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Preface

This is an expanded version of a talk given at the International Colloquium
on “Cycles, Motives and Shimura Varieties” held at the Tata Institute of
Fundamental Research in January, 2008. In a general sense this paper is
about algebraic cycles, and on a personal note I would like to observe that
my first paper on cycles [G2] appeared in the volume arising from the Inter-
national Conference on Algebraic Geometry held at the TIFR in January,
1968 — exactly 40 years ago. Although much has happened in the subject
of algebraic cycles — on the arithmetic, Hodge theoretic and formal aspects
— the fundamental problem — the Hodge conjecture and its generalizations
— remains, and it has been joined by another fundamental problem — the
conjectures of Bloch and Beilinson. These two problems reflect, in some
sense, the geometric and arithmetic aspects of cycles. Although there have
been some very interesting connections between these perspectives, my own
view is that further fundamental progress will require an even deeper fusion
between the two, perhaps complemented by new formal constructions.

This paper is largely an informal exposition of joint work with Mark
Green, some of which was also joint with Matt Kerr, together with various
speculations for which I alone am responsible.

I would like to thank the organizers, especially Vasudevan Srinivas, for
their efforts in putting together this excellent colloquium and the TIFR for
hosting it.

1 Introduction

In a general sense, we are interested in the global study of singularities of
Hodge theoretic invariants arising from geometry. The connection with the
title of this article is that, for an admissable normal function v (defined
below), its singular set singv is one such.

By way of context, among the main techniques that have been developed
to apply Hodge theory to geometric questions are:
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* Infinitesimal methods (cf. [G2] and [GMV] for a general introduction
and references), which might be thought of as variational at a generic
point;

® Degenerations of Hodge structures (cf. [CKS] and [Ka] and the ref-
erences cited therein), which might be though-of as variational at a
special point;

* Hodge theoretic aspects of the decomposition theorem (cf. [BBD] and
[dCM1], [Sal]).

Of course there are others — curvature properties/stability of the Hodge
bundles, global PDE techniques, etc. — but the above are the ones most
relevant to this paper.

We are interested in geometric questions concerning the existence and
structure of Hodge theoretic singularities in a global situation. This work is
intended to be an overview of certain questions related to algebraic cycles
and normal functions. However, the following “toy problem” illustrates the
type of specific questions that have motivated the general considerations:

Can there exist a non-isotrivial family of smooth Calabi-Yau
varieties of dimension n and parametrized by a complete curve?

The answer is:

n =1 no; use the j-function;

‘n=2 yes; e.g., apply suitable semi-stable reduction to a generic pencil of
quartic surfaces in P3;

n =3 no, if the Hodge numbers h?9 of a fibre satisfy!

2 < B 412,

To put the n = 3 case in context, we recall [Di] that there exist families
of smooth principally polarized abelian varieties of dimension g 2 3 and
parametrized by a complete curve, but they do not exist for g = 1,2
If we consider Jacobians of curves of genus g and think of the genus as
the dimension of the image of the Abel-Jacobi map, then for Calabi-Yau
varieties the Hodge number h%! is an upper bound on the dimension of the
image of its Abel-Jacobi map, and the above might be thought of as an
analogue of the curve result.

The plan of this paper is as follows (notations to be explained in the
text):

1¢f. [GGKS3).
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o We will give the definitions of an admissable normal function (ANF)
v € (S, Je,v) and its singular locus sing v C 5.2

e Given (Xg", L,() where ¢ € Hg"(Xo)prim and § = |L| parametrizes
the universal family of hyperplane sections {X,}, there is an associ-
ated ANF v and and

sQ€S: H2n(X50,Q)

has a “new” Hodge class

sing v, =

" The same result quite possibly holds for S when S — |L| parametrizes
any semi-stable reduction (SSR) for the universal family of hyperplane
sections.

e (work in progress) Admissable normal functions may be “graphed”;
i.e., for a principally polarized variation of Hodge structure of weight
2n — 1 where the degenerate Hodge structures occur along a divisor
D c S with simple normal crossings, there exists

J.— S

such that . _
dev =0s(Je)w B

o (work in progress)* There exists

EC e

{11

such that
singy = v 1(Z,)

e (work in progress)® J, and =, exist universally; i.e. there exists a
diagram
. jz DE
S

§—TT\Dy

2For a classical normal function, singv = 0.

3This has been done when dim S = 1 (cf. [GGK1]) and in the classical case n = 1 (cf.
[Y]). For recent work see (Sch].

4This has been done when n = 1,2 and when the VHS arises as in footnote 3; in
these cases the construction of £ has been carried out over the locus in S where the X s0
have at most nodal singularities.

5This has also been done under the same conditions as in footnote (3) above.
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where 7 is the Torelli map and such that

singv = v }(E) .

If codim‘I]-E (Z) = d, then this has the implication

(i) singv # 0 = codimg(singv) = d,
which is an existence result, and the additional implication
(ii) v ([E]) #0=>singv#0.

The topological condition v*([E]) # 0 also gives an existence result; at
present we have no ideas on how to prove the topological condition in non-
classical cases.

2 Admissable Normal Functions and Their
Singularities '
Notations and assumptions

(Hz, 37, V,S*) is a principally polarized variation of Hodge structure (VHS)
of odd weight 2n — 1 over a smooth, quasi-projective base space S*. Here,
Hgz is a local system and the F? give a filtration of H =: Hz &z Ox that
induces a Hodge filtration on each fibre. We have

§* = S\D

where S is a smooth, projective variety and D C S is a reduced, local normal
crossing divisor (NCD). With this assumption, the local monodromies T;
around the local irreducible branches D; of D are quasi-unipotent, and
we assume further that they are unipotent; moreover, there are canonical
extensions He, F2 of H,F? and Hz,. = j«(Hz) where j : 5* — S is the
inclusion, and where the Gauss-Manin connection is given by

V:52 5 31 @0, Q5(log D) .
We define the sheaf over S
Je = F\H/Hz,e 2 Fo [Hae
where the isomorphism results from the principal polarization, and we set
Jev = {v €3c: VP € Fo 7} ®o; Qi(log D)}

where # is any local lifting of v to a section of .
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Definition ([Z1]) A normal function is given by

v E F(S, 3e,V) .

Example 2.1 Given a family
f: XS

of projective varieties X, = f~!(s) whose total space X and parameter
space S are smooth and where the singular fibres occur over a reduced,
local normal crossing divisor D C S, there is a polarized VHS, which we
assume to be principal, as above where

Hyg = R?"_IZ/ torsion .
We set

Z e Z2™(X) }

Z™MX)uom = {
[Z]y =0 in H*(Xy,Z)

where U is a small neighborhood of any point s € S and [Z)y is the funda-
mental class of Z in Xy = f~}(U). Varying Z in its rational equivalence
class we may assume that for s € S* the intersection

Z, =7 X, € Z"(X,)
is proper, and since [Z,] = 0 in H?"(X,,Z) the Abel-Jacobi image
vz(s) =: Alx,(Zs) € J(Xs)
is defined where
J(X,) = FrH™ (X, O\H>" "} (X,,C)/H"* "} (X,,2)

is the intermediate Jacobian of X,. From the considerations in [EZ] we
may infer that .

vz € T(S,dc,v) defines a normal function.

More precisely, vz is defined over S* and extends as indicated to give a
normal function defined over S.

Remark In the two curve degenerations
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LD [EE——
) Xso
(ii) Xs B o ) Xso

in the first case the normal function vz = AJx,(s) extends across s = $g
with limit

) x,=

sl_iflslo Alx,(Z,) = A'Jxao (Zso) € Je(Xso)

given by the Abel-Jacobian image of Z,, in the generalized Jacobian J¢(Xs,),
but the normal function does not extend across s = sp in the second. Al-
though this is a torsion phenomenon when the parameter space is a curveS,
when the parameter space arises by independently smoothing the nodes no
multiple mvz extends across s = sp.

Using the exact cohomology sequence of

03 Hze 2T 57— 0
a normal function has a class
5(1/) e H! (S, f}fz,e) .

Theorem ([Z1]) When dimS = 1 the group H'(S,H.) has a Hodge
structure of weight 2n and

d(v) € Hg" (S, Hz.e) -

Conversely, given ¢ € Hg"(S,Hz,.) there exists a normal function v witl;,

s(v)=¢.

Example 2.1 (continued, but assuming dim S = 1) If we define, us-
ing the hopefully evident notation,

H*™(X,Z)uom = {¢ € H**(X,Z) : (u =0 in H**(Xy,Z)}
then ¢ € Hg"(X, Z)yom gives a normal function v and

d(v) = Image of ¢ in Hzn(X,Z) Y HI(S,R?‘“IZ),

6In example (ii) above, the group of components of the Néron model is Z/2Z so that
2vz extends.

|
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where the RHS is defined using the Leray spectral sequence.

Due to the failure of Jacobi inversion in higher codimension, the above
theorem has been of limited use in studying cycles. It does, however, suggest
looking into the possible singular behaviour of v, in general situations as
suggested by the particular example (ii) above. For example, setting Zy=
Z - X, for n a generic point of S and defining

n « —_
Z°(X)nom = ZeZMX):[Z, =0
in H*(X,,Z)

then, for Z € Z™(X )hom, vz(s) is defined on S* and we may ask
What happens to vz(s) as s = So § D?

This leads to the notion of admissable normal functions. Denoting by A a
disk in C, in a neighborhood of U of so € D with

UNS* = U* = (A*)F x A

.

1
80]

D,

we choose a local lifting 7 of v in a small geighborhood of s and analytically
continue 7 to a multi-valued section of 7 over U*. Denoting by (T; — I )
analytic continuation around local branch D; of D, we have

(T; — )i € Kz, -

Definition v is an admissable normal function (ANF) if

(i) 7 has moderate — i.e., logarithmic — growth along D; and
(ii) there exist non-zero integers m; such that

mi(T; — 1o € Ker(T; — I)* .7

7This definition appears in [GG1], where the ANF’s were termed extended normal
functions. It was pointed out to us by Greg Pearlstein that our extended normal functions
were the same as admissable normal functions as defined earlier by M. Saito [Sa2].

S E S e
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Here, the * is with respect to the polarizing form.

Since (T; — I)p is well-defined modulo Im(T; — I) and Im(T; — I) C
Ker(T; — I)*, condition (ii) is well-defined. For dim § = 1, (ii) is automat-
ically satisfied (cf. [GGK1]), and consequently if (i) is satisfied then there
is an integer m such that mv is a normal function in-the usual sense.

In general we have an exact sequence

~ 0
0—=>deyv 2 dev—G—0

where 53,\7 is the sheaf of admissable normal functions and § is a sheaf of
abelian groups such that setting Go = G ®z Q,

So is supported in codimension = 2.

Definition The singular set singv is defined to be the support of

{v}ao €T(S,50) -

Remark Without assuming that the degeneracy locus D C S of the VHS
is a reduced divisor with local normal crossings, one may still define ANF’s
and their singular set will be defined to be

S0 € D : no multiple mv has a single-valued lifting
in a punctured neighborhood U* = UN S* of sg

It then seems to be a likely result (cf. [BFNP] and [dCM2]) that, under
dominant maps .
sS85,
ANF’s pull back to ANF’s and for v € an ANF defined on S
sing (771(v)) = 7~ (sing v) ;

i.e., singularities do not disappear under branched coverings and blow-ups.8

Example 2.1 (continued) We let H*"(X,Z)nom be the classes ¢ such
that, modulo torsion

& =0 in H™(X,,Z) ?

8Footnote added in proof: It has been pointed out to me by Gregory Pearlstein that
there are examples due to M. Saito and to Najmuddin Fakhrudding that this statement
is false without further assumptions, perhaps to the effect that the parameters in S must
be “essential”.

Ry
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Clearly we have
00— H2n(X, Z)HOM — Hzn(X, Z)hom ,

and the cokernel may be roughly thought of as “classes supported over the
discriminant locus D.”

Theorem 2.2 A class ( € Hg"(X)nhom gives an admissable normal func-
tion v¢.

Example 2.3 Suppose given (X2", L, (y) where X is a smooth projective
variety, L — Xj is a very ample line bundle and (o € Hg"(X0)prim is a
primitive Hodge class. Setting S = |L| we have the universal family of
hyperplane sections

XCXgx S

S
and (o pulls back to ¢ € Hg”(X)hom.

Theorem 2.4 ([BFNP] and [dCM2]) We have
singve = {80 € §: {5y #0 in Hg"(Xs)/Hg" (X)hom} -

Here, the singularities of X, are arbitrary, including multiple compo-
nents; Hg™(X,,) is defined as the Hodge classes in

Grz.(H*™ (X339, Q)

using the mixed Hodge structure on H2"(X:4,Q).
Assuming inductively the Hodge conjecture (HC) in codimensions <
n — 1, the above theorem has the following

Corollary 2.5 The HC is equivalent to singve # @ for L>> 0.

We may think of singv, as the high degree hypersurfaces that support
a cycle Z with [Z] = (.

The proof of Theorem 2.4 uses the decomposition theorem (DT) for the
special situation of the universal hyperplane section, together with a new
ingredient — the “relative, weak hard Lefschetz theorem.”

9n general, we let £, € H?*" (Xs,Z) be the image of £ under the restriction map
H(X,Z) -+ H*(X,, Z).

a -

-~

A pamena
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We remark that the argument of [BFNP] and [dCM2] seems to work if
we only assume that
¢ € H"™(X)hom ;

i.e., ¢ need not be a Hodge class, and in fact could be transcendental. The
conclusion is then that

(oo #0 in H2(X)s0/H*™(X)hom - (2.6)
If ¢ is in fact transcendental, and if X, is nodal, then
H2n(X80)/H2n(X)hom = Hg"(Xs,)/Hg" (X)hom

from which we infer that (2.6) does not hold. In fact, one may define the

singluar locus of any class { € H™™(X)nom; we suspect that sing¢ = 0

unless ¢ is a Hodge class.
The construction of v¢ requires that ¢ be in H (X, Z) as well as being
in H™™(X )hom. This suggests that any argument that

sing Ve 7é 0

will need to make use of the existence of v as a mapping from S to some
space. This will be further discussed in §§4 and 5 below.

As a general comment, in the absence of being able to construct cycles
one may consider what the implications of the HC are. We here mention
three:

(i) the HC has geometric consequences;
ii) the HC has arithmetic consequences; '°
(i) q ;

(iii) the HC may have topological consequences.

The above corollary gives one instance of (i). Below we will discuss (iii),
which may also be related to aspects of (ii).

3 Néron Models and Graphing ANF’s

Classically, working analytically and denoting by S = A the disc with origin
so and §* = A* = A\{sp} the punctured disc, given a family J — S*

10These include the absolute Hodge condition, as formulated by Grothendieck and
Deligne (cf. [D-M]), and the field of definition of Noether-Lefschetz loci ([V]). These are
further discussed in Section 5 below.

¥
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of principally polarized abelian varieties with unipotent monodromy T','!
there exists a diagram of analytic fibre spaces of complex Lie groups

~i

J C
! (3.1)

§* C

U

with a number of properties,'? including

e the diagram (3.1) is canonical and graphs admissable normal func-
tions;13

e there is an exact sequence
05J.=J.>G—0
where G is the finite group
G = (Ker(T — 1))z /Im(Tz — I)

sitting over the origin so;'4
o the fibre je,s() is an extension of its identity component Je s, & semi-
abelian variety, by G.

Two extensions of this construction have been given.

(i) Néron models of intermediate Jacobians over 1-dimensional base
spaces.!®

Here the same properties as above extend, with one significant difference:

11This restriction is not essential, but it simplifies the exposition.

12Thig is the classical Néron model — cf. [Ko] for the elliptic curve case and [BLR] for
the general case.

13This means that ANF’s are given by holomorphic sections of Je — S; we may express
this by saying that .

ae,V e O(JG)V ’

where we note that the condition on V& is automatically satisfied when » = 1. It is
noteworthy that no compactification of the fibre Je,s, over the origin is required to fill
in the value v(sp) = limg_;sq ¥(8).

14The subscript “Z” on (Ker(T — I)1)z means that we take the integral elements in
the vector space Ker(T — I)1.

15This is joint work with Mark Green and Matt Kerr, cf. [GGK1]. The Hodge theoretic
aspects have been done independently by Patrick Brosnan and Gregory Pearlstein [BP1].

e
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o J. — S is a slit analytic fibre space'® and
dim Jo o < dim J,
unless ("~ I)? = 0 and the LMHS satisfies!” .

Grz,, is of Hodge-Tate type .

The identity component of Je s, of Jp 4, is what one might call a semi-
analytic complex torus, meaning an abelian complex Lie group which is an
iterated extension of compact, complex tori by C*’s. Note that there are
no C-factors.

In the localization of the geometric example to § = A and where X, isa
normal crossing divisor, we let Z (X, ) denote the codimension n algebraic
cycles on X,, which meet the strata properly. Then, for Z,, € Z7(X,,) its
fundamental cohomology class

(Zso] € H*™(Xs5,2)
may be defined (|[GGK1]), and we denote by
Z:;;E(XSO)HOM - Z:I?E(Xso)

the subgroup of cycles Z,, with [Z,,] = 0. Using the MHS on H?"~1( X, ,C)
one may define the generalized Jacobian J(X,,) and there is an Abel-Jacobi
map

AJX,0 : Z;(Xso)HOM — J(XSO) .

Now let Z € Z™(X) be a cycle such that the intersections

Zs=7-X,

= are defined for all s and Z,, € Zj; (Xso)uom- Then there is defined a normal

function vz € I'(A, d¢,v), which may be represented by a section of

Jo— S.

168lit analytic fibre spaces have appeared in the work of Kato-Usui [KU] on partial
compactifications of moduli spaces of polarized Hodge structures. There it is explained
how on them one may “do geometry as usual relative to period maps”. The situation of
“doing geometry relative to ANF’S” seems to be similar, but the details are yet to be
worked out.

A special feature of “doing geometry as usual” is given by the result [BP2] that when
dim S = 1 the zero locus of an ANF is an algebraic variety, and its extension to the case
where dim S is arbitrary and locally D has one branch is given in [Z1, pp. 214-215] and
in [Sa3].

17These conditions appeared first in [Cl] and were amplified in [Sa2].
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We then have
AJx,(Zs) =vz(s) for all s and ,

in a precise sense,

lim Alx,(Zs) = Alx,,(Zs,) -1 (3.2)
8—S8p

Moreover, the limit (3.2) has the following properties, which are present
but perhaps not so “visible” in the classical case

o the limiting MHS induces a filtration on J, s, whose graded pieces are
composed of compact, complex analytic tori and C*’s — no vector
groups occur;

o the limit (3.2) is a mapping of filtered groups whose graded pieces are
constructed from regulator maps defined on sub-quotients of higher
Chow groups.1?

As a closing remark, we note that the group G,, of components of the
Néron model has a monodromy weight filtration — cf. the examples in
[GGK2]. In general, it is my view that lim AJx, frequently has a richer
geometric structure than AJx, for a generic s, and in some ways even more
than AJy, in the classical n =1 case.

(ii) Néron models of PPAV’s over higher dimensional base spaces.?®

In the local analytic situation where S* = (A*)! x A¥, we assume given a
family of PPAV’s J — S* whose monodromies are unipotent. Then there
is a diagram

o~

J C .
! 63)

§* C

n

where

18Thus, except in the case where (T —I)2 = 0 and Gr,, of the LMHS is of Hodge-Tate
type, the limiting Abel-Jacobi map has geometric constraints not present classically. The
RHS of (3.2) should be understood as the image of AJ Xag (Zs,) under the map induced
from the Clemens-Schmid sequence.

I9Tn the classical case n = 1, the C*’s in the generalized Jacobian of a nodal curve
should be thought of as regulator images of CH(p, 1), where p is a node.

20¢f, the Princeton thesis of Andrew Young. His result is a complex analytic toroidal .

construction.
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o J, - Sis a non-Hausdor{f** fibre space of complex Lie groups whose
identity components are semi-abelian varieties of the same dimension
as the generic fibre;

¢ (3.3) graphs ANF’s, which we express as
ge = OS(je)

(here we omit the V-subscripts since the transversality condition is
automatic in this case);

e If the local monodromies are denoted by T, then the group G, of
components of Je s, has a description

H(B3,) where B;, is a Koszul-type

Gy = complex defined over Z and constructed

from the T; — I and the polarizing form?2

In general, when dimS 2 2 the group G, is a finitely generated but in
general not a finite abelian group.

Example 3.4 Referring to the curve degenerations plctured in §2, so that
S = A3 is the parameter space obtained from smoothing the nodes inde-
pendently, for the group G, of components of Je s we have

0 s#(0,0,0
G, - #(0,0,0)
Z s=(0,0,0).

The ANF in (ii) has value “1” at the origin.
As an example of “doing geometry relative to ANF’s”, let
P Jxged
be the Poincaré line bundle. Then:

e for an ANF v, v*(?) initially defined over S* has a canonical extensxon
to S, even though P itself does not canonically extend to Jo Xg Jo.2

21This non-separatedness caiises no difficulty in doing geometry relative to ANF'’s; see
below.

22This group H'(B3,) ®z Q appears in [CKS] and is constructed from a Koszul-type
complex constructed from the logarithms N; = log T; of monodromy.

23¢f. [Y], where the precise meaning of canonical is explained.
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What is obviously needed is to “amalgamate” the two constructions to
have a Néron model for intermediate Jacobians over higher dimensional
base spaces. This has been done for n = 2 in the nodal case (cf. [GG2]),
which in some ways resembles the classical case since one has

(T-1)%=0
Gry of the LMHS is of Hodge-Tate type.

However, in other ways it is quite different in that the infinitesimal period
relation enters in an essential way in dimension counts (loc. cit).

4 TUniversal Realization of the Singular Locus
of an ANF?

We will explain “what” is desired and “why” in the classical weight one
case, where the required ingredients may be in place. Then we shall briefly
discuss the higher weight case.

We denote as usual by A, the moduli space for principally polarized
abelian varieties of dimension g, realized as the quotient by the discrete
subgroup I' = Gz of the Siegel upper-half-space

H, = Gr/K

where Ggr = Sp(g,R) and K = U(g). The Lie algebra Jr is defined over Q,
and for each fan X there is defined a compactification

Ag C zg,E

of Ay (cf. [AMRT]). Recall that for general compactifications of quotients
of Hermitian symmetric spaces, X is a union of rational, nilpotent cones n,
which satisfy certain incidence relations and where AdI' permutes the n,’s.
In the case at hand each

n, = span{Ny,..., Ny}
where the N; are integral and satisfy
[Ni,N;] =0

N2 =0.

23This section is speculation on the potential outcome of work in progress.

T
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Associated to n, is a set of nilpotent orbits whose limiting mixed Hodge
structures, modulo reparametrizations, may be thought of as the bounda?y
component B, C Zg’g corresponding to n, (cf. the discussion in Cattani’s
article in [G2] and in [GGK2]).

What is desired is a universal Néron model

Jg,):; — .Ag,g

together with a subvariety E C J, x such that, given an ANF v € I(S,3.,v),
there is a diagram
jg,z D= (4-1)

S U A _.A-g,g

" with

singry = v~ 1(E) . (4.2)

Here we assume that the locus D C S of degenerate Hodge structures is
locally a NCD of the form

Dnu=D1U"'UDr-

Then U will map under the Torelli map 7 to a neighborhood of 7(so) € Bs
where n, is the the rational nilpotent cone spanned by N; = logT; and
where 7T; is the local monodromy, assumed unipotent, around D;. Intu-
itively

limiting MHS’s taken

T(DNU) = along discs A C U

with AN D = {so}

With the caveat that we are ignoring important stack considerations,
the constructions in Young’s thesis serve to define Jg » as a set, so that at
this level we have (4.1). Denoting by

union of non-torsion components

—
- —
==

of fibres of J, 5 — Ags

we then have, again at the set-theoretic level, (4.2). Defining the appx.ropri—
ate structures so that we properly have (4.1) and (4.2) is what is desired.

|
|
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As to “why” (4.1) and (4.2) are desired, we give two préliminary reasons
— both of which are existence results. Afterwards we will explain why, and
possibly how, these must be modified. The two reasons are:

(i) v(8) #0 => codimg(singv) < codimj  (E) =:d
() v(E) 40 = v @) A0

Below we shall see that (ii) is questionable, but if we let (X, () vary in
moduli over the Noether-Lefschetz locus then the extension of (ii) becomes
at least plausible and would give an existence result.

Concerning (i), since codimension descreases under blowing up we can-
not immediately conclude that

(4.3)

dimg(singv) 2 dim § — d. (4.4)

We can, however, conclude this if — e.g. — we know that for a general
point s¢ € singv

7o : TogS = Tr(so)Ag,s is injective. (4.5)

Suppose we are in the geometric case of Example 2.1 and X, is a nodal
curve of genus g. Then 7 is the composition of

SEM, 34,5 . (4.6)

It is not hard to see that . is injective on a general T}, S, so the question
is one of o,.
In fact, to have the conclusion (4.4) it is enough to have that

7o : Too(sing V) = Tr(so)Ag,x

is injective. We factor as in (4.6) and denote by A C M, the boundary
component of stable, nodal curves of the same type as X,, and by B C Ay
the boundary component of LMHS’s of the type of lim,,,, H 1(X,). The
issue is then the injectivity of .

Ox : TmgA = To(me) B - 4.7)

In the case of interest where Example 2.1 arises as in Example 2.3, as
explained in [GG1] the injectivity of (4.7) in the situation of most interest
is equivalent to the following geometric problem: ;

Let X, be a smooth algebraic surface, Co C Xy a smooth curve, and
L — X, a line bundle that is sufficiently ample relative to X and Cp. In
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particular, L ® [—Co] should be very ample. The linear system |L| may be
thought of as consisting of reducible curves -

C+Cy (4.8)

-

where a general C is smooth and meets Cp transversely. Each such curve
has a mixed Hodge structure, which is part of the LMHS of a general
smoothing ot (4.8). As shown to me by Mark Green, we then have

(4.9) The differential (4.7) is injective if the differential of the map
C — MHS on HY(C + Co)
is injective.

Mark has proved that this is the case if L > 0.

‘We do not know if the analogue of (4.9) holds when n 2 2. As discussed
in [GG2], dimension counts must take into account the infinitesimal period
relation; the issue would seem to be an interesting one.

Turning to (ii), we first observe that it is unlikely to be true as stated.
To begin with, one must be more precise and consider the irreducible com-
ponents of Z. Let us consider one, still denoted by Z, that lies over a bound-
ary component B consisting of all LMH’s corresponding to a nilpotent cone
n = span{Ny,..., N;} where the T; = I + N; are given by Picard-Lefschetz
transformations

where d;,...,8; are primitive elements of Hz , with one relation

St 8 =0
afnong them. Then‘locally

v(S)NE lies one-to-one over T(S)N B

Although this certainly does not imply that

((B]) = v*(E]) ,
what is definitely not true is

([B]) #0. (4.10)

The reason is this: If (4.10) holds for Xy, then it would hold for any small
deformation X}, of Xo. This would then imply that X; contains reducible
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sections of L of the type (4.8), which means that the Hodge class ¢, deforms
to Xo. But in general the Hodge class will only deform over a proper
subvariety — the Noether-Lefschetz locus

MCcM

of the moduli space M (assumed to exist) of Xj.

This then suggests that, in Example 2.3, one consider normal functions
associated to Hodge classes not only for a fixed (Xo,¢o), but rather one
should allow this data to vary over M¢. We denote by (Xi, (e, Lt)ten
this variation, together with that of the very ample line bundle. We segs

St = ]f,tl and ,
s=J s.
teM,

Then there are a Torelli map 7 and normal function v, defined as in the
diagram

j)j o=
pa
S——TI'\A,s.

In [GG2] it is proved that, subject to a technical assumption that we suspect
is not essential, .

r3([B)) #£0. (4.11)

This is proved using the Lefschetz (1,1) theorem — i.e. the HC for n =

1. We also suspect that if there were an independent proof of the purely

topological result (4.11), then the Lefschetz (1,1) theorem might follow.
The analogue of (4.11) for n = 2 is not known.

Cor.lclusion In the absence of being able to construct cycles in higher
codimension, it seems of interest to examine consequences of the HC. The
topological statement (4.11) could be one such.

5 Some General Observations and a Question

Above there has been discussion of some geometric consequences of the HC.
There are several others, some of which have been proved, including

o the algebraicity of the Noether-Lefschetz loci (cf. [CDK));
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e the algebraicity of the zero locus of a normal function, done for
dim S = 1 in [BP1] and more recently by them for dim S arbitrary and
where D locally has one branch (private communication, and also by
M. Saito (private communication)). Further recent work is in [BP2]
and [Sch]. .

There are also arithmetic-geometric consequences of the HC, two of
which were mentioned in footnote (7). Roughly speaking, the second in-
volves the following considerations: If we have a family of algebraic varieties

fiX—8

where S (assumed irreducible) is defined over a number field — we simply
write “X is defined over Q" — then as discussed in [V], one expects the
Noether-Lefschetz loci

S( cS

where a class ¢ € HgP(X,), s a point of S, remains of Hodge class to also
be defined over Q.
The reason is this: Any algebraic subvariety

Vcs (6.1)
may be thought of as given by an inclusion of abstract varieties
V(k) C S(k) (5.2)

defined over an algebraically closed field k of characteristic zero, together
with an embedding o : k < C giving rise to (5.1), which we may write as

V(k) ®, C C S(k) ®, C .

Varying o gives the spread of (5.1). Since S is defined over Q, an irreducible
component of the spread may be though of as a component of the spread

Vcs

of Vin S.
Now, enlarging k if necessary, { may be thought of as giving a class

Ce H”(Xs(k),ﬂ’;’(,(k)) (5.3)

where X, is defined over k£ and we are using GAGA to identify analytic
sheaf cohomology with its algebraic counterpart. We may take the spread
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of (5.3), and assuming absolute Hodge an irreducible component of the
parameter space of the spread will map to S¢; i.e. we have

Sc¢C S,

or S¢ is defined over Q.

The above is only heuristic — an invitation to [V]. The point, by no
means new here, is to illlustrate that arithmetic and geometric considera-
tions should be considered together, not separately, in the study of cycles.

For example, one at least philosophical difficulty in the use of the Abel-
Jacobi map and normal functions to study cycles is that the Abel-Jacobi
map loses too much geometry. In [GG] it is shown that if one “enriches”
the Abel-Jacobi map by taking spreads — in effect considering the well-
defined part of all the Abel-Jacobi maps arising by varying the embeddings
o : k <= C, then assuming the (generalized) Hodge conjecture and one
of the Bloch-Beilinson conjectures, rational equivalence is captured (up
to torsion). This at least suggests that one should consider adding spread
considerations to the study of normal functions and their singularities. One
possible outcome might be that, assuming absolute Hodge, the study and
construction of algebraic cycles is in principle reduced to where everything
is defined over Q (cf. [V] for further discussion). At that point one might
seek to combine classical and p-adic methods.

A further comment concerns the consequence Corollary 2.5 of the HC.
There the operative phrase is “L > 0”. What ezactly does this mean?
Suppose we are given a projective embedding of X with O, (1) having the
usual meaning. Taking L = Ox,(m), in [GG1] we observed that

In general there cannot be a uniform bound on m in order to
have sing v¢ # 0.

Here uniform bound means “as Xy varies in moduli”. Of course, one may
reasonably expect a bound as (X, () varies over the subvariety M, of its
moduli space. In [GG1] it is noted that in the n = 1 case when X, is a
surface, in order to be sure to have sing v¢ # () we must have

m 2 c¢]? (5.4)

for some constant ¢ > 0.

Question In general does the HC imply the existence of a lower bound

(5.4)%

For surfaces, the estimate (5.4) is sufficient in that given X there is a
C > 0 such that
singye # @ for m 2 C|¢)? .
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One may of course ask if, assuming the HC, the same holds in general.
Bounds such as (5.4) may be thought of as providing an effective HC.
As a reprise from these speculations/generalities, I would like to describe

a concrete, geometric question, which will help frame another general con-

sideration. Assume that we have the construction (3.3) for families of in-

termediate Jacobians as well as for families of PPAV’s. Denote by ANF(S)

the group of admissable normal functions. Then there is a diagram

ANF(S) x H*(J,) — H*(S)

w w (5.5)
(v,@) — v*(a).
Question What are the algebraic properties in the first factor of this map?
Specifically, denoting by e the zero normal function we set
A, /)= (v +V) —v* —v* +e*

and think of A(y,1') as the derivation from linearity in the first factor of
(5.5).24

Example Let f: X — S be a minimal elliptic surface. If there is a fibre

of type I3 in Kodaira’s notation, and if we have two sections v and v/ that
meet that fibre as pictured

Y,

Y]. L 4 \ 4
/ e \V+V'

then all
Ay, )[Yi] #0,

but it may be shown that
Ay, V) =0

24Equivalently, it is the deviation from the “theorem of the square.”
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for ordinary normal functions (their value at singular points is in the iden-
tity component).25 Denoting by NF(S) the group of ordinary normal func-
tions, this suggests the

Refined Question (i) Is A(v,v') = 0 on NF(S) x NF(S)? (ii) If so, then
to what extent does the induced map

% . (ANE(S) x ANF(S)
' ( NF(S) x NF(S)

capture the singularities of admissable normal functions?

) — Hom(H*(J.), H*(S))

To conclude, we want to pose an issue that combines this question with
the preceding question centering around the lower bound (5.4). This dis-
cussion will be heuristic; we will pass over the significant technical issues
that would be necessary to address to make it precise.?8

The idea is, as in proofs of the nullstellensatz, not try to initially deal
with bounds of the type (5.4). Keeping the notation (X, 9x,(1)) as above,
we may assume Ox, (1) is sufficiently ample to have

H® (0, (k)) ® HO (0, (1)) — H® (0x,(k +1))

for all k,1. We set
Sk =PH® (0x,(k));
there are then spanning maps?’
Pkg i Sk xSt = Sk
given by
(X, Xt) — X+ X

where s € Si, t € 5]. 5
For the Néron models Ji  — S, in first approximation we have

. ThL .
Jk;+l,e| e Je kX Jel -0
Image pp,

l l (5.6)

Image KKkl —_— Sk X Sz .

25The point is that the connecting map
H°(S,3.) - H' (S, R}Z)
is a homomorphism of groups.
26These issues center around the extent to which we need to use SSR to have unipotent
monodromies and to have the discriminant loci with local normal crossings, which up
until now are needed to construct the Néron models Jk e —* Sk.
27 A spanning map is one whose i image linearly spans.
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The reason is that for general (s,t) € Sr x S; the identity component
Jo(Xs+X;) of the generalized intermediate Jacobian will map onto J,(X)x
Je(Xy), reflecting the fact that the MHS on H2"~1(X,UX,) is an extension
of H*""2(X, N X;) by H*1(X,) @ H* 1(X;). Of course if X,, X, are
singular or fail to meet transversely the situation is more complicated but,
as suggested above, we will not address this.

Given a Hodge class ¢ € Hg"(Xo)prim, for each k we have

Sk 28 Jok

It is reasonable to guess that the sequence of ANF 15 Vi,¢ are compatible in
the sense that

Tl <Vk+l,(‘ ) = Vg, ¢ X Ve - (57)

Image pe,s

We will write this more suggestively as

Vitl,¢ = Vi T V¢

where it is understood that the LHS is restricted to the image of u .
A perhaps more subtle issue is the relation between singvgq;¢ and
sing vy ¢, sing vy,¢. Again in first approximation we would guess that

sing vk41,¢ s (sing vg,¢ X Si) U (Sk x singuy¢) .
k,l

Geometrically, this says that “new” Hodge classes on Xj, U X; can only
come from those on either Xy or X;. If correct, this leads to the reason-
able conclusion that singularities of ANF’s cannot be produced from Segre
images of lower degree hypersurface sections.

Next, we have the maps

o Hg"(X0)prim — Hom (H* (Ji.e), H*(S)) - (5.8)
There are possible compatibility relations among

i+t and @k, @1

as suggested by (5.6). Moreover, as suggested above the failure of @i to
be a homomorphism of groups is related to the presence of singularities of
ANF’s.

Two further extensions of the above construction are suggested by the
discussion in Section 4. For this we fix a subgroup

A - Hgn (XO)prirn
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and denote by Ma C M the Noether-Lefschetz locus of all pairs (X, A;)
where X; is a deformation of Xy and A; C Hg" (Xt)p,im~corresponds to A.
We then denote by Sk, J the above constructions of Sk, J varying over My.
Thus

S — My is the projectification of a vector bundle E5 over My

and thus

* * relations given the
H*(S)) = H*(Ma)[Gil/ &
Chern classes of €

where ¢, € H%(Sk). There are again compatibility relations among these
constructions as & varies. )
Finally, we let
T'e\Dg,x,

be the Kato-Usui spaces associated to relevant polarized Hodge structures.
We also denote by _
Jizp = Te\Dr.z, (5.9)

the universal Néron model. For each k,! one may imagine a boundary
component
By C Trpi\Diyi,zp

consisting of LMHS’s of the type that arise by smoothing X+ X; in S'k+z =
|Ox,(k + 1)|, together with a surjective map

Bk,z — (Fk\Dk) X (Fl\Dl) (5.10)

associating to a MHS its Gry,—1 piece. The maps (5.10), together with the
maps lying over them under (5.9), express the inter-relations among the
universal Néron models.

Putting everything together, given A as above we have the family of
ANF’s vp i given by the va4’s

VAk %
Sak —+ Jaks.
which induce maps

V?\,k : A — HomH* (jA,k,Ek, SA,k) . (5.11)

Conclusions and the central question (%) It is reasonable to expect that
the deviations of (5.11) from being group homomorphisms may reflect the
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singularities of the ANF v k. (ii) The maps vy are related for different
k by the process described above. (i) Let = C J Az, e the non-torsion
components of the universal Néron model. Then

singvp x = Vx’lk(Ek) .
(iv) Setting dy, = codim Ey,,
Vi 1 ([Ek]) € A x H¥% (My)[¢4]/(relations)

is a polynomial in (r whose coefficients C((, k) are functions of { € A and
k with values in the ring H*(M,). '

Main question What can one say about these coefficients?

For example, what can be said about
C(C+ (k) = C(¢,k) = C(¢', k) + Cle, k)7
What are the relations between
C(¢,k+1) and C((, k), C(C, D)

that arise from the above (and other) geometric constructions?
We note that

some C(¢,k) # 0 =—> existence theorem.

Interesting two cases might be

(a) Xo is abelian surface with principal polarization and with an addi-
tional Hodge class (.

In this case, dim M, = 2 and everything needed can be worked out explic-
itly, and

(b) Xo C P is a quartic surfaces and ( is the class of a line in Xj.

In this case, dim M¢ = 18 but much is known about it.
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