
SOME LEMMAS TO BE APPLIED TO THE EISENSTEIN SERIES

ROBERT P. LANGLANDS

Let V be a Euclidean space and let V ′ be its dual. Let λ1, . . . , λn be a basis for V ′ such
that ⟨λi, λj⟩ ⩽ 0 if i ̸= j and let µ1, . . . , µn in V ′ be such that ⟨λi, µj⟩ = δij. If F is a subset
of {1, . . . , n} let V ′

F be the subspace of V ′ spanned by
{
µi

∣∣ i ∈ F
}
. Let µi

F = µF if i belongs
to F and let µ′

F be the projection of µi on the orthogonal complement of V ′
F if i is not in F .

Let λiF , 1 ⩽ i ⩽ n, be such that ⟨λiF , µ
j
F ⟩ = δij. If i is not in F then λiF = λi. Suppose i

is in F and write λiF = λi +
∑

k/∈F cikλ
k. Then, for k not in F , ⟨λiF , µk

F ⟩ = ⟨λi, µj
F ⟩ + cik.

It follows from Lemma 2.5 of E.S.1 that ⟨λi, µk
F ⟩ ⩽ 02 so cik ⩾ 0. Consequently if H in V

is such that λi(H) > 0, 1 ⩽ i ⩽ n, then λiF (H) > 0, 1 ⩽ i ⩽ n. Suppose i is not equal
to j. If one of i and j is not in F then ⟨λiF , λ

j
F ⟩ ⩽ 0. However if i and j belong to F

then ⟨λiF , λ
j
F ⟩ = ⟨λiF , λj⟩ = ⟨λi, λj⟩ +

∑
k/∈F cik⟨λk, λj⟩ ⩽ 0. Consequently for all i and j,

⟨µi
F , µ

j
F ⟩ ⩾ 0. A hyperplane in V defined by an equation of the form µi

F (X) = 0 [B.2] or
λiF (X) = 0 for some i and F will be called a special hyperplane. Let H be a point in V
which does not lie on any special hyperplane. Given H we shall define for every subset F a
function φF on V . φF will vanish identically unless λiF (H) < 0 for all i in F . If λiF (H) < 0 for
all i in F then φF (X) will be zero unless λj(X) is different from zero for all j and µj

F (H)λj(X)
is positive when j is not in F where it will be one. Let a(F ) be the number of negative

numbers in
{
µj
F (H)

∣∣∣ j /∈ F
}
. We claim that

∑
F (−1)a(F )φF (X) is zero unless λj(X) > 0

for all j when it equals one. If λj(H) > 0 for all j then λjF (H) > 0 and µj
F (H) > 0 for all j.

Consequently ϕF (X) vanishes identically unless F is empty. Moreover a(ϕ) = 1 and φϕ(X)
is zero or one according as all the numbers λj(X), 1 ⩽ j ⩽ n, are positive or not. Thus for
such an H the assertion is true. Suppose that H ′ and H ′′ are two points which do not lie on
any special hyperplane. It is enough to show that [B.3]

(a)
∑
F

(−1)a
′(F )φ′

F (X) =
∑
F

(−1)a
′′(F )φ′′

F (X).

H ′ and H ′′ can be joined by a polygonal path no segment of which lies in a special hyperplane
and no point of which lies on the intersection of two distinct special hyperplanes. If this path
meets no special hyperplane the equality (a) is obvious. If we can show that the equality is
satisfied when only one point of the path lies on a special hyperplane it will follow that the
equality (a) is always true. Let the one point lie on a special hyperplane defined by α(X) = 0.
If H ′ and H ′′ lie on the same side of this hyperplane then H ′ and H ′′ can be joined by a
polygonal path which meets no special hyperplane so that the equality (a) will be satisfied.
We suppose then that H ′ and H ′′ be on opposite sides of the hyperplane. That is, that α(H ′)
and α(H ′′) are of opposite sign. If F is a subset of {1, . . . , n} and none of λiF , i ∈ F or µj

F ,

j ∈ F is a multiple of α then λiF (H
′) = λiF (H

′′), i ∈ F , and µj
F (H

′) = µj
F (H

′′), j /∈ F so
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2λk, k /∈ F or the orthogonal complement of V ′

F satisfies usual conditions plus {µk
F } is its dual since

⟨λi, λk⟩ ⩽ 0, k /∈ F .
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that a′(F ) = a′′(F ) [B.4] and φ′
F (X) ≡ φ′′

F (X). Let S1 be the collection of those F such
that, for some i in F , λiF is a multiple of α and let S2 be the collection of those F such
that, for some i not in F , µi

F is a multiple of α. In either case the integer i is uniquely
determined. Moreover the sets S1 and S2 are disjoint. Suppose F1 is in S1. Then F1 is
not empty; suppose, for simplicity, that F1 = {1, . . . , k} and that λkF is a multiple of α. Let
F2 = {1, . . . , k − 1}. Then λkF1

and µk
F2

both lie in the space spanned by µ1, . . . , µk and are

both orthogonal to µ1, . . . , µk−1. Consequently µk
F2

is a multiple of λkF1
and hence of α. We

remark for later use that, since ⟨µk, λkF1
⟩ = 1, µk

F2
is a positive multiple of λkF1

. In any case F2

belongs to S2, since {1, . . . , n} does not belong to S2. This process can be reversed. Thus,
in this way, we can set up a one-to-one correspondence between S1 and S2. Let F1 and F2

be two corresponding elements, say the two above. The equality (a) will follow if it is shown
that

(−1)a
′(F1)φ′

F1
(X) + (−1)a

′(F2)φ′
F2
(X) = (−1)a

′′(F1)φ′′
F1
(X) + (−1)a

′′(F2)φ′′
F2
(X).

[B.5] Since λkF1
(H ′) and λkF1

(H ′′) are of opposite sign, at most one of φ′
F1
(·) and φ′′

F1
(·)

does not vanish identically. An argument like that used above shows that for i in F2,
λiF2

= λiF1
+ ciλ

k
F1

with ci ⩾ 0. If both the functions φ′
F1
(·) and φ′′

F1
(·) vanish identically

then, for some i in F2, λ
i
F1
(H ′) = λiF1

(H ′′) is positive. Suppose λkF1
(H ′) is positive, then

λiF2
(H ′) = λiF1

(H ′) + ciλ
k
F1
(H ′) is positive. Consequently λiF2

(H ′) is also positive and the
functions φ′

F2
(·) and φ′′

F2
(·) both vanish identically. The only case with which we need to

concern ourselves is that in which precisely one of the functions φ′
F1
(·) and φ′′

F1
(·) does

not vanish identically. If we take λkF1
(H ′′) positive it will have to be the first. If j is not

in F1 then µj
F1
(H ′) = µj

F1
(H ′′) and µj

F2
(H ′) = µj

F2
(H ′′). Let µj

F1
= µj

F2
+ djµ

k
F2
. Then

0 = ⟨µj
F1
, µk

F2
⟩ = ⟨µj

F2
, µk

F2
⟩+dj⟨µk

F2
, µk

F2
⟩ so that dj is not positive. If µ

j
F2
(H ′) is positive then

µj
F1
(H ′) = µj

F2
(H ′) + djµ

k
F2
(H ′) is positive because µk

F2
(H ′) is negative; if µj

F2
(H ′) is negative

then µj
F1
(H ′) = µj

F1
(H ′′) = µj

F2
(H ′′) + djµ

k
F2
(H ′′) [B.6] is also negative because µk

F2
(H ′′) is

positive. In particular then a′(F1) = 1 + a′(F2) = a′′(F2) and we are reduced to showing that

φ′
F1
(X) ≡ φ′

F2
(X) + φ′′

F2
(X).

This equality follows from the definitions.
Suppose that p is an ordered partition of {1, . . . , n} into the non-empty sets F1, . . . , Fr. If i

belongs to F1 we let µi
p = µi and if i belongs to Fu and 1 < u ⩽ r we let µi

p be the projection

of µi on the orthogonal complement of
{
µi

∣∣ i ∈ Fv, v < u
}
. We also let λip, 1 ⩽ i ⩽ n, be

such that ⟨λip, µ
j
p⟩ = δij. As above ⟨λip, λ

j
p⟩ ⩽ 0 if i ̸= j and ⟨µi

p, µ
j
p⟩ ⩾ 0 for all i and j. For

the present purpose let us call a hyperplane defined by an equation of the form µi
p(X) = 0 or

the form λip(X) = 0 for some p and some i a special hyperplane. Suppose H is a point which
does not lie on any special hyperplane. Define the function φp by the condition that φp(X)
is zero unless λip(X)µi

p(H) > 0 [B.7] for all i when it is one. Define the function ψp by the

condition that ψp(X) is zero unless λip(X) is positive for i in F1 and λip(X)µi
p(H) is positive

for i not in F1 when it is one. Let ai be the number of elements in Fi and let a(p) be the
sum of

∑r
i=1(ai + 1) and the number of i such that µi

p(H) is positive. Let b(p) be the sum

of 1 +
∑r

i=2(ai + 1) and the number of i in
⋃r

i=1 Fi such that µi
p(H) is positive. We must

verify that, if X lies on no special hyperplane,∑
p

(−1)a(p)φp(X) =
∑
p

(−1)b(p)ψp(X)
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when λi(H) is positive for some i and∑
p

(−1)a(p)φp(X) = 1 +
∑
p

(−1)b(p)ψp(X)

when λi(H) is negative for all i. These relations are easily verified when n = 1 so suppose
that n > 1 and that the assertion is true when the dimension of V is less than n. If F is
a subset of {1, . . . , n} different from F0, the null set, and [B.8] F1 = {1, . . . , n} let S(F )
be the collection of p = {F1, . . . , Fr} such that Fr is the complement of F . Every partition
except p0 =

{
{1, . . . , n}

}
belongs to exactly one of the collections S(F ). It follows from the

induction assumption that∑
p∈S(F )

(−1)a(p)φp(X)−
∑

p∈S(F )

(−1)b(p)ψp(X) = −(−1)a(F )φF (X).

Thus∑
p

(−1)a(p)φp(X)−
∑
p

(−1)b(p)ψp(X)

= −
∑′

(−1)a(F )φF (X) + (−1)a(p0)φp0(X)− (−1)b(p0)ψp0(X)

where the sum on the right is over all F except F0 and F1. Since φp0(X) = φF0(X),
a(p0) = 1 + a(F0), and φF1(X) is zero unless λi(H) is negative for all i when it is one. The
two relations reduce to the equality∑

F

(−1)a(F )φF (X) = ψp0(X)

which was proved in the previous paragraph.
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