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projective spaces. A. Andreotti and Frankel have already established this in

dimension 4° In dimension 6, it is not yet known whether a compact Kaehler

manifold of positive curvature is homologically complex projective space.
Complete proofs and details will be presented elsewhere.
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1. Let X be a compact, connected complex manifold (nonsingular), let 4 (X) be
the complex Lie group of analytic automorphisms of X, and 4°(X) = 4 the identity
component of A(X). Furthermore, let E — E — X be an analytic vector bundle
arising from an analytic principal bundle @ — P — X by a linear action of the com-
plex Lie group G on a complex vector space E. Let & be the sheaf of germs of holo-
morphic cross sections of E; denote by 2 the sheaf associated to the trivial bundle,
and by © the sheaf associated to the holomorphic tangent bundle Tx of X. Asso-.
ciated to @ — P — X, we have the Atéyah sequence! 0 — L — Q — Tx — O and
the corresponding sheaf sequence S :

0—£—2Q—06—0. (¢))

We record some interpretations of the groups arising from the exact cohomology
sequence of (1).

(i) H°(X,£) represents the infinitesimal bundle automorphisms of P which
project to the trivial automorphism of X.

(ii) H°(X,Q) gives the infinitesimal bundle automorphisms of P.

(ili) H°(X,0) = a rcprcsont_ge!,hc complex Lic algebra a of A.
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(iv) In the sequence O — H°(X,£) — H°(X,Q) — H°(X,0), all homomorphisms
are Lie algebra homomorphisms.

We now make one final observation. Let $ — X be a coherent free analytic
sheaf, and let B C A be a subgroup whose action on X lifts to actionin §. Then B
acts on the cohomology groups H*(X,8) (¢ = 0, 1, ...) and these groups are in
fact finite dimensional B-modules.

Deﬁm'lwn 1: A bundle E — X is homogeneous with respect to 2 complex sub-
group B C A if the action of B on X lifts to bundle action in E.

This note is primarily concerned with some geometric interpretations of the
representations defined above.

2. Automorphisms and Deformations of Analytic Bundles.—We shall consider
deformations, as defined in reference 5, of the analytic bundle G = P — X; recall
that the infinitesimal tangents to deformations are given as classes in H!(X,£).
If we let G be the sheaf of germs of local holomorphic mappings of X into G, then
the bundle P is uniquely prescribed by an element ¢, = t€HY(X,G). The Lie
group A acts on H'(X,G), and an obvious class of deformations of G — P — X is
given by considering the bundles a- {CH'(X,3) (aEA). These deformations are
given infinitesimally as follows:

ProrosiTioN 1. Letd: H°(X,0) — H'(X,&£) be the connecting homomorphism in
the exact cohomology sequence of (1). Then the vectors in the subspace Im § <
H'(X,£) are all tangent to defgrmations of P, and, in fact, for ¢ CH®(X,0), 5(6) is
tangent to the family of bundles (expte)-&.

Proof: The proof is a straightforward local calculation which we shall omit.
However, we record three remarks:

(i) Ker § C H°(X,0) is the complex subalgebra of a consisting of those infini-
tesimal automorphisms of X which lift to action in P.

(i) If @ = e*(g = Q*), then £ = Q and the deformations of P are locally para-
metrized by H'(X,9). If X is Kahlerian, then we have an exact sequence

P »
0-*H‘($X:Z)—>H‘(£IQ)-*H'(&Q*)——tH’(&tZ)-—*O (2)

and H'(X,Q)/pH'(X,Z) = @ gives a global deformation space for any line bundle
on X. (@ isthe Picard variety of X.)

Lemma 1. If X i3 Kdhlerian, then A acts trivially on the groups H?(X,Q9).

Proof: H'(X,@) = E H"(X Q%) (Q¢ = sheaf of holomorphic g-forms on X)

and H?(X,Q%) = H? '(X e) under the Dolbea.ult isomorphism. If n€H? ¢(X,@),
then 9 is a global (p, ¢)—form with O = 0 = &. Let ¢Ca and let £, = Lie
derivative along 9. Then £y, = Ji(e)n + 1(0)61: di(8)n. Thus, since X is
Kihlerian, £y ~ 0 and this says that the infinitesimal representation of A on
H”¢(X,@) is trivial. (What we have done essentially is to observe that the action
of any a4 on X is homotdpic to the identity.)

Definition 2: For § € H(X,G), we let A; C A be the connected complex Lie
group with complex Lie algebra a; = Ker(s).

Remark: A is the largest subgroup of A with respeet to which P is homogeneous.

We now write L(X) for H'(X,2%); L(X) is the abelian group of line bundles on
X, and we shall write the composition law additively. Define a mapping #:4 —
Hom(L(X),®) as follows: fora € A, t € LX), F(a)t = a- £ — &
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ProrosiTioN 2. (i) F(a)t € @ and F(a)(¢ + 9) = F(a)t + F(a)y. (@) If X is
Kihlerian, F(ab)t = F(a)¢t + F(b)t for a,b € A.

Proof: In (2), F(a)t € H(X, @*) and §(F(a){) = 8(a-& — &) = a-3(§) — &(8)
=0. Alsoa-(t + 1) = a-{ + a-y. Clearly (i) now follows.

If now X is Kahlerian, then A aets trivially on H(X,Q) (by the above remark).
Hence, F(a)F(b)-¢{ = Oforab & A, ¢t e L(X). Thus, F(a)¢ + F(b)¢ = F(a)F(b)¢ +
F(a)t + F(b)t = F(a)(F(b)¢ + §) + F(b)t = ab-f — b-£ + bt — ¢ = F(ab)t.
Q.E.D.

Assume now that X is Kahlerian. For fixed ¢ € L(X), define a homomorphism
F;:A — @ by Fi(a) = F(a)t. Then we clearly have:

ProrosITION 3. Fy is holomorphic and Ker(Fy) = A,

Remark: The cohomology sequence of (1) for a line bundle § € L(X) is

8
— H°(X,Q,) — H°(X,0) = H(X,Q) —. 3

The mapping & is the infinitesimal form of F;, and Proposition 3 shows that é is an
algebra homomorphism when we consider H!(X,Q) as an abelian Lie algebra. This
can be proved directly, and, as the proof may have some interest, we now give it.

ProposITION 4. In (3) above, 6{6,6') = 0 for 6,6’ € H°(X,0), provided that X is
Kdhlerian.

Proof: Let w &€ H'(X,Q!) represent, in the Dolbeault sense, the characteristic
class of & € L(X) ([1]). An easy calculation shows that (s) = ¢(0)w € H'(X,Q)
where ¢ € H°(X,0) and i(6)w is the tensor contraction of w by 6. Since A acts
trivially on H1(X,2), we then see that, if ' € H°(X,0), Ly (1(8)w) = 0 in HY(X,Q),
where Ly is the operation of taking the Lie derivative., (The operation L, is the
infinitesimal representation of 4 on H'(X,Q). ) But 6[0 a’] = z( [6,6'Dw = Ly(3(6")w)
— Ly(i()w) = 0in HY(X,Q). Q.E.D. '

3. Equivariant Embeddings of Complex M amfolds —Let R, S be complex con-
nected Lie groups, S a closed subgroup of R, such that the coset space ¥ = B/Sisa
compact simply connected algebraic variety. Let f:X — Y be a holomorphic
mapping and ¢:B8 — R a holomorphic homomorphism for some complex subgroup
B C A.

Definition 3: fis equivariant with respect to B 1f foranyz € X,b € B, f(b-z) =
a(b)-f(z).

If the bundle E — X has the property that the global sectxons (H°(X,8)) generate
the fibre E, for each x € X (that is to say, the linear system of the bundle E has no
base points), then there is classically defined a mapping f = f: X — Y where ¥ =
R/S is a Grassmann variety.

TuroreM. The mapping f 18 equivariant with respect to Ay(E = &) where o: Az —
R = GL(H°(X,8)) is the induced representation on sheaf cohomology. If f is an em-
bedding, then o is faithful, and the aulomorphism group Ag is induced from those
automorphisms acting in Y which leave f(X) invariant. The group A; is maximal
with respect {o this property, and the normal bundle Ny to f(X) in Y is homogeneous
with respect to A,.

The proof of this theorem is agdin fan'ly straightforward from the definitions, and,
rather than go through the proof in detail, we shall deseribe some geometric corol-
laries.
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4. Some Applicalions.

(i) CoroLLARY 1. If the vector bundle E — X is ample and if H(X,£) =
(rigidity of P), then the automorphisms A of X are all tnduced by motions in the amlnent
space relative to the embedding defined by H°(X,8).

(ii) CoroLLARY 2. If X C Py s an algebraic variely in progectwc N-space, and if
& € L(X) 13 the line bundle of a linear hyperplane section, then the group Ay C A 18
faithfully represented as the largest subgroup of PG(N) (= projective group in N + 1
variables) leaving X fired. If X 1s regular, then A, = A. In general there i3 an
exact sequence of complex Lie groups 1 — A; — Af, Ty — 1, where Ty 18 a con~
nected analytic group of translations of the Picard variety of X with Lie algebra 8(H°
(X,0)) tn (3). (Compare with reference 2, §3.)

‘(iii) Let X be a regular algebraic variety, and let f:X — Py be a projective
embedding with normal bundle N, If H!(X,%,) = 0, then the Theorem on Com-
pleteness of the Characteristic System given in reference 4 tells us that a neighbor-
hood of the origin in H°(X,9,) parametrizes the local deformations of f(X) in Py.
The buhdle N, is defined by the exact sequence

0 = Tyx — Tr,|f(X) = N, — 0,

and, if
- 8 = HO(PN;OPN ’
we have a diagram
0 — H°(X,0x) — H(X,0p,|X) = H(X,3t) L, H'(X,05) = @
0— a - g i

Clearly, u:8/a — H°(X,3,) is an injection for suitable f, and é-p = 0. This
says geometrically that the coset space S/A eﬁ'ectwely parametrlzes locally some of
the variations of f(X) in Py.

Now let n € H(X, ) and let X* = ([¢| < ¢, X, = /(X)) be a deformation of
7(X) in Py with tangent y. Since A acts op Ny, it is represented by a homomor-
phism 0:4 = GL(H°(X,9)). Onthe subspaoe 8/a of H°(X,My), o is just the adjoint
representation of a on 8/a. We have

Prorosrrion 5. In order ihat the subgroup A C 8 act on edch of the submantfolds
X,, it is necessary that o(a)y = wfordla € A. Inpartwular, if n € 8/a, then A
does not act on the manifolds X,.

Remarks: The proof is again by a straightforward calculation. This result may
be used to give an extrinsic geometric proof of the rigidity of a class of algebraic
varieties, including all rational homogeneous varletles Thlswﬂl be carried out in
reference 3.
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