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ABSTRACT In this note, we announce some new results con-
cerning rigidity and isometric embeddings of Riemannian mani-
folds. A special case of the main result states that a general Mn
C R"+r, r ' (n - 1) (n - 2)/2, is uniquely determined up to finitely
many constants by its induced d2.

In this note, we announce some results concerning the isometric
embedding and associated rigidity problem for Riemannian
manifolds.

By an abstract Riemannian manifold (M, ds2), we mean a
manifold M having a Riemannian metric ds2 given in local co-
ordinates by dS2 = E17=jgyj(x)dxidx!. An isometric embedding

fMn +RN [1]

is an embedding given locally by functions ya(x) (a = 1,...,N)
satisfying

N
ay (X) aya(X)

E dx(X) = gV(X). [2]a= 1

which asserts that (a) a local isometric embedding exists in the
embedding dimension (Eq. 3) in the real analytic case and (b)
this embedding "depends on (n - 1) functions of (n - 1) vari-
ables," which is the expected count when one sets up Eq. 2 as
a Cauchy problem. There is also a global existence assertion
(5, 9). Not only does the local theorem give the hoped for state-
ment in the real analytic case but, in the proof, there is direct
interplay between the geometry ofthe manifold and the embed-
ding (see the discussion at the end of ref. 6).

Turning now to the rigidity question, if we assume that the
codimension r < n(n - 1)/2 (cf. Eq. 4), then the system is
"overdetermined" and one may suspect that for a general dS2,
there will be no isometric embeddings. Moreover, if there is
an isometric embedding, then it should become "increasingly
rigid" as r becomes small in comparison with n. In this regard,
the main result is the classical theorem ofAllendoerferand Beez
(cf. refs. 1, 8, and 10), which states that a general isometric
embedding (Eq. 1) is rigid in case

r - [n/3]

We are interested in the two well-known questions: (i) How
unique is a given isometric embedding? We shall refer to this
as the rigidity question (cf. ref. 1 for an excellent discussion).
(ii) Does an isometric embedding exist? This will be referred
to as the existence problem. It may be posed in either the CO
or real analytic category.
We note that, since Eq. 2 consists of n(n + 1)/2 equations

in the N unknowns ya(x), in first approximation, we may expect
an affirmative answer to the existence problem when

N = n(n + 1)/2 [3]

or, equivalently, when the codimension
r = N - n

is given by
r = n(n - 1)/2. [4]

Classically, the two main existence theorems are these: (i)
The Nash embedding theorem, with refinements by several
people including those given in refs. 2-4,§ which asserts the
existence of a Cx isometric embedding when

[n(n + 1)/2] + 3n + 5 global case
N =t

n(n + 1)/2] + n local case.

Unfortunately, there is no accompanying uniqueness state-
ment. (ii) The Burstin-Cartan-janet-Schkifly theorem (1, 6-8),

[5]
(here, rigid means thatf is determined up to Euclidean motion
by the ds2 on M).
We shall briefly explain the meaning of"general" (in ref. 10

this has a very precise meaning that we shall not give). Set M
= f(M) and locally along M choose an adapted (or Darboux)
frame field
{X; el,..,en; en+l,..,eN} = {X; ei; eJ

1 ij-'nn+ 1-P-v-N [6]

for RN. This means that x E M, that the ej are an orthonormal
basis for the tangent space TX(M), and that the e, are an or-
thonormal basis for the normal space NJ(M). If W1,. ,n" is the
dual coframe to the ej, then using summation convention, we
write the Riemann curvature tensor R and 2nd fundamental
form H as

R = Rgk I A (0 ®(k A Jl

H = h~e, (9 dwi
The basic features of the embedding M C RN are encoded in
the Gauss equations

y(H, H) = R

where, for H = (hg) and H' = (hML), we define

y(H, H')ijkl =
I

{hlhjr + hjghsj - h'hW - hitkklt}

[7]

[8]

§ For a comprehensive survey of work on the isometric embedding
problem, see ref. 5.
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The main step in Allendoerfer's proofconsists in an extremely
ingenious computation showing that, when [5] holds and H does
not satisfy a polynomial condition P(H) = 0, then the Gauss
equations [7] uniquely determine H up to a rotation in the nor-
mal space. In this case, general means that P(H) # 0 along M
(see Appendix, note a).
Our results are C' and local and are therefore valid in a neigh-

borhood ofany point ofM. We shall say an isometric embedding
[1] depends on constants in case there is an integer k such that,
if

ff':M-- RN
are two isometric embeddings that agree up to (and including)
order k at one point, thenf-f' (cf. note b) (rigidity is essentially
the case k = 1). We shall say that Eq. 1 is general in case the
second fundamental form of the image does not satisfy certain
polynomial relations, to be specified.
THEOREM. Let

f RN [9]

be a general isometric embedding. Then (i) if r < (n - 1) (n
- 2)/2, the embedding depends only on constants (note c); (ii)
if r = (n - 1) (n - 2)/2 + s, 0 ' s ' n - 1, then [9] depends
on, at most, functions of s variables; and (iii) if

r ' n
r ' 3
r ' 4

n 6
n = 4
n = 5,

then the embedding 9 is rigid (note d).
To better understand the codimension ranges in the theo-

rem, we remark that the embedding codimension (Eq. 4) is
given by

n(n - 1)/2 = (n - 1) (n - 2)/2 + (n - 1).
In addition, we have an existence theorem. To explain it, we

first remark that our proofofthe above theorem will show that,
when r < n(n - 1)/2, Eq. 2 is in a precise mathematical sense
overdetermined. In so doing, we will show that, if an embed-
ding [1] exists, then for each point of M, the sequence

R, VR, V2R, V3R,..., [10]

consisting of the curvature and its successive covariant deriv-
atives, satisfies polynomial relationships

As a general setting, we use Cartan's theory of exterior dif-
ferential systems (refs. 6, 13, 14 and unpublished data). This
theory gives a precise meaning to the sense in which [1] is ov-
erdetermined for r < n(n - 1)/2 and, at least in principle, gives
a method for determining the "integrability conditions" [11]
that must be satisfied by a dS2 in order that a formal germ of
isometric embedding [2] exist around each point of M. We em-
phasize that having a formalism that encompasses both the ge-
ometry in the problem as well as exhibiting in computable form
the algebra underlying the integrability conditions is essential
to the problem (note f).

Given this general setting, our argument first puts the dif-
ferential system underlying the isometric embedding system
[2], together with its prolongations, in a good form suitable to
the particular problem (the procedure is somewhat different
from that used in the existing proofs of the Burstin-
Cartan-Janet-SchlIfly theorem). Then we combine the classical
methods of Cartan (6) with the modern formulations from refs.
13 and 14 in a form adapted to the present problem (note g).
To explain this, we set

W = NX(M) Rr
V = TX(M)-R
K = {space of curvature-like tensors} C 04V*.

By our first step, we are led to consider the linearized and pro-
longed version

YH(q):W®5SyMq+2V* -KSYMqV*
of the Gauss Eq. 7, where for

H = hiYe,®oco'd E W®Sym2V*

H = hK.. iq+2e, 0 (..e iq+2 E W(&SyMq+2V*
the mapping 13 is given by

H(q)(H')Ykl= 2 > {h:h;hinm ... mq + hh mL ...mq

-h hj mqh...hm- thj (} ... 6nq.

that
A In + 2\ ., laH'\

We note t

[13]

[14]

QA(R, VR, ..., VkR)=0, A = 1,2, ..., d(r)

[k = k(r)]. We denote by V4 the variety given by [11]. Although
this variety is complicated, we are able to determine it explicitly
when the codimension r = 1,2 (note e) and to determine its
tangent space in general.

PROPOSITION 1. Suppose that (M, ds2) is an abstract Rie-
mannian manifold whose curvature sequence [10] lies in Vr -
Vr- for each x E M. Then if

r - (n - 1) (n - 2)/2, [12]

there is a local C' isometric embedding.
This result is only a proposition, because the main part of the

proof already appears in the theorem and consists in reducing
the partial differential equation system (Eq. 2) to a succesion
of ordinary differential equations.

This proposition was previously obtained for low codimen-
sion by Thomas (11) for the case r = 1 and Allendoerfer (10) for
the case r ' [n/4]. A more modem discussion of their results
has been given by Chern and Osserman (12).
We would like to briefly remark on the proofofour theorem.

aU

(,YH q(H )) = 4 -T

YH(q-1) T V..............[15]

This suggests that we set

Sym V = @ SymqV
qaO

Sym +2V = $ Symq+2V
qaO

and consider the duals 7H(q)* of the maps [13] collectively as
giving

H* :K*®8) SymV W*®) Sym +2v [16]

where TH* = yH()* . From Eq. 15, it is easy to conclude that,
q:O

aside from irrelevant scaling factors, YH* is a map of graded
Sym-V-modules.
Now it is well known that, when viewed globally, the Gauss

Eq. 7 and their prolongations [13] present severe algebraic
difficulties (cf. refs. 8 and 15). For instance, suppose we con-

sider the case n = 4, r = 2 of an

M4 C R6.

[11]
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Then
dim W® Sym2V* = 20

dim K = 20

[in general, dim K = n2(n2 - 1)/12], and the Gauss map [7] is
a quadratic map

y:R20 - R20.

Since we can rotate in the normal space,

dim ly-l(R) - 1

for all R E image y. By using Young tableaux to study the as-
sociated bilinear map [8] we are able to prove the
PROPOSMION 2. For any R E image y,

dim yf1(R) _ 2. [17]

Thus the Gauss map has "hidden symmetries."
As another example to illustrate that a simple counting of

constants in the Gauss equations and their prolongations is
misleading, we denote by

K(9) C KG SyMqV*,
the space of tensors with the symmetries of the principal part
of a general VqR (cf. ref. 8 for this notation). Then, it is im-
mediate that

RyH(q):W® Symq+2V* -K(q) [18]

Now

dim K(9) =n-)q+1( q+1 ~-)q~
2 q + 3 q + 2 2 (n - 1)!

n+q+ qnll
dim W® Symq+2V* = r ( ) r(1)

so that, ifr < n(n - 1)/2, the mappings [18] cannot be surjective
for large q (note h). However, even when the conditions

r < n(n - 1)/2, q ' 1, and dim WO Symq+2V* - dim K(9)

are satisfied, so that the mapping has no "obvious" kernel, it
may still happen that yH(q)fails to be injective. For example, we
have the
PROPOSMION 2. For a general M3 C R5 and for all q ' 1,

dim [ker yH)(q)] = 6. [19]

In summary, it would seem that treating the Gauss equations
and their prolongations by direct, global (in the cotangent
spaces) methods presents a formidable task (cf. the complicated
computations in ref. 8).
Now it is well known (cf. ref. 16) that over C the data [16]

are essentially equivalent to giving coherent sheaves X*,
W*(2) over PV*c PC-1 together with a sheaf map

r'H:X*--> 'W*(2). [20]
To explain this dictionary in one direction, for large q, we have

HO(Pn-l,*(q)) K* ®5ym0 V*®C
HO(Pc-lOIP*(q + 2)) _ W* ®& Symq+2V*OC

and the induced map on global sections is yH(q)*. This suggests
that we localize Eq. 8 at vectors 0 # C E V*c = V* ®9 C. When
this is done, a minor miracle occurs, in that the localized Gauss
equations become extremely simple. For example, when 4 =
(0,0, ..., 1), the localization of [8] is essentially given by

(ht'I) ~-- E> htm ' [21]1:sij:-!:-n-I n

A straightforward dimension count shows that

[H E W® Sym2V*:(21)
codim fails to be injective (n - l)(n - 2)/2 - r + 1.

for some 0# EVc [22

Together with more or less standard reasoning from algebraic
geometry, [22] leads to

PROPOSrITON 4. If r ' (n - 1) (n - 2)/2 and H E W®
Sym2V* is general, then (i) sheafmapping [20] is surjective and
(ii) for q _ qO, the mappings YH(q) in [14] are injective (note
i). Intuitively, (ii) means the "Taylor's series" or jet of the 2nd
fundamental form is uniquely determined, up to finitely
many terms, by sequence [10], and this underlies part i in the
Theorem.

Part ii is similar, but part iii requires a deeper argument. For
this what we prove is the
PROPOSMON 5. Under the conditions in part iii oftheorem,

sequence [10] uniquely determines the 2ndfundamentalform
at each point of.M.

As we saw when n = 4, r = 2 (cf. proposition 2), this is false
forjust the curvature (i.e., the Gauss Eq. 7 may not be uniquely
solvable, up to normal rotations).

Even (and perhaps especially) when r = n(n - 1)/2 is the
embedding codimension, our method has interest. From [20],
we have

r
H

[23]

where the cokernel 9; is a coherent sheaf on P-1=-
P[T:(M) 9 C]. As a generalization of Proposition 4, we prove
that, ifH is general,

dim (supp 9i) = max {-1, r - [(n - 1)(n - 2)/2] - 1}

(the number ultimately comes from [22]. Moreover, we may
identify supp 9; with the scheme ofcomplex Monge character-
istics for the isometric embedding system (notej). Over R, these
characteristics turn out to be the asymptotic codirections for a
given solution to the Gauss equations.

In particular, we consider the case r = n(n - 1)/2. The iso-
metric embedding system is involutive, and the space X of in-
tegral elements may be thought of as the variety of solutions to
the Gauss Eqs. 7. Over each point H E X, the characteristic
variety (we drop the word scheme)

-_H C PV* [P T* (M)]
is the support ofthe sheaf9I. The integral elementH is ordinary
(so that the Cartan-Kahler theorem applies in the real analytic
case) exactly when

aH 0 PV*
We shall denote by ' H,C C PV*c the complexified characteristic
variety.

PROPOSrITON 6. (i) IfH is ordinary, then

dleg HAC = n

(ii) Ifn- 3, then H is a nonempty real hypersurface (of
degree n).

Thus, the isometric embedding system is hyperbolic except
for the classical case n = 2 when the Gaussian curvature is pos-
itive (note k). Moreover, the characteristic variety has a canoni-
cal (real) resolution of singularities (these occur in codimension
4). This picture may be expected to have great bearing on the
propagation of singularities behavior of the isometric embed-
ding system.

Example: Suppose we have a general M3 C R6. Then at each

Mathematics: Berger et d
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point x EE M, the characteristic variety of the isometric embed-
ding is a smooth real cubic curve Cx C PT* (M). The Monge
cones are just the dual algebraic curves C* C PTX(M) (these have
degree 6 with 9 cusp singularities), and the bicharacteristic
curves project to curves x(t) in M whose tangent direction x'(t)
E *bX(t)'

As a final illustration of how algebro-geometric considera-
tions enter, we consider over PV* the vector bundle E whose
fiber over 0 #4 X E V* is given by

E,= Sym cO.

It can be shown that [23] is (essentially)
r

0 E _> W*(2) 0;;

From this, it follows that the 2nd fundamental form H E W®
Sym2V* is uniquely determined, up to GL(W), by the charac-
teristic variety sheaf. Under additional general position as-
sumptions, H is determined by E up to rotations in W. When
n = 3, this refines the theorem of Tenenblat (17) (actually, the
result of ref. 17 is not quite correct as it stands).

APPENDIX
(a) The example of a cylinder (Mn = Mk X Rn-k, where Mk C
RN-n+k) shows that rigidity may fail with no assumption on
generality.

(b) Briefly, f is uniquely determined by its k-jet at one poipt
of M.

(c) Intuitively, viewingM as a sheet of metal, it may be bent,
but only in a finite parameter way. In particular, the moduli
space for local isometric embeddings is in this case finite di-
mensional. This is the first example we have seen ofsuch a phe-
nomenon occuring naturally in a geometric problem.

(d) The meaning of "general" is somewhat more subtle here
than in i and ii and will not be explained here.

(e) The case r = 1 is classical (cf. refs. 18 and 19). A conse-
quence of our result when r = 2 is that k(2) = 1; i.e., the con-
ditions under which an (Mn, CfS2) can be isometrically embedded
in Rn2 are given by explicit polynomial relations on R and V
R [in this regard, we note that k(l) = 0].

(U) In this regard, we would like to emphasize the influence,
both personal and mathematical, of the formalism for studying
overdetermined systems introduced by Spencer (13). In par-
ticular, refs. 7, 8, and 20 study the isometric embedding prob-
lem by using prolongations and involution formulated in terms
of Spencer cohomology [cf. also Goldschmidt (21)]. In refs. 14
and 22, Spencer's homological formalism was dualized and then
the standard machinery of commutative algebra becomes di-
rectly applicable (cf. also refs. 23 and 24). Although we have
chosen to use moving frames, the Goldschmidt-Spencer com-
putational formalism could have been equally well applied (in
the setting of ref. 7).

(g) Roughly speaking, this technique may be applicable
whenever a geometric configuration is automatically the solu-
tion to an overdetermined partial differential equation system
[such as an Mn C RN, N < n(n + 1)/2].

(h) This observation may be used to show that [2] fails to be
involutive below the embedding dimension.

(i) The passage from i to ii is a sort of "module Nullstellen-
satz."

(j) However, the structure sheaf of the characteristic scheme
only coincides with 9J up to codimension 4. We strongly suspect
that the facts that supp 9Z is Cohen-Macaulay and has an in-
vertible dualizing sheaf will be analytically significant. We use
the word Monge characteristic to distinguish from Cauchy char-
acteristics and Cartan characteristics (= singular integral ele-
ments), both of which are used in ref. 6.

(k) In particular, it is not elliptic except for the case of a sur-
face f:M2 -- R3 whose Gaussian curvature is positive-i.e., R
> 0 (cf. ref. 1). This phenomenon was known to S. S. Chern
and H. Levy.

Note Added in Proof. The relationships discussed in note e have been
obtained by G. Kallo.
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