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We are primarily concerned with some examples of continuous systems and
moduli of general complex varieties. After preliminary remarks in Section 1,
we give in paragraphs 2 and 3 examples of continuous systems whose parameter
space is nowhere reduced. The first such example was given by Mumford
(Amer. J. Math., 85 (1962) 642-648); in our case, we compute explicitly the
cohomological obstructions. In Section 4 we use the second example above
to give a moduli space in higher dimensions. Paragraph 5 is devoted to some
simple examples of continuous systems generated by curves in projective
space; the point to be made here is that the available criterion for completeness
of the characteristic system seldom applics in practice. In Appendix I we discuss
the relation between continuous systems and deformations via monoidal trans-
formations; and, in Appendix II, we discuss the Riemann-Roch theorem for
prime divisors by using continuous systems.

1. Characteristic systems of continuous systems. ILet X be a compact,
connected complex submanifold of a complex manifold W. The notion of a
continuous system {X,},.s of compact submanifolds X, C W and for which
X = X, for some 0 ¢ A has been defined by Kodaira [1]. Here A is an analytic
space and the X, are to depend holomorphically on + ¢ A. If N, — X, is the
normal bundle of X, C W, then there is defined the Znfinitestimal displacement

mapping [1]
@ p. : T,(4) —» H'(N)).
(If 8/91% & To(A), then we may write

3\ _ ox,
Po\n) = o e
where 7 = (!, --+ , t") e A.)
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Here T,(4) = Zariski tangent space to A at = (for our purposes we may
always assume that A C C”) and we write H°(N,) = H°(X, , O(N,)). The
image p,(T,.(4)) C H°(N,) is the characteristic system cut out on X, by the
continuous system {X,}; the continuous system is said to be complete at r
if p,(T,(A)) = H°(N,); the continuous system is said to be effectively parametized
if p, is injective.

The concept of a maximal continuous system is defined in the obvious way—
any other continuous system is contained in it—and the following theorem
can be proven [2]:

Theorem Given X C W, there exists a maximal continuous system T =
{X,},ea containing X = X, . We may assume that A C H°(N) where N — X s
the normal bundle, and p, is then the identity mapping. The continuous system
1s complete if H'(N) = 0.

Because of this result, we may speak of the characteristic system of X C W.
Perhaps the simplest incomplete characteristic system is the following: Let X
be a compact Riemann surface of genus p = 1, let {U,} be a coordinate
covering of X, and suppose that N\ ¢ H'(X, 0) is given by a cocycle {\.s},
Mg : U, M Ug— C. We form a manifold W from \J, U, X C by the equivalence
relation: (u, , £,) ~ (ug, &) if, and only if, u, = us and

- &
fa = 1+ )\aﬁ(uﬂ)EB gaﬁ(uﬁ ) EB)-

From Neg + Mgy = Aoy We find ¢,5(gsy) = gay s0 that W is a surface which
is fibered over X with C as fibre. We may embed X C W by the local equation
¢, = 0, and the normal bundle N — X has transition functions 8¢9 .s/9%sli=0 = 1;
thus N is analytically trivial. On the other hand, the continuous system =
generated by X consists of X alone since, if X' ¢ 2, X' += X, then X N X' = ¢
(since N is trivial) and so X’ would be given locally by £, = 7.(u,) = 0. If
0o« = 1/9,, then from 5, = /(1 4 N.p1s) it follows that ¢, — @ = Agg Or
A = 0 in H'(X, 0). Thus = is incomplete. This example is essentially due to
Zappa [3].

2. An everywhere obstructed family. Let X be a compact, complex
manifold with H'(X, 0) =# 0 and take ¢ ¢ H' (X, 0). For [A| < ¢, the line bundles
Ty = exp (\¢) € H'(X, 0*) may be assumed to satisfy T, = T,. if, and only if,
A = N. Let L — X be a line bundle, set L, = L & T, , and assume:

) HX,0(L)) =0 for A+0, HX,O®)) + 0.

(L = trivial bundle will do.)

Let now D = {X : [\| < €} and suppose that f : D — D is a holomorphic
function with f(0) = 0. Define a complex manifold W, = \U,,p L, as follows:
If {U,} is a coordinate covering of X relative to which L and ¢ have transition
functions ¢.5 : Uy M Ug — C* g5 : U, M Ug — C, respectively, then W, is
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formed from U, {U, X C X D} by the equivalence relation: (14 , £o , Na) ~
(ug , 6, Mp) if, and only if, \e =N =N Uy = up = u e U, N\ Uy, and
fa = Yas(w) exp (f(Neapu))é . (We may think of W, as \Us.p Lo .) Let
ce H (X, OL)), o + 0, and set X, = o(X) C W, .

Lemma 1. Let A C H°(X, OL)) be a small neighborhood of o. Then the
maximal continuous system of X, C W, is given by {X,},.a where X, = r(X).

Proof. First observe that there are projections = : W, —» X, 6 : W, — D
given locally by 7(ua , £a ), Na) = Ua, 0Ua , £a, Aa) = N . Lot {X,},.4 be
the maximal continuous system of X, C W, . Then n(X,) = X and 0(X,) = 5(r)
where 7(r) is a holomorphic function from A to D. Thus X, is a section of
L, and so by (2) 9(r) = 0, and the assertion is now obvious.

Let N; — X, be the normal bundle of X, C L; under the isomorphism X, = X,
N, corresponds to L. Denote by N, the normal bundle of L C W, . We have
then the exact sequence:

®3) 0—-N,-»N—->N,—-0,

where N = normal bundle of X C W, . Obviously N, is trivial and so, under
the isomorphism X =2 X, , (3) is uniquely given by an element e ¢ H* (X, O(L)).

Lemma 2. e = {'(0)(¢-0) where ¢+ o is the cup product
H'(X, 0) ® H(X, O(L)) — H'(X, O(L)).

Proof. Set {o = £o — 0o(u.) so that X, is given locally by ¢, = 0 = \, .
Then N — X, has transition functions

EIP I
Nos = s g
Ne g

La¢s ONgp=o=n
Then

Naﬂ - Yas f,(O)a'a(baﬁ
LO 1

and the Lemma follows.

Theorem 1. If f/(0) = 0, then {X,},.a ts everywhere incomplete. In fact,
if 1*(0) = 0, "**(0) = O, then there is everywhere on A an n*® obstruction to com-
pleting the continuous system generated by X, (r & A).

Proof. If f/(0) = 0, then by Lemma 2, N, = L @ 1 (under isomorphism
X, =~ X) and so {X,} is everywhere incomplete.
The assertion about the nt* obstruction is straightforward to check.
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3. Another example of an obstructed family. This example is more inter-
esting than that of Sec. 2, although the geometric principle is essentially the
same. Let X be a curve of genus p > 2 and whose normalized period matrix
is (I, Z,) where Z, ¢ H, = Siegel’s generalized upper half-space in genus p.
Now each point Z £ H, gives rise to a canonically polarized Abelian variety 4, ,
and we let U C H, be an open neighborhood of Z,, W = UzwA z . Then W is
an open complex manifold of dimension p(p -+ 3)/2 which contains A,, . On
the other hand, 4 ;, = J is the Jacobian variety of X and there is an embedding
XCJ.

Theorem 2. (i) The continuous system Z generated by X C J 1is complete
if and only if X is non-hyperelliptic; (it) if X is hyperelliptic, then T is everywhere
obstructed; (117) the conlinuous system generated by X C W 1is complete.

Proof. If T = tangent bundle of J, then we have over X the exact sheaf
sequence

“4) 0—0 — 0x(T) - O0IN) — 0,
Where ® = tangent sheaf to X, N — X is the normal bundle of X C J. If
w', +++ , « are a basis for the Abehan differentials on X whose period matrix

is (I, Z,), then there is induced a trivialization Ox(T) =2 {Ox}” and likewise
0,(T) = {0,}”. (A germ 6 & 0,(T) is written 8 = Zf; 9/9w’ where (9/dw’, v*) =
8% and f; £ 0, .) From (4) we find the exact cohomology diagram

0 0
] ]
{Ho(?z)}p {Hl((f.f)}p
® 0— H®) — {Ho(i)x)}” % H(O(N)) 5 H'(©) - {H‘((l)x)}’” -
0 0
The dual space to H'(Oyx) is H°(K) and 50 ¢ in (5) induces a mapping:
©) ‘e s HY(K) @ H'(K) — H(K?),
(using {H°(K)” =~ H°(K) Q H°(K) via «', -, o”).

Lemma 3. The mapping ‘o in (6) is the cup product.

Proof of Lemma. If w', .-+ , w” are Buclidean coordinates such that
J = C?/T, T being the lattice generated by the columns of (I, Z,), then
dw® | X = »” and the mapping ® — {Ox}” is given by sending 0 — (1, +++, f»)
where

0—21‘4 e

a=]

is a vector field along X.
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Let now 6 € H'(0). In terms of a local coordinate z on X, 0 = g(2) 8/9z Q) dz
and c() = (f, -+ -, f,)(g(2)dZ) where §/dz = Zf, 3/0w® and (f.g) dz e H'(Ox).
Thus, if o = (¢*, -+, ¢") e {H°(K)}” (= dual space of {H'(0x)}”, then

(ta(@): 0> = <‘19> ‘7(0))

= f (Efa‘Pa) A gdi= f 2<‘°a79— o A gd2 = (Ewa§0a7 0>:
x x 02
where Zw®p® ¢ H°(K®). Thus ‘o(p) = Zw"® or ‘s in (6) is the cup product,
and this proves the Lemma.
Returning now to (5), we see that & is zero if and only if the cup product

) H(K) @ H(K) % H (X%
is onto; while, on the other hand, we have

Noether's Theorem. (See [4]) Assuming genus (X) > 2, u in (7) is onlo
if and only if X is non-hyperelliptic.

(We may restate Noether’s theorem geometrically as follows: if X C P,_, is
a canonical curve, then the quadries on P,_; cut out, on X, a complete linear
system and X lies on 3(p — 2)(p — 3) such quadrics.)

Let now {X,},.s be the continuous system generated by X C J. If C' is an
analytic curve through the origin 0 ¢ 4, and if £ ¢ H°(N) is the tangent to C
at 0, then, assuming that X is general in {X,},.s , 6(§) = O since, if this were
not so, then {X.},.c would be a family of non-singular curves X, C J and
from 6(¢) == 0 it follows that not all the X, are biregularly equivalent. (This
follows from the following result of Kodaira-Spencer: If {Y,},.5 is a complex
analytic family with dim H°(Y, , ®,) = constant for all ¢, and if all the Y, are
biregularly equivalent, then the mappings p, : T.(B) — H*(Y, , ©,) are zero.)
But then this contradicts Torelli’s theorem [4].

The conclusion is then that the continuous system {X,},.s consists of the
translations of X in J, and there is everywhere an obstruction if X is hyper-
elliptic. This proves (i) and (ii) in Theorem 2.

The fact that the maximal continuous system {X,},.s of X C W is complete
and dim S = 4p — 3 is easy to verify using Teichmiiller’s theorem.

Remark. If X is non-hyperelliptic, dim H°(N) = p and dim H'(N) =
p® — 3p + 3; if X is hyperelliptic, dim H°(N) = 2p — 2 and dim H'(N) =
p° — 2p + 1. The obstruction in this case is of the same nature as that of
theorem 1 above.

4. An example of a moduli space. An interesting question in the theory
of moduli is the problem of stability of analylic objects: If X is a compact, complex
manifold, {X,},.; a deformation of X, and v an analytic object on X, then
when can v be continued analytically to v, on X,? For example, if X is obtained
from a variety Y by blowing up along a submanifold S C YV, and f Z C X
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is the total transform of S, then Z is stable and so there exists Z, C X, , but
it is not known if X, can be blown down along Z, (see [5] and Appendix I
below).

We shall prove that this is so in a special case, and the construction thus
leads to a moduli space in higher dimensions.

Let S be a curve of genus p > 2 and J the Jacobian variety of S. Suppose
that X is the algebraic manifold obtained by blowing up J along S; denote
by = : X — J the canonical projection and set Z = #~*(S). Then Z 5 § is
a fibre bundle with fibre the projective space P = P,_, and, if L — Z is the
normal bundle of Z C X, thenL | P = —H where H — P is the hyperplane
bundle.

Theorem 3. Let {X,},.5 be an analytic deformation of X = X, . Then there
exists a family {J.}..n of Abelian varieties and a family {8,}..n of curves such
that S, C J, , J, is the Jacobian of S, , and X, = monoidal transform of J,
along S, .

Briefly: Moduli (X) = Modulz (S).

Proof. Let RI(L) be the ¢** Leray sheaf of the pair (0,(L); Z = S). Then,
for U C 8 a small disc,

H'(U, RY(L)) = H'G(U), 0,(L))= 3 H'(P, 0x(—H)) ® H'(U, 0v) = 0,

r+s=gq
for all . By the Leray spectral sequence, H*(Z, 05(L)) = 0 for all q.

From H°(Z, 0;(L)) = 0 = H'(Z, 0;(L)), we conclude that there exists a
unique family {Z,},.z of compact submanifolds Z, C X, such that Z, = Z.
Furthermore, there exists a fibering of Z, by projective spaces P = P,_, such
that Z, — S,(= Z,/P) is a projective fibre bundle over a curve S, ([5], p. 87).
If L, — Z, is the normal bundle of Z, C X, , then clearlyL, | P = —H.

Now the normal bundle N of S in J is positive (the Euclidean second funda-
mental form of S in J is positive), and so we may blow down X, along Z, to
obtain a compact, complex manifold J, , which contains 8, , and is such that
X, = monoidal transform of J, along S, [6]. Clearly J, = Jacobian variety
of S, .

In Appendix I we shall prove the following

Lemma 4. We have the following exact sequences:
®
{0-—*H°(J,®J)-"L>H°(S, 05(N) -5 H'(X,05) = H'(J,0.,) & H'(S, 05(N)) -0,
0 I (X, 00 S H(J,0) >0 (422)
where p; 1s tnduced from O, | 8 — 0s(N) and =, is induced from X = J.
The conclusions which we may draw are:
(a) X has 3p — 3 moduli and X , =2 X,. if and only if S, = S, ;
(b) If 8 is non-hyperelliptic, p, is onto and dim H'(X, @) = dim (ker p.) =
3p — 3;
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(c) If S is hyperelliptic, p, has co-rank p — 2 and dim H'(X,0x) = p — 2 +
dim (ker p,) = 3p — 3;

(d) For any 8, X has 8p — 3 = dim H'(X, ©x) moduli and moduli (X) =
moduli (8); also dim H*(X, @x) = 1p’(p — 1).

5. Curves in projective space. Let X be a curve of genus p>1 non-singularly
embedded in Py . If L — Py is the canonical positive line bundle and T — Py
is the tangent bundle, we recall the exact sequence:

9) 0 — 07, 2> O{L}"™* 5 O(T) — 0,
where

(L™ =L@ DL

N+1
If &, -+ , £y are homogeneous coordinates in Py , then £, ¢ H°(Py , O(L))
and AN(f) = (f&o, ==+ , fin), ®(M0 5 +++ , My) = 2 Moy Na 8/3t. . The exactness

of (9) is equivalent to Euler’s relation on derivatives of homogeneous poly-
nomials. By restricting (9) to X, we find the exact sheaf diagram

0
!

Ox
3
10) Ox{L}™*
S
0—0 — 0x(T) > 0x(N) =0

|
0

where ® = tangent sheaf of X and N — X is the normal bundle. The exact
cohomology diagram of (10) gives

0
!
H(0)
!
{HO(E)}N+1
0 — H(O(T)) — H'(N)
(11) !
H'(0y)
v
{Hl(f)}IsHl
0 «— H'(N) «— HY(T) « H'(0).
3

0
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If now the degree 6 of X is > 2p — 2, then H'(L) = 0 = H'(N) and the con-
tinuous system {X,},.4 generated by X C Py is complete and,

if dim H°(L) = m, dim A = (N — 3)m + 45 (m =8 — p),
(12) if N=2, then dmA4 =35 +p — 1,
if N =3, dim A = 43.

Consider now the case § = 2p — 2, N = p — 1 so thatL = K is the canonical
bundle and X C P,_, is a canonical curve.

Lemma 5. The mapping ¢ : H'(0) — {H'(K)}? in (11) is an isomorphism.

Proof. The mapping ¢ : 0 — {O(K)}” is given by ¢(f) = (fo', -+ , fo*)
where f ¢ O and ', --- , w” are a basis for H°(K). The transpose of ¢
is Y : {H°(0)}” —» H°(K) where ‘YA, , +-- , \,) = I\’ and thus y¢
is an isomorphism. Q.E.D.

It follows from Lemma 5 that H'(N) = 0 so that {X,},.4 is complete and
13) dimA4 = (3p — 3) + (* — 1).

For use below, we observe that the proof of Lemma 3 shows that, in (11)
o (H'L)*}Y — H'(Ox)* or 'y : {H°K — L)}¥' — H°(K) is given by

N+1

(14) t‘l’o\l )y T )>\N+1> = }:—:{Ea')\a )

where N\, e H°K — L), £, ¢ H°(L), and £,-\, is the cup product in cohomology.

The condition § > 2p — 2 is too strong to have real interest; for example,
if C C P, is the complete intersection of surfaces of degrees n, , ny (ny + ny > 4),
then

_ p —2
nl _l_n2—4

and so § < 2p — 2. In this case, the continuous system generated by C
is complete but H*(N) = 0 in general, as the following shows:

Let 8; , 8; be non-singular surfaces in P; = P of degrees n, , n, respectively,
and set C = 8;-8, where we suppose that C is a non-singular curve. If L — P
is the hyperplane bundle, then 0,(N) = O,1L™) @ O0,(L"**) where N — C is
the normal bundle of C C P.

NN, = 6

Lemma 6. We have
H°(P, 0,(L")) — H(C, O4(L")) — 0,
for i = 1, 2 while H'(C, O, (L™)) + 04f n, > 4.
Proof. From

0— Os, = 05,(L™) = 0(L™) — 0
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and
0 — 0x(L™™™) = 0,(L™) — 05,(L™) — 0,
we find
H°(0s,(L™) = H(0c(L™) — 0
and

H(0p(@L™) — H(0s,(L™)) — 0,
which gives
H°(05(L™)) — H°(0c(L™)) — 0.
On the other hand, since H'(Os,(L™)) = 0, we have
0 — H'(0c(L™) — H*(0s,) — H*(05,(L™))
while
dim H*(0s,(L™)) = dim H°(05,(L™™*") < dim H*(0s,(L™) = dim H*(0s.),

provided n, > 4.

This proves the Lemma.

If now @, = homogeneous polynomials on P, of degree %, if f, , f. are the
defining equations of 8; , S, , and if n; > n,, then

(15) H(0c(W)) =2 {Qu./(12)} @ (Qu/ (f)@nimnasirr}

Thus the continuous system generated by C C P is complete and is formed
by perturbing S, and 8; (mod f,). On the other hand, H'(0;(N)) # 0 in case
ny > 4orn, > 4.

An interesting special case is n; = n, = 2. Then p = 1, H'(0,(N)) = 0,
and dim H°(0.(N)) = 18. The resulting family of elliptic curves is classical.
If n, = 3, ny = 2, then p = 4 and C C P; is a canonical curve (since
2p — 2 = 6 = n;n,) and dim H°(0,(N)) = 20 = (8p — 3) + (p* — 1). The
fact that every C lies on a unique quadric is a special case of Noether’s theorem
(c.f. [4] and the geometric statement of Noether’s theorem above). This last
remark generalizes to curves C = 8,-8,-8; in P, where n, = n, = n; = 2.
Then 6§ = 8, p = $(ny, + ny + ns — 5) 6 + 1 = 50 that C C P, is a canonical
curve of genus 5 which, as above, lies on 3 = 4(p — 2)(p — 3) quadrics. In
this case, dim H°(0O¢(N)) = 36 = (3p — 3) + (p° — 1).

As a final remark, if we assume that the hyperplane system is complete,
then, by (14)

'y H'(L) ® H'(K — L) —» H(K)

is just the multiplication between a linear series and its adjoint; if *y is injective
(e.g. degL = p — 1 and L is non-special), then H'(0Ox(N)) = 0 and the con-
tinuous system generated by X is complete. For example, if C = 8,-8, C Ps
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is a complete intersection and n, = n, = 3, then
p—1=13%n + n — Hnn, = nyn,
and, in fact, K, = L% Thus H'(0,(L)) = H°(0.(L)) and dualizing
HY0,) % {H'(L)}* = H(T) =0
gives
(16) 0 — A’H°(0c(L)) = H'(0o(L)) @ H*(0c(L)) % H°(0(L%)) — 0.

Thus ¢ is injective (which is equivalent to saying that the canonical series on C
is cut out by quadrics in P;) and dim H%(T) = 15, dim H°(N) = 36,
dim H*(®) = 27, dim H*(T) = 6, and H*(N) = 0. The mapping H°(N) — H'(0©)
has rank 21 and co-rank 6.

If C = 8;-8, where n, = 4, n, = 2, then again K = L’ ‘Y is onto,
and dim H(T) = 15, dim H°(N) = 33, dim H'@) 1 = 24, dim H'(T) = 7,
and dim H*(N) = 1. The mapping H°(N) — H'(®) now has rank 18 and co-
rank 6.

Appendix I: The groups H%(®) and monocidal transformations. Let X
be a compact, complex manifold and Z C X a non-singular subvariety of
codimension r > 1. We let ¥ be the monoidal transform of X along Z and
7 : ¥ — X the birational projection; W = =~'(Z) is the total transform of Z.
If N, is the normal sheaf of Z in X, the restriction gives a map p : @ — N,
whereas, on Y — W, the projection gives 7. : @y — Ox .

Theorem 4. We have the following exact sequence:
17 00— HYY, 0y 3 HY(X, 0) & H(Z, N,)
— H(Y, @y) =5 H'(X, Ox) 2 H'(Z, N;) — -

Proof. Let R(®) be the ¢** Leray sheaf of the pair (@y : ¥ 5 X); thus,
RZ(®) comes from the presheaf U — H(x"*(U), Oy) for U C X an open set.
It is clear that R(®), = 0for ¢ > 0,z ¢ Z and R2(®), =~ 0, for z ¢ Z. What
we claim is that B2(®) = 0 for ¢ > 0, and that = : ¥ — X induces an inclusion

0— R?r(@) = Ox
with @x/R2(@) = N, . Thus we will have:
(18) 0— R%0) >0z 2 N, — 0;

and (17) follows then from (18) and the Leray spectral sequence [7].

Now, if x £ Z, we may take a polycylinder U C X, with center z, coordinates
2, --- , 2", and such that Z N\ U is given by 2" = ... = 2" = 0.
If 9 e T(x"*(U), Oy), then, on = (U) — = "(U) N\ W,

< a w O
m(6) = 20 0", -+ @)
a=1 0z
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where 6% are holomorphic functions on U — U M Z. Then, by Cauchy’s formula,
6% is holomorphic in U and so =.(6) e I'(U, Ox). This gives the injection

0— R%©) =0y .

If now 6 is a vector field in =~ (U), then it is clear that, along W M =~ (U),
0 is tangent to W; and so, along Z M U, 7.(6) is tangent to Z. More generally
then we see that I'(U, R2(®)) = vector fields § = »."_, §* 9/d2" in U which
are tangent to Z M U. On the other hand, p : ©®x — N is given by

p(ﬁ) = Z 0)‘(21’ tce yzn—r) 0, --- :0)%’
A=n—r+1 0z

and the exactness of (18) is now obvious.

We now prove that R2(®) = 0 for ¢ > 0. This is a local question around
z ¢ Z and, as above, we may assume that z is the center of a polycylinder U
with coordinates 2, -++ , 2" and with Z N\ U given by """ = ... = 2" = 0.
Then ™ (U) C U X P,_, is given by the points (¢!, --- , 2% """}, -+ | ")
with 2" — 2 = Ofor\, p =n —r + 1, -+, n. Thus =" (U) =V X Q
where V is the unit polycylinder in 2', -+ , 2*”" and where @ is the quadratic
transform of zero in the unit polycylinder in C"™". Because both V and Q are
pseudo-convex, we may use a Kunneth formula (This may be established by
the results of [8].), and it will suffice to prove that H*(Q, ®;) = 0 for ¢ > O.
Thus, to simplify notations, we return to our previous case and assume r = n
and W = 77'(0) = PC V = «'(U), P beinga P,_, .

Now, if L = line bundle on V determined by the divisor P, thenL | P = —H
where H is the hyperplane bundle, and we have the exact sequences

0 — 0y(L7" )0y — 04(L 70y — 0, Oy | P — 0
0— OP(HIC)@)P - OP(Hk)®V l P — Op(Hk—l) — 0

fork = 0, 1, --- . Since H(V, 0,(L™Y0y) = 0 for ¢ > 0, 1 > 0 [6], it will
suffice to prove that H*(P, 0,(H")0®;) = 0 = H*(P, 0,(H* ™)) forqg > 0,k = 0.
But this result is well known.

Proof of Lemma 4. There we have the notation Z = a curve §; X =
the Jacobian of S; and ¥ = X, the blow up of J along S. Since H°(S, @5) =
from 0 — @5 — O4(T) — O (N) — 0 we deduce

0— H(J,0,) — H(S, 0s(N)) - H'(J, ©,) & H'(8, 0s(N)) — 0,

J,
0,

and
0— H'(X,0x) ™ HY(J,0,) >0 for ¢q= 2.
These exact sequences plus (17) give (8).

Corollary to Theorem 4. If the mapping py tn (17) is zero, and if there are
no obstructions to deformations of X, then any deformation of Y ts a monoidal
transform. This happens if either H'(X, ©x) = 0 or H'(Z, N;) = 0.
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Proof. 1If p, is zero, then a refinement of the argument used in Kodaira [5],
Theorem 1 shows that Z is stable under the deformations of X. But then it
is obvious from (17) that deformations (¥) =2 {deformations (X)} plus
{continuous system generated by Z in X}, and so any deformation of ¥ is a
monoidal transform.

Remark. The sequence (17) is suggestive for proving, in general, that
any deformation of Y is a monoidal transform. Indeed, infinitesimally, kernel
of p, = tangents to deformations of X where Z is stable = tangent to
deformations of Y /(continuous systems); and so any deformation of ¥ should
be a monoidal transform.

Appendix II. Continuous systems generated by hypersurfaces. Let X be
a closed algebraic manifold and D C X an irreducible non-singular hyper-
surface. Then D gives rise to a line bundleL — X withL | D = N, the normal
bundle of D in X. In addition to the usual sequence

we have now an exact sheaf sequence
19) 0 — Ox 5 0x(L) — 0,(N) — 0,

where ¢ ¢ H'(Ox(L)) and D = {x ¢ X : o(z) = 0}.

Suppose now that = = {D,},,.5 is the maximal continuous system generated
by D C X. If P(X) is the Picard variety [9] of X, then there is a holomorphie
map ¢ : B — P(X) given by ¢(r) = algebraic equivalence class of D, — D, .
The fibre ¢~'(¢(r)) is a Zariski open set in the complete linear system |X,|,
and the following is an easy computation:

Lemma 7. The following diagram commules:

T (B) =3 (0 (W)
\P,* /
1 (0y)

where we have used the natural isomorphism T,(P(X)) = H'(Ox).
Corollary. If H(0x(L)) = 0, then ¢(B) is an open set in P(X).

The above Lemma serves as a basis for an elementary treatment of the
Riemann—Roch Theorem on curves and surfaces. For example, let X be a curve
and D = Zn,P; (P; e X, n; > 0) a divisor of degree d on X. We may take B
as the d-fold symmetric product X and T = all divisors of degree d on X [4].
Furthermore, the Picard variety P(X) is canonically isomorphic to the Jacobian
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variety J = J(X) and (D) = Zn.e(P;) where ¢ : X — J is the usual inclusion.
If w & To(J)* is a holomorphic differential, then ¢*(w) = Zn,w(P;) & Tp(X?)*
and so ¢*(w) = 0 if and only if (w) = D and so dim ker ¢* = #(D), the index
of speciality of D.

Now, on the other hand, O,(N) is the sky-scraper sheaf

2 L, @ {Op /(@)™ } ¥,

where m,, C Op,, is the maximal ideal. There is a canonical section
o ¢ H°(Ox(L)) and dividing by ¢ induces a natural isomorphism H°(0,(N)) =<
Tp(X'?). Also, H*(0x(L))/(¢) = T,(]X]), and so the exact cohomology sequence
of (19) becomes

(20) 0 — To(|D]) = To(X®) & Ty my(J) — H'(0x(L)) — 0,
where 7 = differential of the inclusion |D| C X‘“. From (20) we find
dim |D| — D) =d—p (p = dim J = dim H'(Oy)),

which is the Riemann-Roch theorem for positive divisors on curves. This
approach is related to that given by Mattuck and Mayer, Ann. Scuola Norm.,

Pisa, 1963.
The essential content of the above is to prove the duality theorem

(dim H'(Ox(L)) = (D))

by using general remarks on continuous systems and the isomorphism P(X) =~
J(X). This last isomorphism follows from the natural isomorphism H°(Q3) =~
H*(Oy); which is a special and elementary case of the duality theorem.

In general (i.e., dim X = n), we may prove the formula (D) = dim H"(Ox(L))
from the elementary isomorphism H°(27) =2 H*(Ox) as follows (H"(0x) = H*(Q%)
(Dolbeault theorem) and this gives the natural isomorphism H°(Qz) = H"(0x).):
From H"(0x) > H"(0x(L)) — 0 we deduce that H"(Ox(L)) = holomorphic
n-forms w on X such that w/c¢ is holomorphic; thus dim H"(Ox(L)) = (D).

This is made quite transparent by dualizing (19) to

1) 0— Q%(—L) > oy 2 (L) — 0,

where Res ¢ = ¢/do (¢ & Q) is the Poincaré residue operator. The exact
cohomology sequence

HY(Qx(— L)) 5 H°(Qx) =% H'(2 (—L)
of (21) is dual to the exact cohomology sequence
" (0x(L)) <~ H"(0x) <~ H"™ " (0p(L))

deduced from (19).
If X is a surface and D C X is an effective curve, let T = {D,},.5 be the
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continuous system generated by D = D, . Then we have, assuming Z is complete,
0 — To(|D]) 5 To(2) & Ty (P(X)) — H'(Ox(L)) — H'(0p(N))

— H*(Ox) — H*(Ox(L)) — 0
which gives the Riemann—Roch inequality:

dim [D| +4(D) = §(D* — D-K) — ¢+p, (¢=dimP(X),p, = dim H*(Ox)).
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