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9. Deformation Theory; Part I 

(i) The Infinitesimal Theory 

Let Y be a compact complex manifold and suppose tha t  on the diffcrentiable 

manifold Yd we are given a 1-parameter family of complex structures Yt(Y0= Y). 

If  U = (Ui} is a covering of Y by  complex coordinate neighborhoods, with coordinates 

(z~ . . . . .  z~) in Ui, the structure on Yt is given by transition functions 

zj(z~,t) r 1 zn. =/~i (z~ . . . . . . .  t) ; 

letting 0~j = [ dt J t=0 

and 0~j = (0~j . . . . .  0~), 

the deformation Yt of Y is represented infinitesimally (or linearly) by  the 1-cocycle 

0~j E H 1 (N(U), O) (N(U) = nerve of U). Further  details concerning the relation between 

the variat ion of structure of Y and its parametrizat ion by  Hi(y, O) are given in 

[19] and [20]; we shall be concerned with the special cases when Y=non-K~hle r  

C-space or Y =  X •  T 2~ where X is a K/ihler C-space. We remark tha t  by  corollary 1 

to Theorem 2, the structure o f  X is infinitesimally rigid. By way of notation, we let 

X=G/U be a non-K/~hler C-space with fundamental  fibering T~->X-->Jf, f(=G/~ 
a K/ihler C-space, and we set )~b=~•  the manifolds Rb are the most general 

compact homogeneous K/~hlcr manifolds. I f  Y = X or Xb (where b may  be zero), the 

group HI(Y,  Or) is a representation space and for us this interpretation will be 

crucial. 
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DEFINITION 9.1. Let y = ~ b  or X and let Yt be a 1-parameter deformation of 

Y(Yo = Y). We say that Yt is a homogeneous de/ormation if all the Yt are homo- 

geneous complex manifolds. 

PROPOSITION 9.1. Let Y = X  or ~-~ and let OEHI(Y,(~)  be the in/initesimal 

element representing a 1-parameter de/ormation Yr. Then Y~ is a homogeneous de/orma- 

tion ~. 0 is invariant under the compact automorphism group of Y. 

The proof will be given later. 

THEOREM 9. Let Y = X  or ~a. Then 

Hq(Y,  | ~- A q �9 m (9.1) 

(as M-modules) where A q = {p | C (~)} (9.2) 

with induced representation (1 | 1), and 

= {~ | c(~)} 

with induced representation (Ad | 1). 

(9.3) 

The following are corollaries of Theorem 9 and its proof. 

COROLLARY 1. X is a homogeneous principal bundle T~a~ x L , ~  (Proposition 5.2) 

and the connected automorphism group A~ is isomorphic to G• T 2a where G acts by 

lilting the action o/ G on ~ to X and T ua acts as structure group in the principal 

/ibering. 

COROLLARY 2. ,Let Y =  X,  gE//~ 0),  and Co s be a component o/the conjugated 

connexion /orm o/ the canonical complex connexion in T 2 a ~ X  L J~. I n  (9.2), the ele- 

ments p e p  may be interpreted as vertical holomorphic vector /ields in the [iberinq 

X L . ~ ;  a generic (=indecomposable) element in A 1 is o/ the /orm p| and a generic 

element in B 1 is o] the /orm 7~*(g)| Coj. 

Proo] o/ Theorem 9. The proof is done in three steps: 

(i) In the notations of w 1, we may write L ( X ) =  n*d and L (X)=  fi*%; we know 

that Hq(~,  ~*%)= 0 (q >0)  and H~ ~ h ) ~ g .  I t  is almost obvious that  the induced 

representation of g on H~ ~I~) is "Ad"; for us, the geometric construction given 

now will be useful. The space H~ ~*~) is given by the analytic functions/:G--->~* 
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such that  /(gu)=Adu-1/(g) (uE 9) ;  for such an / and g,g'e$, (go/)(g')=/(g lg,). In  
^ 

the fibration O~GLG/O,  we may identify To(G/P ) with fi* under ~ , .  Letting 

X 1 . . . . .  X~ be a basis for 6, we define analytic functions Xi:G-->fi* by Xt(g)= 
~ , (Adg- lX , )  (the geometric motivation being clear). Since, for uEO, X~(gu) = 
7t, (Adu -1Adg-IX,)  = u -1 o ~ ,  (Adg-lX~), we have a linear mapping ~ : g-->H~ ~*d) 
and it will suffice to show that  ker ?'=0. If 2~Eg and ~(2~)=0, then ~ , ( A d g X ) = 0  

for all g E G and thus exp )~ acts trivially on ~ .  However, this is impossible unless 

2~=0, for then we would have a representation of G into A~ a non-discrete 

kernel which contradicts the semi-simplicity of G. Thus we may in this way identify 

with H~ the action of ~ on g is given by 

g o f~(g') = 2(g-~g ') = ~t, (Adg ' -1Ad g)~) = (Adg)~) (g'); i.e., 

g o 2~ = (Ad 9X). (9.4) 

(ii) If  Y=X~, formula (9.1) is just the Kiinneth relation. Indeed, with obvious 

notation, 
H ~ (~:~, O) ~- H ~ (R,O~) | H ~ 1 (T2~, (3) $ H 1 (T 2a, Or2.) 

and the induced representation is (AdO 1 ) � 9  1. 

(iii) To derive (9.1) for X, we use Proposition 5.3. The exact sequence of vector 

spaces 

O-+f i / u -+~ /u -+~ / f i -+O or O-+p-+rt*-+fi*-+O 

is an exact sequence of P-modules (since [fi, lt] ___If) giving rise to the exact sequence 

of vector bundles over )~ 0-+~-->11"-+~t*-+0 where ~ is the trivial bundle )~• 
r A d  A d  

From Theorem 3 and the exact cohomology sequence, H q ( ~ , ~ 2 ) = 0  (q>0)  and 

H~ (X, n'a) ~ P �9 g with induced representation 1 r  Now apply Proposition 5.3. q.W.D. 

For later use, we record here the calculations of some more groups. Let  X = G~ U 
be non-K/~hler and consider the Atiyah sequence 

0 - + L - >  q - >  T(X)->0;  (9.5) 

this sequence is constructed from the principal fibering U---->G-+ G/U. 

PROPOSITION 9.2. 

(i) H~163  and Hq(X,I~)~-p| 

(ii) Hq(X,Q)~$| (~) (q~O). 

(q > 0). 
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Proo/. Letting T2~--->X-->X (X=G/U, X=G/O) be the fundamental fibering, 

U is normal in ~ and the exact sequence of vector spaces 

0-+u-+fi-+fi/u-+0 

is an exact sequence of either U- or 6~-modules. Letting p = f i / u ,  we may apply 

Theorem 3 and have that  Hq(X, (~t,:a))=0 for all q which gives 

H q+l (-~, (fiA*d))~=Hq( $2, (P.dd)) ~=Hq(X, ~) | P. 

Thus H q+l (X, (fis~d)) = 0 (q ~= 0) and H I(X, (fi,;d)) ~ P, the induced M-action being trivial. 

Since L =UAd, an application of Proposition 5.3 completes the proof. 

Remark. The exact cohomology sequence of (9.5) is 

a ] a a a 

...--> p | C(q-~)~ g | C(q)---> {g | C(q)} ~v {p | C(q)} h p | C(~)-->... ; (9.6) 

to find the maps ~q, we simply observe that  the ?'q are all zero. 

( i i )  Obstruct ions  to  D e f o r m a t i o n  

The second aspect of our general theory of deformations of C-spaces is con- 

cerned with the notion of "obstructions" to deformations as discussed in [19], w 

Letting U=(U~} be a covering of Y as above, if 0,2EHI(y,@) are represented by 

cocycles {0~j), {2~j}EHI(N(U),| we may define a new element {0,2}eH2(Y,| by 

(0, 2}~jk = �89 ([0~j, 2jk] + [),~j, 0jk]). (9.7) 

I t  is known (and easily checked) that  if 0 is an infinitesimal deformation element, 

( 0 , 0 } = 0  in H 2 ( y , o ) ;  if 0,2 are deformation elements, then 0+; t  may not be and 

the obstruction here is just 2(0,2} (since (0, ~} = (2, 0}). We shah n o w  calculate this 

bracket ( , } in case Y=Xr or X; a maximal Abelian subspace Dc_HI(Y,O) will 

be a "maximal"  possibility for a deformation space, and in w 10 we shall explicitly 

construct a local family which is infinitesimally represented by D. 

Letting Y be arbitrary for a moment and .~.~_H~ a sub-algebra, there is 

a natural mapping ]:~.| If 0| O'|174 then 

we shall prove in w 10 below (see also [19], w 4) that  

(0| 5), 0 ' |  5)'} = 0 |  5)' A Lo.5)+O'| LoCo'+ [0, 0'] | 5) A 5)'; (9.8) 

here I,o(5)' ) = Lie derivative of 5)' along the vector field 0. 
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TH~ORnM 10. In the notation o/ Theorem 9, the ( , ~ on H I ( y , O )  is given as 

/ollows: 

(i) A 1 is always Abelian and (A 1, BI~ =0, ) 

(ii) i/ a= 1, B 1 is Abelian, 

J (iii) i/ a > 1, there exist maximal Abelian subspaces o/ B 1 o/ the /orm (9.9) 

D~=~| a where ~ _ g  is a Cartan sub-algebra, and o/ the /orm 

JD~ = ~ | CCO where CO E H ~ 1 ( y,  C). 

Proo/. I f  Y = ~a  = ~ • T ~ ,  then  A 1 ~= H 1 ( T 2~, @T) and B 1 ~= H ~ ( 2~, ~) ~: ) | H 1 ( T 2a, ~T). 

Since, for O EH~ Co EHI(T2~,~T) , LoCo=O , the s ta tement  (i) follows easily 

f rom (9.8). 

I n  case Y =  X (where T2a-->X-->f~), AI~O | C a and an indecomposable element 

p QCOEA 1 has the following interpreta t ion (see w p is a vector  field along the 

fibres on the fundamenta l  fibering and CO is a component  of the canonical complex 

connexion in the fibering T2a--> X'-> f(. Since the connexion is right-invariant, JLpco = 0 

and because [O, P] = 0, i t  follows tha t  A ~ is Abelian. Now B 1~ ~ | C a and an  inde- 

composable element g |  ~ has the following interpretat ion:  g is induced by  the 

act ion of exp ( tg)EG on X = G / U  and again D is a connexion form. We recall t h a t  

G~-~z*H~ O) t ransforms under  M by  Ad and tha t  the forms CO are M-invar iant .  

L]~MMA 9.1. The (0, 1) ]orm Loco on X is b-closed and trans]orms under M by Ad. 

Proo/. We recall tha t  Lg~ = i(g) d~ + di(g) Co = i(g) dCo (since Co is of type  (0, 1). 

Thus LgCo=i(g)~ where ~ is a component  of the curvature  form of the canonical 

complex connexion; ~ is thus M-invariant .  The proof follows f rom this and the 

following fact:  if Y is a manifold, T an au tomorphism of Y, ~, v respectively a form 

and a vector  field on Y, then T*(i(v)q~)=i(T,lv)T*cf. 

LEMMA 9.2. L~G) is -~ cohomologous to zero. 

Proo/.(1) LgCoEHi(X, ~) (a priori); however,  H I ( X , ~ )  t ransforms invar iant ly  by  

M whereas L~Co transforms strict ly non-invariant ly.  Now equat ion (1.8) in w 1 coupled 

with the non-invariance of L~Co tells us t ha t  Lg~NO. 

COROLLARY. I /  g,g' E~; Co, Co' EH~(X,~)  then g| /\ L~,CO,,,O. 

The proof of (9.9) now follows immedia te ly  from (9,8). 

(1) This proof may be done alternatively as follows. Since ~ = ~ is the conjugated curvature 
tensor of the canonical complex connexion on X in the homogeneous bundle Tua-->X-)-f(,~ is a 
(1, 1) form on 2~. Thus La~=i(g)~ is a ~-closed (0, 1) form on X, and, since HI(X,~)=O, La~=~f 
for some function ] on X. We may now lift everything back up to X. 
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10. Deformation Theory; Part II 

In  w 9, we obtained an infinitesimal deformation space D r  where Y =  ~ a  or X; 

we shall now construct explicitly a local family which is infinitesimally parametrized 

by  Dr. In  the K/~hler case, the family will even be global. 

(i) The Kiilrler Case 

The most general homogeneous compact K/ihler manifold is of the form ~:a= 

X •  T 2~ where X is a K/ihler C-space. We shall see tha t  the question of deforming 

these manifolds falls in the general pat tern described by the relationship between 

the automorphisms of a compact  K/ihler manifold Y and the deformations of a com- 

plex fibre bundle over Y. We begin therefore with a discussion of this latter topic. 

We first recall some results from [19]. Let  Y be a compact K/~hler manifold, 

A a connected complex Lie group, and A--->P--->X a holomorphic principal bundle. 

Then one may  vary  the bundle structure of P while holding the complex structure 

on Y "fixed",  and, in the same manner  as H i ( Y ,  ~)) parametrizes the variation of 

structure on Y, H I ( Y , s  parametrizes the bundle deformations of A--->P-->Y. 

(Here L = P •  where A acts on a by  Ad.) To see this, we let {U~) be a suitable 

covering of Y such tha t  P has transition functions /~j:U~ fl Uj--->A. I f  we have a 

1-parameter variation P(t), P(O)= P, of P, then P(t) is described by  transition func- 

tions /~j(t) : U~ N Uj--~ A, /~j(0)=/~j. The infinitesimal cocycle tangent  to this family is 

given by ~e = {~j} E H 1 ( Y, s  where 

~ij = Ad/,r (/,s (t)- 1 [ ~ ) ]  t=0 ) . (10.1) 

There is a bracket (without differentiation) { , } : H 1 (Y, 12(P) | H I(Y,  s and in 

order tha t  $ E H I ( Y ,  12(P)) be tangent  to a deformation, it is necessary tha t  {$, ~}-~0. 

D~r I~c IwIo~ .  We say tha t  Y satisfies condition N if the following holds: There 

exists a basis o51 .... D~ of H I ( Y , ~ )  (=~H~ such that,  i f ~  and ~ '  in H I ( Y , ~ )  

are written in terms of this basis and ~ A r ~0 ,  then ~5 A r =0 .  

Let  I = H ~ 1 6 3  and assume henceforth tha t  Y satisfies condition N. Then 

the mapping I | H 1 ( Y, ~)  ---> H 1( Y, s  is an injection, and, letting I_~ l be a maximal  

abehan sub-algebra, we may  state 

Tr tEOI~M 11. The subspace ~ | HI ( Y, ~ ) globally parametrizes a /amily o/ de/or- 

mations o/ A ---> P---> Y. Furthermore, it is maximal in l | H 1 ( Y, ~)  i / d i m  H 1 ( Y, ~ )  > 1. 
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Proo/. Let  H* be the torsion-free part  of Hi(y,  Z), construct the covering fibra- 

tion H~---> Y*--> Y, and lift P to a bundle A-> P*---> Y*. If 2El, D E H I ( y , ~ ) ,  we 

shall construct geometric transformations O(~.~,)(t) (~)= 0(t) (y) (7 E H*) on P* such that  

Q(0) (~) is the canonical action of H~' on P* and such that  the bundles P(t)= P*/ 
~(t) H* give a deformation of P= P(O) with infinitesimal tangent 2| 5.  

(a) Construction o/ the bundles P(t). Connecting the fiberings A--->P*--->Y* and 

H* -+ Y--> Y, we have a diagram 

H* --> P*--> P 

II Io*l  
H~--> Y*--> Y which we now make more exphcit. 

By definition, P* c y* • p = {(y*, p) E Y* • P[~(y*) = a(p)}, and then (r* (y*, p) = y*. For 

~EH~, y*EY*, the action ~ .y*  is just the covering-transformation by 7, and if 

p* = (y*, p) E P*, then 7 .  p* = (~y*, p). 

The Lie algebra [=  H~ L(P)) is just the algebra of infinitesimal bundle auto- 

morphisms of P which project to the trivial action on Y; for 2 E [, the 1-parameter 

group exp (t2) of bundle automorphisms of P is defined. We define the transforma- 

tion 0(t)(y) (~ e H~) on P* by the equation: 

o(t) (,) p* = (,y*, exp ( (t ffo) 2) (p)) (p* = (y*, p)). (10.2) 

Furthermore, we define the complex manifold P(t) by 

P(t) = P*/o(t)  (H~). (10.3) 

I t  is clear that  P(t) is an analytic principal bundle with group A over Y and P(0)=  P.  

In fact, the family P(t) obviously gives a deformation of P. 

(b) The Transition Functions o/ P(t). If (U~} is a suitable covering of Y, the 

vector field ~ is given in Ut by a holomorphic function ~ :  Ui-->a such that  2i = 

Ad/~r in U~ • U s. For fixed t, we define mappings a~(t) : Ut-->A by a~(t)=exp(t~); 
then a~(t)/~j=/ijaj(t) in UiUj, and the action of a(t)=exp(t2) on P is given locally 

in U~ by a(t) (z, :r = (z, a~(t) (z) ~) (~ E A). 
:Now, since Y is K/ihler, we may assume that  we have chosen the covering { U~} 

and, for each i, a point Z(i)E U~, such that; U~ N Uj n Uk~ = o implies 

fz(j)59 fZ(k)___fZ(k). (10.4) 
,)z|(i) O) - -  z(i) J z ( o  
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With this in mind, we assert that  the transition functions {/~j(t)} of P(t) are given by 

/,~(t)=(exp [ Czr \) l ,)  (10.5) ('L,, / , ,  

For example, we cheek that  ltj (t)/jk (t) =lik (t); 

lir [~t Jz(,)~z~ " 1 ~  �9 (exp/[tjz(r )~(~) Co)\,~r "1~ 

=exp (t (f:((:'c~)2,)" (exp (t f:(s:)c~)~t,) .1,, .1,~ 
,,) 

Using this, the rest of the calculation may be modeled after the discussion given 

in [17], w 2. 

(c) The Infinitesimal De/ormation. If  /~(t) is given by (10.5), then 

l,,(t) pl,, (t)] 
[ at _lt=o 

= / ~  \ \ . j  z(~) / / , s =  

Thus, by (10.1), the infinitesimal tangent ~= {~%} to the deformation P(t)is given by 

~j = Uz(~) ,2~. To complete the proof of the first part of the theorem, it will suffice to 

show that,  under the Dolbeault isomorphism, ~ corresponds to ~| 
_ ~ z ( i )  To do this, it will suffice to show that  ~5 corresponds to the 1-cocycle v~j-jz(~)~5 

in H I(Y, s Since Y is K~hler, E~ = d/~ = ~/~ in U~, and the sheaf cocycle representing 

D may be taken to be /~ - / j  in UiN Uj. But we may take /i(Z)=j'zZ(i)eS. ( Z e U 0 .  

(d) Completion o/ the Proo/. The general element of ~| H i ( y ,  g2) is of the form 

= ~ 1  ilj | Dj. The condition [2~, ~lj] = 0 clearly allows us to make the same con- 

struction for ~ as we did above for ~l | D. Finally, the fact that  Y satisfies condi- 

tion N will assure that  [ |  is maximal if d i m H ~ ( Y , ~ > l .  Q.E.D. 

s Remarks. (i) If P is the trivial bundle Y x A ,  then H~ if ~=~.j=l 1~) 
Eoj E ~| Hi(Y,  ~), then the above construction amounts to defining a representation 

Q~(t): H~-->A by ~)~(t) (y) = 1-~=1 exp (t) (S~ &) )'J), and then setting P(t) = Y* XH*A. (The 
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fact  t h a t  q~(t) is a representa t ion  is guaran teed  b y  the  assumpt ion  ~ E ~ |  

I f  ~ = ~ | r3, then  the  t rans i t ion funct ions of P(t)  are given b y  fij (t) = exp (t ~ rzr r ~ ~Jz(i)  ! l ,  

and, since the  /ij(t) are constant ,  the  bundles P(t) all have  holomorphic  connexions. 

(ii) I f  d im A = 1, A = C*, then  the  above  construct ion reduces to the  construc- 

t ion of the  Picard Variety ~ of the  compac t  K/~hler manifold  Y. 

(iii) Suppose now t h a t  Y = X a = G/D • T ~a is a K/~hler homogeneous  space where 

X = G / ~  is a C-space. Then: H 1 (Xa, 0Y~o)~ {g | S 1 (T 2a, ~)}  �9 {(3 a | H 1 (T 2a, ~)}  = A $ B. 

The  elements  in B correspond s imply  to the  var ia t ions  of the complex s t ructure  on 

Tea; the  result ing manifolds  are all homogeneous.  The  manifold  )~a satisfies condi- 

t ion  N,  and,  if a > 1, a m a x i m a l  abel ian subspace of A is of the  form ~)| HI(T 2a, ~)  

where ~ is a Car tan  sub-algebra of $. 

THEOREM. The subspace {~ |  2a, ~-~)} ~ B gives a global deformation space of 

Xa which is locally universal. I / h  E 3, 5)~ H i (T 2a, ~) ,  the manifold j~a (h, ~)) corresponding 

to h |  is non-homogeneous and is constructed as follows: From the trivial bundle 

G--> T2a• T2a, one constructs by Theorem 11 a family of bundles P(h.5)(t)=P(t) de- 

forming the trivial bundle, and then .Xa(h, Co)=P(1)/U. 

Proof. All s t a t ements  in the  theorem are immedia te  except  perhaps  the  non- 

homogene i ty  of X ~. This is implied by  

PROPOSITION 10.1. The connected automorphism group of X a is Gh| ~a where 

Gh = {g 6GIAdg(h ) =h} .  By considering Xa(h, ~)) as a bundle over T ea with fibre G /~ ,  

the automorphisms o/ T 2~ lift to ~a and this is how T 2~ acts. The group Gh is the 

identity component o/ the complex Lie group o/bundle automorphisms o/G/U---~Xa-->T 2a 

which induce the identity automorphism on the base space. 

Proof. We have  a fibering H*---> G / ~  • (3 a--> )~a, and  the  au tomorph i sms  of )~a 

consist of those au tomorph i sms  which are invar ian t  under  H*. F r o m  this,  i t  follows 

easily t h a t  I A~ GI• T 2a where G 1 is a complex subgroup of G. Then  we have  

t h a t  G 1 = {g E G I g" exp h = exp h" g} and  thus  G 1 = Gh. 

Remarks. (i) The  deformat ions  of X a m a y  be t hough t  of as pa ramet r i zed  b y  a 

fami ly  of "cones"  over  B ( ~ C  a*) where this "s ides"  of the  cones correspond to  the  

Car tan  sub-algebras  of ~. I t  follows f rom Proposi t ion  10.1 tha t ,  if h is a semi-simple 

e lement  in g (so t h a t  Gh is abelian), t hen  the  manifo ld  Xa(h, c~) is unobs t ruc ted .  

Thus  the obstruct ions  occur on a lower dimensional  sub-var ie ty  of the  deformat ion  

space const ructed above.  
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(ii) If  g E g, 5 )EHI(T  2a, ~), then we may always construct a family of manifolds 

~:a(g, Co; t) with infinitesimal tangent g| Co E Hi(.~ a, 0~,). I f  ~EG, then ~ will in gen- 

eral be only a real-analytic automorphism of f~a(h, Co), but we have 

PROPOSITIO)r 10.2. Consider the variations o/ .X~ described above as all having 

the same underlying C ~~ structure. Then the C ~~ automorphism determined by the action 

o/ ~ E G on .~=cooXa(g, (9) establishes a complex analytic equivalence between the/amilies 

Xa(g, (9;0 and Xa(Ady(g),Co, t). Briefly: The in/initesimal action o/ y on H t ( X  ~, 0~,) 

can be covered by a mapping between the de/ormation /amilies. 

Proo]. The proof will follow from the proof of Theorem 13 below. 

(ii) The non-K~ler  Ease 

Quite clearly the same construction as above will not yield the variations of a 

non-Ki~hler C-space X ( = M / V = G / U ) ,  this is due primarily to the fact tha t  if 

Co E HI(X,  ~), then 9(9 =4=0 in general. Before beginning the construction of the de- 

formations of X, we record a few preliminary remarks. The space C~ = 

F~c(X, T(X)')  of C:r 1) forms on X is on M-representation space, and from w 

we have 

c ~  ~ ~ V)t~((11)'@ V-2} ~0. (10.6) 
~eD(g) 

The forms in each component V~| ((n)'| V-~) ~~ are real-analytic on X, and M acts 

on this subspace by 3.| Letting n = f t ~ p  (f i=c(e_~:ztE~+-~F+)) ,  the element 

( o E H I ( X , ~ )  is represented in V~174174 V)~'~((n)') ~' by the dual p '  of some p e p .  

Furthermore, in the notation of w 9, LgCo (g E g) transforms by Ad. Thus ig(9 E g | 

((11)'| g')~~ ( '=contragredient  representation). On the other hand (see w 1), 

dCo=~Co=dp'= ~ (a ,p}  ~o~A (9~ 

= - ~ (~, p} Co~ | (e,)' (10.7) 

(since p _~ centralizer of 5 ~ in g). 

PROI'OSITION 10,3. 
- 

Lg(9 C g | ((n)' | g')" 

is real-analytic and is equal to 

- g  | ~ (~,p~ ((9~| (e~)'). 
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Furthermore, the element - g | p' 6 g | ((~)')" represents a real-analytic/unction / =/(g, ~) 

an X and ~/=LaD. 

Remark. The Frobenius reciprocity law reads: 

C ~ (M/V)  ,,, ~ V ~ | (V-~) ~~ 
l~D(g) 

and the statement g| E C:c(X) is to be interpreted in this sence. 

We shall explicitly construct a 1-parameter family X(g, Co; t )=X(t)  of non-homo- 

geneous manifolds (except for t = 0) and show that  g | D E H ~ (X, (9) infinitesimally 

represents the deformation X(t) of X = X ( 0 ) .  

I t  is convenient to take a slightly broader point of view of deformations than 

that  adopted at  the beginning of w 9. A family of complex structures Yt (Yo = Y) 

defined on a single C ~ manifold Ya is given as follows: 

Let  {U j} be a suitable covering of Yd by coordinate neighborhoods. The family 

Yt is given by 

(i) n C ~ complex-valued functions ~1 (y, t) . . . . .  ~ (y, t)} = {~' (y, t)} defined on 

Uj such that  the ~'(y, to) define holomorphic coordinates in U j c  Yt0. (10.8) 

(ii) transition functions h~(~j(y, t), t) which are holomorphic in the ~r t) 

and the complex variable t and which define the coordinate changes 

in Yr. (See [20], w 1.) (10.9) 

We denote by the symbol " . "  the derivative of anything with respect to t; the 

symbol " ""o means " . "  taken at t=O. As in w 9, the 1-cocycle 0 = {0~j} 6HI(N(U) ,  (9) 

representing the family Yt is given by 

% = (0~j . . . . .  0~)  = {0 ,5) ,  

where 0~ = (h~) 0. We wish to find a Dolbeault representative for O. 

PROPOSITION 10.4. A Dolbeault representative /or 0 is given by the vectorial- 

(O, 1)-/orm C e H ~ 1 7 4  where (I)[ Ui=((l)~ . . . . .  (P~) and 

r162 o. (Here -~ is taken on Yo = Y.) (10.10) 

Proo/. Since 
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~h5 (~(y, t), t) (r t))0 = (]~,~($r t), t))o. we have (r176 ~ a$~(y,t) ~=o 

By definition of the Dolbeault isomorphism, a(r ) represents 0. 

Let H~(Y,|  H~ H I ( y , ~ )  have the usual meaning and suppose that  

~ g H ~  is a subalgebra. 

:PRoPOSlTIOI~ 10.5. Let 0 , 0 ' ~ ;  Co, D ' ~ H ~ ( Y , ~ ) .  Then, under the Dolbeault 

isomorphism, {0 | ~, O' | ~)'} is represented by 

O| A Lo, Co+O'| Lo~'+ [0, 0'] | ~5 A ~'.  (10.11) 

Remark. This proposition was promised in the proof of Theorem 10. 

Proo/. If (U~} is a suitable covering of Y, then there exist C ~ functions /~ de- 

fined on U~ such that  ~51U~=D~=a/~; /~./j E Z~(N(U),~) is the (~ech representative 

of 5), In the same way, we find f for c5'. Denote /~ - / j  by r and /~- / j  by eS~j. 

Then, if 01 U~ = 0~, by definition 

{0 o ~,  0' | ~'},~ = �89 ([~,~0,, ~;~o;] + [~;,o;, ~,~o,]) 
l - -  _ t  / 

= ~ ( o ~ , ~  - ~;j~r [0~, 0;] + ~ ~r ~;~) 0~ 

- �89 ~r (0;- ~r  0~. 

Because of the alternating principle (i.e., we may always skew-symmetrize cochains), 

and the (easily verified) fact that  (~SA cS')ij~ = ~-(D~D~- w[i~jk), we find that  

{0 | co, O' | (o'},jk = (~ A ~o'),j~[O,, o~] 

+ 1_ (~,f lO,.  ~;~) - ~j~(o, .  r o, 

+ 1 (~5[j (0;. r - ~5;k (0;. G~j)) 0,. (10.12) 

From (10.12) it will suffice to show that, under the Dolbeault isomorphism, (LoSf)~j = 

(0,. cS[j). But in U,, ~[ = ~/; and 

d {(exp tO)* Co; -- C~ d 
t / jr=0 

dt t lJt~o 

Thus (L0cS')~j is represented by 

O ~ . l ; - O , . / , = o ~ . ( / ; - / ; ) = o , . ~ , , j .  Q.E.D. 
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DEFINITION. The compac~ complex manifold Y is said to satisfy Condition D 

with respect to 9~___H~ if the following hold: 

(i) j ;  9~|  f2)-->HI(y,  0)  is injective 

(if) if 0 E ~, CO E Hi(X ,  f2), then there exists a C ~ function /=/(0 ,  Co) such tha t  

Lo co = ~ /. 

We now see what  Condition (if) in the above definition means geometrically. 

Let  Y be a compact complex manifold, and let 0 ~ Z ~ e x ~ P ~ * ~ 0  be the canonical 

exact sheaf sequence (here ~ * =  sheaf of non-zero holomorphic functions). There is 

the cohomology mapping ~ : H ~ ( Y, ~)  --> H 1 ( Y, ~*), and each CO E H 1 ( Y, ~) determines 

a line bundle ~(CO)EHI(y, ~*). The Atiyah sequence for the principal bundle P(CO) 

of ~(CO) is 0 - ->I - ->Q(&)-~T(Y)-+0 ,  and we have the connecting homomorphism 

//0 (y, O) s  x (Y, f~). (10.13) 

PROPOSITION 10.6. For O EH~ 6)), 

LoCo=-~~ in (10.13). 

Proo/. The following was proven in [17] (and may  be easily checked directly): 

Let  Y be any complex manifold, and A - + P - +  Y an analytic principal bundle with 

Atiyah sequence O--~L(P)-->Q(P)-->T(Y)--+O. Then, if ~ is the (1, 1) curvature form 

arising from a connexion of type (1, 0) in P (i.e. a connexion respecting the complex 

structure), and if 0 E H ~ (Y, @), then ~o (0) = i(O) .~. where ~0 : H 0 (y ,  O) --> H 1 (Y, L(P)) 

is the connecting map. Recall tha t  a (1, 0) connexion ~o in P is given by  a certain 

collection of (1,0) forms ( ~ }  (o9, in Us) with values in L IV, ,  and then =.= (~co,} 

is the (global) curvature form. For a line bundle with transition functions {/,j}, we 

may  find in each Ui a C ~0 (1,0) form o~l such tha t  ~ l o g / i j = c o i - w j ,  and then 

(~co~} =.=. is a suitable curvature form. 

Returning to the proposition, if { Us} is a suitable covering of Y, we let CO E Hi( Y, f2) 

be given by the ~ech cocycle (~o~j); w e  may  find C ~176 functions ~, in U~ such tha t  

eoij = ~ -  ~j in U, N Uj, and then {~i} is a Dolbeault representative for CO. The line 

bundle ~/(CO) transition functions /~j = exp og~j, and ~ log/~j = ~og~j = ~ - ~ j .  Hence a 

curvature form for P(CO) is given by ~ i = - ~ t =  -~CO. On the other hand, LoCo= 

i(O) dco = i(O)~Co, and the Proposition follows from this. 

COROLLARY. Lo~o'O i/ and only i/ the action o/ exp(t0) on Y lilts to bundle 

action in P(CO). 
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TrtEOREM 12. Let Y satis/y Condition D with respect to a subalgebra 9~ c H~ ( Y, 0),  

and assume that the ]orms Co E H I ( y  �9 ~)  and the /unctions / = / ( 0 ,  Co) are chosen to be 

real analytic.(1) 

(i) Every indecomposable element O| E H~(Y, ~2) is tangent to a 1-parameter 

amily o/ de/ormations Yt = Y(O, Co; t). 

(ii) / /  1~ ~ ~ is maximal abelian, then ~ | H 1 (Y, ~)  parametrizes a local de/orma- 

tion space, which is maximal in ~ |  H 1 ( Y , ~ )  i/ dim H i ( y , ~ 2 ) > l .  

Proo/. Let  (U~} be a covering of Y with coordinates Zi = (Z], - ,  Z~) in Ui. We 

shall construct real-analytic functions ~ ( Z , t )  in U~ (with $~'(Z, 0)=Z~') and transi- 

tion functions h~.(~(Z,t),t) satisfying (10.8)-(10.9) with the further condition tha t  

o | Co I u, = ~ ~ (~(z, t))o F~. 

In  view of Proposition 10.4, this will prove (i) in Theorem 12. In  order to con- 

struct the $~(Z,t)= ($~(Z,t . . . . .  $~(Z,t)), we shall use the Frobenius Theorem in the 

real ana]ytic case, which we now state in a convenient form. (Of course, the New- 

lander-Nirenberg Theorem ([23]) would do in the C ~ case, but  the full strength of 

this is not necessary here.) 

Suppose tha t  we have given a global section (I)(t) of T(Y) |  T( Y)' (i.e., a vector- 

valued (0, 1) form) with (P(0)=0 which is real-analytic in Y and in the variable t. 

We consider the system of partial  differential equations 

~ - Z r (Z, to) ~ ~ = 0 ,  
(10.14) 

~_~=0 
Ot 

and we seek n functionally independent real-analytic solutions q)= ~(Z ,  t). The Fro- 

benius Theorem states tha t  the integrability condition for (10.14) is 

~(Ia(t) - {(I)(t), (P(t)} -~ 0 (in t), (10.15) 

and when (10.15) is satisfied, a solution exists. Furthermore,  we see from (10.14) 

that,  for a solution $~(Z,t),-~(r i.e., the global vector-valued 

(10.1) from ~(t)] 0 gives the infinitesimal deformation to the family of manifolds 

Yr = Yt defined by  (10.14). Thus, to prove (i), we must  produce a real-analytic 

(1) By using a real-analytic metric, this is always possible. Also, the forms with which we are 
working on non-K~hler C.spaces satisfy this condition by Proposition 10.3. 
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~9(O'E~;t)=~P(t) with ~(0)=0 and [ dcD(t)]t=o=O| 

which satisfies (10.15). Clearly we mus t  write (I)(t) as a series in t wi th  leading t e r m  

(0 | c3)t and  de termine  the  higher coefficients to  be rea l -analyt ic  and  such t h a t  #P(t) 

satisfies (10.15). 

Suppose we write formal ly  

r ~qj(0| § (Lo~o=-~/) 
1-0  

and  t r y  to  de termine  the  coefficients qj to mee t  our requirements .  Set t ing a~( t )=  

~-o qj(O | leo) t j+l, t hen  (10.15) is equivalent  to  

Ran (t) - {an (t), an (t)} -- 0 rood t ~ +e. (10.16) 

The  following formulae  m a y  be checked inductively:  

2 
{(0 | f ~ )  t j+l, (0 |  t ~+1} = j + k + 1 ~(0 | f i+k+l~) t~+k+2, (10.17) 

2qtq~k--k -~(0 | f+k+l s ~+k~2 (10.18) {a~( t ) ,a~( t )}=. .~o:  j + k + l  

Set t ing % = 1 ,  we m a y  thus  de termine  the  qi (j>~l) induct ive ly  f rom ( 1 0 . 1 7 ) a n d  

(10.18). Indeed,  we have  

2qiq~ (10.19) 
q~= ~ i + / c + 1 "  / + k = n - 1  

F r o m  this it  follows t h a t  q~= 2 ~. This is t rue  for  n= O, and,  if t rue  for  n - 1 ,  then  

q~= ~ 2qiqk 2(n) 2 ~-1 2~" 
i + k = n - 1  7g ?~ 

Thus,  if we set  I I ] ] l=Sup ,~ r l / ( y ) l ,  t hen  the  series r174163 i+1 con- 

verges to a vec tor -va lued  form ~P(t) sat isfying all our  requi rements  for I t [<  (211/ll) -1 

This completes  the  proof  of (i). 

Now if we have  a general  e lement  $ = 5 h i | (3 i e ~ | H 1 (Y, ~ ) ,  t hen  the  proof  is, 

in principal,  the  ve ry  same as above  for h |  ~ .  The  condit ions [hi, hi] = 0  will guar-  

antee  t h a t  we m a y  recursively de termine  the  coefficients qj as above  (i.e., all the  

obstruct ions  vanish).  The  rest  of the  t heo rem follows in the  same w a y  as Theo- 

rem 11. Q.E.D. 
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Remarks. (i) The above Theorem clearly yields the local variations of structure 

of a non-K/ihler C-space (by Proposition 10.4). This construction has a slightly dif- 

ferent flavor from the examples of deformations known to the author. There are two 

differences which we mention: 

(a) These non-K/ihler C-spaces are the only examples known to the author where 

an infinite series is definitely needed to define a deformation through an element 

~EHI(Y,~)). Indeed, for algebraic curves, complex tori, hypersurfaces in P~, Hopf  

surfaces, etc., the vector forms (I)(t) defining the deformations are polynomials in t. 

(That the series in our case is infinite follows from /(0, CO)50, which has the geo- 

metric interpretation that ,  on a K/i, hler C-space, there is no linear connexion in- 

var iant  under the automorphism group.) 

(b) To the author 's  knowledge, the known examples in deformation have been 

constructed in what might be called an extrinsic fashion; i.e., the construction has 

used on auxiliary space such as a projective space in which the var iety is embedded 

(hypersurfaces in PN) or the universal covering space (complex tori and Hopf  mani- 

folds) or, for algebraic curves, the Siegel space. These auxiliary spaces help one get 

information about  the deformed manifolds (e.g. the jumps of structure on the Hirze- 

bruch examples), whereas we do not know much to say about the manifolds X(h, Co, t). 

We do know tha t  these manifolds are non-homogeneous, and what  we shall do is to 

determine, to some extent, their automorphism groups. 

I f  X is a non-Ki~hler C-space, then there is a fibering T2~-->X-->X and the 

complex Lie group T ~ of automorphisms of X will clearly "live on" to the mani- 

folds X(h, CO, t) (essentially because these automorphisms leave h| fixed); what  we 

shall see now is tha t  the subgroup Gh = (gEG[Adg(h)= h} is the maximal subgroup 

of G which still acts on X(h, Co, t), and this shows tha t  the manifolds X(h, Co, t) are 

no longer homogeneous. 

(iii) The Question of Equivalences 

Let  X =  G/U= M / V  be a non-K~hler C-space. From w 10, (ii) we have associated 

to each g E g c H ~ (X, 0),  CO E H 1 (X, ~) ,  and t([ t I small) a non-homogeneous complex 

manifold X(g, CO;t). Letting " ~ "  denote biregular equivalence, it may  well happen 

tha t  X(g, CO; t)~X(g, Co; t) for distinct triples (g, CO; t) and (g', CO'; t'). We shall now show 

tha t  this equivalence occurs whenever t= t', CO = CO', and g ' =  Ad m(g) for any m E M; 

it is our feeling that  these are essentially the only equivalences. 

THEOREM 13. X(g, CO; t ) ~ X  (Adm(g), CO; t). 
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Proo]. The proof will be done in three steps. 

(i) Let  D, D' be two domains in C n , / : D - - > D ' a  bi-holomorphie mapping. Suppose 

given in D a vector field O, a function h, and a l-form ~; also assume that  we have 

similarly 0', h', and ~' in D' and that  / , (0)= 0', /*(h')=h, /*(r 

LEMMA 10.1. 

-~'W', then 
I/  w' is a /unction in D' such that h'O'| 

hO | ~(w' o/) = h(O(w' o/)) qJ =-~ (w" o h). 

Proo/. Let pED,  p '= / (p )  ED'. Then, by assumption, h'(p')O'(w')(p')cf '(p')= 

-~w'(p'). We then have: 

h(p) O(w' o 1) (p) q~(p) = (/* h') (p) / .  O(w') (p') of(p) 

= h' (p') O' (w') (p') ~(p).  

If t is any tangent to D at p, 

h(p) O(w' o/) (p) @f, t>~ = h' (p') O" (w') (p') <[* ~', t>p 

= h ' (p ' )  O'(w')(p ' )  <~', l.t>~, 

= <Fw' , / , t>~.  = <1" (F w'), t>~ 

= <~(w' o / ) ,  t>~, 

the last step being because / is holomorphic. However, the equation 

h(p) O(w' o/)  (p) <q~, t>v = <~(w'/), t>, 

it what was to be proven. 

(ii) Let  g E $ c H  ~  l (X ,~ ) .  In w (ii) we associated to g and 5) a 

C ~ function /g on X defined (up to a constant) by -~/g=Lg(ff))=i(9)~:o. 

LEMMA 10.2. I/  g '=Adm(g)  for some m E M ,  then m*/'g=/g where m acts as an 
automorphism on X. 

Pro@ I t  will suffice to show that  m*-~/g.=~/o. If t is any tangent to X, then 

<m*~/~,, t> = <~/~,, re.t> = <@')  ~ ,  m.t> 

= <~Co, m . ( m ,  lg 'h  t)> = <m*~c5, Ad m-l(g ') A t} 

= < ~ ,  g A t> --- <i(g) ~ ,  t> 

= <~G,t>. Q.E.D. 

(iii) We consider the complex manifolds Y =  X(g, ~; t) and Y ' =  X(9", 5); t) where 

g' =Adm(9).  Both manifolds have the same underlying differentiable structure and 

1 3 -  6 3 2 9 3 3  Acta mathematica 110. I m p r i m 6  le 5 d6cembre  1963. 
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we may define a C ~ mapping m:  Y-->Y' to be simply the action of m E M  on M/V;  

it will suffice to show that  m is complex analytic. 

In  w 10, (ii) we constructed global vector-valued forms (I)= qb(g, 5); t) and (I)'= 

(I)(g', 5); t) such that  the local differential equations 

n 

/ t  
(10.20) 

defined local complex analytic coordinates w and w' on Y and :Y' respectively. From 

(10.11) it follows that  (I) and r  are of the form /og|174 where m.g=g'  

and, by Lemma 10.3, m*]o.=/g. 

Let D ~  Y be a coordinate neighborhood, D ' =  re(D) and we. may assume that  

D'  is a coordinate neighborhood on Y'. Since the equations (10.18) define the re- 

spective complex structures in D and D', to prove Theorem 13 we may show: if 

w' on D' is a solution of 
n t0W' 

~'w'- ~1r ~ = 0 ,  

then the function w =  w 'o  m on D is a solution of 

~---=0 ~w - ~ (P~ ~z ~ . 

However, this follows from Lemma 10.2 and the above remarks concerning (I) and (I)'. 

Q.E.D.  

11. Some General Results on Homogeneous Vector Bundles 

(i) On the Equivalence Question for Homogeneous Vector Bundles 

X is taken to be a C-space G/U and all bundles are analytic bundles over X. 

Up to now, we have defined homogeneous bundles extrinsically as being associated to 

the fibering U--> G--> X by a holomorphie representation ~:U--> U'; we now give an 

intrinsic definition. If  A ~ P s  X is any principal bundle, we have defined the com- 

plex Lie group F(P) of bundle automorphisms of P :  

F(P) = {biregular mappings /: P --> P I/(pa) = [(p) a, p e P, a s A}. 
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There is a natural  homomorphism ~ : F ( P ) - > A ( X )  and P may  be said to be homo- 

geneous if [o(F(P)) is transitive on X; clearly extrinsic homogeneity ~ intrinsic ho- 

mogeneity. I f  conversely, (~(F(P)) is transitive on X, we pick a fixed point p o 6 P  

and let A ' c F ( P )  be the stability group of the fibre ~ i((~(p0) ). There is then a 

homomorphism a:A ' - ->A defined by  a(a')=a if a'po=poa; the bundle A-->P-->X 

is then associated to A'  -->F(P) -->F(P)/A ~ X. We have 

PROPOSITIO~ (Matsushima). The two de/initious of homogeneity are equivalent. 

D E F I ~ I T I O ~  11.1. I f  E, F are vector bundles of the same fibre dimension 

then E is equivalent to F, written E ~ F ,  if there is a ~ 6 F  (Hom(E ,F) )  which is an 

isomorphism on fibres. 

D E F I N I T I O ~  11.2. I f  E q, E ~ are homogeneous vector bundles, then they are 

homogeneously equivalent, written Eq~ E ~, if 1~, q ~ E T and ~0 may  be chosen to be M- 

invariant.  

LEMMA 11.1. E q ~ E ~ E  q is equivalent to E ~ as a U-module. 

Proof. (1.9) 

The converse is not true, for if ~ is any non-trivial representation of G, then 

~ I U = ~  ' gives rise to E q' and E q ' N l m ( m = d i m  E r but  E q ' ~ I  m. In  view of this, we 

should only speak of E q as being a homogeneous representation of the class of bundles 

E such tha t  E N Eq. This representation is unique in the following case. 

PROPOSITION 11.1. 11 E ~, E ~ are line bundles, then E q ~ E ~ E q ~ E  ~. 

Proof. Lemma 11.1 and w 6. 

We discuss briefly the two following questions: 

(i) Does an exact sequence of homogeneous vector bundles necessarily arise from 

an exact sequence of U-modules? 

(ii) I f  ] : E - > F  is an injection of homogeneous bundles, does it arise from an 

injection E ~ ---> F ~ of U-modules ? 

Clearly (i i)~ (i); we shall, however, give a counter-example to (ii) and two ex- 

amples to support (i) although we do not  know if it is true in general. 

Let  X = P~(C)= G/U where U = unimodular matrices of the form 

t (01i al~ ala~] 
U = a2a a2aJI;  

\0  as~ a3a/ j 
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t hen  the  l ine bundle  H= H%f a hype rp l a ne  is g iven b y  ~(u)=a11.  By  w 15, (i) a n d  

(ii) we have  H ~ (X, 1] s) :~ 0 if s > 0. Choose in tegers  ~, rl,  r2, r a such t h a t  - ~ + r~ > 0 

(i = 1, 2, 3) ; we then  ge t  non-zero mapp ings  7j:  H ~ --> H ri (?" = 1, 2, 3). Since the  divisors  

of 7j are  curves  in genera l  posi t ion,  we m a y  assume t h a t  the  7j are  never  s imul-  

t aneous ly  zero; th is  defines an  in jec t ion  ?" : H ~ --> I t  r' �9 lql r~ �9 H r~. Because  of L e m m a  

11.3 and  the  K r u l l - S c h m i d t  theorem,  ?" does no t  arise f rom an  in jec t ion  of U-mo- 

dules.  

W e  now give an  example  of an  exac t  sequence of homogeneous  vec to r  bundles  

which, unde r  one represen ta t ion ,  does no t  arise from an  exac t  sequence of U-modules ,  

b u t  which, under  ano the r  represen ta t ion ,  does. Le t  X be K/ ihler  and  le t  Eq--> X be 

a homogeneous  vec tor  bundle  wi th  suff ic ient ly  m a n y  sect ions (w 8). I n  the  no ta t ion  

of t h a t  w we have :  

O ~  F~---> H~  E ~) • X - > E ~ - ~ 0 .  

The  middle  bundle  m a y  be ob ta ined  e i ther  b y  the  t r iv ia l  ac t ion  of U, or by  re- 

s t r i c t ing  the  ac t ion  of G on H~ G ~ to  U. I n  the  f irst  case, we do no t  ge t  an  

exac t  sequence of U-modules ,  whereas  in the  second case we do. 

F ina l ly ,  we have  the  fol lowing propos i t ion  which will be p roven  in w 11 (iii). 

PROPOSITION.  I /  we have 0-->E-~ d im E q = d i m  E ~ = I ,  then E is 

homogeneous ~:~ E ,,~ E ~ /or some E ~ such that 0 --> E e --> E" --> E ~ --> 0 is U-exact. 

We formal ize  (i) b y  the  following defini t ion:  

DEFI iUITION 11.3. Le t  (S) :0- ->Eq-->]~-->E~-->0 be an  exac t  sequence of ho- 

mogeneous  vec to r  bundles.  W e  say  t h a t  (S) is strongly homogeneous if E ~ E ~ for some 

~r such t h a t  0 --> E ~ --> E ~ --> E ~ --> 0 is U-exact .  

( i i )  Extension Theory of  Homogeneous  Vector Bundles 

L e t  Y be an  a r b i t r a r y  complex  mani fo ld ;  suppose  t h a t  E - - > E - - >  Y,  H--> H--> Y 

are  ana ly t i c  vec tor  bundles  over  Y. 

D]~FINITION 11.4. E x t  (H, E), the  classes of extens ions  of H b y  E, consist  of 

those  ana ly t i c  vec tor  bundles  F - ->  F - >  Y such t h a t  we have  the  exac t  sequence 

(S) : 0 --> E --> F -~  H --> 0. (11.3) 

I f  we consider  the  vec to r  space Horn (H, E),  t hen  GL(E)•  is r ep resen ted  

on  this  vec to r  space as fol lows:  for ~ E H o m  (H, E) e E GL(E), h E GL(H), 
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(e • h) (~) = e~h -1. (11.4) 

I t  is known tha t  Ex t  (It, E) may  be given a vector space such tha t  

Ex t  (H, E)~-H~(Y, Horn (It, E)). (11.5) 

This isomorphism may  be made explicit as follows. Let  U = {Uj} be a suitable cov- 

ering of Y, set _N = N ( U ) = n e r v e  of U, and suppose tha t  E, I t  have transition func- 

tions eis : U~ N U s-> GL(E), h~j : U~ N Uj--> GL(H) respectively. I f  F E Ext  (II, E) has 

transition functions /~s:U~ N Us--> GL(F), then we may  write 

Define a mapping 
hi J"  

: Ex t  (II, E) - ~ H  1 (N(U), Hom (It, E)) 

as follows: $(F)= cocycle {TiJ} given by 

7~J = g~s h~s 1 : Ui N Uj -+ Horn (It, E) I U~ N Uj. 

I t  is not hard to check tha t  ~ sets up the isomorphism (11.5). 

Suppose now tha t  X = G/U is a C-space and let Q : U --> GL(Eq), a : U --> GL(E ~) 

give homogeneous vector bundles E ~ --> E Q--> X, E" --> E "--> X, respectively. Then we have 

H i ( X ,  Hom (Ea, E~))= ~ V~| HI(11, Horn (E ~, E ~) | V-~) ~" (11.6) 

~ 

(see w where g acts on V a |  l ( 1 1 , H o m ( E " , E  q)| ' '  by  ~ |  

TH]~OREM 14. Let X be a C-space and let E ~, E ~ be homogeneous vector bundles. 

Then E e E x t  (E ~, E ~) is strongly homogeneous r  Horn (E~176 i.e. ~(Ei 

is M.invariant.  

Proo/. I f  E E Ext  (E ", E ~) is homogeneous, then by  definition, there exists a 

holomorphic representation v : U --> GL(E ~) such tha t  E * ~ E and 0 --> E ~ --> E ~ --> E"-+  0 

is an exact sequence of U-modules. 

Conversely, such an exact sequence of U-modules gives a homogeneous element 

E E Ext  (E ", EQ). The proof is completed by  the following two lemmas together with 

the above discussion of the extension cocycle. 
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LEMMA 11.2. Let [ be a Lie  al4]ebra and let a, ~ be Z-modules. Then the classes 

o/ exact sequences o/ [-modules 0 ---> a -> c --> b --+ 0 are in  a one.to.onc correspondence with 

H 1(~, Hom (5, a)) 

L~MMA 11.3. Given the l~-modules E e, E ~ a n d  / E H l ( l t ,  Horn (E ~, Ee)), we /orm 

by Lemma 11.2 the exact sequence o/ a-modules 0 -+ E Q --> E ~ --> E ~ ---> O. Considering this 

as the trivial exact sequence o/ ~~ then E ~ is a l l = 1 1 ~ ~  , ~ / E  

H~(11, Hom (E ~, E~)) ~' in which case 0 --> E e --> E ~ --> Ea -+ 0 i8 u-exact. 

Remark.  Lemma 11.2 follows the usual pat tern  of extension theorems; we shall 

use the constructions in the proof several times in the sequel. 

Proof o/ Lemma 11.2 (Outline). Let  ~) : [ --> gl(a), a : ~ ---> gl([)) be the representations 

defining the [-modules a, 5 respectively, if / E H I ([, t t om (5, a)), then / E C 1 ([, Horn (5, a)) 

and d/=O.  If  kEf ,  a E H o m ( b , a )  

k o = = q ( k )  a - ~ a ( k ) ,  (11.7) 

and for k, k' E [, k'  o l(k) - k o f(k')  = - f[k, k']. (11.8) 

Define c = a e  5 and let yI:t--+gl(c) be defined by 

),I(k)=(e(0 k) f(k)~. (11.9) 
a(k)! 

The fact  tha t  yr[k, k'] = yi(k) yr(k') - yI(k') yi(k) follows by  a simple computat ion from 

(u.s). 
To complete the lemma, we must  show: / = d g  for some g E C ~  (5, a)) = 

Horn (5, a ) ~  c is equivalent to a ~ 5  as a Z-module, I f  / = d g ,  it  follows from (11.7) 

tha t  
0 

~(k)! 

for all k E [. On the other hand, if there exist x E Horn (a, a), y E Horn (b, 5), z E Horn 

(5, a) such tha t  for all k E [, 

Z 

(: (~ L)(; a(k)! 

then if follows easily t ha t  f = d ( x - l z ) .  Q.E.D. 
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Proo/ o/ Lemma 11.3. 
define Ys on It by 

We know that  1I = 11 $ ~o and, in the above notation, we 

y~(n)=(e:) /(n)~ hen, 
(~(n)/ 

. (v)=(~)  ~(O)) v~O" 
(11.10) 

Since [~o, rt] _c it, it  will suffice to show: 

~f[V, ?t~] = [~]/'(V), ~f(/b)] ~ / ~ Cl(l l ,  H o r n  (E", EQ)) g~ 

This is done by a straightforward computation which we omit. 

This concludes the proof of Theorem 14. 

Example. We give an example of the construction made in the proof of Theorem 14. 

Let X= G]U be a non-K~hler C-space with fundamental fibering T2a~G/ULG/I~=X. 

Writing p =~t/11, 1~*= g]~t, 1l= g/it, we have an exact sequence of U-modules 

0 ~ p ~ U * ~ * ~ 0 .  (II.II) 

Following the notations of w 9, (11.11) gives the exact sequence of vector bundles 

o - ~  p - ~  ( n ~ )  -+ ( ~ )  - ~  o (H.12) 

where p is now the trivial bundle O• Note that  (ft~d)=~-l(~t*d)=n-:(T(X)) and 
p is the bundle along the fibres of the fundamental fibering. 

Now $((n*)A~) eH:(X, Horn ((~), p)) ----H~(X, Horn ((ft~d),~13)) | p; furthermore 
~((rt*)Ad)~=0 since (11.12) doesn't split analytically. Let ~1=  sheaf of germs of holo- 

morphic (1, 0) forms on X, we have from Proposition 5.3 

H:(X, Hom ((ftAd), @)) ~ Hi(X, ~-1(~1)) ~= HI(~, ~1). 

The structure of H:(.f(., ~'~1) WaS given in w 4 and may be described as follows: let 

[fi0] = [fi0, 50] and let ~ s ~' be orthogonal to [5 ~ N ~; setting [~ = ~ z + _ ~  <~, h~} eo ~ A ~ ,  

the /z generate H I(X, ~1) ~ H e (X, 13). Written in C l(rt, Horn (ft*, p))~~ the general ele- 

ment of H I (X, Horn ((ft*d), p)) is of the form 

[~| (11.13) 
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Let Pl . . . . .  p,  be a basis of p, ~1 . . . . .  ~ a dual basis; then the 2j are orthogonal 

to  [~0] n ~. 

PRO1,OSITIO~ 11.2. Writinq T(X) = (lt~a), the element ~((fi~d)) E HI(X Horn ((ft~d), p)) 

is given by the M-invariant [orm 

~ # = -  ~ ~ <2j, ha> eo~ A eS~ | (11.14) 
i=1 aeZ+-yJ + 

Proo[. The proof consists of applying the proof of Lemma 11.2 and tracing 

through a few isomorphisms--we only give the outline. Notation:  if Y is a vector 

space, F # c  V a subspace with a splitting V = V# ~ Y b the projection of v E V on V# 

along V b is denoted by v]v~. What we must show is the following: for p E p, n * e  fi*, 

n E 1t, then 
n o (p + n*) = ad n(p)]~ + ~# (n) (n*) + ad n(n*)]~.. (11.15) 

The notation ~# (n) (n*) needs a little explanation : ~# E Horn (n | rt*, p) and by defini- 

tion, $#(n)(n*)=$#(n| If  nEp*, $ (p )=0  and (11.15) is trivial; we may assume 

n=e_~  for some ~ E ~ + - ~ o  +. Then 

n o (p  + n*) = [n, n*]~. = [n, n*]~ + [n, n*]~. 

and we are done unless n*=ea.  Then n o n = e _ a o ( e ~ ) = h ~ ] r :  in the right side of 

(11.15) only the middle term is # 0  and 

~# (e_a) (eg) ~-~ ~# (e_~ | eg) = -~- ~ <2t, ha> Pt  = (hg)p. Q.E.D. 

(iii) On the Deformation Theory of Homogeneous Vector Bundles 

Let Y be an arbitrary complex manifold, E--->E---> Y a vector bundle associated 

to the principal bundle A--~P--> Y where A is a complex Lie group. In  w 10, (i) 

we briefly discussed the deformation theory of the bundle P. There We were varying 

the bundle structure of P keeping A as the group; if A is a subgroup of A', from 

A - +  P--> Y we get A ' - +  P'--> l z and the deformation theory for P '  is in general quite 

different from that  of P. For example, if A = GL(r, C)• GL(s, C)and A ' =  GL(r+s, C), 

then deforming E in A maintains a direct sum decomposition E = E ' e  E"  while such 

is not in general the case for A'. Thus as a preliminary to studying the full varia- 

tion of P, we shall restrict the size of the group within which the deformation is 

taking place. 
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(or The Kdhler Case 

Let X =  G/U be a Kiihler C-space; for simplicity, U-modules will in general be 

rational U-modules (considering U as an algebraic group). We shall now give a 

cohomological description of homogeneous vector bundles over X. Let  E - + E - > X  be 

a vector bundle with principal bundle A--> P- ->X;  as usual, we have in this situa- 

tion the Atiyah sequence 0 --> L(P) -+ Q(P) --> T(X) --> O. 

THEOREM 15. A necessary and su//icient condition that P be homogeneous is that 

the structure group o/ P be reducible to a subgroup A ' c  A such that L(P')  constructed 

/rom A'--> P'---->X should satis/y 

Hq(X,L(P'))=O (q >0).  (11.16) 

Thus the homogeneous bundles are those bundles which, with a suitable structure group, 

are locally rigid. 

Proo/. If  (11.16) is satisfied, then we have H~176 and 

since H~ Q(P')) is the Lie algebra of infinitesimal bundle automorphisms, P '  is 

homogeneous (w 11 (i)). 

We prove tha t  homogeneous bundles satisfy (11.16). Let  ~: U-->GL(E q) be de- 

fined so tha t  E e H E  and set U'=~(U)___ GL(Eq). Then we have exact sequences of 

U-modules 

^ q* r ) 
0 --> 11 --> It --> 11 --+0, ~ ~ (11.17) 

0 --+ u' --> gl(E ~) --> gl(Ee)/u ' -+O,J 

where ~=kero,:lI--->gl(EO). Since, for uEU,  l~*ell, Ad ~(u)Q, (u*)=Q, Ad u(u*), 

we have from (11.17) the exact bundle sequences 

0 --> L -+ L --> L'  -+ O, } 

0 --> L' --> LO -+ Le/L' -+ O, 
(11.18) 

where L=G• L=G•  L'=-G• Le=Gxvgl (E  ~) and all actions are adjoint 

action or its composition with 0. From Theorem 2 we have tha t  Hq-I(X,]~ ' )  -~ 

Hq(X, L) (q>0)  and H~ Theorem 15 will be  proven if we prove 

LEMMA 11.4. Ha(X, L) = 0 (q > 1) and dim H 1 (X, L) = n(s, d) where n(s, d) = {num- 

ber o/ negative simple roots in ~ } -  {dim ~I N ~}. 
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Proo/. We refer  to  t h e  proof  of Theorem 2, w 4; as was done there,  we assume 

t h a t  11 is solvable (see the r emark  below). The weights of U act ing on li are the  

0-weight wi th  mult ipl ic i ty  = {dim ft 0 ~} and some of the  negat ive  roots. We assert  

t h a t  if hE l iND,  then  all root  vectors  e _ , ( ~ E ~  +) with (~,h>=t=0 also lie in ft. Indeed,  

u* E 11 lies in 1] <=~ ~. (u*) = 0; since 

1 1 
e. (e_.) <a, h> q* fie_., h]) <~, h> [O. (e_.), q. (h)] = 0, 

our assert ion is proven.  Thus,  d im (~ N ft)~< (number  of simple roots ~ such t h a t  

~ . (e_~)=0}  and  consequent ly  n(s,d)>~O. Now b y  using Proposi t ion 4.2, we conclude 

again  as in the  proof of Theorem 2 t h a t  d im Hi(X ,  L ) =  n(s, d). 

COROLLARY. Hi(X ,  ip)~=HI(X, ~o/~,). 

Remark. The proof  of the  l e m m a  when X = M]~ z and i z is not  abelian is done 

in the  same manne r  as when fz = T using the  following observat ion:  if t ~ = 3 �9 ~0 �9 ...  �9 15 0 

where 3 is abel ian and  the  ~o are simple, then  ei ther  ~. (15o)= 0 or Q. is inject ive on ~s. 

As an  applicat ion,  we prove  

PROPOSITION 11.3. Let X be Kdhler and let ( S ) : 0 - + E ~ - - > E - - > E ~ - + 0  be an 

exact sequence o/ line bundles. Then E is homojeneous .~ ~ ( E ) e H I ( X ,  E -* E ~) is M- 

invariant. 

Proo/. We consider first  the  following general  si tuation:  

Le t  Y be a complex manifold,  U ' c  GL(r, C), U " c  GL(s, C) complex linear groups,  

and  E ' - +  Y, E " - >  Y analyt ic  vector  bundles  wi th  groups U' ,  U "  respectively.  Then  

if we have  ( S ) : 0 - + E ' - - > E - > E " - - > 0 .  E has  group G(U', U")~GJL(r+s,  C) where 

where u ' E  U',  u " E  U",  and  ~E Horn (C r, C~). Thus,  as a vec tor  space, g(u', I t " ) =  

t I o m  (C r, C s) ~ it' �9 It" and  for 

11' g=  e o ( u ' ,  u") ,  r = ( ~ . y ' . r " ) e g ( , n " ) ,  
0 u ' /  

Ad g o ~/= u '  ~(u") -1 - (Ad u '  o ~') (~(u") -1) (11.19) 

+ ~(u")-l Ad u " o ~ "  ~ Ad u 'oT'  e Ad u " o 7  ''. 
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F r o m  this we have  0 - >  H o m  (E", E ' ) - - > L - - > L ' e L " - - > 0  where L, L',  L"  refer to 

E, E '  E "  respectively.  

I f  X is K/~hler, E ' ,  E "  are homogeneous  and  U',  U "  are chosen to sat isfy (11.16), 

then  we have  

H O ( X , s 1 6 3  ~o ~ ~ "  --> H (X, H o m  (E", E'))  --> H I (X, 12) -+ 0. (11.20) 

I n  par t icular ,  in the s i tuat ion where E' ,  E "  are line bundles, H~  12') = C =~ H~  12"); 

by  the  result  in [12] coupled with  (11.19), ~0(0 $ 1 )  = $(E), ~0(1 �9 0) = - ~(E). I f  ~(E) 
N 

is M- invar ian t ,  t hen  dim H i ( X ,  E -~ E ~) = 1 and  Hi(X,  12) = 0 for the group G(U', U") and  

E is homogeneous.  

I f  $(E) is not  M- invar ian t ,  then  dim Hi(X,  E -~ E ~) > 1 and  dim Hi(X,  s  In  

order to prove the  proposit ion,  we need only observe tha t ,  since d im E ~ = 1 = d im E ~, 

there  exists  no group A to which the group of E can be reduced and  such t h a t  

It' $ It" c c t  c g(It', 1I") (proper inclusions). Q.E.D. 

(fl) The non-K~ihler Case 

The analogue of Theorem 15 is not  t rue  in the  non-K/~hler case (e.g. line bund- 

les) and  there  are in general  obstruct ions (w 9); we shall give only a brief outl ine of 

the  picture.  Le t  X = G/U be non-K/~hler wi th  fundamen ta l  f ibering T 2~ --> X--> X = G/0. 

Let  ~ : ~ --> ~ '  c GL(E Q) be a ra t ional  representa t ion  and set ~ ] U = e : U --> V' c GL(E~). 

I f  fi* = k e r  ~,, we set  n(s, d ) =  {number  of s imple roots  in i t * ) -  {dim It*f3 ~). Wri t ing  

f i = l t ~ p ,  we let p * = p f 3 i t * ,  p ' = ~ , ( p ) ~ l t ' ,  l t*=l t f3 i t* ,  and  a * = d i m  p* so t h a t  

a - a * = a ' = d i m  9'. 

PROPOSITION 11.4. 

(i) Hq(x,  E') i8 a trivial M-module. 

(ii) I [  p '  = 0, then dim H 1 (X, 12) = a(n(s, d)). (Such is the case i / ~  is the complexi/ica- 

tion of a representation o/ V.) 

(iii) I /  n(s, d)=0, then dim Hi(X,  12')=a'. (Such is the case i/ ~ is the identity 

and then a" = a . )  

Pos tponing the  proof  a momen t ,  we describe a corollary.  
~ 

Hq(X,E')=Hq(lt ,  it')'~ there  is thus  a na tu ra l  pair ing <,>:  

H p (X, s | H q (X, s ---> H v+q (X, s 

obta ined  f rom t h a t  in H* (a, It') ; '  b y  bracke t ing  e lements  in It'. 

Because of (i), 
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COROLLARY. I /  { , } :H*(X , s174  H : ( X , s  H 2 X , s  ') is the obstruction bracket 

(w 9), then {, } = <, >. (This shows that there are, in general, obstructions.) 

Proo/ o/ Proposition 11.4. The following is easily checked to be an exact diagram 

of 0 modules, the actions in the last column being trivial:  

0 0 0 

O->u' -+fi' ->p' ->0 

O-~u --+fi --+p -+0 

0 - >  lt* -+ fi* -+ p* -+ 0 

0 0 0 

(11.21) 

Letting ltf be any  of the symbols in (11.21) involving a it, we let Lf be the corre- 

sponding homogeneous vector bundle on X; the trivial bundles arising from the last 

column of (11.21) are denoted by the same symbols as the modules. Writing Hq(f(-, " ) = 

H q ( " ) ,  we have from Theorem 2, Proposition 9.2, Theorem 3, and Lemma 11.4 the 

following : H a (~) = 0 for all q, H a (~) = 0 (q ~= 1) and H* (s ~ p, H ~ (pf) = p f and H a (~f) = 0 

for q > 0  where o f = p ,  p*, or p, H q ( ~ * ) = 0  for q + l  and dim H i ( ~ * ) = d i m  H~ = 

n(s,d), and finally H q ( ~ ' ) = 0  for q > 0 .  Using these, we get from (11.21): 

0 0 

I" 1" 
O-~p' -+H*(s ~0 

O-->p --> p -->0 

0 --> p* -+ H1(s -+ H:  (~*) --> 0 

t I' 
0 --> H~ ( s  --> H~ ( s  -+ p' -+ H:  (s -+ 0 

I' 1' 
0 0 

(11.22) 

From w there exists a spectral sequence {Er} such tha t  Eoo belongs to H* (X, s  and 

E v'q = H V ( O ) |  in any event, H*(X ,E ' )  is a trivial M-module. In  general both 

H~ ') and HI(I~ ') are # 0  so tha t  their  spectral sequence is non-trivial. I f  (ii) is 
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satisfied, then H 1(•') = 0 and H I(X, E') ~ H 1 (p) | H ~163 which proves (ii). If (iii) is 

satisfied, then H ~  and dim H l ( E ' ) = a  ' from (11.22); this proves (iii). 

Remark. The corollary follows from the fact that, contrary to the case for H I(X, O), 

the obstruction bracket in H 1 (X, I~') is over the sheaf of holomorphic functions ~ and 

involves no differentiation. 

12. Some applications of w 11 

We give some general geometric applications of Theorem 14. Let 2~ = G/O = M~ (z 

be a K/~hler C-space; suppose that  (~1 . . . . .  ~r) is a system of simple roots of (1~, B) 

such that  (~1 . . . . .  ~ )  (s < r) are the simple roots of (~, ~0). 

THEOREM 16. 

(i) Let E - +  E --~ X be an indecomposable vector bundle with complex nilpotent group 

N as structure group. Then E is a homogeneous line bundle. 

(ii) I /  dimc E = 2 ,  there exists an indecomposable vector bundle E--~ E--~f~ with 

solvable structure group ~*~ there exists an o~j (] >s)  such that (0% o~)= 0 /or 1 <~ i <~ s. 

([16]). A n y  vector bundle over X with nilpotent structure group C O R O L L A R Y  1. 

is homogeneous. 

C O R O L L A R Y  2. I] b 2 (f~) = 1, then every bundle E --~ E --~ X with solvable structure 

group is decomposable into a sum o/ line bundles. 

COROLLARY 3. There exists a Kdhler C-space X (any /lag with dim > 1) and a 

non-homogeneous plane bundle over f~ with solvable structure group. 

Proo/s. (i) Let (Us} be a suitable covering of X so that  E, assumed indecompo- 

sable, has transition functions 

t a~s "'" 1 

0 
n~j ~ i 

0 ... 0 a~j 

supposo for momont dime  hon (OJ a )  where the a jaro tran 
J 

sition functions of a (homogeneous) line bundle A and we have 0--~ A--~ E - ~  A-+  0. 

But  then ((E) E H  I (X,A - 1 A ) = H  I ( X , C ) = 0  and E ~ A c A .  An obvious induction 

completes the proof. 
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(ii) Let  dimc E = 2 and E - +  E --> )~ be indecomposable. 

functions 

Then  E has t ransi t ion 

we have line bundles A, B with transi t ion functions (a~j), (b~j) and  from the  exact  

sequence 0 --> A --> E --> B --> 0 and ~(E) E H I (~,  B -1 A). The proof is completed by  the 

following lemma: 

L~MMA 12.1. There exists a line bundle E~-->Ea-->2~ such that Hl(f~,~")~-O~:~ 

there exists an a j (~>s)  such that (g j ,~ i )=0  /or l <.i<~s. 

Proo/. A n y  line bundle E" on ~: is given by  a weight ~ on ~ such t h a t  (a, ~t) = 0 

for 1 ~< i ~< s. There exists a a with H I ()~, ~a) ~ 0 ~ there exists an  aj (s < ] ~ r) such 

t h a t  ~ j ( a + g ) - g E D ( g ) .  (See w 1 and Theorem B.) Let  c51 . . . .  ~5~ be the fundamenta l  

weights of (~, g); they  are characterized by  q(cSj, a~)=2(cSj, ai)/(at, a ~ ) = ~  (for all i, ~). 

I f  a a exists with H ~ (X, ~") ~ 0, then  v~(q + g) - g = n~ c5~ + ... + n~ cSr where all the  

n~ are non-negat ive integers. Bu t  then 

a + g - g  + o~j= T~j(v=~(a + g ) - g )  

= T=j(nl~51 + . . .  + nr cSr) 

= n 1 c51 + ... + n~ r - nj ~j; 

i.e. a = n  I Co1+ ... + nreDr- (ns+ 1)a  s. 

Bu t  for atE~v+(l<.i<~s), 

0 = (q, ~ )  = 2n~/(a~, at) - (n j+ 1) (a~, as) 

and since nj + 1 > 0, (~, ~j) ~< 0, we conclude t h a t  (g~, aj) = 0. The a rgument  is reversible 

and we are done. 

Now let X be a non-K~hler C-space and E--> E - >  X an indecomposable analyt ic  

vector  bundle. 

THEOREM 16'. I /  E has a complex nilpotent group N as structure group, then E 

is homogeneous but is not in general a sum o/ line bundles. 

COROLLARY. A n y  analytic vector bundle E---> E--> X with nilpotent structure group 

is homogeneous. 

Proo]. Let  { Uj} be a suitable covering of X such tha t  E has t ransi t ion functions 
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h i )  

n 
^ 

~ 1 7 6 1 7 6  
3 .  

0 ... 0 atj 

By w the theorem is true if n = l ;  we assume the result for n - 1 .  Then we have 

the exact sequence 0 -+ A --> E --> E'  --> 0 where A is a line bundle with transition func- 

tions atj and E'  is an (n-1)-dimensional  bundle with transition functions 

n - 1  
A 

�9 0 

0 . . . 0  

n - 1 .  

By the induction assumption, E '  is homogeneous and r Hi(X, Horn (E', A)). The 

bundle Horn (E', A) is an (n-1)-dimensional  vector bundle with transition functions 

1 . . . . . .  i0 ) n i J  ~ : : ' 

0 . . . 0 1  

the results of w tell us that  Hi(X, I tom (E', A)) is a trivial M-module and Theorem 

14 gives the result. 

Remarks. The proof of Theorem 16 yields Corollary 2 to Theorem 16 only if dim 

2~>1; the result for dim 2~=1 (i.e., ~=PI (@))  is due to Grothendieck. Corollary 3 

to Theorem 16 also holds in the non-K/ihler case. 

The above results were general geometric statements; we now give some specific 

examples; the general purpose is to construct "parameter varieties" for classes of 

bundles over C-spaces. 

Let X be a non-K/~hler C-space with fundamental fibering T~a--> X--> 2~. 

PROPOSITION 12.1. The class o/ indecomposable bundles over X with structure 

group N={(10 1)} consistsentirelyo/homogeneouseutriesandisparametrizedbyea_l (@). 
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Proof. Lett ing 1 = trivial line bundle and ~ = 1  = sheaf of germs of holomorphic 

functions on X, we have E x t  ( 1 , 1 ) ~ H I ( X , ~ ) = C  ~. The rest is easy. Q.E.D. 

Let  E"--> E~ X be a homogeneous plane bundle over X with structure N where 

N is the same as in proposit ion 12.1. Then we have exact  sequences 

{ 0--->I-->E"--->I---~0 (of U-modules) 

0 --> 1 --> E ~ --->1 ~ 0 (of vector  bundles). 

F rom the exact  cohomology sequence of the exact  sheaf sequence 0 --> ~ --> ~ --> ~ --> 0, 

it follows t h a t  H*(X, E ~) is a trivial M-module  and H*(X,  ~*)~= H*(lt, E~ ~~ As an 

illustration of w 3, we give 

PROPOSlTIOI~ 12.2. H* (X, ~~ is a trivial M-module and 

I 
dim H q (X, ,S ~ = 0 (q > a). J 

(12.1) 

Proo/. We follow previous notations.  Then $(E ~) E H 1 (X, ~)  =~ H ~ I(X, C) and thus 

~(E ") is represented by a global (0, 1) form eSl(see w 5). Let  (~1 . . . . .  (~a be a basis of 

Hi(X ,  ~)  which at  the origin gives a basis of (p*)' (p=fi / l I ,  n = ~ t * p * ) .  F rom the 

proof of Lemma 11.2, we m a y  choose an isomorphism between E ~ and C 2 such tha t  

a:lt-->gl(E ~) is of the following form: 

a(v)=(~ o ~176 
a(n) = (~ ~ ) ( n  E ~t), (12.2) 

where p* . . . .  ,p* are a basis of p* dual  to &l . . . . .  ~ .  I t  will suffice to compute  

Hq(1LE") ~0 f rom the exact  cohomology sequence of a-modules 0--~ 1 - ~ E ~  1-->0. 

This cohomology sequence is 

Hq_l (n~O~ Hq(n)~o__~ Hq(u, - -o ~q - ... --- ~ E") ~~ ---> Hq(n) ' --> H r (u) ~~ --> (12.3) 

~ 

LEMMA 12.2. Let v be a (0, r) /orm in HT01)"~= AT(p*) '. Then 

~(v)  = ~I  A z E H ~+1 (rt) ~'~ =~ A ~+1 (p*)'. 
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Proo/. 

(i) r = 0. In  this case T is a complex number.  In  the exact  sequence 

o -+ C~ ~~ -+ C~ (it, E~ ~' ~ C O (rt) ~~ ---> O, 

lift ~ back to ~ = ( ~ ) E C ~  E~ '~ Then,  for  w e  n e l l ,  

{o 
d ~ : ( n ) = n o ~ = n ~  = ~(~) n = p *  by  (12.2). 

(ii) r arbi t rary.  I t  suffices to take v=cSi , . .~=cS~A ... A ~5~,; in 

0 ~ C~(n) ~~ ~ C'(it, E~) ;~ ~ C~(n) ;~ ~ 0, 

lift back to -r=~Si~...~, (01)E(A~(It) |176 E~176 w e  

" ' "  * ~ h  ...i~- P k  0 , 

i.e., d~ = ch 1 A ch~l...~,. Q.E.D. 

Completion o] the proo/ o/ (12.1). From (12.3) we see tha t  

( ;)  dim H q (11, E~) ~~ = - dim (Sq-~) + dim (ker dq) 

(;) (a,)+ 
Remark. dim Hi(X ,  ~*)=a and a basis for this vector  space is given (in the 

above notat ion) by  

~l(01) and ~, (10)  ( ,>1 ) .  (12.4) 

We use Proposi t ion 12.2 together  with Theorem 14 to  construct  one more para- 

meter  var ie ty .  Le t  Lr be the complex unipotent  group of complex matrices of the form 

I , 

0 

and denote by  G(2, a) the Grassmann var ie ty  of 2-planes in C a. 

1 4 - -  6 3 2 9 3 3  Acta  mathematica 110. I m p r i m 6  le 5 d6cembre  1963. 
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THEOREM 17. The space o/ indecomposable (homogeneous) vector bundles over X 
with structure group H is parametrized by the disjoint union o/ the /ollowing three 
varieties: 

(i) B, 

(ii) G(2, a), 

(iii) G(2, a) 

where B is a vector bundle over Pa-x (C) with [ibre C a-1. 

Le t  a : u --~ ~ where 

a ( u )  = 

Proo/. 

give rise to E a - >  E ~--> X. 

! a(u) b(u)) 
0 c~) 
0 

I f  H* is the  unipoten t  group of complex matr ices  of the  form 

{(; 
then,  f rom q, we cons t ruc t  T:ll--> [}* by  set t ing 

aT) 
We have  E ~ --> E ~ --> X and 0 --> E * --> E ~ --> 1 --> 0 and  thus  

~(E a) EHI(X, ~') ~ H1 (lI, E~) ~~ 

We mus t  compute  this group and  pick out  those bundles which are indecomposable  

when we allow ~ to va ry  over  representa t ions  of U in H*. We  t r ea t  cases: 

(i) E ~ indecomposable;  then  ~:t=0 (~ is not  trivial) and 

~ ( u ) = ( ~  a ~ ) )  (u E ll). 

Wri t ing  li = Ii �9 p* �9 5 ~ then 

a ( v ) - - 0  ( v E 5  ~ 

a(n)=O (nEll) 
a(p~) = ~'i (P~ . . . . .  p* = basis of p*). 

Thus  a is in (p*)' and we m a y  write a~-~ .Fj~5 j. Since (by assumpt ion)  a40,  we m a y  
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pick a new basis ~l .... ~a of (p*)' such that  a= ~l; by the remark following Proposi- 

~ 

and letting ~ . . . . .  ~* be a dual basis of p*, if (Q1 . . . . .  Qa) E HI( ~t, E~) '~ Ex t  (E ~, 1), it  

follows that  the bundle $ 1 (Q1 . . . . .  ~a) with structure g r o u p / t  is given by a:l~--> ~ where 

~(v)=0 (v c5~ 1 a (n) = 0 (n e 11), 

~(Y~J~*)= 0~ ~o~ ]. 
If Qx4=0, we have the following: 

The bundles E~--~ E"--> X which have no decomposable sub- or quotient-bundle 

are parametrized by a space B which is a vector bundle with fibre C ~-1 (parameters 

~2 . . . . .  Qa) over P~-I(C)=~ HI(U,E~) ~~ (corresponding to indecomposable E~). 

is decomposable, the only possibilities not covered in (i) are bundles with group 

/(i ~ i)/ I(i' i)} x2' = 1 (!. 0) or /~* = 1 (/* 0). 
0 0 

The two situations are dual and it suffices to t reat  H*. Letting v : l t -+  f)* be given by  

~(u) = ( :  /(oU)), we have as usual 0--~E~-->E~-->I-->0 and ~(E~)EHI(rbE~) '~ Taking 

~1 = 0 in (12.5), to have indecomposability we must have (Q~,..., Qa) :~ (0 . . . . .  0) and  

thus the indecomposable bundles with group H* are parametrized by G(2, a) (vectors 

(1, 0 . . . . .  0) and (0,~ 2 . . . . .  ~a)). We omit further details and conclude the proof of 

Theorem 17. 

We close this section with a statement about flags and a discussion relating 

homogeneous extensions to the outer automorphisms of certain complex unipotent Li~ 

algebras. 

Let  X =  G/U=M/T be a flag manifold. 

(ii) Since a bundle with group 
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PROYOSITION 12.3. I /  E", E" are homogeneous line bundles over X ,  there are 

three mutually distinct possibilities /or E x t  (E ~, E"): 

(i) E x t  (E ~, E a) =0 (i.e., only trivial extension). 

(ii) E x t  (E ~, E a) is composed entirely o[ non-homogeneous extensions 

a r i m H  I ( X , E  - ~ E  ~  

(iii) E x t  {E ~, E") is composed entirely o/ homogeneous extensions 

r d im H 1 (X, ]E -~ E a) = 1. 

I f  ~ is any  Lie algebra,  then  it  is known and easily checked t h a t  H 1 (f, f) ~ space 

of outer  au tomorph i sms  of f (modulo inner au tomorphisms) .  Consider now the class 

of all un ipo ten t  complex Lie algebras n which have  the  p roper ty  t h a t  there  exists a 

Kghler  C-space f ~=G/CT=M/V  such t h a t  l t = 1 1 ~  ~ Then  Hi(t t ,  11) is a ? -modu le  

(since [~0, 11] ~ 1t) and  thus  

U 1 (11, 1t) = Z mr Er,  (12.6) 
r e D ( D  ~ ) 

where m r = mul t ip l ic i ty  of the  irreducible l~-representat ion space E ~ with highest  weight  

y in H 1 (11, 11). Thus  

= ~ 

dim H1(11, Horn {It*, E~)) ' .  = dim (H1(11, n) | EV) ~~ = m_r (Schur 's lemma).  

On the other  hand,  d im H x (il, H o m  (n*, Er)) ~~ mult ipl ic i ty  of the  t r iv ia l  representa t ion  

of M on HI(~: ,  Horn (T (~) ,  E r ) ) =  (Theorem 14) the  dimension of the  space of ho- 

mogeneous  extensions of the  form 

0 --> E r --> E ~ --> T()~) -+ 0. (12.7) 

PXOFOSITION 12.4. Let 11 be a unipotent complex Lie algebra as described above. 

Then the outer isomorphisms o/ n are in a one-to-one correspondence with the exact se- 

quences {12.7) o/ homogeneous vector bundles as E r varies over the irreducible V-modules. 

COROLLAau The outer isomorphisms o/ n which commute with the action o / ~  on 

1t are paired to the exact sequences 

0 -> i --> E" -> T(X)  --> 0 (12.8) 

(1 = trivial bundle) and these /orm a vector space equal in dimension to the second Betti 

number b 2 (.X ). 
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Remark. From Proposi t ion 12.4, it is easily checked tha t  if n = c(e ~ : e E ~+ - ~+), 

then the automorphisms corresponding to  (12.8) are of the form [ , ( e : ~ ) = -  (v, a)e_~ 

where ~ runs th rough  the  weights on ~) which are or thogonal  to ~0 +. A full descrip- 

t ion of H 1 (11, n) is to  appear  in a paper by  B. Kostant .  

13. Bundles over Arbitrary Homogeneous Kiihler Manifolds 

Let  X be a compact  bu t  not  necessarily s imply-connected homogeneous K/ihler 

manifold; then X = ~:a = ~  • T2a where 2~ is a K/~hler C-space and  T 2~= ca/[ ' where 

F ~ C a is a suitable lattice. We shall examine the geometry  of homogeneous bundles 

over such an X. A few prepara tory  remarks which will be used later are helpful here. 

L ~ M A  13.1. Let A,  B, C be complex connected Lie groups with A a closed complex 

normal subgroup o/ B, C = A / B .  Then the [ibering A-->B-->C has a holomorphic 

connexion. 

Proo/. ([22]) Le t  a = c o m p l e x  Lie algebra of A; the vertical space V~ at  b EB  is 

given by  Lo(a)=R~R~lLb(a)Rb(a)  since a is invar iant  in 5. I n  the exact  sequence 

O - + a ~  '~ w C--> O. (13.1) 

choose a linear splitting map 7 : c -+ b (/z o ~ = identity).  Then  b = ?" (a) $ F (c) and we 

m a y  take the horizontal  space H0 a t  b E B to  be R0(~(c)). Q.E.D. 

We denote this holomorphic connexion by  ~, and observe t h a t  the  curvature  ~a 

is a (2, 0) form given a t  the ident i ty  by  

E ,  (e, c') = i -1 ( [ r  (c), r (c')]) 

(c, e' E c). I t  follows tha t  

i (E~ (c, e '))  = ([7 (c), r (c')] - r [ c ,  c ']);  

(13.2) 

(13.3) 

henceforth we shah omit  reference to ]. 

I f  now a is abelian, the exact  sequences (13.1) are in a one-to-one correspond- 

ence with Ha(c, a) (see the exercises in [6]) where c acts on a by  " a d "  (a is an ideal 

in 5 and ad a o a = O). To get  the obstruct ion to splitting (13.1), one chooses ~ : c --> l) 

as above and then the obstruct ion cocycle /~ E C2(c, a) is given by  

/~ (c, e') = ([~ (c), r (c')] - r [c, c '])  = E~ (c, c ') .  (13.4) 

Thus 
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LEMMA 13.2. The sequence (13.1) can be split -~ the connexion given in Lemma 

(13.1) may be chosen to be integrable; and, in this case, the /ibering A--> B--> C is as- 

sociated to a representation o/ xel(C ) in A .  

We shall actually be interested in the case when C is abelian (and is in fact a 

torus); as will be seen below, it will be sufficient for our purposes to assume that  A is 

also abelian. The following example shows that, even when dim A = 1, the above connexion 

may not be integrable. 

Example. Let B = group of matrices of the form 

1 3 ; 

0 

A =  subgroup of matrices of the form 

1 

0 

Then A is normal in B and it is easily seen that  A / B ~  C ~ parameters zl, z2). 

group B is abehan and 

1 - ->z  2 

0 

The 

given an isomorphism of B with C; thus the fibering O-~A-->B-->C-->O is a principal 

C-bundle over C 2. I t  is easily checked that, in our framework, c = algebra of matrices 

of the form [(i c10o 
c x, c 2 E C), and, by choosing the obvious splitting Y, 

{(i" 0o !)( i  ~ 0~ (i ) o0 o0 (13.5) 

Thus (Lemma 13.2), the connexion is not integrable. 

To put this example "over a torus", we let G c B  be the subgroup of matrices 

of the form 
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I(i  i01 
where the  g~ are Gaussian integers. Since 

(i zl i3)(i gl ll zing1 1 2 1 g ~ = ~ O  1 %+g2 ' 

0 0 1 / \ 0  0 1 

it follows tha t  (Iwasawa) G / B = X  is a bundle of complex 1-tori (parameter  z~) over 

a complex 2-torus (parameters zl, z~). The above remarks on curvature  still hold for X.  

However,  these remarks are bet ter  phrased as follows: the holomorphic 1-forms 

a~ 1 = dz 1, ~% = dz 3, ~ = dz 2 -  za dz 1 form a basis for H L~ (X, C). The forms oJ 1, ~2 are 

simply the inverse images on X of the  forms on the base space; the form eo 8 is seen 

to be the  connexion form of the  holomorphie connexion described above. The cur- 

va ture  of this connexion is given by  

"~r = d ( w 3 )  = d z l  A dz  3 (13.6) 

which exact ly  corresponds to  (13.5). We remark t h a t  to  tu rn  X into a C-bundle over 

the base space, we simply replace G by  G ' =  set of matrices of the form 

(gl, g2 Gaussian integers). 

Remark. This example is in some sense the worst  t h a t  can happen. For,  if 

0 -+ a--> 5 --> c--> 0 is exact  and if a, r are abelian, then [5, 5] - a (by (13.4)) and  thus  

[[5, 5], [5, 5]] = 0 which puts an  "upper  bound"  on 5 which is actual ly  realized by  

the above example. The following lemma seems to be about  the best  we can hope for: 

LEMMA 13.3. Let A ,  B, C be as above and let A ,  C be abelian. Assume that 5 is 

given a linear Lie algebra ( c  gl( V) ]or some V) and that, in  this representation, c is 

semi-simple. Then the sequence (13.1) splits. 

Remark. The above conditions are met,  for example, if A = G*. 

Proo]. We m a y  first assume tha t  5 is solvable; then the following is well- known:  

if 11_ 5 is any  ideal and if ~ E lt' then the subspace V~= (v E V : n  o v =  q~(n)v for all 

n E 11} reduces 5. Since a is semi-simple, we m a y  use this fact  to  pu t  5 in t r iangular  
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form with a on the diagonal. The obstruct ion to splitting is given by  a commutor  

[~(c), ~,(c')] ~ a and  because a ~ [b, b] =0, we are done. 

Returning to  the sequence (13.1) where a is abelian but  r is arbi trary,  we m a y  

write b = r �9 ~ where ~ = radical of b and ~ is semi-simple. Then/ , (~)  = 0 and we have 

the following lemma, due to Matsushima:  

L~MMA 13.4. The homogeneous bundles over a complex torus are o/ the /orm 

A- ->B-->T 2a where B is a complex solvable Lie group; all such /iberings have holo- 

morphic connexions. 

Returning  again to our original problem, we let X = f~a= fs • T2a= G/l~ •  if 

: 0 • A ---> GL(E ~) defines a homogeneous vector  bundle E ~ --> E q ---> 2~ a, we wish to 

determine the G • B-module H* (Xa Eq). Since Q(A) ~ Q(O • A) ~_ GI~(E Q) is normal  in 

~)(~• the subspaces of E ~ reducing Q(A) reduce Q ( 0 •  As in w 5, we assume 

here that ,  if ~_~ a is maximal  abelian, ~[~ is semi-simple. Under  this assumption,  we 

may,  as in w 3, get  a series of exact  sequences 

0 --~ E q' --> E q --> E e --> 0 

0--> Eq. -> E e --> E e - >  0 

0 --> E Q~ --> E ~-1 --> E q~+l --> 0 

where QJl a is irreducible (~= 1 . . . . .  n +  1). Then, theoret ical ly at  least, using Proposi- 

t ion 2 in [12], we m a y  calculate H * ( X  a, ~ )  knowing the H*(-~ a, E ej) ( ] = 1  . . . . .  n + l ) .  

^ ~(~) E ~ E ~ -> X is a homoge- I f  Q[a is irreducible, it is clear t ha t  E ~ ~ E q |  ~ where --> 

neous vector  bundle and E ~(~) --> E~(Q)-~ T ~a is a homogeneous bundle. Since 

HP(,~ ~ EQ) --- ~ H ' ( ~ ,  E ~) |  2a, ~,(o), (13.7) 
r + s - p  

i t  will suffice to  determine the A-modules  H* (T 2~, E ~) when E ~ ---> E ~ --> T za runs th rough  

the  homogeneous line bundles on T ea . 

The s t ructure  of the bundles E ~ is well known and  was given in w 10. Wri t ing  

F ~ C a "--> T 2a, the bundles are (uneffectively) parametr ized by  H ~ (T 2a, C) and are 

given by  unitary representat ions Q D : F --> C* (& E H ~ (T ~, C)) where, in fact,  P~(7) = 

exp (Sew + ~5)(~ E F). A global section of E ~= E ~(~) is given by  an  entire funct ion / 

on C a such tha t  / (z+F)=~So(~)/(z  ). Thus / is bounded,  hence constant ,  and  the 

constants  are inadmissible unless w + & E H I ( T 2 ~ , Z ) ;  i.e. E ~ ) ~ I .  (This is due again 

to  Matsushima in [22].) 



HOMOGENEOUS COMPLEX MANIFOLDS. II 197 

Remark. The above s ta tement  is m o r e  general. Namely,  let D be any  Stein 

var ie ty  and  let F be a ny  group acting discont inuously and  wi thout  fixed points on 

D, such tha t  D/F is compact .  Then if ~ : F - - >  GL(n, C) is any  un i ta ry  representat ion 

giving a vector  bundle E Q -> Eq--> D/F,  H ~ (D/F ,  E ~) = 0 unless Q is trivial. For  example, 

if D is the upper  half plane and D / F  is an  algebraic curve (Riemann surface), then,  

for any  line bundle E ~ --> E ~ -~ D / F  with deg E ~ = c 1 (E Q) = 0, H ~ (D/F ,  E ~) = 0 unless 

E q ~ l .  I n  this case, if g = g e n u s  of D / F ,  

f if E Q 1 
dim H ~ (D/F, G o) = ~g 

[ g -  1 if E q ~ 1 

(by the R iemann-Roch ;  the elements in Hi(D/F ,  ~ ) ~ - H ~  ~1| ~Q)are just  the 

P r y m  differentials.) 

THEOREM 18. I /  Eq--> Ee--> T 2a is any line bundle with c l (Eq)=0  over T 2a where 

we write A-->B--> T 2a, then H*(T  2~, G ~ is a trivial B-module. Furthermore, 

i~ G ~ ~ 1 

otherwise. 

(13.8) 

Proo/. We need the following simple lemma in potent ia l  theory:  

LEMMA 13.5. Let X be any compact mani[old and V--> V-~ X a vector bundle 

over X with a metric structure ( , ) .  Suppose that we have a /ixed covering 

{Ut} o/X, 2-t:-l(ui) ~- UIM V, 

and suppose that we have an elliptic operator A on the V-valued /orms on X such that 

A in U~ is equal to the Euclidean laplacian /or all i. Then i/ S:X--> V is any section 

such that AS  = O, then S is locally constant. 

Proo/. Let  S be a ny  non-cons tant  section with A S =  0 and let x 0 E X be a maxi :  

m u m  point  for IS] ~= (S, S). Let  H(S)=Hessian matr ix  of S (i.e., H(S)~j=~S/~x~xJ).  

Then t r H ( S ) =  A S=O on X; but  at  x0, t r  H(S)~~ 0 if S is non-constant .  Q.E.D. 

We apply  this lemma to  E q | A q T' (where T '  bundle of (0, 1) forms on T 2a) and  

to  the elliptic operator  [ ]  const ructed f rom an invar iant  K~hler metric on T 2a and  

the metric given by  the t te rmi t ian  s tructure in E -~ On the one hand,  we know a 

priori t h a t  

Hq (T 2~, E ~ ~- HO.q (T 2a, Eq)-~Hq (EQ), 
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where H a (E q) = kernel of [ ]  on E q | A q T'. On the other  hand, since the transi t ion 

funct ions of E Q are constant  and  since T ~ is a torus,  Lemma 13.5 applies and  ker 

[ ]  = 0 .  Q.E.D. 

We give an  applicat ion of Theorem 18. 

PROPOSITIO~  13.1. (Matsushima). Let E--> E-+ T ~ be an indecomposable ho- 

mogeneous vector bundle. Then E ,,~ L | N where L is a homogeneous line bundle and N 

is a homogeneous bundle with structure group 

1 .~  

Proo/. I t  will suffice to  assume dimc E = 2; induct ion will give the general result. 

Then, relative to a suitable convering (U~}, E has transi t ion functions 

[ a~j b~j) 
e~j ~ ~ 0 c~t/ 

where a~j, c~j are the t ransi t ion functions of homogeneous line bundles A, C, respecti- 

vely, and we have 0-->A-->E-->(~-->0.  I n  the no ta t ion  of w 11, ( (E)EHI(T2a,  C-1A);  

bu t  H I (T  2~, C -1 A) = 0 unless A = (~. Q.e.D. 

COROLLARY. (i) (Matsushima). The space o/ indecomposable homogeneous bundles 

E -+ E -+ T ~ with dimc E = 2 is parametrized by ~ ( T  ~) x Pa-1 (C), where O(T 2a) = Picard 

variety o/ T ~. 

(ii) (Morimoto). The space o] indecomposable homogeneous bundles E-+  E-+ T ~ 

with dimc E =  3 is parametrized in the same manner as was given in Theorem 17. 

Let  X = G / U  be a non-K~hler  C-space with fibering T~-+G/U-~G/~ and let 

T : U - +  GL(E ~) give a homogeneous line bundle E~--> E~--> G/U. I f  we restrict  E ~ to  

a fibre in the  above fibering, then  E ~ is a homogeneous line bundle over T~;  in the 

terminology of w 5, E~-+E~-->G/U is a rational homogeneous line bundle ~ E ~ re- 

str icted to a fibre is analyt ical ly  trivial ~:> E ~ restricted to  a fibre corresponds to the 

zero point  in the Picard  var ie ty  of the  fibre. Thus  Theorem 4 is a Ki inneth  relation 

between Theorems B and 18 ((13.8)). This "explains"  Theorem 4 but ,  of course, does 

not  prove it. 
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14. Examples and Counterexamples 

We shall now give some examples  il lustrating the general theory  and fur ther  

examples showing why  certain theorems given above are no t  t rue under  more general 

circumstances. 

(i) An Illustration of the General Theory 

We shall describe how the  theorems given above apply to a simple example; 

since the easiest representat ions to describe explicitly are those of the  full linear 

groups, we shall choose our example from those of type  1 in Wang ' s  list ([24]). We 

now recall the Lie algebra s tructure of g = sl(n, C) = {g E gl(n, C) : t r  g = 0}. Let t ing % 

be the matr ix  with 1 in the i -~" position, zeroes elsewhere, a Caf tan  sub-algebra 

c ~ is given by  ~ = {i E 6 : 1 = ~=~  ir z ,  ~r 1r = 0}. The roots  of (~), ~) are the linear 

forms q~r (i * ]) defined by  <~v~r i> = 14 - tr a rat ional  basis for ~ consists of #~ . . . . .  #n 

where /~r = % -  er162 r l~elative to  this rat ional  basis, the positive roots ~ + =  {~% i < ~} 

and - (q~r = ~r I f  1 = ~ ir z ,  # = ~ F~e~ ,  one easily checks t h a t  

Tr  (ad 1 ad  F) = 2n Tr (I#) - (Tr 1) (Tr #) 

and it follows t h a t  if 1, F E~ and ( , )  is the Killing form 

(i,/~) = 2~ ~ ik~k. (t4.1) 
k = l  

For  ~ j E ~ .  +, we define h~.E~ (h~j, t ) =  <q~r 1> for a l l  t E ~ ) ;  f rom (14.1) we have t h a t  

h~ j=  (1 /2n)(e i~-%) .  Since the  Weyl  normal izat ion requires t h a t  [%~j, e_~j] =h~j ,  we 

find t h a t  % ~ j = ( 1 / 2 n ) % ;  the condit ion (%~j, %~)=(~(~ is then  satisfied. 

Let  Z n = Z •  ... •  we define a homomorphism # : Z n - + Z ( g )  as follows: for 

r = (rl, ..., r,) E Z ", 2 E ~, <#(r), 2> = ~ = 1  rj2j. Then  ker g = z((1 . . . . .  1)) and we mus t  

work modulo this subspace. The Weyl  group W(~) is isomorphic to S n = p e r m u t a t i o n s  

on n-symbols  and for a E S , ,  i E ~ ,  ( ~ ( 2 ) = a ( ~ 2 j e z ) = ~ i , - , ( j ) e z ;  from this it follows 

t h a t  a(r) = (r(r 1 . . . . .  rn) = (r,-,(x) . . . . .  r,-,(=)). I f  we set D" = { ( r  I . . . . .  rn) : r 1>~ r2 >~... >~ r=}, 
i j 

then  #(D") = D(~); fur thermore,  #-1 (~vij) = 0 . . . . .  1 . . . . .  - 1 . . . . .  0) and since 2g = ~ < j  q~j, 

#-1 (g) = (n, n - 1 . . . . .  1) and #-1 (g) is "min imal"  in (Dn) ~ I t  is easily checked (from 
] 

(14.1)) t ha t  the fundamenta l  weights (~1 . . . . .  (~n-1 are given by  #-1 (~Sj) = (1 . . . . .  1,0 . . . . .  0) 

and then  g = ~_--~ ~Sj. The involution 5 E W($) is given by  (~(r 1 . . . . .  r~) = (r~, r~ 1 . . . . .  rl). 
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Finally we recall briefly the elements of Young theory ([26]). Let  ~(n)= gl(n, C) 

and, for r = ( r  I . . . . .  r~) E D ~, we let ~ :g(n)--~gl(V ~(~)) be the unique irreducible re- 

presentation of g(n) on V ~(r) (/~(r)E D(g)) such tha t  ~ l g  =/~(r) and ~(1  ~) =n(r)  where 

n ( r ) = ~ r ~ .  The vector space V "(~) is constructed as follows: to (r 1 . . . . .  r~) E D ~ we 

associate the Young diagram 

1,1 1,21 . . . . . .  I . . . . . . . . .  1,,r 
2,1 2 , 2 j  . . . . . .  I . . . . . .  p2,r2 

~ ~l  
n, 1 ...  In ,  r~l 

We let V j =  V |  | V V = C  n) and consider V n(r). Lett ing a(r 1 . . . . .  r~) be the sym: 
i 

me t ry  operator corresponding to the above diagram, V ~'(r)= a(r 1 . . . . .  r~) V ~(r). 

Let M =  SU(n)  and let ]~g = compact group of matrices of the form 

/ e t01  . . 

t i  
0 

eiOk 

U(n- 

if ~=17# N M, then M / I ? = X  is a K~hler C-space; if we choose r such tha t  r = 0  mod 2, 

then, if V# = matrices of the form 

l 
l .  0 . . . . . . . . .  
O "" 

1 
eiOr + 1 

eiOk 

0 . . . . .  0 

O) 
0 

U(n - k) 

and V# I"1 M ,  X =  M / V  is a non-K~hler C-space and we have Tr/2-->X-->X. We shall 

discuss these manifolds. 

In  the notations of w 1, 

~o= ";t~ 
0 "" g(n- k) 
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and 0. . .  

0 
rio= L~-I N g. 

g(n- k) 

Those ~ ~ Z(~ 0) = center of ~~ may be written as /~ = (~, ..... ,~, ~ ..... ~) where 

~,j=l ~ = - ( n - k ) 2 .  The representations 0j of Z(fi ~ defined by 0j(2)=2j ( j = l ,  k) 

generate (over Z) with respect t o |  group of line bundles L(X); we write E ~ for 

the line bundle with character 0j given above. The general line bundle on )~ is of 

the form E n ' ~  nk~ and L(X)~-Z~=H2(X,Z). The general line bundle on X is 

of the form E c1~ EC,0, E~+10,+1... E~0k and L(X) ~- C ~/2 �9 Z k-~ = A �9 B.(1) The line 

bundles in A are precisely those with Chern class = 0 (although with Atiyah Chern 

class * 0). The vector bundles over X defined by an irreducible representation of V 

are of the form L|  E ~ where L fiB and ~ is an irreducible representation of [5 ~ ~o]; 

a similar statement holds for )~. These bundles are all indecomposable (w 8). 

For 1 ~ ] ~  r, H*(X, ~o j )=0  if cj is not an integral vector, 

H~ ( X, E~JoJ) ~= ~ H~ (X, E~JoJ) | H~ (X, ~ )  
P + S = q  

(for all ~), and Hs(X ,~x) . i sa t r i v ia l  M-module of dimension ( : ) .  We now determine 

I(njOj) (nr E Z). In 

t i 
Z = ,n j0 j=(0  . . . . .  nj . . . . .  0) and njOr . . . . .  n - ] + l + n j  . . . . .  1); 

thus njOs+g is r e g u l a r ~  (i) n j > ] - I  or (ii) n j < ] - n .  In case (i), ]njOr 
J 

and l ( n j O j ) = ( n j + l - ] , ]  . . . .  1,0 . . . . .  0). Thus Hq(X,E'ioO=O unless q = ] - I  and 

HJ-I(~[, E ~j~ is the irreducible g-module given by the Young diagram 

1,1 ... 1,nj+ l - j  I 

2, 1 

j, 1 

For example, if j =  1 and nj = 1, the induced representation is just the ordinary re- 

(1) T h e r e  a r e  �89 r e l a t i o n s  a m o n g  t h e  c i.  
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presenta t ion  of SU(n) on C n. I n  case (ii), ] n j O i §  and  I (n jOj )=(n ,n-1  . . . . .  

n - ? ' +  1, n - 7 " - 1  . . . . .  1, n j - j +  1). A similar s t a t emen t  to the  above  concerning coho- 

mology  groups m a y  be made.  

Now if k = 1 (thus ~: = Pn-1 (C)), the  line bundle  E ~ gives a project ive  imbedding 

(w we wish to generalize this. To do so, notice t h a t  (~Sj , [~~176 for l~<?'~</c 

and  t h a t  Xl<j<k ~Sj gives a charac te r  Z = 0 1  § ... § Ok and  a line bundle E X = E  k~ ... E ~ 

Since g = gl § g2 and  gl = ~5k+1 § �9 ,. § ~5,, i t  follows t h a t  Z = ys; the  imbedding  mapp ing  

(Z)* discussed in w 8 is biregular  on X and maps  X into the  projec t ive  space asso- 

c ia ted to the  vec tor  space corresponding to the Young d iagram 

11 I 
2,1  ...  I 2, k - 1  

/c, 1 

We  m a y  also speak of the  imbedding mapp ing  (X)* on X; this mapp ing  does not  

separa te  fibre points  in the  fibering X - > X ,  which is jus t  as it should be. 

The  question of finding the  sheaf cohomology of ]~q where p is an  irreducible 

represen ta t ion  of [~o, ~o] is the  question of t ransferr ing a Young d iagram into  a Young 

diagram.  For  example ,  if we let n = 6 ,  k = 4 ,  then  [4 0 , ~0]_~ sl (2, C ) a n d  / ) (~o)= 

{ r = ( 0  . . . .  ,0,  r 5 , r e ) : r  5>~rs}. I f  we assume tha t  r 5 > r  e>~0, then  g + r  is regular  r (i) 

r e > 5  or (ii) re=O, r 5>4. We m a y  describe the  induced act ion as follows: 

(i) l r + g l = 8  and  

I :  1 ,1  

2, 1 

. . . . . .  1, r 5 I--> 

�9 "" [ 2 ' r e  

I 
1, 1 . . . . . .  l ' r s -  6 I 

p 

2, 1 ... 2, r e - 5 

3 ,1  

4, 1 

5, 1 

6 ,1  

3 , 2  

4 , 2  

5 , 2  

6 , 2  
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(ii) [ r + g [ = 4  a n d  

i:l 111 l r51  
1, 1 . . . . . .  1 'r5-5 I 

2, I 

3 , 1  

4, 1 

5, 1 

6, 1 

W e  m a y  ask  a b o u t  ex t ens ions  of bund les .  F o r  e x a m p l e ,  (w 11), t h e  space  of  

v e c t o r  bund l e s  E such  t h a t  we  h a v e  0 --> E ~ --> E --> E ~ --> 0 (over  X )  cons is t s  e n t i r e l y  

of  h o m o g e n e o u s  en t r i e s  a n d  is in  f a c t  a v e c t o r  space  of d i m e n s i o n  1- T h i s  is because  

0 3 - 0 1 = ( - 1 , 1 , 0  . . . . .  0) a n d  g+O3-O~=(n-1 , n , n - 2  ..... 1); I g + 0 3 - 0 1 [ = 1  a n d  

1(03- 01)= T~,~(g + 03--01) --g= (n, n - -  l ,  n - - 2  . . . . .  1 ) - - g = O .  

T h e  space  of bund l e s  E such  t h a t  we h a v e  0 - ~ E ~ ' ~ 1 7 6  is n o n - v o i d  

n 1 -  n 3 > 1 in  w h i c h  case, al l  t h e  bund l e s  E a re  n o n - h o m o g e n e o u s  a n d  f o r m  a v e c t o r  

space  of  d i m e n s i o n  

% - n 3 - 1 / 

This  is because  (n 1 - n3) 03 = (0, n 1 - n3, 0 . . . . .  0) a n d  (n 1 - n3) 03 + g is n o n - s i n g u l a r  

( i )  n l - n 3 > l  or  (ii) n l - n 3 < n - 1 ;  f u r t h e r m o r e ,  [(nl-n3)O3+g]=l -~-nl-n3>l a n d  

in  th i s  case  I ((n 1 - n3) 03) = 1, 1 . . .  1, n 1 -  n 2 -  1. 

O v e r  X ,  t h e  second  s i t u a t i o n  j u s t  de sc r ibed  is a b i t  d i f fe ren t .  T h e  space  of  

e x t e n s i o n s  0 --> E c'~ --> E --~ E c~~ -->0 is n o n - v o i d  ~ c 1 - c 3 is i n t e g r a l  a n d  (i) c 1 - c 3 > 1 

o r  (ii) c 1 - c 3 =  0. I n  case (i) t h e  ex t ens ions  a re  n o n - h o m o g e n e o u s  a n d  f o r m  a v e c t o r  

space  of  d i m e n s i o n  

c 1 - c 3 - 1 ] 

in  t h e  second  case ((ii)), t h e  e x t e n s i o n s  a re  a l l  h o m o g e n e o u s  a n d  f o r m  a v e c t o r  space  

of  d i m e n s i o n  �89 r. 

T h e  c o m p l e x  d i m e n s i o n  of  2~ is nk-k2; t h a t  of  X is nk-k3+ �89 I f  we a s sume ,  

e.g.,  t h a t  n - k  is odd ,  t h e n  H* (X, Z) has  no  to r s ion  a n d  is in  f a c t  g i v e n  b y  

K [X 1 . . . . .  Xr]  | S(X~§ . . . . .  Xk) 
| A (X2n-1 . . . . .  X2n-(~ ~)) 

S (X 1 . . . . .  Xk) 
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(in the usual notation of topology). Letting m = n k -  k ~, F[X] = F [ ~ ]  ~ P(z I . . . . .  Zm) = 

rational homogeneous functions in m-variables. There are l r~ parameters varying the 

homogeneous structure on X. If r=2,  there are ( n - 1 )  z parameters of non-homoge- 

neous deformation; if r > 2, there are still ( n -  1) ~ such parameters, there being (�89 r - 1 )  

( n - 1 )  2 obstructed parameters in this case. 

(ii) An Example Concerning the Semi-Simplicity of Certain Representations 

Let X =  G/U be a non-K~hler C-space; .X= G/l~" the associated K~hler C-space 

with fundamental fibering T~-->X-->X.  Theorem 4 in w 5 stated the following: 

Let ~:U--> GL(E ~) be an abelian representation of U which does not extend to ~ ;  

then if o l u  N ~ is semi-simple, H*(X,  ~o)=0.  We now show by an example why the 

restriction of semi-simplicity was in fact necessary; in fact, this example is in some 

sense indicative of the only alternative to semi-simplicity. For simplicity we assume 

that  0 (and hence U) is solvable. We w r i t e u = l l e ~ E  C o ;  f i = l l e ~ t  ~ p  $ ~ a s i n w  1, 

and we choose any ~ E p '  such that  (2,~E}=0. Then, for ~EUN~,  we define a re- 

presentation 

o 

Clearly Q~ extends to all of 1~ and we assume that  Qa is covered by a representation 

Then Q~ does not in general extend to /~. To compute H* (X, Eq~), we let Dx be the 

(0, 1) form in H~ C) corresponding to 2 and observe that  we have the exact se- 

quence of homogeneous vector bundles: 

0 -> 1 -> Eq~ --> 1 --> 0. (14.2) 

In  the exact cohomology sequence 

�9 . .  ' - - > H q - I ( X ,  ~-2) L~>Hq(X, f~) --+Hq(X, ,~o~) _ _ > H q ( X ,  ~ - ~ ) ~ . l H q + l ( X  ' ~ )  _..> . . .  

the coboundary maps 5q are given as follows: for 

e H q-1 (X, ~ ) ,  6q (4) = ~ A ~ e H ~ (X, ~ )  
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(see Lemma 12.2 or also [12]). By  the same calculation as in Proposition 12.2, it 

follows tha t  H q ( X , ~  qx) is a trivial M-module of dimension ia~.  
\q/ 

(iii) Line Bundles over P~ (C) 

Let V be a vector space and W =  V a subspace of codimension 1. Letting 

G= GL(V), U= subgroup of G preserving W, and writing E =  W / V ,  we have the 

exact sequence of U-modules 

0--> W --> V --> E --> O . (14.3) 

The C-space G/U is a projective space P~ (r + 1 =d imc  V) and E -+ E --> P~ is the line 

bundle of a hyperplane section. I f  (t 1 . . . . .  tr+l) are homogeneous coordinates in P~, the 

sets U~ = {(t 1 . . . . .  tr+l) : t~ # 0} give the usual affine covering of PT with non-homogeneous 

coordinates w~=t~/t~ ( ~ # i )  in U~. The bundle E has transition functions s~s= (tJt~)in 

Ut N Uj. I f  U is written as a set of matrices 

/Y~ll 

Ur +1,2 "ltr+l,r+l/J 

then E is given by the representation 2(u)=Ull .  More generally, the bundle E~ with 

transition functions (tJt~) ~ is given by  2n(u)= u~l. From theorem B and the above 

discussion on Young symmetrizers, it follows tha t  

s q ( P r , ~ n ) = o  q > 0  (n>~0) ,  dim H ~  
\ ] n 

and in fact H~ ~n) is the irreducible G-module of symmetric tensors of rank n. 

One may  easily compute all the G-modules Hq(Pr, ~n) using these results and the 

duality theorem; observe tha t  for the canonical bundle 

K =  - (r+  1)E. 

(iv) A New Type of Obstruction 

I f  L is a locally free coherent sheaf of Lie algebras over a compact complex 

manifold Y, then H*(Y,  L) has the structure of a graded Lie algebra. For certain L, 

the non-triviality of the mapping {, } : H 1 ( Y, L) | H 1 ( Y, L) --> H ~ ( Y, L) gives rise to 

obstructions to varying the structure of something analytic on Y (see w167 9, 10, 14 (v)). 

1 5 -  632933 Acta mathematica 110. Imprim6 le 5 d6eembre 1963. 
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In  all cases which we have encountered, and indeed in all examples known to the 

author, the obstructed elements which have arisen lie in the image of H ~ ( Y, L) | H* (Y, ~2) 

in H I(Y, L) (under the pairing L + ~ - +  L. A general reason for such obstructions 

was discussed in w 9; roughly speaking, they were of an "ad-hoc" nature. We now 

give an example of an obstruction which arises in an entirely different manner-- this  

obstruction might be termed "a priori". 

We consider a complex l-torus T =  T 2z and bundles over T with group N-matri- 

of the form / ( ;  bc)}; if E--+E--+T is a vector bundle with group N, then we c e s  

have an exact sequence 

(S) 0 -+  A-+  E -+  C--> 0, (14.6) 

where A, C are line bundles. The bundle E is homogeneous ~ A, C are also (w 13). 

Furthermore, if E is homogeneous, then in order that  (14.6) not be splittable, it is 

necessary that  A = C (w 13). The obstruction we seek will arise when we t ry  to deform 

1 + 1 into a bundle E of the above form which is not decomposable and is such 

that  A # C. 

To be more precise, we consider V = 1 + 1 as having structure group N and construct 

its principal bundle N--+P-+ T. As usual, we have associated to P the Atiyah 

sequence 

0 - + L - + Q - + T ( T ) - + 0  ( L = L ( P ) ,  Q=Q(P) ) ;  

we must examine Hi(T, •). 

LEMMA 14.3. C ~ l e l e ( H o m ( 1 , 1 ) ) - ~ l + l $ 1 .  

Proo/. The proof is easy; see w 11 (iv). 

An element in H q ( T , I : ) i s  of the form ( ;  ~ )  , where ~ , ~ , T E H q ( T , ~ ) .  

PROPOSITION 14.2. 

where a = (~ - ~') A ~ ~ H ~ (T, ~). 

Proo/. The proposition is quickly proven by a straightforward calculation in local 

coordinates using the definition of { } given in w (ii) ((9.7)). 
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, E H i ( T ,  F~) is unobstructed ~ ~ =  

To have  a de fo rma t ion  of l ~ l  r epresen ted  in f in i tes imal ly  b y ( ~  0 ~ )  
/ x 

, _  means  t he  

following: each of ~ and  ~ '  gives  rise to  a l ine bund le  E ,  or  E, ,  on the  P i ea rd  va r i e t y  

O(T) ;  to  have  ~ = ~ '  implies  t h a t  E,=~E, , .  To say  t h a t  T4:0  means  t h a t  we are  to  

have  a non-sp l i t  ex tens ion  of E,, b y  E ,  which is poss ible  ~ ~ = ~' ,  whence the  ob- 

s t ruc t ion  to  de format ion .  
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