SOME LEMMAS TO BE APPLIED TO THE EISENSTEIN SERIES

ROBERT P. LANGLANDS

Let V be a Euclidean space and let V' be its dual. Let $\lambda^1, \ldots, \lambda^n$ be a basis for V' such that $\langle \lambda^i, \lambda^j \rangle \leq 0$ if $i \neq j$ and let μ^1, \ldots, μ^n in V' be such that $\langle \lambda^i, \mu^j \rangle = \delta_{ij}$. If F is a subset of $\{1, \ldots, n\}$ let V'_F be the subspace of V' spanned by $\{ \mu^i \mid i \in F \}$. Let $\mu^i = \mu_F$ if i belongs to F and let μ'_F be the projection of μ^i on the orthogonal complement of V'_F if i is not in F. Let λ_F^i , $1 \leqslant i \leqslant n$, be such that $\langle \lambda_F^i, \mu_I^j \rangle$ $\langle \hat{F}_F \rangle = \delta_{ij}$. If i is not in F then $\lambda_F^i = \lambda^i$. Suppose i is in F and write $\lambda_F^i = \lambda^i + \sum_{k \notin F} c_{ik} \lambda^k$. Then, for k not in F, $\langle \lambda_F^i, \mu_F^k \rangle = \langle \lambda^i, \mu_F^j \rangle$ $|_{F}^{j}\rangle+c_{ik}.$ It follows from Lemma [2](#page-0-1).5 of $\overline{E.S.}^1$ $\overline{E.S.}^1$ that $\langle \lambda^i, \mu_F^k \rangle \leq 0^2$ so $c_{ik} \geq 0$. Consequently if H in V is such that $\lambda^{i}(H) > 0, 1 \leqslant i \leqslant n$, then $\lambda_F^{i}(H) > 0, 1 \leqslant i \leqslant n$. Suppose i is not equal to j. If one of i and j is not in F then $\langle \lambda_F^i, \lambda_F^j \rangle \leq 0$. However if i and j belong to F then $\langle \lambda_F^i, \lambda_F^j \rangle = \langle \lambda_F^i, \lambda_j^j \rangle = \langle \lambda^i, \lambda_j^j \rangle + \sum_{k \notin F} c_{ik} \langle \lambda_k^k, \lambda_j^j \rangle \leq 0$. Consequently for all i and j, $\langle \mu_F^i, \mu_I^j$ $\langle f_F \rangle \geq 0$. A hyperplane in V defined by an equation of the form $\mu_F^i(X) = 0$ [**B.2**] or $\lambda_F^i(X) = 0$ for some i and F will be called a special hyperplane. Let H be a point in V which does not lie on any special hyperplane. Given H we shall define for every subset F a function φ_F on V. φ_F will vanish identically unless $\lambda_F^i(H) < 0$ for all i in F. If $\lambda_F^i(H) < 0$ for all *i* in F then $\varphi_F(X)$ will be zero unless $\lambda^{j}(X)$ is different from zero for all *j* and μ_I^j $_{F}^{j}(H)\lambda ^{j}(X)$ is positive when j is not in F where it will be one. Let $a(F)$ be the number of negative numbers in $\left\{ \mu_{l}^{j} \right\}$ $\mathcal{L}_F^j(H)$ $j \notin F$. We claim that $\sum_F (-1)^{a(F)} \varphi_F(X)$ is zero unless $\lambda^j(X) > 0$ for all j when it equals one. If $\lambda^{j}(H) > 0$ for all j then λ^{j}_{I} $j_F^j(H) > 0$ and μ_I^j $j_F^j(H) > 0$ for all j. Consequently $\phi_F(X)$ vanishes identically unless F is empty. Moreover $a(\phi) = 1$ and $\varphi_{\phi}(X)$ is zero or one according as all the numbers $\lambda^{j}(X), 1 \leq j \leq n$, are positive or not. Thus for such an H the assertion is true. Suppose that H' and H'' are two points which do not lie on any special hyperplane. It is enough to show that [B.3]

(a)
$$
\sum_{F} (-1)^{a'(F)} \varphi'_{F}(X) = \sum_{F} (-1)^{a''(F)} \varphi''_{F}(X).
$$

 H' and H'' can be joined by a polygonal path no segment of which lies in a special hyperplane and no point of which lies on the intersection of two distinct special hyperplanes. If this path meets no special hyperplane the equality [\(a\)](#page-0-2) is obvious. If we can show that the equality is satisfied when only one point of the path lies on a special hyperplane it will follow that the equality [\(a\)](#page-0-2) is always true. Let the one point lie on a special hyperplane defined by $\alpha(X) = 0$. If H' and H'' lie on the same side of this hyperplane then H' and H'' can be joined by a polygonal path which meets no special hyperplane so that the equality [\(a\)](#page-0-2) will be satisfied. We suppose then that H' and H'' be on opposite sides of the hyperplane. That is, that $\alpha(H')$ and $\alpha(H'')$ are of opposite sign. If F is a subset of $\{1,\ldots,n\}$ and none of λ_F^i , $i \in F$ or μ_I^j $^{\jmath}_F,$ $j \in F$ is a multiple of α then $\lambda_F^i(H') = \lambda_F^i(H'')$, $i \in F$, and μ_I^j $j_F^j(H') = \mu_I^j$ $j_F^j(H'')$, $j \notin F$ so

¹Langlands, Robert P., On the Functional Equations Satisfied by Eisenstein Series.

 $2\lambda^k$, $k \notin F$ or the orthogonal complement of V'_F satisfies usual conditions plus $\{\mu_F^k\}$ is its dual since $\langle \lambda^i, \lambda^k \rangle \leqslant 0, k \notin F.$

that $a'(F) = a''(F)$ [B.4] and $\varphi'_F(X) \equiv \varphi''_F(X)$. Let \mathfrak{S}_1 be the collection of those F such that, for some *i* in F, λ_F^i is a multiple of α and let \mathfrak{S}_2 be the collection of those F such that, for some *i* not in F, μ_F^i is a multiple of α . In either case the integer *i* is uniquely determined. Moreover the sets \mathfrak{S}_1 and \mathfrak{S}_2 are disjoint. Suppose F_1 is in \mathfrak{S}_1 . Then F_1 is not empty; suppose, for simplicity, that $F_1 = \{1, \ldots, k\}$ and that λ_F^k is a multiple of α . Let $F_2 = \{1, \ldots, k-1\}$. Then $\lambda_{F_1}^k$ and $\mu_{F_2}^k$ both lie in the space spanned by μ^1, \ldots, μ^k and are both orthogonal to μ^1, \ldots, μ^{k-1} . Consequently $\mu_{F_2}^k$ is a multiple of $\lambda_{F_1}^k$ and hence of α . We remark for later use that, since $\langle \mu^k, \lambda_{F_1}^k \rangle = 1$, $\mu_{F_2}^k$ is a positive multiple of $\lambda_{F_1}^k$. In any case F_2 belongs to \mathfrak{S}_2 , since $\{1,\ldots,n\}$ does not belong to \mathfrak{S}_2 . This process can be reversed. Thus, in this way, we can set up a one-to-one correspondence between \mathfrak{S}_1 and \mathfrak{S}_2 . Let F_1 and F_2 be two corresponding elements, say the two above. The equality [\(a\)](#page-0-2) will follow if it is shown that

$$
(-1)^{a'(F_1)}\varphi'_{F_1}(X) + (-1)^{a'(F_2)}\varphi'_{F_2}(X) = (-1)^{a''(F_1)}\varphi''_{F_1}(X) + (-1)^{a''(F_2)}\varphi''_{F_2}(X).
$$

[B.5] Since $\lambda_{F_1}^k(H')$ and $\lambda_{F_1}^k(H'')$ are of opposite sign, at most one of $\varphi'_{F_1}(\cdot)$ and $\varphi''_{F_1}(\cdot)$ does not vanish identically. An argument like that used above shows that for i in F_2 , $\lambda_{F_2}^i = \lambda_{F_1}^i + c_i \lambda_{F_1}^k$ with $c_i \geqslant 0$. If both the functions $\varphi'_{F_1}(\cdot)$ and $\varphi''_{F_1}(\cdot)$ vanish identically then, for some i in F_2 , $\lambda_{F_1}^i(H') = \lambda_{F_1}^i(H'')$ is positive. Suppose $\lambda_{F_1}^k(H')$ is positive, then $\lambda_{F_2}^i(H') = \lambda_{F_1}^i(H') + c_i \lambda_{F_1}^k(H')$ is positive. Consequently $\lambda_{F_2}^i(H')$ is also positive and the functions $\varphi'_{F_2}(\cdot)$ and $\varphi''_{F_2}(\cdot)$ both vanish identically. The only case with which we need to concern ourselves is that in which precisely one of the functions $\varphi'_{F_1}(\cdot)$ and $\varphi''_{F_1}(\cdot)$ does not vanish identically. If we take $\lambda_{F_1}^k(H'')$ positive it will have to be the first. If j is not in F_1 then μ_I^j $j_{F_1}(H') = \mu_I^j$ $_{F_1}^{j}(H^{\prime\prime})$ and μ_I^j $j_{F_2}(H') = \mu_I^j$ $\mu_{F_1}^j = \mu_{F_1}^j = \mu_{F_2}^j + d_j \mu_{F_2}^k$. Then $0=\langle \mu_\mu^j$ $\langle \mu^j_{F_1},\mu^k_{F_2}\rangle=\langle \mu^j_{F_1} \rangle$ $\langle H_{F_2}, \mu_{F_2}^k \rangle + d_j \langle \mu_{F_2}^k, \mu_{F_2}^k \rangle$ so that d_j is not positive. If μ_I^j $\frac{j}{F_2}(H')$ is positive then μ_I^j $j_{F_1}(H') = \mu_I^j$ $F_{F_2}(H') + d_j \mu_{F_2}^k(H')$ is positive because $\mu_{F_2}^k(H')$ is negative; if μ_I^j $i_{F_2}(H')$ is negative then μ^j_I $j_{F_1}(H') = \mu_I^j$ $j_{F_1}(H'') = \mu_I^j$ $F_2(H'') + d_j \mu_{F_2}^k(H'')$ [**B.6**] is also negative because $\mu_{F_2}^k(H'')$ is positive. In particular then $a'(\overline{F}_1) = 1 + a'(\overline{F}_2) = a''(F_2)$ and we are reduced to showing that $\varphi'_{F_1}(X) \equiv \varphi'_{F_2}(X) + \varphi''_{F_2}(X).$

This equality follows from the definitions.

Suppose that **p** is an ordered partition of $\{1, \ldots, n\}$ into the non-empty sets F_1, \ldots, F_r . If i belongs to F_1 we let $\mu_{\mathfrak{p}}^i = \mu^i$ and if i belongs to F_u and $1 < u \leq r$ we let $\mu_{\mathfrak{p}}^i$ be the projection of μ^i on the orthogonal complement of $\{ \mu^i \mid i \in F_v, v < u \}$. We also let $\lambda^i_{\mathfrak{p}}, 1 \leq i \leq n$, be such that $\langle \lambda_{\mathfrak{p}}^i, \mu_{\mathfrak{p}}^j \rangle = \delta_{ij}$. As above $\langle \lambda_{\mathfrak{p}}^i, \lambda_{\mathfrak{p}}^j \rangle \leq 0$ if $i \neq j$ and $\langle \mu_{\mathfrak{p}}^i, \mu_{\mathfrak{p}}^j \rangle \geq 0$ for all i and j. For the present purpose let us call a hyperplane defined by an equation of the form $\mu^i_{\mathfrak{p}}(X) = 0$ or the form $\lambda_{\mathfrak{p}}^{i}(X) = 0$ for some \mathfrak{p} and some i a special hyperplane. Suppose H is a point which does not lie on any special hyperplane. Define the function $\varphi_{\mathfrak{p}}$ by the condition that $\varphi_{\mathfrak{p}}(X)$ is zero unless $\lambda_{\mathfrak{p}}^{i}(X)\mu_{\mathfrak{p}}^{i}(H) > 0$ [B.7] for all i when it is one. Define the function $\psi_{\mathfrak{p}}$ by the condition that $\psi_{\mathfrak{p}}(X)$ is zero unless $\lambda_{\mathfrak{p}}^i(X)$ is positive for i in F_1 and $\lambda_{\mathfrak{p}}^i(X)\mu_{\mathfrak{p}}^i(H)$ is positive for i not in F_1 when it is one. Let a_i be the number of elements in F_i and let $a(\mathfrak{p})$ be the sum of $\sum_{i=1}^r (a_i + 1)$ and the number of i such that $\mu^i_{\mathfrak{p}}(H)$ is positive. Let $b(\mathfrak{p})$ be the sum of $1 + \sum_{i=2}^{r} (a_i + 1)$ and the number of i in $\bigcup_{i=1}^{r} F_i$ such that $\mu_{\mathfrak{p}}(H)$ is positive. We must verify that, if X lies on no special hyperplane,

$$
\sum_{\mathfrak{p}} (-1)^{a(\mathfrak{p})} \varphi_{\mathfrak{p}}(X) = \sum_{\mathfrak{p}} (-1)^{b(\mathfrak{p})} \psi_{\mathfrak{p}}(X)
$$

when $\lambda^{i}(H)$ is positive for some i and

$$
\sum_{\mathfrak{p}} (-1)^{a(\mathfrak{p})} \varphi_{\mathfrak{p}}(X) = 1 + \sum_{\mathfrak{p}} (-1)^{b(\mathfrak{p})} \psi_{\mathfrak{p}}(X)
$$

when $\lambda^{i}(H)$ is negative for all i. These relations are easily verified when $n = 1$ so suppose that $n > 1$ and that the assertion is true when the dimension of V is less than n. If F is a subset of $\{1,\ldots,n\}$ different from F_0 , the null set, and $[\mathbf{B.8}]$ $F_1 = \{1,\ldots,n\}$ let $\mathfrak{S}(F)$ be the collection of $\mathfrak{p} = \{F_1, \ldots, F_r\}$ such that F_r is the complement of F. Every partition except $\mathfrak{p}_0 = \{ \{1, \ldots, n\} \}$ belongs to exactly one of the collections $\mathfrak{S}(F)$. It follows from the induction assumption that

$$
\sum_{\mathfrak{p}\in\mathfrak{S}(F)} (-1)^{a(\mathfrak{p})}\varphi_{\mathfrak{p}}(X)-\sum_{\mathfrak{p}\in\mathfrak{S}(F)} (-1)^{b(\mathfrak{p})}\psi_{\mathfrak{p}}(X)= -(-1)^{a(F)}\varphi_F(X).
$$

Thus

$$
\begin{aligned} \sum_{\mathfrak{p}}(-1)^{a(\mathfrak{p})}\varphi_{\mathfrak{p}}(X)-\sum_{\mathfrak{p}}(-1)^{b(\mathfrak{p})}\psi_{\mathfrak{p}}(X) \\ &=-\sum'(-1)^{a(F)}\varphi_{F}(X)+(-1)^{a(\mathfrak{p}_{0})}\varphi_{\mathfrak{p}_{0}}(X)-(-1)^{b(\mathfrak{p}_{0})}\psi_{\mathfrak{p}_{0}}(X) \end{aligned}
$$

where the sum on the right is over all F except F_0 and F_1 . Since $\varphi_{\mathfrak{p}_0}(X) = \varphi_{F_0}(X)$, $a(\mathfrak{p}_0) = 1 + a(F_0)$, and $\varphi_{F_1}(X)$ is zero unless $\lambda^{i}(H)$ is negative for all i when it is one. The two relations reduce to the equality

$$
\sum_{F} (-1)^{a(F)} \varphi_F(X) = \psi_{\mathfrak{p}_0}(X)
$$

which was proved in the previous paragraph.

Compiled on November 12, 2024.