xσ(y)aσ,τ , στ) .

If σ belongs toG(kp/Qp), we set

aσ =
∏

τ∈G(kp/Q
p
)
aστµ∨

σ,τ .

It lies in

T (kp) ≃ X∗(T ) ⊗ k×p .

If w = (x, σ), we set

bw = xν∨

aσ .

Lemma A.1. The 1-cochain w → bw is a cocycle.

It must be verified that

aρρ(aσ)a−1
ρσ = aν∨

ρ,σ .

The left side is {∏
τ
aρτµ∨

ρ,τ

}{∏
τ
ρ(aσ,τ)ρστµ∨

}{∏
a−ρστµ∨

ρσ,τ

}
.

Replace τ by στ in the first product and use the relation

aρσ,τρ(aσ,.τ )aρσ,τ = aρ,σ

to obtain ∏
τ
aρστµ∨

ρ,σ = aν∨

ρ,σ .

Suppose we replace aρ,σ by

aρ,σ = cρρ(cσ)c−1
ρσ aρ,σ .

ThenWkp/Q
p
is replaced byW kp/Q

p
, but
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(x, σ) → (xc−1
σ , σ)

is an isomorphism fromWkp/Q
p
toW kp/Q

p
. The 1­cochain {aσ} is replaced by

σ → aσ = aσ

∏
τ
(cστµ∨

σ σ(cτ )στµ∨

c−στµ∨

στ )

= aσc
ν∨

σ σ(d)d−1

if

d =
∏

τ c
τµ∨

τ .

If we pull back the cocycle {bw} fromW kp/Q
p
toWkp/Q

p
, we obtain

w → σ(d)bwd
−1 = w(d)bwd

−1 ,

because w acts on T (kp) through its projection to σ. At all events, we obtain a cocycle in the

same class, and so our constructions do not depend on the choice of a fundamental 2­cocycle.

We choose another Cartan subgroup T for which T ad is still anisotropic at infinity and p

and which still splits over kp. We suppose that h̄
0 : R→ I0 is conjugate under I(R) to h0 and

factors through T . Let µ̄∨ be the coweight h̄0
0 of T . We use it to define the 1­cocycle {bw}.

Lemma A.2. There is a c in I0(kp), such that

bw = cbww(c−1)

for all w.

Since Tad is anisotropic at p, the coweight ν
∨ is actually a coweight of the center of I0,

and hence bw and aσ have the same image a
′
σ in I

0
ad(kp). We use the cocycle {a

′
σ} to twist I

0

and obtain a group I over Qp. Then

dw = bwb
−1
w

is a cocycle ofWkp/Q
p
with values in I(kp) and we have to show that it bounds.

The first step is to verify that it takes values in the derived group Ider of I and factors

through G(kp/Qp). The difference between µ
∨ and µ̄∨, and hence that between ν∨ and ν̄∨, is

a sum of coroots. Since ν∨ and ν̄∨ are coweights of the center, ν∨ = ν̄∨. Thus

dw = aσa
−1
σ

and factors through G(kp/Qp). I write dσ instead of dw. If λ is a rational character of I , then

λ is orthogonal to coroots and

〈στµ∨, λ〉 = 〈στµ̄∨, λ〉 .
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Consequently, λ(dσ) = 1 and dσ lies in Ider.

If Isc is the simply­connected covering group of Ider, then

H1G((kp/Qp), Isc(kp)) = H1(G(Qp/Qp), Isc(Qp)) = 1 .

If C is the kernel of

Isc → Ider ,

then the composition

H1(G(kp/Qp), Ider(kp)) → H1(G(Qp/Qp), Ider(Qp)) → H2(G(Qp/Qp), C(Qp))

is injective. We show that the image of dσ is trivial.

Choose an integerm so that

mµ∨ = µ∨

1 + µ∨

2

where µ∨

1 is a coweight of Tsc and µ
∨

2 is a coweight of the center Z. Then

mµ̄∨ = µ̄∨

1 + µ̄∨

2 .

For each ρ, σ let bρ,σ be anm
th root of aρ,σ . Then

∏
τ
b
στ(µ∨

1
+µ∨

2
)

σ,τ(1)

and ∏
τ
b
στ(µ̄∨

1
+µ∨

2
)

σ,τ(2)

are liftings of aσ and aσ to Isc(Qp) × Z(Qp). Moreover
{∏

τ
b
ρτ(µ̄∨

1
+µ∨

2
)

σ,τ

}{∏
τ
b
στ(µ∨

1
+µ∨

2
)

σ,τ

}−1

=
{∏

τ
b
στµ̄∨

1

σ,τ

}{∏
τ
b
στµ∨

1

σ,τ

}−1

(3)

is a lifting of dσ to Idc(Qp).

Let {cρ,σ,τ} be the boundary of {bρ,σ}. The boundary of (1) is

{∏
τ
b
ρτ(µ∨

1
+µ∨

2
)

ρ,τ

}{∏
τ
ρb

ρστ(µ∨

1
+µ∨

2
)

σ,τ

}{∏
τ
b
ρσ,τ(µ∨

1
+µ∨

2
)

ρσ,τ

}−1

,

which equals

bmν∨

ρ,σ

∏
τ
c
ρστ(µ∨

1
+µ∨

2
)

ρ,σ,τ
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It must of course lie in the center of Isc ×Z. There is a similar formula for the boundary of (2).

Taking account of the Galois action on I(Qp), one readily concludes that the boundary of (3) is

ρρ,σ =
{∏

τ
c
ρστ(µ̄∨

1
+µ∨

2
)

ρ,σ,τ

}{∏
τ
c
ρστ(µ∨

1
+µ∨

2
)

ρ,σ,τ

}−1

.

We should perhaps remind ourselves that µ∨

1 and µ̄
∨

1 are coweights of different groups, namely,

Tsc and T sc. We may also write this boundary as

eρ,σ =
{∏

τ
c
ρστµ̄∨

1

ρ,σ,τ

}{∏
τ
c
ρστµ∨

1

ρ,σ,τ

}−1

.

LetX∗(Tder) andX∗(Tsc) be the lattices of coweights of Tder and Tsc and let

Y∗ = X∗(Tder)/X∗(Tsc) .

IfX∗(Tder) andX
∗(Tsc) are the lattices of weights and

Y ∗ = X∗(Tsc)/X
∗(Tder),

then

Y ∗ = Hom(Y∗,Q/Z)

and

C(Qp) = Hom(Y ∗,Q
×

p ) .

Replacing T by T , we obtain Y ∗ and Y ∗, but

Y ∗ ≃ Y∗

and

Y ∗ ≃ Y ∗ .

The isomorphisms are canonical.

If we apply the local duality of Tate for finiteG(Qp/Qp)modules, we have only to check

that the cup product of {eρ,σ}with any element of

H0(G(Qp/Qp), Y
∗)

is trivial. An element of this group is represented by a λ ∈ X∗(Tsc) with σλ− λ ∈ X∗(Tder)

for all σ or by a λ̄ ∈ X∗(T sc)with σλ̄− λ̄ ∈ X∗(T der). The cup product is

fρ,σ =
{∏

τ c
〈λ̄,ρστµ̄∨

1
〉

ρ,σ,τ

}{∏
τ c

〈λ,ρστµ∨

1
〉

ρ,σ,τ

}−1

.
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To be definite, we take λ̄ to be h(λ)where h is an element of I(Qp) taking T to T and

h(λ)(hth−1) = λ(t) .

We write

〈λ, ρστµ∨

1〉 = 〈λ− ρστλ, ρστµ∨

1〉 + 〈λ, µ∨

1〉 .

Since λ− ρστλ is a weight of Tder, it is equal to the restriction to Tder of a weight λ
′ of T , and

〈λ− ρστλ, ρστµ∨

1〉 = 〈λ′, mµ∨〉 − 〈λ′, µ∨

2〉 .

Each cρ,σ,τ is anm
th root of unity and

c〈λ
′,mµ∨〉

ρ,σ,τ = 1 .

We treat 〈λ̄, ρστ µ̄∨

1〉 in the same manner, writing

λ̄− ρστλ̄ = h(λ) − ρστh(λ) = h(λ′) + h(λ′′)

with

λ′′ = (1 − h−1ρστ(h))ρστ(λ) .

λ′′ is a weight of Tad, and so

〈h(λ′) + h(λ′′), µ∨

2〉 = 〈h(λ′), µ∨

2〉 = 〈λ′, µ∨

2〉 .

We conclude that

fρ,σ = {
∏

τ cρ,σ,τ}
〈λ̄,µ̄∨

1
〉−〈λ,µ∨

1
〉
.

However, ∏
τ cρ,σ,τ = ρ (

∏
τ bσ,τ ) (

∏
τ bρ,στ ) (

∏
τ bρσ,τ )

−1
(
∏

τ bρ,σ)
−1

.

We may replace στ by τ in the second factor. The first three terms then form a boundary and

{fρ,σ} is cohomologous to

b
−[kp:Q

p
](〈λ̄,µ̄∨

1
〉−〈λ,µ∨

1
〉)

ρ,σ .

However,

〈λ̄, µ̄∨

1〉 − 〈λ, µ∨

1〉 = 〈λ, h−1(µ̄∨

1 ) − µ∨

1 〉 = m〈λ, h−1(µ̄∨) − µ∨〉 ,

and
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〈λ, h−1(µ̄∨) − µ∨〉

is integral because

h−1(µ̄∨) − µ∨

is a coweight of Tsc. Since

bmρ,σ = aρ,σ

and {
a
[kp:Q

p
]

ρ,σ

}

is trivial, the lemma is proved.

Suppose k′p ⊆ kp are two finite Galois extensions of Qp that split T . There is a homo­

morphism w → w′ fromWkp/Q
p
toWk′

p
/Q

p
and we may pull back the cocycle {bw′}, but the

result may not be cohomologous to {bw}.

Lemma A.3. There is a cocycle cw with values in the units of k×p such that w → bwb
−1
w′ is

cohomologous in T (kp) to cν
∨

w .

We begin by recalling the manner in which the homomorphism fromWk′
p
/Q

p
toWkp/Q

p

is defined [1]. Let {aρ,σ} be a fundamental 2­cocycle for kp/Qp. For each ρ
′ in G(k′p/Qp)

choose a representative ρ̄ in G(kp/Qp) A fundamental 2­cocycle for k
′
p/Qp is then

a′ρ′,σ′ = Nkp/kp′
(aρ̄,σ̄a

−1
γ,ρ̄σ̄)

∏
β∈G(kp/k′

p
)
aβ,γ

with

γ = ρ̄σ̄ρσ̄−1 .

An expression for a′ρ′σ′ which is more useful to us is ([1], p. 188)

∏
β∈G(kp/k′

p
)
aρβ,σ̄aβ,ρ̄a

−1
β,ρ̄σ̄

if ρ is any lifting of ρ′ to G(kp/Qp). We apply the coboundary relation to the first factor to

obtain ∏
β
ρaβ,σ̄aρ,βσ̄a

−1
ρ,βaβ,ρ̄a

−1
β,ρ̄σ̄ .

An element of Wkp/Q
p
may be written as xρσ̄ with x ∈ k×p , ρ ∈ G(kp/k

′
p), and σ

′ ∈

G(k′p/Qp). It is mapped to

w′ =

{∏
β∈G(kp/k′

p
)
βx

}{∏
β∈G(kp/k′

p
)
aβ,ρ

}
σ′ .
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Then bw′ is the product of
{∏

β
βxν∨

}{∏
β
aν∨

β,ρ

}

and ∏
α′∈G(k′

p
/Q

p
)

∏
β∈G(kp/k′

p
)
σaσαµ∨

β,α aσαµ∨

σ,βᾱ a−σαµ∨

σ,β aσαµ∨

β,σ̄ a−σαµ∨

β,σ̄ᾱ

Here σ is the lifting ρσ̄ of σ′ and α any lifting of α′ to G(kp/Qp). If

c =
∏

α′

∏
β
aαµ∨

β,ᾱ

the first term yields σ(c) and the last c−1. Since we are only interested in the cohomology class

of w → bw′ , we may drop these two terms. The second term yields
∏

τ∈G(kp/Q
p
)
aστµ∨

σ,τ .

The third and fourth yield
{∏

β
a−1

α,βaα,σ̄

}ν∨

.

Collecting the information at our disposal, we see that the lemma is valid with

cw =
∏

β
xβ(x)−1aβ,ρa

−1
σ,βaβ,σ̄ .

It must be verified that cw is a unit, but that is a consequence of the next lemma applied

to the trivial torus T = GL(1) and both kp and k
′
p.

Lemma A.4. If λ is a rational character of T over Qp and v the image of w under the

homomorphism Wkp/Q
p
→WQ

p
/Q

p
= Q×

p , then

|λ(bw)| = |v|〈λ,µ∨〉 .

If w = x× σ, the left side is equal to

|x|〈λ,ν∨〉
∏

τ
|aσ,τ |

〈λ,µ∨〉 =
{∏

τ
|x|〈λ,µ∨〉

}{∏
τ
|aσ,τ |

〈λ,µ∨〉
}
.

Since

(στ)−1σ = τ−1σ−1(aσ,τ ) × τ−1

inWkp/Q
p
, v is equal to

{∏
τ
τ(x)

}{∏
τ
τ−1σ−1(aσ,τ )

}
.

The lemma follows.

Let k be the completion of the maximal unramified extensionQun
p of Qp. We have still to

explain in detail how the element b ofG(k) introduced in [13] is defined. LetD1 be the image

ofGL(1) in T under ν∨. It is an algebraic subgroup overQp. LetW
0
kp/Q

p

be the inverse image

of the units in Q×
p under the homomorphismWkp/Q

p
→WQ

p
/Q

p
= Q×

p .
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Lemma A.5. If kp is sufficiently large, the cocycle {bw} is cohomologous to a cocycle {b′w}

with the following two properties:

(i) the restriction of {b′w} to W 0
kp/Q

p

takes values in D1(kp);

(ii) the image of b′w in T/D1(kp) lies in T/D1(Q
un
p ).

The second property is a consequence of the first, because the first implies that b′w is

invariant under W 0
kp/Q

p

modulo D1, and the image of W
0
kp/Q

p

in G(kp/Qp) is the inertial

group. To obtain a cocycle with the first property, we apply results from Chap. X, §7, of

[18]. We may as well suppose that D1 is trivial, and hence that {bw} = {bσ} is a cocycle of

G(kp/Qp).

We have a diagram of fields

kun
p

� �

kp Qun
p

� �

Qp

and we may regard {bσ} as a cocycle of G(kun
p /Qp). By the corollary of Prop. 11 of [18],

its restriction to G(kun
p /Qun

p ) is cohomologous to the trivial cocycle, and may therefore be

assumed to be trivial, for we are willing to enlarge the field kp. Thus {bσ} is the lifting to

G(kp/Qp) of a cocycle of

G(kp ∩ Qun
p /Qp)

and is trivial on the inertial group. Consequently, {bw} is trivial onW
0
kp/Q

p

.

Our purposes demand a strengthening of the previous lemma.

Lemma A.6. Suppose kp is sufficiently large and lp is the maximal unramified extension of

Qp in kp. Then {bw} is cohomologous to a product {b′wb
′′
w}, where {b′w} is the lifting of a

cocycle of Wlp/Q
p

with values in T (lp) and {b′′w} is of the form b′′w = dν∨

w where w → dw is

a cocycle of Wkp/Q
p

with values in the units of k×p .

Webeginwith an extension kp over which T splits, and let lp be the unramified extension

of Qp with

[lp : Qp] = [kp : Qp] = n .
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We shall prove the lemma not for kp but for k
′
p, the composition of kp and lp, in which lp is the

maximal unramified subfield. Schematically we have:

k′p

� �

lp kp

� �

kp ∩ lp

Qp

If we appeal to Lemma A.3, we see that it is sufficient to take the cocycle {bw} associated to

the Weil groupWkp/Q
p
, and then prove that its lifting toWk′

p
/Q

p
can be factored as {b′wb

′′
w}.

The Galois groupG(lp/Qp) is cyclic of order n and is generated by the Frobenius element

which we shall, during the present proof, denote by Φ. We take a uniformizing parameter ̟

for Qp, which could be p itself, and take the fundamental cocycle cρ,σ of the extension lp/Qp

to be

cΦi,Φj =

{
1, 0 ≦ i, j < n, i+ j < n,

̟, 0 ≦ i, j < n, i+ j ≧n .

We may also simplify matters by supposing that the lattice of coweights of T is the free

G(kp/Qp)­module generated by µ
∨.

Supposewe can find a chain {cσ} ofG(lp/Qp)with values in T (lp) and boundary {c
ν∨

ρ,σ}.

Then we may define a cocycle {dw} ofWlp/Q
p
with values in T (lp) by

dw = xν∨

cσ, w = x× σ .

Suppose in addition that if

cΦ =
∏

τ∈G(kp/Q
p
)
cΦ(τ)τµ∨

then ∏
τ
|cΦ(τ)| = |̟| .

I claim that if {bw′} and {dw′} denote the liftings of {bw} and {dw} to Wk′
p
/Q

p
, then

{bw′d−1
w′ } is cohomologous to a cocycle w′ → cν

∨

w′ where {cw′} is a cocycle with values in the

group of units of k′p. To see this we pull back {aσ} and {cσ} to cochains {aσ′} and {cσ′} of

G(k′p/Qp). Their boundaries are obtained by pulling back {a
ν∨

ρ,σ} and {cν
∨

ρ,σ} to {a
ν∨

ρ′,σ′} and
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{cν
∨

ρ′,σ′}. By local class­field theory, the two cocycles {aρ′,σ′} and {cρ′,σ′} are cohomologous,

and

aρ′,σ′ = eρ′ρ′(eσ′)e−1
ρ′,σ′cρ′,σ′ .

Thus {aσ′} and {eν∨

σ′ cσ′} have the same boundary. Because of our simplifying assumption,

T (k′p) has no cohomology in dimension 1, and

aσ′ = feν∨

σ′ cσ′σ′(f−1) .

In particular,

w′ → uw′ = bw′f−1d−1
w′ w

′(f) = bw′f−1d−1
w′ σ

′(f)

takes values inD1(k
′
p). With the simplifying assumption that the lattice of coweights is freely

generated over G(kp/Qp) by µ
∨,

D1(k
′
p) = {xν∨

| x ∈ k′p} .

To establish this claim, I must show that if λ is a rational character ofD1, then

|λ(uw′)| = 1

for all w′. It will be enough to show this for a rational character of T defined over Qp. Clearly,

|λ(f−1σ′(f))| = 1

and, by Lemma A.4,

|λ(bw′)| = |v|〈λ,µ∨〉

if v is the image of w′ in Q×
p . We check that

|λ(dw′)| = |λ(dw)| = |v|〈λ,µ∨〉

if w′ maps to w inWkp/Q
p
.

This is easily seen to be so if w = x× 1with x ∈ l×p , and so the point is to verify it when

w = 1 × Φ. Then v = ̟ and

|λ(dw)| =
∏

G(kp/Q
p
) |cΦ(τ)|〈λ,τµ∨〉 .

Since 〈λ, τµ∨〉 = 〈λ, µ∨〉, the right side equals

{∏
|cΦ(τ)|

}〈λ,µ∨〉
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and is, by assumption, |̟|〈λ,µ∨〉.

To completely prove the lemma we must establish the existence of the chain {cσ}. We

first remark that there is an a in k×p for which

̟ = Nmk′
p
/kp

a .

Set

cΦ =
∏

τ∈G(k′
p
/lp) τ(a)

τµ∨

and

cΦi = cΦΦ(cΦ) . . .Φi−1(cΦ), 0 ≦ i < n .

The chain {cσ} then takes values in T (lp) and will have the boundary {c
ν∨

ρ,σ} if

∏n−1

i=0
Φi(cΦ) = ̟ν∨

.

The product on the left is
∏

G(k′
p
/Q

p
)
τ(a)τµ∨

.

If we take the product over G(k′p/kp) and then over G(kp/Qp), we obtain∏
G(kp/Q

p
)
̟τν∨

= ̟ν∨

.

Finally,
∏

τ
|cΦ(τ)| =

∏
G(k′

p
/lp)

|τ(a)| = |a|[k
′

p
:lp] = |a|[k

′

p
:kp] = |̟| .

In [13] I took k to be Qun
p , but I should have taken it to be the closure of Q

un
p , for I am

otherwise unable to prove the next lemma. I shall denote the Frobenius automorphism of k by

σ.

Lemma A.7. If d ∈ k and |d| = 1, then the equation

d = cσ(c−1), c ∈ k,

can be solved.

Since the map c→ cσ(c−1) takesQp to 1, its image is closed, and so wemust only verify

that it is dense in the group of units of k×. If y is a unit, we can always find a unit x such that

y ≡ xσ(x−1)(mod p) .
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Moreover, the equation

(1 + apk)σ(1 + apk)−1 ≡ (a− σ(a))pk(mod pk)

and the simple fact that

a− σ(a) ≡ b(mod p)

can be solved with an integer a for any given integer b allows us to approximate any y ≡

1(mod p). SinceD1(k) ≃ k×, the lemma may be applied toD1(k) as well.

The element b introduced in [13] can now be defined. It lies in I0(k). It is not uniquely

determined, but the set

(4) {cbσ(c−1) | c ∈ I0(k)}

is. We start from a given T , a given, but sufficiently large, kp, and a given fundamental

class {aρ,σ} for kp/Qp and the associated cocycle {bw}. According to Lemma A.6, {bw} is

cohomologous to {b′wb
′′
w}, where b

′
w and b

′′
w have the properties specified there. We have the

usual homomorphisms

Wkp/Q
p
→WQ

p
/Q

p
→ Z .

We choose a w0 that maps to 1 ∈ Z and set b = bw0
. The previous lemma shows that the

collection (4) is independent of the particular w0 chosen.

The cocycle {b′w} is not unique; it might be replaced by

b′wxw(x−1)uw

with x ∈ T (kp), uw ∈ D1(kp). However, x and uw are not arbitrary. The absolute value

|λ(uw)| must be 1 for any rational character of D1, and the image of x in T/D1 must lie in

T/D1(lp). By Hilbert’s Theorem 90, there is a v in T (lp) such that

x ≡ v(mod D1(kp)) .

Let x = vz. Then

b′wxw(x−1)uw = b′w(vw(v−1))(zw(z−1)uw) .

We apply LemmaA.7 to zw0(z
−1)uw0

to conclude that the set (4) remains the same. To change

the fundamental class {aρ,σ} does not affect the class of {bw}, and hence does not affect (4).

Finally, Lemmas A.2, A.3, and A.7 show that it is not affected by the choice of T and kp.
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T has been so taken that its image in I0
ad is anisotropic. By the definition of a Frobenius

pair, there is therefore a positive rational number r such that

|λ(γ)| = |̟|τ〈λ,ν∨〉

for all rational characters of T . The element ̟ is again a uniformizing parameter of Qp, and

absolute values are taken in Qp.

In addition to the group I0 (orH0) overQ, I introduced in [13] a groupJ0 (orG0) overQp.

Its definition did not involve T , but it is easily seen that it is the connected group generated

by T and the one­parameter root groups corresponding to roots α for which 〈α, ν∨〉 = 0.

Consequently, D1 lies not only in the center of I
0 but also in the center of J0 and the image

of {aσ}, or what is the same, of {bw} in I
0
ad or J

0
ad, yields elements of H

1(Qp, I
0
ad) and of

H1(Qp, J
0
ad)which can be used to twist I

0 and J0, thereby obtaining new groups I and J . The

twisting of I0 can in fact be extended to a global twisting, but that will not be discussed yet.

Changing {aσ} or {bw} within its cohomology class has the usual effect on J(Qp) and

on I(Qp). If {bw} is replaced by xbww(x−1), then

J(Qp) → {xgx−1 | x ∈ J(Qp)} .

Since it is easy to keep track of such changes, I feel free to modify {bw} within its class, and

indeed to replace {bw} by {b
′
w}, where {b

′
w} satisfies the conditions of Lemma A.6, for {b

′′
w}

commutes with J(Qp). Thus

J(Qp) = {g ∈ J0(k) | bσ(g)b−1 = g} .

I claim that

J(Qp) = {g ∈ G(k) | bσ(g)b−1 = g} .

When proving this, I may take b to be defined by the cocycle {b′w} constructed in the

proof of Lemma A.6. Choose kp, lp, and k
′
p as in the proof of that lemma with [kp : Qp] = [lp :

Qp] = n. Then

bσ(b) . . . σn−1(b) = c = xν∨

, |x| < 1 .

Iterating the relation

g = bσ(g)b−1

we obtain

g = cσn(g)c−1

and
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g = c−1σ−n(g)c ,

or, more generally,

g = cmσmn(g)c−m

and

g = c−mσ−mn(g)cm

for every positive integerm. Wemay choose a sequencemi so that {σ
min(g)} and {σ−min(g)}

converge. Then {c−migcmi} and {cmigc−mi} converge. SinceG is a matrix group, we see, by

passing to a larger field with respect to which T can be diagonalized and taking the form of c

into account, that this is possible only if c commutes with g. Since the connected component

of the centralizer of any positive power of c in G is J0, the centralizer of c in G is connected

and equals J0 [23].

Although the groups of this paper are simple enought that the existence of the global

twisting of I0 demanded by the formalism of [13] is clear, it turns out nonetheless to be useful

to say a few words about the construction of the cocycle defining this global twisting.

Recall that we started with a Cartan subgroup T of I0 defined over Q such that Tad, the

image of T in I0
ad, is anisotropic at∞ and p. If µ̄∨ is the coweight of Tad obtained by composing

µ∨ with T → Tad, then the twisting at p is given by the cocycle

αp = {aσ}

with

aσ =
∏

τ∈G(kp/Q
p
) a

στµ∨

σ,τ , a ∈ G(kp/Qp) .

We define a twisting cocycle at∞ in exactly the same fashion

α∞ = {aσ}

with

aσ =
∏

τ∈G(C/R) a
−στµ̄∨

σ,τ , σ ∈ G(C/R) .

We have changed the sign in the exponent, but that has no effect on the resultant cohomology

class.

Lemma A.8. If I is the group over R obtained by twisting I0 by α∞, then Iad(R) is compact.

Let G(C/R) = {1, σ}. We may take the fundamental cocycle to be

a1,1 = a1,σ = aσ,1 = 1, aσ,σ = −1 .

Then



Zeta­functions of some simple Shimura varieties 108

a1 = 1 aσ = (−1)µ̄∨

.

Every root of T in I0 or in I is imaginary. All we must do is verify that the roots of T in

I are compact. Let β be a root of T in I0 and choose root vectors Xβ, X−β with

[Xβ , X−β] = Hβ ,

where

λ(Hβ) = 〈λ, β∨〉 .

Since σ(β) = −β,

σ(Xβ) = cX−β σ(X−β) = dXβ .

It is easily seen that cmust be real and that cd = 1. Examining the two forms of SL(2) over R,

one sees that c > 0 if and only if β is compact. On the other hand, β is compact if and only if

〈β, µ∨〉 = 0. If β is not compact, then 〈β, µ∨〉 = +1. When we twist by αp, the new action on

Xβ is

Xβ → (−1)〈β,µ∨〉cX−β .

Thus c is replaced by (−1)〈β,µ∨〉c, and compact roots remain compact while noncompact roots

become compact.

The global twisting of I is by an element α of H1(Q, Tad) whose image in H
1(R, Tad)

is α∞, in H
1(Qp, Tad) is αp, and whose image in H

1(Ql, Tad), l 6= p, is trivial. Its existence

follows from standard results in Galois cohomology, which we will now describe. We first

state the appropriate lemma formally.

Lemma A.9. Let T be a torus over Q and µ∨ a coweight of T . Suppose T is anisotropic at

∞ and p. Then

α∞ =
{∏

τ∈G(C/R) a
−στµ∨

σ,τ

}
,

αp =
{∏

τ∈G(kp/Q
p
) a

στµ∨

σ,τ

}

represent cohomology classes in H1(R, T ) and H1(Qp, T ), respectively. There is an element

α in H1(Q, T ) whose local components are trivial everywhere except at ∞ and p, where

they equal α∞ and αp.

LetK be a finite Galois extension of Q that splits T . Then

T (K) = X∗(T ) ⊗K×,

T (AK) = X∗(T ) ⊗ IK .
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If CK = IK/K
× is the idèle­class group, set

TC = X∗(T ) ⊗ CK .

The exact sequence

1 → T (K) → T (AK) → TC → 1

leads to

H1(G(K/Q), T (K)) → H1(G(K/Q), T (AK)) → H1(G(K/Q), TC) .

Let β be the element of the middle group with component α∞ at ∞, αp at p, and 1

elsewhere. All we have to do is verify that its image in the final group is trivial. The middle

group is

⊕vH
1(G(Kv/Qv), T (Kv))

and we must verify that the product of the images ᾱ∞, ᾱp of α∞ and αp inH
1(G(K/Q), TC)

is trivial.

The Tate­Nakayama isomorphisms are

Hi(G(Kv/Qv), X∗(T ) ≃ Hi+2(G(Kv/Qv), T (Kv))

and

Hi(G(K/Q), X∗(T ) ≃ Hi+2(G(K/Q), TC)

There is a diagram

Hi(G(Kv/Qv), X∗(T ) ≃ Hi+2(G(Kv/Qv), T (Kv))y
y

Hi(G(K/Qv), X∗(T ) ≃ Hi+2(G(K/Qv), TC)

The left vertical arrow is corestriction. The right vertical is the composition of

Hj(Gv, T (Kv)) ≃ Hj(G, T (K ⊗ Qv)) → Hj(G, T (AK)) → Hj(G, Tc)

with j = i + 2, Gv = G(Kv/Qv), G = G(K/Q). The place v of Q has been extended in

some way, no matter which, toK . It can be verified without too much difficulty, although it is

more than a mere formality, that the diagram is commutative. One examines the proof of the

Tate­Nakayama theorems and recalls at the same time the relation between the local and the
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global fundamental classes. I forego the details, although I have no reference to furnish the

reader.

Suppose in particular that i = −1. The corestriction takes the element ofH−1((Kv/Qv),

X∗(T )) represented by λ with NmKv/Qv
λ = 0 to the element of H−1(G(K/Q), V∗(T )) rep­

resented by the same λ. Therefore ᾱ∞ corresponds to the element of H
−1(G(K/Q), X∗(T ))

represented by −µ∨ and ᾱp to the element represented by µ
∨, and ᾱ∞ · ᾱp is trivial.
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