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This is the first of two papers dealing with homogeneous complex manifolds; 

since the second work is a continuation of this one, we shall let the following in- 

troduction serve for both. 

The general problem is to study the geometric, analytic, and function-theoretic 

properties of homogeneous complex manifolds. The present paper, referred to as 

Par t  I ,  is concerned mainly with sheaves and cohomology; the results here may  be 

viewed as the linear part  of the solutions to the questions discussed in the second 

paper (Part  II) .  In  fact, in Par t  I I ,  using the results of Par t  I as a guide and 

first approximation, we utilize a var iety of geometric, analytic, and algebraic construc- 

tions to t reat  the various problems which we have posed. A previous paper  [11], 

cited as D.G. ,  was concerned with the differential geometry of our spaces, and the 

results obtained there will be used from time to time. 

The study alone of certain locally free sheaves on these manifolds is a rather  

interesting one and has been pursued in [4], [5], [16], and [21]. The situation is the 

following: Let  X = G / U  = M / V  be a homogeneous complex manifold written either 

as the coset space of complex Lie proups G, U or compact  Lie groups M, V where 

M is semi-simple. Then M acts in any analytic vector bundle E q (1)associated to the 

principal fibering U --> G --> X by  a holomorphic representation Q : U ---> G.L(Eq). (Such 

bundles a r e  called homogeneous vector bundles.) The sheaf cohomology groups H*(X, ~ )  

are then M-modules by  an induced representation 9*; these modules have been de- 

termined in [5] and [21] when 9 is irreducible and X is algebraic, and in other special 

(1) The notations used here are explained in w 1. 
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cases in [5] and [16], In  w167 2 and 5, we shall determine r when X is arbi t rary  and 

r is irreducible (thereby giving new proofs in the algebraic case) and shall give in 

w 3 an algorithm for finding ~* when Q is arbitrary;  this algorithm covers the known 

results (w 4) and suffices for most of our purposes. In  particular, it plus elementary 

K//hler geometry gives an explanation of the "strange equal i ty"  observed in [5]. 

For applications, we need not only the modules and their transformation rule  under 

M, but also the explicit Dolbeault forms representing cohomology classes; this con- 

struction, which turns out to involve a connexion, is given in w 5. 

In  the remainder of Par t  I, we give the more immediate and simpler applica- 

tions of w167 2-5. In  w 6, the group of line bundles L[X] and function field F[X] are 

determined, and in w 7 the characteristic ring and its relation to sheaf cohomology 

groups is discussed. In  w 8 the endomorphisms and embedding of homogeneous vector 

bundles are treated. Also in this section we discuss some extrinsic geometry of C- 

spaces, and we give a projective-geometric proof of rigidity in the K/~hler case. 

i n  w167 9 and 10 a t  the beginning of Par t  I I ,  the variation of complex structure 

of our spaces in examined in some detail; here we come across a rather interesting 

mixture of techniques in differential geometry, representation theory, and partial 

differential equations, and we outline briefly our t reatment  of this problem. 

I t  is known that,  roughly speaking, the parameters  of deformation of X turn 

up infinitesimally in HI(X, 0), and thus in w 9 we solve the linear par t  of the prob- 

lem by determining completely the M-modules Hq(X, 0). However, not every ~ E Hi(X, (~) 
is suitable for a deformation parameter,  and in the last par t  we determine those y 's  

which are "obstructed".  Then in w 10 we use representation theory (primarily the 

Frobenius reciprocity law) and partial differential equations to construct local deformations 

through the unobstructed ~,EHI(X, 0); these new manifolds are generally non-homo- 

geneous. Finally, using the fact tha t  ~ transforms in a certain way under M~ we 

discuss which among the new manifolds are biregularly equivalent and in so doing 

encounter the phenomenon of " jumping of structures". 

Paragraphs 11 and 12 are a discussion of various properties of homogeneous 

vector bundles such as the moduli of homogeneous bundles and the extension theory 

and automorphisms of these same bundles. For example, in w 11 we characterize the 

homogeneous bundles over a K/~hler C-space as being those bundles which, with a 

suitable reduction of structure group, are locally rigid. In  w 13 bundles over general 

homogeneous K//hler manifolds are treated, and w 14 is given to examples of the 

general theory and counter-examples to show why some results cannot be sharpened. 

I t  may be well to show how the above applies to a specific manifold. Let  
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X = SU (5) with any  lef t - invar iant  complex structure;  writ ing X = G/U, G = 8L (5, C) 

and  U is a certain subgroup of the  max ima l  solvable subgroup 

I(all .  "'" a 1 5 ) /  

= ". (det (aij) = 1). 

[ \ 0  "a55IJ 

Any  representa t ion  of ~ induces one of U (but  not  conversely) and  we denote the  

1-dimensional representa t ion (a~j)-~akk b y  0k. I t  turns  out  tha t ,  for any  2 E C*, 20k 

defined on it = complex Lie algebra of U b y  2Ok(aij) = 2akk((atr E U) induces a representa-  

tion of U and we m a y  form the  homogeneous line bundle Ea~ x~ -->X. Then  

L[X]-~C 2 and  the  mos t  general  line bundle on X is of the  form Ex'~ ~~ 

EX(~t = (~t~ . . . . .  ~ts)), there  being three  relat ions among  the  ~tj's. All these line bundles  

have  non-zero ~-cohomology class bu t  zero d-eohomology class. I t  will be seen tha t ,  

in general, H*(X, ~x) = 0 if some 2j ~ Z and  H~ ~ )  # 0 .~ ~ is integral  and  ~t x >~... >~ ~ts; 

in this case, H~ ~ )  is the  irreducible SU (5) module  given b y  the Young  d iagram 

1,1q 
2,1 I 
,I 

5,1 I 

I1 11 
... 2, ,Tt~ I 

. , .  

. , .  

�9 .. 5,)15 ] 

Fur thermore ,  Hq(X, E ~) ~= H ~ (X, E ~) | C (q~) and  SU (5) acts  b y  ~t* | 1. 

The  set of bundles E such t h a t  we have  0 --> E ~' 0, __> E --> E ~' 0, __> 0 forms a vec tor  

space which is non-tr ivial  ~ 21 - T1 is integral  and  non-negat ive.  I f  ~ 1 -  31 = n > 0, 

the  bundles E are all non-homogeneous  and  form a space of dimension (4n_+1); if 

21 = 31, these bundles E are all homogeneous and  form a vector  space of dimension 2. 

The groups Hq(X,| C)|174 (2q)} and M acts  b y  { A d |  

{1 | 1}. We  have  t h a t  d im Hi(X, ~))= 52; of these 52 parameters ,  there  are a maxi-  

m u m  of 28 which pa ramet r i ze  a local deformat ion  of the  analyt ic  s t ructure  of X,  

and,  in fact,  28 such pa ramete r s  exist. The  remaining 24 pa rame te r s  are obstructed.  

Of the  28 suitable parameters ,  4 preserve the  homogeneous  s t ructure  on X and 2~ 

do no~; any  two elements  in Hi(X, (~) differing b y  an act ion of M give equivalent  

manifolds.  

This then  is an outline of the  contents  of this paper .  Throughou t  we have  t r ied  

to ma in t a in  the  dual  a t t i tudes  of s tudying in some detai l  those propert ies  arising 

9-- 632932 Acta mathematica, llO. :[mprim6 le 15 octobre 1963. 
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f r o m  t h e  h o m o g e n e i t y  of o u r  s p a c e s  w h i l e  a t  t h e  s a m e  t i m e  k e e p i n g  a n  eye  o n  t h o s e  

p r o p e r t i e s  w h i c h  s e e m  t o  h a v e  w i d e r  a p p l i c a b i l i t y .  T h e  l a t t e r  a i m  was  e spec i a l l y  i n  

m i n d  w h e n  s t u d y i n g  t h e  v a r i a t i o n  of  m a n i f o l d  a n d  b u n d l e  s t r u c t u r e s  a n d  i t s  r e l a t i o n  

t h e r e w i t h  t o  o b s t r u c t i o n s .  

T h i s  p a p e r  g r e w  o u t  of  t h e  a u t h o r ' s  d i s s e r t a t i o n  a t  P r i n c e t o n  U n i v e r s i t y ,  a n d  t o  

D.  C. S p e n c e r  a n d  m a n y  o t h e r s  we e x p r e s s  g r a t i t u d e  fo r  g e n e r o u s  h e l p  g i v e n .  S o m e  

of  t h e  r e s u l t s  a p p e a r i n g  b e l o w  w e r e  a n n o u n c e d  i n  Proc. Nat. Acad. Sci., M a y  1962. 
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1. Review and Preparatory Discussion 

(i) Notations and Terminology 

I f  V is a vector space over a field K, and if V 1,V~ . . . .  are subsets of V, we 

denote by  ~(V1, V2 . . . .  ) the smallest linear subspaee of V containing V1, V2 . . . . .  As 

usual, GL(V) is the Lie group of automorphisms of V and gl (V) is the Lie algebra 

of endomorphisms of V. The symbols Z, Q, C, R represent the integers, rationals, 

complex numbers, and real numbers respectively. The dual of a vector space V is 

denoted by V'; if V is defined over Q or R, its complexifieation V| QC or V| RC is 

denoted bylY. If  A is a Lie group, a ~ is its real Lie algebra, h0=ao|  if A is a 

complex Lie group, a is its complex Lie algebra. 

For a manifold X, T(X) denotes its tangent  bundle; if X is complex, T(X)= 

T(X)QRC splits T(X)~L(X)eL(X) into vectors of type (1,0) and (0, 1)respectively. 

The symbol E --> E --~ X will denote a vector bundle over X with fibre E; E '  --> E'  --> X 

is its dual. The usual operations ~ ,  | 1 6 2  vector bundles will be used 

freely. I f  E--> E--> X is an analytic vector bundle over a complex manifold X, ~ is 

the sheaf of germs of holomorphic cross-sections of E([14]); in this case, Hq(X, ~) 
denotes sheaf cohomology. The symbol 1 denotes the trivial line bundle and we set 

l=~x(=~ if there is no confusion). Also, we write ~ = I : ( X ) a n d  ~ q = A r 1 6 3  '. 

The notations and terminology concerning differential geometry are those used in D. G.; 

they shall be used without explicit reference. 

(ii) Lie Algebras and Representation Theory 

We review the structure theory of complex semisimple Lie algebras and some 

facts from representation theory ([25]). Let  ~ be a complex semi-simple Lie algebra, 

c ~ a Cartan sub-algebra, ( , )  the Cartan-Killing form on ~ and on ~'. Then, if 

is the system of roots of (6, ~), we may  write $ = ~ e ( $  ~ v ~ )  where the v~ are one 

dimensional and, for h E ~, v E %, [h, v] = <a, h> v. As usual, we set h~ = [e~, e_~]. One 

may  choose an ordering in Z which defines the .positive roots 5 + and the negative 
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roots 5 - = - ( ~ + ) ;  furthermore, there exists a minimal set of generators (over Z) 

I~c~.+;  I ~ = { a i  . . . . .  ~t} ( /=d im ~ = r a n k  g) is a system of simple roots. 

The Weyl group W(g) acts as a finite group on ~ and on ~'; one speaks of 

singular and regular elements as usual. Having chosen an ordering in ~, we have 

the Weyl chamber D(g) = {~t E ~': ()l, q) = <+~, hv> ~> 0 for all ~ E ~+}; the interior D~ = 

{~ E ~': (~t, ~0) > 0 ~ E ~+}. Then D(g) is a fundamental domain for W(g). The element 

g = � 8 9  lies in D~ 2(g,~j)/(~r162162 for all ~ l ~ .  In W(g), there is the 

involution (~ satisfying ~t(g) - g = ~ ~- q. 

An element 2 fi ~' is integral if 2(~t, q) / (q ,  q) fi Z(q fi ~:); we denote the integral ele- 

ments in l}' by Z(g). A complex finite-dimensional representation space E q decomposes 

into weight spaces: 

(~(~) cZ (g )=we igh t s  of Q); an irreducible representation is uniquely determined by its 

highest weight. We set ~//= o(Z(g)) and also define the fundamental weights ~51, ..., o5~ 

by 2(eSt, aj)/(as,~j)=(~; these eSj form a minimal basis for Z(g). If  ~=~)lj~SjEZ(g), 

E D(g)~2j~> 0( j=  1 . . . . .  l) and, for +~ E D(g), we denote by E ~ the irreducible g-module 

with highest weight 4. 

For any g-module E q, E -q is the contragredient g-module with highest weight 

8( - ~). We may write E q = ~D(g)  ma(Q)E ~ where m~(Q) = multiplicity of 2 in r Schur's 

lemma then reads: 
dim Homg (E a, E q) = m~(Q); 

this simple equation will be used time and again. 

(iii) The C-spaces of  Wang 

We recall the structure of C-spaces as given in [13] and [24]. A C-space X may 

be written as X = G / U  or X = M / V  where G, U are complex Lie groups, M, V are 

compact groups. Furthermore, we may assume that  G, M are semi-simple and that  

G is the eomplexification of M; then g = ~I ~ One has a holomorphic principal fibering 

U ---> G --+ G /U  and if ~: U --> GL(E q) is a holomorphic representation, we form the 

homogeneous vector bundle Eq-->Eq-+ G/U where Eq=G•  ~ (see [5]). The sheaf of 

germs of holomorphic cross-sections of E q is denoted by Eq; the sheaf-cohomology group 

by H*(X, ,~). Since M acts holomorphically on E Q, H*(X, E ~) is a finite dimensional 

M-module and it is this action we are interested in. 

We describe G, U, M, V by giving their complex Lie algebras. If g = ~0 = b 
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( �9 ~ %) as above, then  there exists a closed subsystem ~F c S such t h a t  ~F is a root-  

system for V. Fur thermore,  there exists a rat ional  splitting ~ = r  such t h a t  

~v~c(h~: ~E~F) and a splitting of c into complex spaces: c = p ~ p  such t h a t  ~0= 

[)v �9 ( �9 ~ v~) and, setting 1t = c(e-~: ~ E ~+ - ~F+), u = p �9 ~0 �9 ft. The complex vector  

space p $ ~v will lie on no rat ional  hyperplane;  a El}# and (~, h> = 0 for all h Ep 

~ v ~ = 0 .  We denote by  an * (or al ternat ively by  a -  ) t h e  conjugat ion in ~o;  

thus,  e.g., 11" = c(e~: a E Z + - ~F+). 

Let  now X = G/U be an  arb i t rary  C-space where U is solvable; if T2a--> G/U--> G/I~ 

is the fundamenta l  fibering, 0 will be maximal  solvable and X = G/I~" will be a flag 

manifold. Let  dim cX = n so tha t  dim c X = n + a .  A homogeneous line bundle 

Ee-->Eq-->X is given b y  a linear form Q on ~)NU; we recall Theorem 6' of D.G. 

where it was shown tha t  if the characteristic class cl(Eq ) was negative semi-defi- 

nite of index k, then 

Hq(X, Eq) = 0 ( q < n - k ) .  (1.1) 

F rom this and from the a rgument  in Proposi t ion 8.2 of D.G. it follows that ,  if 

(~, h~> < 0 for all ~ E ~+, then  

Hq(X, g Q) = 0 (q < n -  a). (1.2) 

If  K is the canonical bundle on X, then  (D.G., Proposi t ion 5.2, or d i r e c t l y ) K = E  -2g 

(g = �89 ~ +  ~). Since for an integral form ~ on ~ N u, - ~ -  2g is s tr ict ly negative 

~ + 9  is non-negative,  we find that ,  using Serre duali ty,  

I-lq(X, s = o (a < q) (1.3) 

if ~ + g is non-negat ive on ~ N u. 

(iv) Sheaf Cohomology and Lie Algebra Cohomology 

Let  X be a C-space (arbitrary) and E ~ --~ Eq--->X a homogeneous vector  bundle. 

I t  is due to Bot t  t ha t  H*(X, ,S ~) m a y  be wri t ten in terms of Lie algebra; we shall 

constant ly  use this and a similar result which we now describe. 

Let  M,  V with V c M be arbi t rary  compact  connected Lie groups and such t h a t  

X = M / V  is simply connected. Given a representat ion Q: V--->GL(E~), we m a y  form 

the differentiable homogeneous vector bundle E e--> E ~ -+ X where E ~ = M • vEq. I n  

particular,  if E ~ = l~t~ ~ and ~ = Ad (induced action), then E ~ ~- T(X)  = ~.  I f  E ~ = E ~ �9 E ~'" 

(as V-modules), then Ee~-Eq' (9 E e'' and we m a y  speak of the cross-sections of E e as 
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being of a certain type.  For  example ,  if we t ake  a 5~ spli t t ing fit = 5~  

and  if ~# g [ is 5~ then  [ = [b r [# (50.deeomposition) and  s =~ T ~ ~ T#. This 

induces a type  decomposi t ion on differential  forms. Since M acts On E q, the  vector  

space A(E q) of C ~ cross-sections of E q is an M-module  with induced representa t ion  ~)*: 

i -~ GL(A(EQ)). 

THEOREM O. Let D(M) be an index set/or the irreducible representations o / M  and 

let E~-+ E~--> X be a homogeneous di[/erentiable bundle. Then we have an M-isomorphism 

A(E~)~ ~ V~|174 V-a) ;~ (1.4) 
$eD(M) 

where ~* I V~ | ( E~ | V-~) ;" = '~ | 1. 

Proo/. Let  Coo(M)=Coo complex valued functions on M; M acts  on C~(M) in 

two ways: 

(i) R : M --)- GL(C:C(M)) defined by  

(R (m) / ) (m ' )= / (m 'm)  (/ECOO(M); m , m ' E M ) ;  

(ii) JL : M---> GL(COO(M)) defined by  

(L(m)  /) (m') = / (m  -1 m'). 

There are induced representa t ions  r: ~~ and l: m~ In  

the  fibering V--> M ~ 21I/V, in order t h a t  / e  Coo(M) be of the form T o z (TE Coo(M~ V)), 

it is necessary and  sufficient t h a t  / be cons tant  along the fibres. This is expressed 

analyt ical ly  b y R ( v ) / = / ( v  E V)or, since V is connected, r(v)/= 0 (v E 50). Thus C ~ ( M / V ) ~  

(as a vector  space) (Coo(M)) ~~ = {[ e Coo(M) : r(v) / = O, v e 50}. Since M acts  on COO(M/V) 

by  n o  L, the Frobenius  reciproci ty law together  with the  Pe te r -Weyl  decomposi t ion 

of C~(M) gives (1.4) for v = 0  ( = t r i v i a l  representat ion) .  

In  general, we have  the  fibre bundle d iagram 

E ~ • M ~ E ~ 

M 2. M / V  

(Proposi t ion 5.1 below) and  the  Coo cross-sections of E~•  are given by  COO(M)| ~. 

The same a rgumen t  as given above  shows tha t ,  as vector  spaces, 

A(E ~) ~ (C~176 | E~) ~ . 

Applying the  Pe te r -Weyl  theorem again  gives (1.4). Q.E.D. 
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COROLLARY. Let ~# ~--~ and Eo--> Eq--> X be as given above the statement o/Theo- 

rem O. Then 

A(E~| ~ ~ V~| o |  q(~#)' | V-h); ~ 
he D(M) 

Let  now X =  G/U (complex f o r m ) = M / V  (compact form) be a C-space. We m a y  

write 1~t ~ = 5 0 @ 11 + n* and since [5 ~ ~t] g Tt, [~0,11.] _ It*, we may  write 

A~(T(X)) ' =  ~ (A'(11~d) ') | (Aq(nAa)'); 
p + q ~ r  

this is simply the decomposit ion of the complex r-forms on X into type  components.(1) 

If  a: U--->GL(E ~ gives a holomorphic bundle E"--~E~--~X, then  it is a priori a 

differentiable homogeneous bundle and we may  apply (1.4) to  conclude t ha t  

A(E" | A q (nAa)') = A(E ~ | A q (L(X)')) = ~ V ~ | (E"A q (u)' | V-~) ~%. (1.5) 
he D(M) 

Here we write the bundle of (0, q) vectors on X as Aq(uAa) ' or Aq(L(X) ') (using the  

decomposit ion T(X~= L(X) $ L(X)). 

We have ~~ ~ ,  ~ ~  l~g and, in D.G. w 2, Definition (2.4), we described 

explicitly an isomorphism ~ :fit~ fib; it is easily checked tha t  ~(11)_ u~ and thus  1l 

acts on E" by  a o~ or just  a. Thus the expressions Cq(u,E~174 V :h) and Cq(n, 

E" |  V-h) ~~ as defined in the sense of Lie algebra cohomology make sense and 

Cq(11, E ~ | V-h) ~~ ~= (A q (11)' | E" | V-h) "%. (1.6) 

Thus the cohomology module 

Hq(rt, E ~ | V-a) ~0 (1.7) 
is well-defined. 

On the other  hand, we have a well-defined mapping 

: A(A q (L(X)')) | Eo-~  A(A q +1 (L(X)') | E~ 

~2=0,  and the cohomology groups are simply the Dolbeaul t  groups H~ q) (see 

[14]); the  Dolbeault  isomorphism reads: H~ Eq)~Hq(X, ~q). A calculation in local 

coordinates gives the following commuta t ive  diagram: 

C~(11, E ~ | V-h)~" ~ C~+I(a, E ~ | V-h)~ ~ 

Co,~(X, Eo) o~ Co.q+x(X, Eo), 

(1) F o r  c o n v e n i e n c e ,  w e  w r i t e  • = O v_r174 
~E ~ - - ~ F -  
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where C~ ~ = A(Aq(L(X)')) |  E ~ and we thus get the M-isomorphisms 

C~176 ~ V ~ | Cq(n,E* | V-a) '~ (1.8) 
), G D(g) 

H~ E~) -~ ~ V ~ | Hq(lt, E" | Vlk) "~ (1.9) 
2e D(g) 

((1.9) is equation (1.6) in [5].) 

We return now to the situation described at  the end of section (iii) of this w 

X = G/U where U is solvable and T 2a --> X -+ ~ = G / 0  is the fundamental  fibering. 

Referring to (1.9), we have tha t  

I-P(x,E~)= 5 V~| | v-~) ~ (1.10) 

(a is now 1-dimensional) and since u__-c(e-~: aEY~+), we conclude (as in [5], w 4) 

using (1.10) the following: 

PROPOSITION. H~ unless ~ED(g) in which case 

H~ ~Q)~ V q (as M-modules) (1.11) 

and Hq(X,,~q) = 0  (q>a) .  (1.12) 

Remark. The complete proof of this Proposition was given in D.G., only for a = 0. 

(However, this "vanishing theorem" for arbi trary a is true for general compact com- 

plex manifolds.) Thus, in order to have completeness, we shall use (1.12)only when 

a = 0. T h e  general s ta tement  would allow us to assimilate w167 2 and 5 into a single 

theorem. 

2. Homogeneous Bundles Defined by an Irreducible Representation 

In  this section we shall determine the M-module structure of H*(G/U,,~ ~) when 

is irreducible and G//U is K/ihler. These results, for H~ ~) are due to Borel- 

Well [4] and for Hq(G//U,,~ ~) (q>0)  to Bot t  [5]. Also the same result has been ob- 

tained in a purely algebraic manner by  Kostant  [21]. Our method uses (1.11) and 

(1.12) above together with a spectral sequence in Lie algebra cohomology. In  [5] the 

Leray spectral sequence (which is not the geometric counterpart  of the spectral se- 

quence given here) was used, however for us the use of the Lie algebra spectral 

sequence has two advantages. First, the spectral sequence used here carries the 

M-module structure of H*(G/U, ,~Q) (for arbi t rary G/U and ~) aUong with it and 
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secondly, and more important,  this same spectral sequence allows us to obtain in- 

formation when G/U is non-Kahler and/or ~ is not completely reducible. In  fact, by  

successively applying the same spectral sequence in Lie algebra cohomology, we obtain 

(i) the main theorem in [5], (ii) the M-module structure of H*(G/U,~q) when ~ is 

irreducible and G/U is non-Kahler, and (iii) information on the M-module H*(G/U, ~)  
when G/U and ~ are both arbitrary.  

Let  now X = G / U = M / V  be Kahler  and let ~: U--->GL(E q) be irreducible. We ob- 

serve tha t  since u = ~t �9 50 where 1l is a nilpotent ideal, Q I11 = 0 and thus ~ is essen- 

tially the complexification of an irreducible representation of I) ~ For each a E W(g), 

we define a mapping I , :  Z(6)--->Z(6) by 

I~(~)=a(4+g)-g (for 4EZ(g)). (2.1) 

Furthermore,  define I:D(5~ (0} (0 giving the zero M-module) as follows: if 

~t+g is singular in ~)#, I(~t+ g )=  0; if 4 +  g is regular, there exists a unique a E W(6) 

such tha t  a(4 + g) E D o (6) and we define 

1(4) = 1o(4) E D(~) (2.2) 

(g is a "minimal"  element in D(g)). Finally, we recall tha t  the index 171 of ~)E~ # 

is defined to be the number  of roots ~ E ~  + such tha t  (~,~0)<0. I f  aEW(g), we de- 

fine the index ]a] of a as follows: ]a ]=card ina l i ty  of the set a(~ +) N ~ - = n u m b e r  of 

roots which "change sign" under a (recall tha t  a ( ~ ) = ~ ) .  The connection between 

these two is the following: if ~ is regular, there exists a unique (~n E W(g) such tha t  

gn(~)ED~ and then IVl=[an[. Finally, if 2ED(g)(QED(fi~ we denote by  V~(E q) 
the irreducible representation space for the irreducible representation of M(V) with 

highest weight 4(~). 

T~V.OREM B [5]. To each V-module E q, there i8 associated an irreducible M.module 
H*(X, E~). 

This transformation takes irreducible V-modules into irreducible M-modules and 

the transformation of D(~ ~ into D(g) U {0} is simply I given in (2.2). Thus H e (X, E q) g= 0 

for at  most  one q and in fact q=lo§ where I ( 0 ) = I , ( 0 )  or H * ( X , ~ q ) = 0  if 

+ g  is singular. Restated: 

V~|174 V-~)~'=0 q#[al or 4~:I(0), 
(2.3) 

V l(e) ~ H I"1 (11, E q | V-~(q)) ~~ = V l(q). ! 
Now we turn Theorem B around. Since ~ is irreducible, ~t o E q = 0 and H q (11, E e | V - a )  = 

Hq(11, V-a) |  ~ On the other hand, if 4=I(o)=a(O+g)-9, a-x(4+g)-9=O and 

applying Schur's lemma to (2.3), we have 
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T ~ E O ~  K [21]. As a ~~ 

Hq(11, V -~) = ~ V a'~(̀ '), (2.4) 
a ~ { W(~)I W ( ~ ) ~  - 

where V T M  is the representation space /or the irreducible representation o/ V with lowest 

weight -{(~-~(2+g)-g} and (W(~)/W(~~ q ~{aEW(~) :  [a] =q and a-~(D(0))_~D(~~ 

Since (2.4) implies (2.3), it will suffice to prove either. Note tha t  for a homo- 

geneous line bundle E Q where Q E D(g), we have already proven (2.3). The spectral 

sequences used now were motivated by those in [5]. We proceed in a sequence of 

steps. First we t rea t  line bundles over a flag manifold M/T.  

(i) Let  Ee--->Ee-->M/T be given by a character ~ of  T such that  e + g E D ( g ) .  

Then 

Ha(X,~)=O if q > 0  or q=O and ~ + g  is singular, / (2.5) 

H ~  Q)=V ~ (as an M-module) ~ED(~), J 

Ha(M/T, E ~) and H~-a(M/T, E-Q| E -2g) (2.6) 

are dual M-modules where n = d i m  cM/T.  This is just Serre duality where K = E  -2~. 

U a (M/T, ~q) ~= H TM a (M/T, ~(q)) (2.7) 

as an M-module if ~+gED(0) .  Indeed, since 

- I~ (Q) - 2 g  = - ~(Q - 2 g  + g)  - g = - ~(~) ,  H "  ( M / T ,  ~z~(Q)) 

is dual to H~ -'~(q)) which in turn is dual to H~ Now use (2.5): 

(2.3) is true for M/T'~-~+gED(g)~Ha(M/T,  Eq)~Ha+I~ (e)) (2.8) 

as M-modules. 

I f  ~ E ~  +, we set D(~)={~EZ(g) : (~ ,~)>~0};  then D ( g ) = N ~ r . + D ( a )  and (2.8) 

will be true if we can prove 

e E D ( ~ j ) ~ H a ( M / T ,  E q) ~Hq+I(M/T, ~at(~)) (2.9) 

as M-modules (here ajE~).  Indeed, we may  write a - l= l '%Ta t ,  ... "t'~r (giiEz) and 

if (2.9) holds, we may  proceed inductively to (2.8) since ~ j (~+)N ~ - = - a j .  

I f  we consider M / T  where g = v_~ �9 [) $ v~ (2.10) 

(1) Here TatjE W(g) is the reflection across the root plane of the simple root ~t~. 
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~0__ If we set ~ , - v _ ~ , $ ~ v ~ , ,  

and we write 

(i.e., dim c~ = 3), then since 8 = v~, (2.7) ~ (2.9) ~ (2.8). In other words, Serre duality 

on PI((~) gives the theorem. 

Remark. If [a[~<2, (2.7) may be proven using the Nakano inequality only (Pro- 

position 8.1 in D.G.). 

(ii) For a flag manifold M / T ,  It=c(e ~:~E:~ +) and ~t*=e(e~:aE~+). For ~EI-[, 

we set 1l~= c(e, :dE ~(+-{:q}); then 1t~ is an ideal in n. Thus, for any It-module 2', 

there exists a spectral sequence {Er} such that  E~ is associated to H*(It, F) and 

E~ "q= H ~ (lt/Ita,, H a (1t~, F)). Using this spectral sequence and (2.10), we shall prove (2.9). 

Indeed, if ~ED(a,), we have It-modules F~= V - ~ |  q and F~= V - ~ |  q) and to 

prove (2.9), we must show: 

H a (11, F,)~ = H q+~ (11, F~)~. (2.11) 

There are two spectral sequences {1Ev} and {~E,} corresponding to the It-modules F~ 

and F~I Here 

~E~' a = H" (n/n~, H a (It,,, F~)) = H" (n /~ , ,  H q (n,,, V -k) | Ee). 

then Hq(It~,, V -'l) is a completely reducible 5~ 

since D(I~~ Thus 

tta(u~,, V -a) = X Vi  ~'~ 

lEa'q= ~. HV(n/lt,, ,  V~'l'a)| ~ 
~ D(ai) 

and similarly, ~E~ 'q= ~ HP(II, 11~, W~ ~'q) | E ~  (e). 
~D(~  i) 

We may derive both spectral sequences throughout by ~) to get new spectral sequences 

{1E;}, {2E;} with 1E~ associated to H* (n, V -~ @ Eq) ~, ~E~ associated to H* (1t, V -~ | 

E~(~)) ~. But 

HP(u/rt~,, V~ 'l'a @ Eq)~ = H p+I (ll/lla,, V~ 'l'q | Ex~i(q)) lJ = 0 

unless p = 0 by (2.10), Thus both spectral sequences are trivial and 

Ha(n, V-~ | Ee)~ = 1E~0. q = 2E,i ,q  V- ' l  2 = H a+l  (l't, | Seai(q)) ~ 

and Theorems B and K are established for flags. 

(iii) :For a general K//hter C-space M/V,  we use the fiberings V / T - + M / T - > M / V ;  

knowing the theorem for the total space and the fibre, we shall deduce it for the 



128 PH. A. ORIFFITHS 

base space. Let  EQ-+EQ--+M/V be given by an irreducible V-module E q with highest 

weight ~; E ~ is the irreducible T-module with character 6. In the notation of w 0 (iii), 

we set 11= c(e , :~E~+),  ~t=c(e_, : ~ E ~  + -  ~F +) so that  ~ is an ideal in 1t. Then, for 

an It-module F,  there exists an {E~} with E~ associated to H*(11, F) and E~ "q= 
H~'(lt/~t, Hq(~t, F)). If F = V -~, then 

Hq(~t, V :a)= ~ V~ zq (2.12) 
~ s  ~ 

and HP(rt/ft, Hq(~t, V-a) = ~ HP(11/ft, Vi a'q)= ~ ~. Vv.-a'q+(,, 
~GD(~ ~ ~eD(~~ aG{W(~O)}P 

(applying Theorem K to 11/(I, i.e. V/T). On the other hand, 

H~(n,V -k)= ~ V ~'~<~ 
0 �9 ( w ( g ) ) q  

(applying Theorem K to M/T).  Now we tensor the spectral sequence throughout by 

E ~ and derive by D as above to get {E~) where 

E~ p'q= E ~ -a'q E~) ~ ( V~. ~(,> | 

{(oV-~'q| if p : O  = 0. -~ (2.13) 
if p # 0  since ~ED(I)~ 

On the other hand, 

Hq(lt, V -a | E;)~= Y. (V q'~<~ | E~)~ 
0 e { w(g)}~ 

= l ~  lo-,(~)+5 or q+lOI, 
[ (W'a(~ | E~)b if Io(6) = ~, 101 = q. 

Thus the spectral sequence {E~) is trivial and 

Vo._~ | EO) ~eeO if Io(6)=~, [Ol=q, 
otherwise. 

Then by Schur's lemma, 

H ~ (fi, V -  a) = ~ V ~. a<o) 
o G (w<~)/w<~*))4 

which is just the statement of Theorem K. 

Needless to say, the essential point in the above derivation was Sehur's lemma 

which allows us to pass from the dimension of a vector space to the multiplicity of 

a representation. 
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3. Homogeneous Bundles Defined by Non-Irreducible Representations 

I n  this section, we t rea t  the question of determining the  cohomology of a homo- 

geneous vector  bundle Eq-->Ee-->X over  a K/~hler C-space X = G / U  where ~: U-->GL(Eq) 

m a y  not  be irreducible. There  are several  ways  of doing this; one m a y  use a spectral  

sequence in a fashion similar to above;  this is a me thod  slightly different  f rom the 

one used here. We have  chosen this one solely because of its applications.  

T ~  E 0 R E M 1. Let E ~ ---> E ~ ---> X = G~ U = M / T  be a homogeneous vector bundle over 

a /lag mani/old M / T .  I /  the weights o/ ~: It--->H(E ~) are 21 . . . .  ,2n+1, each ,~ gives a 

homogeneous line bundle E~*---> E~*--> M / T .  I /  any o/ the conditions or, fl, ~ given below 

are satis/ied, then 
n + l  

H* (X, ~ )  = ~ H* (X, ~ )  (as M-modules) (3.1) 
J=l  

(~) 1(~) :# x(~j) (i # i) 

( t ~ )  I I ~ , + g l - i ~ + g l [ > 2  ( i , i )  

(~) I~,+gl=[~j+gl (/or all i ,]).  

Furthermore, H ~ (X,  ~q) = 0 i] 

(T) i<min 12j+ g I, i) max I~j + g/ or i ~= I2j + g l (/or all i). 

Proo/. We are considering the  flag manifold  X = G / U  = M / T ;  it is thus  a (maximal)  

solvable subalgebra  over  an algebraically closed field and  hence there  is a s imultaneous 

eigenvector  e~ for Q(it); i.e., ~(u)=21(u)e  I for all uEu .  Note  t h a t  

(i) q([u, u ' ] )  e~ = 21(u) 2x (u') e~ - 21 (u') 21 (u) ex = 0; 

(ii) e(u -~ U t) e I = 21 (U) e I -~ J~l (ut) el u, u '  E u; 

and  thus,  b y  restr ict ing ~ to D, 2x lies in ~'. Set E ~'~= C(el)= c(ea) so t ha t  ~(tt)Ee'l___ E ~'~. 

LEMMA 3.1. There exists an exact sequence of homogeneous vector bundles 0-->Ee'a--+ 

Eq--->Fe'X-->0 over X .  

Proo/. Let  F~ ' I=Ee /Ee ' I ;  then  F e'l is a It-module via ~ and  we m a y  form 

G x vEQ'I = E~' 2, G • vE ~ = E ~, and  G • uF ~'1 = F~. 1. Exac tness  is easily verified b y  tak ing  

the obvious maps.  

Now, still denot ing by  ~ the  induced representa t ion  on F e'l, we see t h a t  Q(It)--- 

H ( F  ~'1, C) is a solvable subalgebra  and there  is a common eigenvector  e 2 EF t ' l ;  set t ing 
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c ( Q ) = E  q'2 and F o ' U = F q ' I / E  e'2, we get as above the exact  sequence of homogeneous 

vector  bundles 0-->Ee'Z-->]q~'l-->~'2-->0. Continuing this process until  dim F a ' " = l ,  we 

end up with 
0..._~ E 0 . 1  .__~E0 ___~ ~-~. 1 - - ~ 0 ,  

0 - + E  ~'~ --+F a'l -+1  ~'2 --+0, 

0 - +  E ~'"-1-+Fq'"-2---~1~ . . . .  1--+0, 
(3.2) 

0 - + E  +" - ~ F q ' " - I - ~ I  ~ ' "  -~0.  

Now (i) above implies t ha t  

1 
Q(e=) el  = ~ ~([h=, e~]) el  = 0;  

i.e., 21 is the weight of ~ on E ~'1 and thus E q'l is the homogeneous line bundle E a'. 

Similarly, E e' ~ . . . . .  E ~' ", 1~' = are the homogeneous line bundles E a', E a" + x where 21 . . . . .  2 ,  +1 

are precisely the weights of the original representat ion 5. F rom the exact  cohomology 

sequences (these being exact  sequences of M-modules)  we get  

...--> HV(U ' )  --> IP(~fl)  .+ HP(~  ~ -->HV+I(~ a') -->... 

. . . .-->Hp(~ "~*) --->HV(~o .1) --> HV(~o .2) -->HV+l (~ ~.) --> ... 

: (3.3) 
. . . -.> HV (E.a,-1)-> HV (~.o. '~- 2)-+ Hp (~Q. "-  I )--> HV + I ( Ea,-1) -+ ... 

..--.~HP(~_. ~") .-..>HP(~Q,n-1).-.~HP(~_).n+I ) - -> U p  +1 (~) ,n )  - -~  . ~ 

(~) I f  (~) is satisfied, then 

H* ( ~ '  . -1)  = H* (E ~") + H* (63"+ q. 

Indeed,  there are groups in H* (~a,) in at  most  one dimension for each 2i (Theorem B). 

Our assertion is clearly true unless [ 2 , + i + g I + l = 1 2 , + g l  in which case the non- 

trivial piece of the exact  sequence is (setting I ; t , + l + g ] = p )  

0 - >  H ~ (:~Q' "= 1) _+ Vl(a. + 1) _+ VI(~.) _+ H ~ + 1 ( : ~ . .  1) _> 0 

and since V z(aj) are irreducible 0-modules, we see tha t  

H ~ ( : ~ q . " - I )  = VI(a.+I) 

H~+I (~Q, . -1)  = Vl(a.) 

and we are done. This same reasoning allows us to proceed inductively up through 

the above system of exact  sequences to get  our conclusion. 
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fl) The  a rgumen t  is similar where now our  hypothesis  serves to sever the exact  

sequences into disjoint  sequences of the  form O---->A.-+B--->O. 

(7) The  exact  sequences become,  reading f rom b o t t o m  to top  and  sett ing p = I)~ + g { 

(for all i) 

O---> V 1(~") -> HP(:~~ Vl(a'*+l) -->0 

0 ~ V I ( ~ - ~ ) ~ H ' ( ~  ~'n-2) -~ H~(:~ ~'~-i) - + 0  

0 - + V  ~(~*) - + H ' ( : ~  ~'l) - ~ H ' ( : ~  q'2) - ~ 0  

O-+ V ~(~') -+ H~(5 ~) --> H ' ( ~  Q'~) --+0 

F r o m  this we again get  Theorem 1. 

(T) I f  i is in the  specified range,  then  

H ' ( :~e . '~- I )=0 ,  H,(:~q. '~ 2 ) = 0  . . . . .  H ' (Te .~ )=0 ,  

and  H*(E ~) = 0 which was required. Q.E.D. 

There is one difference f rom the above  discussion when we consider Eq->Eq--> 

M / V  = X = G / U  where X is KS, hler bu t  where V m a y  be non-abel ian so t h a t  u is 

not  solvable. I n  this case, we consider the ni lpotent  radical 11=c(e-~ : : r  + - ~ F + ) ~ u .  

Then  ~(11)cgl(EO) is n i lpotent  and  annihilates some non-tr ivial  subspace E e ' i c E  ~ 

(i.e., ~ ( n ) e i = 0  for all nEl t ,  e iEEe ' l  ). Since 11 is an ideal in 1i, Q(u) E q ' i c E o ' l ;  as 

above we have  the sequence of U-modules 

0-->Eq.i-->Eq-+Fq.1-->0 (FQ, I =  E~/Eq. x) 

and the associated exact  sequence of homogeneous  vector  bundles 

0 -~E0.1--> Eo --> 1~, 1 _-> 0. 

Here  we assume t h a t  any  u-module F such t h a t  i t o F = 0  (i.e., F a =  F)  is a semi- 

simple 5~ Continuing the  above process, we end up with  a semi-simple S~ 

F q'n described by  the  following sequences: 

0 - + E ~ . i - > E  q - >  FQ.1--> 0 

0 --> E0.2 --> F q-i ---> Fq. 2__> 0 

O .___> Ee, n.._> Fq, n -  x__~ Fo, n___>O" 

(3.4) 

Now E Q'j (j = 1 . . . . .  n) and F e ' n =  Er n+l are by  assumpt ion  semi-simple 5~ 

and  b y  theorem B we know H * ( X ,  ~q'J) (~= 1 . . . . .  n +  1) as M-modules .  B y  reasoning 
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as in Theorem 1, we may derive information on the modules H*(X, Eq). Thus, letting 

Q1 . . . . .  ~m be the weights of Q, if 

(:r I(Q,) # I(~j) (i # ?') or 

(fl') I l e ~ + g l - l e , + g l ] > 2  (i4:j) or 

(y') IQ,+zI=l~,+g[ (for a l l i , ] )  or 

(v') i (min I~ j+g[ ,  i>maxI~s+g  I, or i4 : l~+g I (alli),  

n + l  

then H* (X, G ~ = �9 H* (X, G ~ (3.5) 
i = 1  

4. Applications o f  w167 2 and 3 

We shall now give some applications of (3.1) and (3.5). In general, wo shall use 

Theorem 1 to prove results for M / T  and only make the statement of the corre- 

sponding result for M/V.  In all cases, the proofs will be easy from (3.5). 

We give a preliminary proposition which will be quite useful later. 

Let  X be a C-space G/U and let / ~ U  be such that  G//~ is again a C-space 

(all groups involved are connected) and l~/U is a homogeneous complex manifold. 

In general /~/U may not have a finite fundamental group; however, it will be com- 

pact. There is the usual analytic fibre-space diagram: 

G V ~ G / U  

G/o 

Suppose now that ~: ~-->GL(~) is a holomorphic representation of ~?; then ~IU = 

Q : U --> GL (E ~) = GL (E~) is a holomorphic representation of U and we may form the 

homogeneous vector bundles 

Eo ---> E ~ --> G/U. 

On the other hand, denoting by a the projection in the fibering I~/U-->G/U->G/I~, 

we may form the analytic vector bundle a - l (E  ~) over 

a/u: "-> G/u 
o-, f ~ ~, (4.1) 
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PROPOSITION 4.1. In the above notation, a- l (E ~) is a homogeneous vector bundle 

and indeed a -~ (E ~) = E ~. 

Proo[. We first recall the construction of a -1 (E$). Setting X = G / U ,  X =  G/O, 

consider the product X• then a- l (E ~) X• consists of those pairs (x,$) such 

that  a(x) = ~(d). By defining ~(x, ~) = x we get a projection map ~ : a -1 (E ~) -> X which 

gives rise to the analytic vector bundle a-l(E~). Writing points of X()~) in the form 

gU (respectively g~), the map a is given by a(gU)=gO. On the other hand, we de- 

note points of E ~(E f) by [g, e]q ([g, e]$) where, by definition, [g, e]q = [g', e']~ ~ there 

exists u e U such that  g' = gu, e = ~(u) e' ([g, e]~ = [g', e']~ ~ there exists ~ E 0 such that  

g '=g~,  e=~(~)e') .  With this clearly understood, a- l (E ~) consists of those pairs 

(gU, [~,~]~) such that  g ~ = ~ [ ~ , d ] = ~ .  Thus in order that  (gU, [~,d]~)eX• ~ lie in 

a ~ (E~), it is necessary and sufficient that  there exist a ~ e ~ such that  g~= ~. We 

define a mapping /:E~-->a-~(E ~) by /([g,e]q)=(gU, [g,e]~); / is thus a mapping of E ~ 

into XxEq whose image clearly lies in a-~(E~). 

(i) / is surjective :indeed let (gU, [~,~]~) lie in a-l(E~); then there exists ~ 

such that  g~=~ and since [~,~]~=[g,~(~-l)~^ ~ = ~^ e]~, (gU, [g, ~]~) (gU, [g, e(~ -~) e]~) = 
l([g, e(~ -1) ~]~). 

(ii) I is injective : suppose tha t  /([g, e]q) = (gU, [g, e]0 ) = (g' U, [g', e']q) =/([g', e']q); 
this implies first of all that  g=gu and hence [g', e']~ = [g, ~(u -~) e']~ = [g, e]~ which in 

turn implies that  e=~(u -~) e' and thus [g', e']q= [g, e]q. q.E.D. 

COROLLARY. Let X = G / U  be an arbitrary C-space and let ~:G-->GL(E ~) be a 

holomorphic representation. Then upon restricting ~ to U we get a holomophic representa- 

tion ~ : U--->GL(EQ) (Ee=E~ and the homogeneous vector bundle E-->Ee--->G/U is ana- 

lytically trivial. 

Proo/. Take 0 = G in (4.1) and apply Proposition 4.1. 

In the applications to be given, we shall need a property of the Weyl group 

W(fi) which is found in [3]. For any subset ( l )c~ ,  we set ( ( I ) ) = ~ r  If aEW(g), 

we set (I)~=a(~-)N :+;  then it follows that  

a (g )  = g -  (r  

Thus, for example, if ~ el-i, then v ~ ( g ) = g - ~  since (g, =)= �89 ~). 

(4.2) 

PROPOSITION 4.2. I] r  ~-,  then ( ~ )  + g is M-regular ~ ((~) = - (~P=) /or some 

aeW(~) in which case r 1 6 2  Thus, I ( ( I ) )=0  unless r  and then 
10-- 632932 Acta mathematiea. 110. Iraprim~ le 15 octobre 1963. 
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(i) I (  - (d)~)  = 0 ( = 0 element in ~#) I (4.3) 

(ii) I - ( @ , ) + g i = l a l .  J 

In particular there exists a unique JEW(g) such that Z+=J(~ -) N ~+=(I )o ;  this is 

the same (~ as discussed in w 1. 

We now give our  first application. The exact  sequence of U-modules 

0--~ 11-~ g --~ g/U--~ 0 (4.4) 

gives an exact  sequence of homogeneous vector  bundles 

0--~ L - ~  Q--~ L--~ o, (4.5) 

where L = L ( X )  is the holomorphic tangent  bundle of X and L = E n d  (L)=  H o m  (L, L) 

is the bundle of endomorphisms of L. This is the At iyah  sequence; see D.G., section 7. 

PROPOSITION 4.3. The bundle, Q is analytically isomorphic to X•  (i.e. Q is 

analytically trivial). 

Proo/. Corollary to Proposit ion 4.1. 

Let t ing ~ = sheaf of germs of holomorphie functions on X and E)= 1~, we have 

from (4.5) 
0 ~ H ~ (X, s  ~ H ~ (X, ~)  | g -~ H ~ (X, O) -~ H 1 (X, s  

(4 
-+ . . . -~Hq(X, ~,)--~ Hq(X,~) | g-~ Hq(X, @)--~ ... J 

Now we assume tha t  X = G/U is Ks then we will see in Theorem 3 below t h a t  

H q(X, ~)  = 0 (q > 0). Thus we have from (4.6) 

and 

the U-module 

o-~ Ho(x, s  H~ O)~ HI(X, s  

Ha(X, @)~Hq+I(X, C,) (q>0)  (4.7) 

T ~ E O R E ~  2. Hq(X,s  /or all q. 

COROLLARY 1 (Bott). Hq(X,O)=O (q>0). 

COROLLARY 2. H~ 

Thus the connected component  of the group of analyt ic  automorphisms of X is G. 

We prove Theorem 2 for M/T;  the general case is the same. The weights of 

It are the 0-weight with multiplici ty l and the negative roots a e X-.  
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Fur the rmore ,  if ~ E ~ - ,  then  a + g is M-regular  ~ a = ((I)~i) = - a j  for some aj e l i  b y  

Proposi t ion 4.2. Thus  for a E ~ - , l ~ + g l ~ < l  and  3) of Theorem 2 tells us t h a t  

H q (X, i:) = 0 (q >~ 2) which gives Corollary 1. 

Referr ing now to the proof  of Theorem 1, there  are l bundles E ed such t ha t  

H ~ (X, ~e'J) is the  t r ivial  one-dimensional  M - m o d u l e ]  

H q (X, ~e'J) = 0 (q > 0) (these are the 0-weights) 

and  there  are l bundles E e '~=  E -~k such t h a t  

H~(X,~ ~'k)=O (q~: l )  and  ] 

H 1 (X, E -~k) is the t r ivial  one-dimensional  M-module .  ! 

From this one checks wi thout  too much  t rouble  t h a t  the coboundary  maps  applied 

to H~ qd) knock  out  the  t e rms  HI(X,,~ ~) (one looks into the  exac t  sequences 

of Lie a lgebra  cohomology modules).  Thus  H~ E,)= H i ( X ,  s  Q.E.D.(1) 

F r o m  Theorem K,  it follows t h a t  

d im H q (11, V ~) = {number  of a E {W(g)/W(5~ q. (4.7) 

I n  par t icular ,  if 11= c(e-~ : a E ~ + ) ,  B o t t  observed the  " s t r ange  equa l i ty"  

d im U q (a, V ~) = d im H ~q (M/T,  C) = {number  of a E {W(~)}q}. (4.8) 

We explain this inequal i ty  b y  applying Theorem 1 coupled with  the  Dolhcaul t  Theorem 

(in the  K~hler  case). I f  ~ s =  sheaf of germs of (s, 0)-forms on X, then  (see [14]) 

Hq(M/T, C)= ~ H~(M/T, ~ ) .  (4.9) 
r + s = q  

T ~ E O ~ , M  3. HP(M/T,f~q)~O unless p = q  and 

dim Hq ( M / T, f2 q) = dim H 2q ( M / T, C) = {number o /a  E {W(g)}q}. 

Proo/. AqL'(X) is the  homogeneous vector  bundle derived f rom the U-module  

Aq(g/lt)  ' (here the  pr ime signifies contragredient  action). There  roots  of Aq(g/11) ' are 

the elements  ((I)~ E ~# where (I) ~ E-  and  (I) contains q roots. Thus  in (3.2) the  bundles 

E o'j are of the  form E -~j, | 1 7 4 1 7 4  E~Jq where ajkE~+ and ajk:~:ch (k~:l). For  

( I ) = { - a j  . . . . . .  -~y~}, ( ( I ) ) + g  is r e g u l a r s ( i ) = - ( I ) o  for some a~{W(g)} q and then  

] ( -  ( I )o)+gl  = q. Thus  (~) of Theorem 1 is satisfied and  we are done. 

I f  q =  1, Hi(X, ~'~I)=~/r-/a(X, (3) and  d i m H l ( X ,  ~ )  = / = r a n k  8. Thus  the  elements  

in zr are paired to H ~ (M/T,  C) and one checks t h a t  for a~ E 1-I, a~-->~,~ ~§ (~,  a)w~A ~ .  

(1) We have proven that, for a flag magnifold G/U, G is the connected automorphism group. 
In general, we write X = G]U where G is the connected automorphism group; G is semi-simple by 
what we have just shown. 
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From D.G., section 6, we see t ha t  ~r  ~ '=c~(Ea) ,  where ),fi~# is defined 

by  (~t, h~) = (~,  ~). Since (over C) the  2-classes generate  H*(M/T,  C), H*(M/T,  C) 

coincides with its characterist ic  sub-algebra.  

Similar s t a t emen t s  hold for an a rb i t r a ry  K~hler  C-space X = M / V .  

T H E O ~ E ~  3'. H ' ( M / V ,  ~q) = 0 unless p = q and Hq(M/V, ~q) ~H2(M/V,  C) and 

dim Hq(M/V ,~  q) = {number o] a E { W(9)/W(~~ 

COROLLARY. Z(M/T)=order o/ W(6), ~(M/V)=order W(6)/order W(~~ 

5. Homogeneous Bundles in the Non-Kiihler Case 

We shall now obta in  the  M-modules  Hq(X, ~q) where X =  G/U is a non-K/~hler 

C-space and Q: U---> GL(E e) is a holomorphic  representat ion.  We shall do this first  

when 9 is irreducible and  then  proceed as in w 3. To a non-K/~hler C-space X = G[U = 

M / V ,  we m a y  associate a K/~hler C-space fs = G/O = M / I  7 by  increasing V to the 

full centralizer of a torus. We then  have  a fundamental /ibering T 2a --->X--->f~ where 

T 2a is a complex a-torus.  To this fibering, we shall app ly  the  spectral  sequence of w 2. 

Indeed,  our calculations will be based upon  the  following: 

LEMMA 5.1. Let ~ be a complex Lie algebra and e c ~  be a complex sub.algebra. 

Suppose that we are given an ideal ~ ~ r such that e ~ ~ �9 b where b is a sub-algebra. 

Furthermore let a ~ g be a sub-algebra such that [a, ~] ~ ~, [a, r ~ e and this latter action 

is reductive. Finally let M be a c(a U e)-module which is a semi-simple a-module. Then 

there exists a spectral sequence {'ET} such that 

(i) 'E~ is associated to H*(r M)% } (5.1) 

(ii) 'E~'q = ~ HP(b, Hq(~, M)) a. 

Proo[. There exists a spectral  sequence {ET} such t h a t  Er162 is associated to 

H*(r M) and E~'q-~HP(b, Hq(~, M)). Now by  assumption,  the act ion of ct on the  chain 

group C(e, M) is semi-simple as is the act ion of a on C(b, C(~, M)); hence the  process 

of taking a- invar iant  factors  commutes  with derivations.  Q.E.V. 

Le t  Ee--->Ee--->G/U be a homogeneous  vector  bundle defined b y  an irreducible 

U-module E e. We denote  by  ^ every th ing  associated to X;  e.g., ft = r : r162 E Y-+ - u~,+) 

and  r t = f t s p  (c.f. section 1). B y  irreducibili ty,  f t o E ~  and E e is an irreducible 

15 ~ $ p-module.  B y  Schur 's  lemma,  ~(p)e = 7(p)e for p E p, e E K e, and  some ~ E p' ,  E e 

is an  irreducible b~ We mus t  describe briefly this representa t ion  ~ :u-->gl(Ee).  
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Now p (~ C ({)~p(1) is a max imal  abel ian sub-algebra of 11 and  upon  restr ict ing 8 to  

p r c �9 ~v, we get a decomposi t ion of E e into "we igh t"  spaces; g ~= �9 ~E~ where the  

)~'s are l inear forms on p �9 r  ~v=~)fi  11. One of two things happens:  

(i) Each  ~t such t h a t  E ~ : 0  is the restr ict ion to p r c �9 ~ of a unique weight  

form ~ on p e O e c e ~ v = ~ ;  

(ii) Some /l for which E~ ~= 0 is not  the  restr ict ion of a weight  form on ~. 

Clearly (i) is a necessary and  sufficient condition t h a t  0 on u be the  restric- 

t ion of a representa t ion  ~ on f~ arising f rom 6:  ~ - ~  GL(E~), E~=Eq. I n  this case 

if E ~ is an irreducible u-module,  E ~ is an irreducible fi-module. Case (i) is, by  Pro-  

posit ion 4.1, the group theoret ic  analogue of the  geometr ical  s i tuat ion described by  

the following d iagram of analyt ic  fibrations: 

Eq -~ G / U  

De/inition. I f  ~ satisfies (i), we call Q a rational representat ion;  in the al terna-  

t ive case satisfies (ii) and  we call ~ an irrational representat ion.  

THEOREM 4. Let Ee--> Eq--> X be a homogeneous vector bundle over a non-Kdhler 

C-space X =  G/U given by an irreducible U-module E ~ . Then: 

(i) I[ Q is irrational, H*(X, ~q)=  0; 

(ii) / / ~  is rational, then as above we have Ee-->E~--> ~ and, i /~  E Z(~) is the highest weight 

of ~ and I (~)= Io(~), I.l=q, then as M-modules, Hv+q(X, E')~-H'(I~/U, ~)  | V '(q) where 

H v ( ~ / U , ~ )  is acted upon trivially by M and by convention H ' ( ~ / U ,  ~ l ) = 0  /or p < 0 .  

Proo/. To determine  H*(X, ~e) as an M-module ,  i t  will suffice to  know 

H*(lt, V-a|  ~ since we are assuming t h a t  E q i8 a semi-simple 5~ Bu t  V -~, 

as the  representa t ion  space of the  compac t  group M and hence of the  compac t  sub- 

group V, is a completely  irreducible 5~ since 11 is also a semi-simple 5~ 

the  conditions of L e m m a  5.1 are m e t  by  taking 6 = g, r  [ = ~ ,  b = p ,  a = 5 ~ and  

M = V-~|  E e. Thus  there  is a spectral  sequence ( 'Er} such t h a t  

(i) 'E~o is associated to  H* (rt, V -a | Eq) ~', 

(ii) 'E~ 'q = H" (p, H a (~t, V ~ | Eq)) ~'. 

(1) Here we write ~, =C (~ ~0 where f = center of D0 and ~ is the complement of r under the 
Cartan-Killing form. 
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Return ing  to the spectral  sequence (5.1) with 'E~  associated to H*(n, V-~ |  ~ 

and  whose ' E  2 t e rm is g iven b y  'E~'q=HP(p, Hq(It, V-x| ~, we have  f rom Theo- 

r em K t h a t  

Hq(fi, V-~ | Eq) = Hq(ft, V-~) |  ~ Vq'~(~ | E ~. 

Thus  'E~ "q= ~ H~'(O, Vq'~(") | Eq)~; 
o ~ ~ w(g)/w(~,))q 

but  p ~ Z(~ ~ and  furhermore  p itself is abel ian and  thus 

'E~ 'q = ~ HP(O, C) | (V q' a(~ | EQ)~e0 .(1) 

We consider cases: 

Case (ii). I n  this si tuation,  (Vq'a(~')| because the  form ~ defined by  

p . e = 7 ( p ) . e  for p e p ,  e E E  q is not  the  restr ict ion of a weight  form on ~ to u f3 ~. 

Case (i). Here  (V q'~<~ | Eq) ~$~ = (V q'~<') | E~ ~~ (V q'~<~ | EQ) ~" since p r 

r  ~v lies on no ra t ional  hyperplane.  I n  this case, if ~ is the highest  weight  of 

~: fi-->H(E~), a n d  if I ( ~ ) =  I0(~) with lal =q ,  then  'E~ ' ]=0  unless ? '=q  and  the  spectral  

sequence is t r ivial  in ei ther  Case (ii) or Case (i). Finally,  in Case (i), 'E~ "q= H~(O, C) 

and since the act ion of M is tr ivial  here, we are done. 

COROLLARY 1 (Bott).  For any homogeneous vector bundle Er EQ---> X over a 

non-K~ihler C-space, 
Z(X, ~ )  = 0, (5.2) 

where Z is the shea/ Euler characteristic. 

Proo/. One s imply  apphes  the Euler -Poincard  principle to the  spectral  sequence 

given in the proof  of Theorem 4 where e m a y  be arb i t rary .  

Remark. Let  E Q(v) = AV(g/u) ' where the  representa t ion  ~(p) is Ad v of U on AV(g/lt) '. 

I n  s t andard  notat ion,  EQ(p)=~P(X). Since it is an ideal in fi, it follows t h a t  

Z(X, ~P(X)) = ~.q( - 1)q d im Hq(X, ~P(X)) = ~q( - 1)q h v'r = 0 and  thus  ~v. ~ ( - 1) ~ h v'q = 0. 

This says t h a t  the  index v(X)= ~ v . q ( - 1 )  r162 as defined b y  Hodge  of a non-K/ihler  

C-space is zero. 

(1) See w 14, section (ii) for a discussion of this point. 
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COROLLARY 2. Let Eq-->Ee-->X be a rational homogeneous vector bundle and 

assume that H*(X,  ~q) is a trivial M-module. Then H*(X,  ~Q) is a trivial M-module. 

A special case of this corollary is Theorem 2 in [5]. 

The following proposition follows from the proof of Theorem 4: 

PROPOSITION 5.1. Let X be a non-Kdhler C-space with basic/ibering T ea --> X -~ X.  

Take E q to be a rational homogeneous vector bundle over X so that we have a homo- 

geneous vector bundle E ~ over .~ and the following diagram: 

E ~ -~ X 

E~ -~ X 

Suppose /urthermore that E ~ is a semi-simple ~~ and that HP(~, ~ )  = 0 unless p = q 

and H~(X, E ~) is an M-module by a representation ~* (in general we will denote the in- 

duced representation by *). Then HP+q(X, ~o)~ Hp(~/U,  ~)  | H ~ (.X, ~ )  and e* = 1 | ~*. 

COROLLARY. I /  our /undamental /ibering is T ea --> X --> ~ ,  then 

HP(X, ~q) = 0 

//q+r(X, ~lq) 
(2) b~q (M/~ ,  

(p < q) 

is a trivial M-module o/ dimension 

where Z (M/I?) is given by Theorem 3'. 

(5.3) 

In  particular Hr(X, ~) ~= C (~) (trivial M-module). (5.4) 

We shall now give a geometric interpretation of the Dolbeault forms representing 

classes in Hq(X, E q) ~ H ~ (X, Eq); this interpretation depends upon results obtained in D.G., 

w167 VI and VIII,  concerning the canonical complex connexion in the fibering U---> G--> G/U. 

We recall briefly the construction. Writing X = G / U = M / V ,  there is in the fibering 

U--->G-~ G /U  a canonical M-invariant connexion which respects the complex struc- 

tures involved. To give this connexion, we must define a splitting Lg(G) = V(g) �9 H(g) 

(g e G) which is M-invariant (on the left) and V-invariant (on the right in U--->G-->G/U); 

here V(g) c Lg(G) = vertical space at g 6 G = k e r  ~ ,  where ~ ,  : Lg(G) --->Lov(X ). At g = e, 

the splitting of the canonical complex connexion is given by  g = u  �9 1l*; we refer to 

w VI in D.G. for a further discussion of this connexion. 

PROPOSITION 5.2. Let Tea--->X-~.~ be the /undamental /ibering o/ X where 
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X = G / U ,  ~ = G / O .  Then there exists a holomorphic representation ~ : ~--~ T 2a such that 

ker  ~= U, T~a~-~/U, and X is the homogeneous principal bundle G• i1T 2a. 

Proo]. Le t  T~a=~/U and ~ = p r o j e c t i o n  homomorph ism;  Q(u)=~tU for ~ E ~ .  

Then  G x s T  2'~ is the set  of pairs  [g,(~U)] factored b y  the equivalence relat ion 

[g, (~' U)] ~ [g~- 1, ~ o (~' U)] . -  1 =[gu , ( ~ ' U ) ] .  We define a mapp ing  T:X- -~G•  2a b y  

T(gU) = It, (U)]; ~ is clearly surjective.  Fur thermore ,  ~(gU) = ~(g'U)~[g,(U)] ,,~ 

It', (U)]~g=g 'u  for some u E  U and thus  ~ is injective. Q.E.D. 

The  canonical complex connexion ~--~G-+G/~ induces a complex connexion in 

T2a-~x -~  X in the usual way.  Le t t ing  p = complex Lie algebra of T 2~, the con- 

nexion form to in Te~-+X--~f~ is an M- inva r i an t  p-valued (1,0) form on X. Since 

p is abelian, we m a y  choose an isomorphism p=~C ~ and  then  write to = to1 + -.. + toa 

where the tos are global scalar M- inva r i an t  (1,0) forms on X. The  Caf tan  s t ruc ture  

equat ion  giving the curva tu re  .~. of to is 

= do + �89 [to, to] = dto (since p is abelian). 

On the  other  hand,  it  is given in D.G., w VI,  eq. (6.2), t ha t  .~. is of type  (1, 1) and 

is given by  
(n, ~') = - �89 e([n, ~']~) (n, n '  E 1t*). 

I t  follows f rom this t h a t  ~ is non-zero and  thus  a t o = 0 ,  - =  - ~ O t o ~ 0 ,  and  the con- 

nexion in T~a--~X--~X is no t  holomorphic.  Using again the isomorphism p ~ C  ~, we 

m a y  write .~.- = '~'i- + . . .  + ~ ,  where ~j  = O (toj) ~ 0. 

I f  we consider the forms ~ j ( j =  1 . . . . .  a), they  are global M- inva r i an t  (0, l) forms 

with the  following properties:  

(i) Otoj = ~-~ = 0, 

(ii) 8c5j = 8toj �9 0, and  thus  

(iii) d~r ~ 0. 

We introduce the  no ta t ion  t5r .... ~ = &~l A . . .  A ~ .  

Le t  ~:~--~GL(E ~) give rise to E~--~-~ and  suppose t h a t  ~e is an E~-valued form 

on X represent ing a class [~] ~ H ~ q(~, E~ ~= Hq(X, ~ .  Then ~] U induces e : U--~ GL (E ~) 

(EO=E ~) and apply ing  proposi t ions 4.1 and  5.2, we see t h a t  a*(~ e) is a well-defined 

8-closed Eq.valued form on X giving rise to a class [a*(~)] fi tt~ E~ ~q). 

From the explicit  calculations in Theorem 4 coupled with the  explicit  form of the 

canonical connexion given above  we conclude: 
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PROPOSITIO:N 5.3. In  the above notations, assume that Hq(~:, ~)=~0 for at most 

q= qo and let the induced representation of G on Hq~ E ~) be ~*. Then 

H a ( X , ~ ) = O  q <%,  ] 

H~o§ E ~) =~ H~0(X, g~) | H~(X, ~), 
(5.5) 

the induced representation is (~*) | 1, and the Dolbeault forms representing H ~ q~ (X, ~e) 

may be chosen to be a*(~)| Dj,...jp. 

6. L ine  Bundles  and F u n c t i o n s  on C-Spaces  

If X is a compact complex manifold, we denote by F[X] the field of meromorphic 

functions on X. As an application of Theorem 4, we determine F[X] when X = G/U 

is a non-Ks C-space. l~ecall that  a rational algebraic variety is by definition an 

n-complex dimensional submanifold X of a complex projective space PN(C) (_N ~> n) such that  

the meromorphic function field F[X] is isomorphic (qua abstract fields) to F[Pn(C)]. 

Now the K~hlerian C-spaces are algebraic varieties (a positive line bundle was exhib- 

ited in D.G); that  they are moreover rational varieties was proven by Goto [9]. 

TH]~O~EM 5. The non-Kghler C.spaces are rational non.algebraic varieties. I f  X 

is one such of complex dimension n with basic fibering T2a--> X ~ ~ ,  then 

F(X)~F[Pn-a(C)]. 

Proof. The proof will be done in three steps. 

(i) Every line bundle E-->E-->X is homogeneous. 

There is a different proof of this in [16]. Let  s denote the group of complex 

line bundles on X and set ~ ( ~ )  equal to the Picard variety of ~ .  Then ([18]) 

s 1) (X, Z), where e , H ( 1 , 1 )  ()~, Z) are the integral classes whose harmonic 
2 representatives are of type (1, 1). In our case, H<I.1)(X,Z)=H~(X, Z) and ~)(X)=0,  

i.e., a line bundle E is uniquely determined by its characteristic class cl(E ). The 

result now follows from the discussion following Theorem 3. 

(ii) Every line bundle E-->E-->X is homogeneous. From the exact sheaf se- 

J 1, H I ( X  ' ~.~,) ~> H 2 ( X  ' Z ) - - > . . .  (since quence 0 - - > Z - ~ - - > ~ * - - > 0  we get 0-->HI(X,~)--~ 

~I(X) is finite) and thus any line bundle E over X is determined by %(E) modulo 

j .HI(X, Q). But from Theorem 4, Hi(X, ~) =H~ ~)  | HI(~/U,  ~ ) ~ p ' .  The mapping 

11 - 632932 Acta mathematlca 110. Impr i ra~  le 16 octobre  1963. 
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z/ :p ' - ->I:(X) ~-HI(X, ~*) given by z](~)= E ~ is the counterpart  of ] , ,  is clearly injec- 

rive, and since dimensions check out, (ii) is proven. 

For a divisor D on X, we denote H~ [D]) by  L(D) where [D] =l ine  bundle 

determined by  - D. 

(iii) For every divisor D on X for which L(D)~0 the associated line bundle 

[D] is rational. Indeed [D] is homogeneous and since H~ we see from 

Theorem 4 tha t  [D] must  be rational since if [D] is irrational, H~(X, [D]) = 0 for all i. 

Thus there is a divisor b such tha t  a- l [D] = [D]; from Theorem 4 again we have that  

L (b )  = H~ [ b ] ) ~ H ~  [a-l[/:)]) = H~ [D]) = L(D). This all says tha t  for any divisor 

D on X such tha t  L(D)4=O, there exists a divisor b on X with a - l ( ~ ) = D  and 

L(f))~L(D) which proves Theorem 5. 

Remark. The above situation seems to be general in the following sense. Let  

Tsa-->BLV be an analytic fibration where T sa is homologous to zero. Then one 

would like every subvariety of B to be ~-1 of a subvariety of V so tha t  F[V]~=F[B]. 

I f  W e B  is one such subvariety,  and if xE W, then we want ~-l(~(x)) N W=g- i (~ (x ) ) .  

Setting Tx=TCl(~e(x)), if ~-1(7~(x))N W4:Tx, then one may  argue tha t  the intersec- 

tion number  T x o W > 0 ,  which is impossible since T x ~ 0 .  We have given the above 

proof because it is more explicit and we hope shows the undefinitive role the irra- 

tional bundles play. 

We take this opportunity to record and give a geometric proof of the result on 

line bundles used in Theorem 5. 

PROPOSITION 6.1. Let X be a C-space and let E-+E-->X be a line bundle; then 

E is homogeneous. 

Proo/. By D.G., w 9, it will suffice to show: let 0 E H~ O) be a holomorphic 

vector field induced by  a 1-parameter subgroup g~c G and let .~ be a scalar-valued 

(1.1) form representing the characteristic class of E; then i(O)~=O/o for some func- 

tion /0 on X. I f  T 2 a ~ X L ~  is the fundamental  fibering, then (see w 7 below) 

.~.=~z*~ for some d-closed (1, 1) form .~. on )~; by Proposition 5.2 i(O).~.=i(O)g*~ = 

re*i(O)~. However, i(O)~ is a E-closed ( 0 , 1 ) f o r m  on ~:; by  Theorem 3, i(O)~=~]o 

for some function f0 on )~ and, setting /o=7e*fe, i(O)~=~[o. Q.E.D. 
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7. Some Properties of the Characteristic Classes of Homogeneous Bundles 

We now use the results of D.G. to discuss the position of the characteristic sub- 

ring in the complex cohomology ring of a C-space X and we also prove a theorem 

stated in D.G. (Theorem 7) giving a geometric interpretation of the Chern class of a. 

line bundle as defined by Atiyah in [1]. 

We recall here a few definitions from [14]. Let  X be a compact complex mani- 

fold of complex dimension n and suppose tha t  V--->V--~X is an analytic fibre bundle 

with an r-dimensional vector space V as fibre. Let  co= 1, c 1 . . . . .  c, be the Chem 

characteristic classes of X (i.e., the characteristic classes of the fibering C ~--> L(X) ---> X)  

and let do= 1, dl, ..., dr be the characteristic classes of V-->V-->X. Writing formally 

1 + clZ+... + cnZ '~= ~ (1 +TjZ) 

l+dxZ+.. .+drZ'= ~ (l+Skg), 
k=l 

the Todd genus T(X,  V) is defined by  

( n ) 
T(X,V)-  e~ '+  . . .  + e~, I ]  7~ t= l  ~ [X]  (7.1) 

(IX] means to evaluate a cohomology class on the fundamental  cycle determined by  

the orientation of X). Then the Hirzebruch-l%iemaml-Roch (hereafter written H - R - R )  

identity reads 
Z(X, %o) = T( X, V). (7.2) 

In  view of (5.2) and the fact tha t  (7.2) is true for algebraic manifolds, to prove (7.2) 

for homogeneous vector bundles over C-spaces, we must  show 

THEOREM 6. I /  Ee--> Eq-->X is a homogeneous vector bundle over a non-Kghler 

C-space X = G/U = M / V ,  then 

T(X, ~ )  = 0. (7.3) 

The proof will be done by  writing down the Chern classes c 1 . . . . .  cn of X and 

dl~ .... dr of E%s invariant differential forms a t  the origin and then observing tha t  

(7.1) is zero. Since X is non-Ks we must  choose a complex connexion (see D.G.) 

to write down the cj and dk; by  the Theorem of Weil (see [10] for a discussion of 

these points), we need not be restricted to a metric connexion and we shall actually 
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use the canonical complex connexion discussed in D.G. With these remarks in mind, 

the rest is computational and we do not belabor the details. 

From section 1, we may  choose a complex subspace p c  ~ and a subsystem ~F~ 

such tha t  

g=~r162 v~), 

~eZ-~F 

and then Lo(X ) ~= 11" �9 p, Lo(X ) ~= 1t r P, 

where 11" = c ( e ~ : a E Z + - q r  11=e(e_~:~E~ +-viz*).  

Lett ing e~,Ev~ be root vectors, eo~Ev- " dual to e~, and ~ J ( j = l ,  . . . ,a )  be a basis for 

p' ,  we claim tha t  to prove (7.3), it will suffice to show tha t  for any Q, 

ck(E ~) = Pk(eo ~, ~ )  ( ~  = w -~, ~ E ~+ - ~F+), (7.4) 

where Pk is an exterior polynomial of degree 2k involving only the eo ~ and D* and 

not ~J and ~J. This is clear since the component of degree 2n in (7.1) evaluated a t  the 

origin is of the form 

2( A (o~A eS')A(~JA ~)) 
~EZ+_~F+ J 

and if (7.4) holds, then 2 = 0. 

From the form of the Chern-Weil theorem as given in [10] together with equa- 

tion (6.2) in D.G. giving the curvature of the canonical complex connexion in E Q, it 

will suffice to show: if p E p, v E p �9 1t, then 

ak(e[p,  v]u) - o, (7.5) 

where a~ denotes the kth elementary symmetric function of the operator Q[p, v]u E gl (Ee). 

This will imply (7.4). However, since [p, p] =0 ,  [p, 1t] _~ It, and ~l l t  is nilpotent, it is 

clear tha t  (7.5) is true. Q.E.D. 

COROLLARY. ~(X) = 0 /or non-Kdhler X where ~ is the topological index [14]. 

Proo/. Same as Theorem 6 together with the fact tha t  ( 1 -  Pl ~-P2 + . . . ) =  

( l + c l +  . . . ) ( 1 - e l - . . .  ) where the pj are the Pontrjagin classes of X. 
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This corollary coupled with the corollary to Proposition 5.1 says that  the Hodge 

index theorem holds for C-spaces. 

We refer to D.G. (section 7) for a discussion of the Atiyah definition of the 

first Chern class c~(E ~) of a homogeneous line bundle. The theorem stated there 

without proof is: 

THEOREM 7. Let X be a non-Kdhler C-space and let T~a--+X-->X be the fibering 

o/ X over a Kiihler C-space X .  Then there are independent line bundles E q', .... E q. (see 

(ii) in the proof o/ Theorem 5) whose Atiyah Chern class is ~=0 but whose usual Chern 

class is O. 

Remark. If X = S U ( 3 ) ,  a=  1 and we have the example given in [5]. 

Proof. 

):  = i f ? ,  

We keep the notation used in the proof of Theorem 6. Then, if X = M / V ,  

~~ �9 v~) 

~ o = ~ r  �9 v ~ ) = 5 ~  
~ e Z - ~  

We also set ~ = c(h~: a e ~ - ~F); then ~ = $ $ ~ ,  where 3 = Z(~~ �9 

PROPOSITION 7.1. 

origin as 

Every invariant closed form o9 on M / ~  may be written at the 

~ §  h~> co ~ A ~ ,  (7.6) 

where ~ e ~' and ~ is orthogonal to ~#v" 

Proof. I t  is easily checked that  co must be of type (1, 1); w =  ~,~h~heo~A ~8. 

By invariance (under M), ~ . ~  h~ < ~ -  fl, h> ~o ~ A ~ = 0 (h e ~) and thus h~ = 0 (~ 4fl) .  

Setting h~ = 2~, we have eo = ~er~§ ~t~ r ~ ;  we would like to define a linear form 

~t on ~) by <2, h~>=2~. We must show that  if ~ + f l = ~ ,  2~+2~=43; and this is so 

since deo = 0. Indeed, 

0 = do)(e~, ~, e~) 

= ~([e~, e-z], e~)-  o~([e~, eA, ~ ) +  ~([e,, e~], e~) 

= +_N~,~(~z- 2~ + ~ )  

and since N ~ , ~ 0 ,  2~=2~+2~. Q.E.D. 

From (7.6), the Dolbeault theorem (see Theorem 3 above), and (5.3), it follows 

that  a basis for Hi(X,  fs consist of forms c o , = ~ §  (~, h~)w~| ~ where ~eh' 
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is orthogonal to []~. I t  is easily checked tha t  do)~ = 0, ~e% = 0, and e% is ~ -~ 0 ~ r] = 0. 

Now if ~EO'  (then ( r / ,h r~=0) ,  it follows from D.G., eq. (6.1), tha t  c l (E ' )=e  %. On 

the other hand, ~7 is an invariant  (1 ,0 ) fo rm on M / V  and d~]=~E~+_~+~([e~,e_~])= 

~ + - , r §  (~, h ~  eo~| e5 ~. Theorem 7 follows from this. 

8. Some Properties of Homogeneous Vector Bundles 

(i) Endomorphisms of Homogeneous Vector Bundles 

Let ]z be a compact complex manifold and let E-->E--> Y be an analytic vector 

bundle. Then H~ Horn (E, E)) is not only a vector space but also a finite dimen- 

sional algebra, the (associative) algebra of endomorphisms of E denoted a(E). As 

usual, E is termed indecomposable if no exact sequence 0--> E'--> E--> E"--> 0 splits 

analytically. Now a(E) is related to the indecomposability of E as follows: I f  E is in- 

decomposable and ~Ea(E) ,  the characteristic equation of ~v has holomorphic, hence 

constant, coefficients. Thus the eigenvalues of q~ are constant, and, if ~ has two 

distinct eigenvalues, this would give a splitting E = E ' r  E". Thus a(E) is an algebra 

consisting of multiples of the identity (1-dimensional subspace) plus a nilpotent ideal; 

i.e., a(E) is a special algebra ([1]). The converse is clearly true and we have 

P~OPOSITIO~ 8.1 (Atiyah.). E is indecomposable ~ a(E) is a special alqebra. 

Let now EQ-->Eq--->X be a homogeneous vector bundle over a C-space X =  M / V =  

G/U. Then if ~:U--->GL(E ~) is reducible, E q is decomposable; on the other hand, 

may  not be irreducible and E q may  still be indecomposable (L(U(n)/Tn)). Thus we 

m a y  a s k : i f  r  ~) is irreducible, then is E q indecomposable? 

T H ~ O R ~  8. I /  Eq-->E~->X is a homogeneous vector bundle over a C.space 

X = G/U = M / V ,  then, if ~ i8 irreducible, ]~q is indecomposable. 

Proo[. The proof is done in five steps. 

(i) We shall show tha t  Q(E "~ is a special algebra; by Theorem 5, it will suffice 

to do this when X is K~hler. I f  then 11 = 11 r fi0, Q i it = 0 and Q is the complexifica- 

tion of an irreducible representation of the compact group V. I f  ~ is 1-dimensional, 

the result is trivial and thus we may  assume tha t  r ~ = 0 where Z(~ ~ = center of 

G ~ Thus ~ is essentially the complexification of an irreducible representation of a 

compact  semi-simple group and we may  use the theory of weights ([26]). 
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(ii) We denote by V ~, V",.. .  irreducible g-modules with highest weights 2, a . . . .  

and by E Q, E ~, ... irreducible 5~ with highest weights Q, v . . . . .  Then, by Theo- 

rem K(w 2), 
a(E ~) = ~ V -~ | H~ V ~ | Hom (E ~, Eq)) ~ 

= ~ V -~ | (H~ V~)| (E ~, EQ)) ~~ 

= ~ V-k| (E~| Horn (E q, Eq)) ~~ 
e D(g) 

Now those ~ E a(E) such t h a t ~  EV ~ | (E ~ | Hom(E e, Eq))~*~-Hom (E q, Eq) ~0 are simply 

the multiples of the identity automorphism (Schur's Lemma). I t  will suffice to show: if 

kv-~i | (e~ k | gz) E V -~ | (E a |  (E q, Eq)) ~~ (it ~ 0), 

then each gz is nilpotent. For this we may prove: if 

~(e~ @ ga) E(E ~ | Horn (E q, Eq)) ;~ (~:~0), 
k 

then each g~ is nilpotent. We prove this latter statement assuming that  ~0 is semi- 

simple ((i) above). 

(iii) Let E~= ~ E~t, Be= ~ Eq~ 
4 t E Z (D ~k ~ ~ (e) 

be decompositions into weight spaces relative to a Cartan sub-algebra ~)~ 5 0 and let 

e~EE ~j, %~EE% be weight vectors. For an E~, there wiU be in general several e~j's 

If ~ E (E ~ | Horn (E ~ E~)) ~, then by Sehur's lemma 

= ~. e 5 | g~ (g~ E H o m  (E q, Eq)). 
1 

Since h o ~0 = 0, we have for h E [), 

0 = ~ ()t~, h) e~ | g~ (%~) + e~. | Q (h) ~ (%~) - e~ | (e~, h~ ~ (%~), 

which implies that,  for each ] and all k, either 

(a~) 9r or 

(a~) g~(%~) =# 0 and e(h)g~(ee,) = <e~ - ~,  h> ~(e e~). 

We may examine (a2), and, in this case, g~(%,)eE ~ - ~  and either 

/ r  - -  (:r g~(q~)-O for all k and some N) or 

(~) ~ = 0. 

I t  will suffice to examine (aa); i.e., go. 
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(iv) Now e ~ o ~ = 0  (for all ~ELF) and thus 

0 = e~ o ( ~  % | gj) 
] 

The terms with an e 0 (0-weight) occurring here are 

5 2(e~)e_~ | g~ + 5 e o | Q(e~)g o - e o | goQ(e~) 

and since the eAj are a basis for E ~, this term must  = 0. Thus having picked out a 

particular term e 0 | go, there exists e e E  -~ (e m a y = 0 )  and g_~E Horn (E q, E q) such 

tha t  2{e_~)e=e 0 and then 

2(e~)e | g_~ + e o | Q(e~)g o - e o | go ~(e~) = 0; or 

(~5) g-~ = ~(e~)go - goe(e~) �9 

(v) From (~a) in (iii), it follows that,  for ~g=0, (g_~)N= 0 (large N ) a n d  thus the 

mapping go//: ~~ (E ~) defined by  go//(e~) = [go, e(e~)] ( = (a~)) gives a nilpotent repre- 

sentation of 5 ~ But  then gH 0 = 0 and go e Hom (E ~, E~) ~ and either go = 0 or all g~ = 0 

((~5)); in either case, we are done. 

(il) The Embedding Theorem for Homogeneous Bundles 

Let  X be a complex manifold and L-->L-->X a holomorphic line bundle. For a 

suitable covering (U~ of X, we may  take a local nowhere zero section ai of L[U~; 

then any section of L] U~ is given by  Z - ~  ~ (z) a~ (z) (z e Ui). Let  H~ = H~ i:); if 

for each x E X ,  there exists a a E H~ such tha t  a(x):#0,  then we may  classically 

define ~: X-->Pg_I(C),  where N = d i m H ~  Indeed, if ~1 . . . . .  ~N give a basis of 

H~ then E I U, is given by  the mapping Z - ~ [ ~  (z) . . . . .  ~v(z)] where [$0 . . . . .  ~N-1] 

are homogeneous coordinates in PN-I(C). I f  H-->PN-I(C) is the hyperplane bundle, 

then ~ - I ( H ) = L .  The same remarks hold for a vector bundle, provided tha t  the 

global sections generate the fibre at  each point. 

Now if X = G / U  is a C-space, then L-->L-->X is a homogeneous line bundle, 

and thus the canonical complex connection (w 5 and [11]) is defined in L. 

THEOREM 8. Let L be such that there exists a non-zero a in H~ Then the above 

mappinfl ~ : X--> PN-I  (C) is defined. Furthermore, ~ gives a projective embeddinq o / X  i/ 

and only i / c  I (L), when computed/rom the canonical complex connexion, is positive de/inite. 

Proo/. Since L is homogeneous, we may  write L = L  ~ for same holomorphic 

Q : U--> GL(L ~) (dim L ~ = 1). Let  a : X--> L Q be such tha t  q(x) ~ 0; if x' E X ,  and if g E G 
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is such t h a t  g(x) = x', t hen  (g o a) (x') = g (a(x)) 4= 0 in (LO)x. (Similarly, for homogeneous  

vector  bundles if the global sections generate  the  fibre a t  one point ,  t hey  do so a t  

all points.) F r o m  this, the  first  s t a t emen t  in the  theorem is clear. 

We now define T : H  ~ (Lq)-+Le-->0 as follows: for a E H  ~ (Lq), then  v ( a ) =  a(e) where 

we consider ~ as a holomorphic  funct ion f rom G to  L ~ satisfying a(gu)=~(u -1) a(g) 

(g E G, u e U). Then,  for u e U, a e H ~ (L~ Q(u) ~ (a) = T p* (u) a (p* = induced representa-  

t ion on cohomology).  Indeed,  z ~* (u) ~ = (~* (u) a) (e) = a (u -1 e) = Q (u) a (e) = ~ (u) z (a). 

Thus,  if K q = k e r  T, the sequence O-->Kq-->H~ is an exact  sequence of 

U-modules.  Le t  G = GL(H ~ (L~)) and  V = {~ e G I ?(K Q) ~_ K~ t hen  G~ V = PN-1 (C). Now 

the holomorphic  representa t ion  ~*:G-+G satisfies ~*(U)~_ V the  induced mapp ing  of 

G/U to G/V is just  ~:G/U---->PN-I(C). I f  U ' = ( e * - I ) ( v ) ,  then  U'~_U and ~. is in- 

ject ive if and  only if U'=U. But  ~:U--->GL(L ~) extends  to ~':U'-+GL(Lq), and 

thus  to  prove  the  Theorem,  we mus t  show: 

LEMMA. Let X = M / V  be a C-space, let Q:V--->GL(L Q) be a 1-dimensional repre- 

sentation. Let ~.~ be the curvature o/ the canonical complex connexion in the bundle 

L~ --> M / V. Then ~q = (2~V-~- i )  -1 ~ represents Cl(L ~) and ~q is positive-de/inite i /and 

only i/ Q does not extend to a C-subgroup ~ ~ V. 

Proo/. I n  the nota t ions  of w 1, ~o = (2 g V~-I) -1Z~z~ _ ~+ (~, a )  ~o~ A &~. Since H~ q) :~ O, 

we have  t h a t  (~, ~)>~ 0 for ~ E ~ + - ~ + ;  if, for some a, (~, ~ ) =  0, then  we m a y  ex tend  

to  ]? where ~0 = ~o r v~ �9 ~_~. If,  conversely, we m a y  ex tend  ~ to  V, then,  for some 

:r E ~.+ - ~F +, e~ ~ ~0 _ 50 and  then  ~[e~, e_~] = ~(h~) = (~, a )  = 0. Q.E.D. 

I )EFINITIOI~  8.1. A holomorphic  mapp ing  ~:G/U-->PN_I(~) is called equi- 

variant if there  exists ~*:G--->SL(N,~) such tha t ,  for any  g e G ,  ~*(g)Y(x)=~(gx) 

(xeO/v). 
PROPOSITION 8.1. Any mapping ~ :G/U--+P~-I(~) is analytically equivalent to 

an equivariant malaping. 

Proo]. I f  5: is defined b y  means  of global sections of a homogeneous  line bundle  

L~-->G/U, t hen  ~* m a y  be t aken  to be the  induced representa t ion  on H~ ~) and  

then,  f rom the proof of Theorem 8, ~ is equivar iant .  Bu t  any  mapp ing  ~ : G/U--> P~_~ (C) 

is b y  global sections of ~-1 (H), and any  line bundle is analyt ical ly  equivalent  to a 

homogeneous line bundle.  Q.E.D. 

The  following theorem was given wi thout  proof in w 1, where it was s ta ted  t ha t  

a differential-geometric proof could be given. Using the  proof  of Theorem 8, we give 

a direct  proof. 
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THEOREM. Let X = G / U  be a C-space a~rl let Lq-->Lq--~ X be a homogeneous line 

bundle. Let ~ be as in the proo/ o/ Theorem 8 (~q = c 1 (LQ)), and assume that ~e has 

n - r  negative eigenvalues and r O-eigenvalues (n = dim cX). Then 

H q ( X , s  for q < n - r .  

Proo/. B y  the  remarks in the proof of Theorem 8, we m a y  find a C-subgroup 

D V such tha t  ~ extends to ~" and furthermore dim ~ / V = 2 r  and ? I V  is a C- 

space. Then we have a holomorphic fibering ~/V-->M/V-->M/? .  As in w 2, there 

is an (Er~ such tha t  E :~ ~ H* (M/V,  C Q) and E~ 'q = H  e (M/~ ?, F~ q) | Hq(?/V,  ~). Thus 

E~ 'q = 0 (q * 0) and H p ( i / V ,  F~ q) = H p (M/?,  i~ q) = 0 for 0 ~< p < n - r = dim cM/ t  7, since 

Lq-->M/~ is a negative line bundle. Q.E.D. 

Remark. This theorem seems to hold, in some extent,  for general compact ,  com- 

plex manifolds. We can prove it for r = n -  1, n -  2, and for all r provided t h a t  we 

replace L by  L"  for a suitable ~u >0 .  

(ill) Extrinsic Geometry of C-Spaces and a Geometric Proof of Rigidity in the Kiihler Case 

We shah now use the above proposit ion about  equivar iant  embeddings to have 

a look at some homogeneous sub-manifolds of PN(C), Let  X and X '  be compact  

homogeneous complex manifolds and write X =  G/U, X ' =  G'/U', where G, U, G', and 

U'  are connected complex Lie groups. Fur thermore,  let Q:G--> G' be a holomorphie 

homomorphism,  and let / :X-->X'  be a proper  holomorphic mapping.  

D E F I N I T I O N  8.2. The mapping  / is said to be equivariant with respect to Q if, 

for any  x E X  and gEG, 
/(g. x) = e(g)"/(x)-(1)  (8.1) 

Since ] is proper, /(X) is a sub-var ie ty  of X' ,  and equivarianee implies t ha t  t(X) 

is in fact  a non-singular sub-variety.  Thus we m a y  define the normal bundle N r of 

](X) in X ' .  Indeed,  we have over  /(X) the exact  sequence 

o -~ L~(~) -~ L~. [ / (X)  - ~  N~ - ~  0. (8.2) 

We remark  now tha t  we m a y  assume in the sequel t ha t  / is an  embedding.  I n  fact, 

/(X) is clearly a homogeneous complex manifold, and the mapping /:X-->/(X) is a 

homogeneous fibration. More precisely, in the cases we shall be considering, G and  G' 

will be semi-simple, ~ m a y  be assumed faithful, and hence we m a y  write / ( X ) =  G/O 

for some analyt ic  subgroup ~___ U. 

(1) It  is due to Blanchard that any surjective ] with connected fibres is equivariant. 
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Then / is just the projection in the fibration 

O/u-a/u~e/O 

xL/(x). 

All statements we shall make about  injections /(X)-->G'/U' will " l i f t"  to X =  G/U. 

We may  describe an equivariant / as follows. Let  xoEX be the origin; then any 

x E X may  be written as gx o (g E G) and ](x) =/(gxo) = ~(g)/(Xo). In  particular, for u E U, 

](Xo) =](uxo)= ~(u)/(xo) , which implies that,  taking x'0 = / (x  0) to be the origin in X' ,  

Q(U) c U'. Thus the equivariant mappings are given by  the representations ~:G-+G'  

such tha t  ~(U)~ U', and this mapping is an embedding if and only if Q(U)= 

Q(G) n U'. 

PROPOSITION 8.2. The normal bundle N t o/ an equivariant embedding is a homo- 

geneous vector bundle, 

Proo/. Lf(x)~ Lx  is the homogeneous bundle obtained from the adjoint representa- 

tion Ad of U on ~/tt, and Lx, I f (X)=]- l (Lx, )  is the homogeneous bundle obtained 

by  the representation A d o  ~ of U on ~'/tt'. :Now since / is an embedding, the injec- 

tion Q :g-->g'  induces an injection of U-modules g/lt-->g'/u' and we have the exact 

sequence of U-modules 

0 -~ ~ /u  --> ~ ' /u '  --> q --> O, (8.3) 

and Nf is just the homogeneous bundle obtained by the action U on q. Q.E.D. 

For a U-module r, we denote by  (~) the corresponding homogeneous bundle and 

by Hq(r) the groups Ha(X, (~)). We have an exact diagram of U-modules 

0 0 0 

O--->~/u-->~'/u'-> q ~ 0  

t ~ t 
0--> fi -+ g' ~ g ' / ~ - - - > O  

0 --> u --> It' -->11'/1I--> 0 

0 0 0 

(8.4) 

From w IV, we get the two diagrams of M-modules: 
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0 
1' 

O - - > g  
i' 

O - - > g  

0 

0 0 

--> H 1 (1[') --> H I (ll'//u) --> 0 

t t 

-~ H~ -~ H~ -+ 0 

---> g' -~ g ' /g --> 0 

H ~  ') --> H ~  -+  0 

0 0 

(8.5) 

and 0 --> H * ( u  ') - >  HU(u' /U)  - ~  0 

H 1 (q) --> 0 

0 

(8.6) 

We wan t  to use (8.5) and  (8.6) to obta in  geometr ic  informat ion  abou t  the  posit ion 

of /(X) in X ' .  Clearly the  k e y  to the  s i tuat ion lies in the  groups Ha(If ~) ( q = 0 , 1 , 2  . . . .  ), 

and  we have,  unfor tunate ly ,  been able to t r ea t  these groups only in ve ry  special cases. 

Case I. We assume t h a t  [g ,u ' ]_~u '. Then  H~ ' and Hq(u')=O (q>0) .  We 

let t i c  g' be the  sub-space spanned by  g and  u' .  

PROPOSITION 8.3. G ' / ~  is a C.space and the injection / :G/U- ->G' /U '  is the 

injection o/ a fibre in the homogeneous /ibration 

a/v~ a'/v' ~ a'/O. (8.7) 

Proo/. The fact  t h a t  fi is a complex sub-algebra of g' follows f rom the relat ion 

[g, It'] _~ u'. The  rest  of the  Proposi t ion is then  clear. 

Remarks. q = g'/fi and the  normal  bundle N I is jus t  the  restr ict ion of z~ -1 (Lc,/5) to 

a fibre in (8.7). This is the  homogeneous  bundle given by  the  act ion of U - c O  on 

g ' / f i .  :For example ,  if we let F(n) = U(n) /T  n then  the  inclusion U(n - 1) --> U(n) in- 

duces a fibering 

F(n - 1) --->F(n) --> Pn-1 (C) as given in (8.7). 
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Let  Y be a compact non-singular sub-manifold of a complex manifold X, and 

let Ny be the normal bundle of Y in X. One may  consider the de/ormations of Y 

in X; a 1-parameter family of such is given by a family Yt(tEC, Itl< ~) of compact 

complex sub-manifolds of X such tha t  Y0 = Y. The manifolds Yt as abstract  manifolds 

will not in general have the same complex structure as tha t  on X, although they 

are all differentially equivalent. I t  was shown in [18] that,  if H I ( Y , ~ y ) = 0 ,  then a 

neighborhood of 0 in H~ ~r )  parametrizes a complete local family of sub-manifolds 

varying Y c X ;  we shall use this fact to give a geometric proof of the rigidity of 

K~hler C-spaces. 

Case II .  Let X = G / U = M / V  be a K~hler C-space. We shall prove: 

THEOREM. The complex structure on X is locally rigid. 

The proof is done in two steps: 

(i) Let  /:X-->PN=PN(C) be an equivariant projective embedding of X (w (ii)), 

and let X t ( X o = X  ) be a 1-parameter variation of the complex structure on X. Then 

we shall show: 

PROPOSITION 8.4. There exist projective embeddings It: X---> PN such that the/amily 

(/t(Xt)) gives a variation o/ the sub-mani/old /(X) o/ PN. 

PROPOSITION 8.5. For a suitable projective embedding/:X-->PN, there exists a 

complex curve gt C SL(N + 1, C) = G' such that /t(Xt) =gt([o(Xo)). 

Remark. Intuit ively we shall show tha t  any deformation Xt of X can be "covered" 

by projective embeddings /t of Xt, and then we shall show tha t  the variations of 

the equivariantly embedded sub-manifold / ( X ) c  P~ are given by  the orbits of /(X) 

under G', and this shows that  the manifolds all have the same complex structure. 

Proo/ o/ Proposition 8.4. Let  X be a compact complex manifold with Hi(X, ~ )=  

0 = H2(X, s and let E-->E-->X be a positive line bundle such tha t  the global sec- 

tions of E give a projective embedding. I f  Xt is a variation of X =X0, then we know: 

(i) H I ( X t ,  ~ t )  = 0 = H~(Xt, s (upper-semi-continuity, see [16]), 

(ii) H2(Xt, ~*) = H2(Xt, Z) by  (i), 

(iii) there are positive line bundles Et---->Et-->Xt by (ii) and since the Xt are 

differentiably equivalent, 

(iv) dim H~ ~t) = dim H~ G0) (by upper-semi-continuity and since t h e  sheaf 

Euler-charaeteristic I (X,  Et) is constant) and 
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(v) the global sections of Et-->Xt give projective embeddings / t :Xt- ->PN and the 

sub-manifolds /~(Xt) give a deformation of /0(X0) by (i)-(v) (for more details, see 

[16], w 13). Finally, by  w IV, if X is a K~hler C-space, then 

Hx(X, fl)=O=H~(X,O). Q.E.D. 

Proo/ o/ Proposition 8.5. We first remark that ,  for a suitable equivariant em- 

bedding / : X--> PN given by  global sections of a positive line bundle Ee --> E q --> G//U --- X, 

it will suffice to prove tha t  

Hq(X, ~f)=O (q>O) and H~ ) (g'=sl(N + i, c)). 

This is so, since by Kodaira 's  theorem, this will prove that  all variations of /(X) in 

PN are given locally by the action of G'= SL(N+ 1, C) on /(X) (the stability group 

being Q(G)c_G'). From (8.5) and (8.6), it will suffice to find a Q:U-->GL(E ~) such 

tha t  ~ 6D~ (i.e., E p is positive) and Hq(ll ') =0 for q = 0 ,  l, 2. We suspect tha t  this 

is in fact true for all Q 6D~ but  we do not know a proof. However, if 

g = ~ e ( e ~ ) ,  ~ ~  

and if we take ~ = gl = 1 ~ a, 
aGZ+-~F+ 

then we may  use Lemma 5.9 of [21] and a calculation just as in the proof of Theo- 

rem 4 to prove that  Hq(ll')=O for all q. (Then the bundle EQ=K -1 where K is the 

canonical bundle-- the  embedding is classically called the canonical embedding.) We 

shall not go into the details now, and thus we conclude the proof of the theorem. 

Remarks. (i) In  Case I above, the normal bundle is trivial; NI~-X• and 

H~ ~f)=g/fi, which is just as it should be. 

(ii) We may  give in any case a geometric proof of the fact tha t  H ~  

Indeed, we make a g-reductive decomposition g ' = g  �9 ][ and in (8.5) it is seen that  

7(H~ Let  r = H ~  ') and let ~ = g e r _ c g  '. Now H~ ') is a g-module and thus 

is a g-module; since r is a sub-algebra, ~ is a sub-algebra and in (8.5), k e r r =  g'//~. 

Geometrically, this means tha t  S (with Lie algebra 3) is the stability group of the 

var iety /(X) ~ IN. Since G = automorphism group of X (see w IV), there is an analytic 

onto homomorphism a:S--> G and if we let K =  ker a, K is a closed analytic sub- 

group of SL(N+ 1, C) which leaves /(X)~PN pointwise fixed. However, this is im- 

possible unless dim X = 0 or dim K = 0, provided tha t  / (X)c  PN is in general position. 

Q.E.D. 
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