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SOME REMARKS ON NEVANLINNA THEORY

Phillip Griffiths

Harvard University

0. Nevanlinna theory is a beautiful subject whose results include some of
the most striking and subtle in complex analysis. However, it is my feeling
that most of the deeper theorems are essentially of a one-variable nature,
and the most important problem in the subject is to examine those questions
in several variables which are naturally posed rather than being analogues
of the one-variable type results. In this paper I shall give a brief and
incomplete survey of that part of Nevanlinna theory dealing with defect re-
lations, the purpose being an attempt to substantiate my claim that the
subject has a one-variable character. Then I shall turn to several vari-
able questions, discussing some pitfalls, a few positive indications, and
finally some naturally posed problems. As general references to value dis-
tribution theory, I suggest [7] for the classical case, [8] for First Main
Theorems, [2] for defect relations in the equi-dimensional case, and [10]

for the Ahlfors' theory of holomorphic curves.

1. In its most general setting, Nevanlinna theory deals with the global
study of holomorphic mappings f: U > M Dbetween complex manifolds. Per-
haps the most profitable case is when U = ¢ and M is a projective al-
gebraic variety. Then the growth of the mapping f has an intrinsic mean-
ing, and in Nevanlinna theory one studies f by seeing how the image

£(¢") meets the subvarieties of M. The classical case is

f: ¢ + P! = ¢ u {=}, an entire meromorphic function. Here Nevanlinna

theory deals with the distribution of the roots of the equation
f(z) = a (zee, ae P (1)

In brief outline, the highlights are the following (c.f. [7] for details):
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Uj
pper Bound. Let n(a,r) be the number of solutions of (1) in the disc

lzl 2 r. sSuppose first that f is holomorphic and let '

M(f,r) = max
z|<r

log |£{z)|

measure the growth of £.

that

Then it follows, e.g., from Jensen's theorem

n(a,r) < CM(£f,2r) + o(l,a). )

I Note: For reasons arisin om J n's = v t -
arils fr
g ense! theorem, it is convenient to con

sider the logarithmically averaged form of

function n(a,r), called the counting

N(a,r) = !r n(a,p)éﬁ .
o p

Then (2) follows from the inequality

N(a,r) < M(f,x) + 0(l,a).] (3)

n ; .
case f is meromorphic, we define the order function

T(r) =~/~ lN(a,r)du(a)

a el

where

-2
du(a) = (/:l—/Zn)[l + [a]z] da A da

e non-Euclidean area element on the Riemann sphere I is hol
is th on-Euclid 1% . £ £ onor—

phic, then one proves the inequalities

T(r) < M(£,r) + 0(1)
M(f,x) < CT(2r) + 0(1),

so that t i
he two ways of measuring the growth of f are essentially equi-

valent. The First Main Theorem (F.M.T.) gives

N(a,r) £ T(x) + 0(1,a), (@)

estimating the number of solutions of (1) by the growth of £

e
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Lower Bound. Historically, this proceeded in three stages:

(a) The Liouville theorem*, which says that the image f(€) does not omit
an open set in pl, Thus (1) has a solution for almost all a&;

(b) The Picard theorem, which says that (1) has solutions for all but at

most two points a € P}; and
(c) The Nevanlinna defect relation, which loosely stated says that for any

three distinct points a;, a5, 33 on P!,

N(a ,r) + N{a,,r) + N{a,,r) 2 T(r) + e(r)

(5)
where lim | (@) | _ 4
Pl T(r) .

on the whole, the situation is reminiscent of algebra: T(r) plays the role

of the degree of a polynomial, the upper bound (4) is similar to the
(obvious) bound on the number of roots of a polynomial in terms of its de-
gree, and the more subtle lower bound (5) is the analogue of the fundamen-—
tal theorem of algebra. The only major difference is that three points, in-
stead of two as in the polynomial case, are required in (5). As we shall

see below, in several variables this similarxity between algebraic and gener-

al holomorphic mappings is lost.

. . . n R
2. BAas for generalizations of the classical case to £:¢ > M, the sit~

uation regarding the position of £(@™ vis 3 vis the divisors on M is
in reasonably good shape. Now divisors on M are locally the zeroes of ome
holomorphic function, and it is pretty clear that the study of the zeroes of
one function in several variables is about the same as in the good old days

of one complex variable. From the analytic point of view, both are centered

around the distributional equation (cf. [21)

A log |£| = {£ =0} (6)

for an analytic function £ and where A is the Laplacian and {f = 0}

is integration over the zero set of f. Thus my contention in the introduc-

* From our point of view, the Liouville theorem is obtained by integrating
(4) over the image £(€¢) in P!, and using that T{r) > as r * ®

and S ,du = 1.
©
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. . . : Spd i i iti finite; we write w > 0 in
tion should perhaps be amended to say that Nevanlinna theory in codimension where the Hermitian matrix 934 18 positive de
one is in pretty good shape because the intuition and analytic methods from this situation.
the one-variable case carry over, the new ingredient being mostly formalism. s s
Y ’ g g Y The formalism of line bundles and Chern classes is introduced for two
(i1 ) . ' . i ing the size of a divi-
3. Let me describe in outline what the situation regarding divisors is and ;.- reasons: One is to have an analytic way of measuring
b
mention one outstanding problem. To do this, it is convenient to use the ) sor: Given line bundles L and L', we say that
relationship between divisors, line bundles, and Chern classes (this is the H
basis for the formalism mentioned above). The reference here is §0 of
[5]1. Given a holomorphic line bundle L + M and holomorphic section cl(L) > Cl(L')
o€ I'(M, O(L)), the zero set {o =0} is a divisor D on M. Conver- "
sely, given D there is an associated line bundle L = [D] and holomor- in case there are fibre metrics whose Chern classes satisfy
phic section o whose zero set is D. We denote by ILI the complete lin- ]
ear system of all divisors D coming from sections g of L + M. Since 1o
: 0 and ¢' determine the same divisor D exactly when 0 = Ad' (A € C*), w > '
lLl is the projective space of lines in I'(M, (KL)). For example, if ,
_ ,m s . _ m X
M =1 and L 1is the hyperplane line bundle, then IL] = (IP)* is \ and then for divisors D and D' we say that
.
the dual projective space of hyperplanes in r"
R Now given a holomorphic line bundle I, + M, we choose a metric in the '
! fibres and denote by ]T|2 the square length of a local section T. ] D > D!
Then !
' . in case c, ([D]) > cl([D']) . The second reason is that the equation of cur-
1
ad® 1og —2— = aa® 1og .
,le IT'IZ ! rents [5]
for any two non-vanishing holomorphic sections 1,t' of L over an open
c - 7
set on M, and thus dd” log [o]2 =D 7
o]
c 1
dd” log = . L. cs
!le gives an analytic method of relating the size of a divisor to the defining
equation. Note that (7) is the global intrinsic form of (6).
. e s -
is a global C (1,1) form on M. Obviously w® is closed, and the deRnam : civen £.¢" » M  and divisor D on M defined by the zeroes of
class of w in HZ(M,IR) is the Chern class, c (L), of L > M. For any !
D¢ |L[ » w is the Poincaré dual of the homology cycle (D} « Hyoop (M, 2) ! o ¢ T'(M, O(L)), we set (pardon the flood of notations)
carried by D. The line bundle L + M is positive in case there is a ,
fibre metric such that ® is a positive (1,1) form on M; this means [ m _ n
i ' b = y=1 Z dz. A dz. (Kéhler form on C)
that locally mis *

A _
m=Tl Zgi.dzi/\dz.
S J

— o wai
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9% = ¢A...A (g-times), & = ¢"
B, ={ze |z g r}
D_= £ 1(D) and w_ = £+
£ g
_ n-1
n(,p) = [ o 9
f
r 1-2
— —4Zn
N(D,r) = fo n(D,p)p dp (counting funetion)
t(L,p) = IB we A ¢n—l
[
¥ 1-2n
T(L,r) = fo t(L,p)p dp (order function)

The F.M.T., which is proved using (7) exactly as in the one-variable case,
gives

N(D,r) < T(L,x) +0(1,D), (8)

which is an upper bound on the size of f_l(D) in terms of the average or
expected value T(L,r). From (8) we easily obtain* the generalized
Liouwville theorem: If w >0 and f is non-constant, then the image
f(¢n) meets almost all D ¢ [LI.

Consequently, for divisors we always have a good upper bound and at
least a crude lower bound. The more refined Picard theorems and defect re-
lations have been proved in essentially two cases (thus far, the latter
holds whenever the former does):

(a) The equidimensional case of £:C% - M where the Jacobian J(f) Z 0;
then the image f(cm) meets any D such that [2]

¢y (IP1) + ¢y (K > 0 (K, = canonical line bundle of M); and

(9)
D has simple normal crossings

. m
We remark that in case M = P, the canonical line bundle

* The proof follows £ ) )
footnote. rom (8) by the same argument as outlined in the first

s
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- H—(m+l)

where H > b is the hyperplane line bundle; for m = 1,

Xu

this is the number #wo in the Picard theorem. As we shall see below, the
canonical divisor also appears in higher codimensional questions.

(b) The case of a non-degenerate holomorphic curve £: € > T". Here the
Borel theorem states that the image £(€) can miss at most m + 1 hyper-
planes in general position. The corresponding defect relation is due to
Ahlfors [l], whose proof has great geometric subtlety, while at the same
time being based on the equation (6) above. The Ahlfors theorem has been
generalized by Stoll to the position of the image of f: ¢ > P"  relative
to the linear hyperplanes in projective space. Stoll's results are given
in his paper in Acta Math., Vol. 90 (1953), 1-115 and Vol. 92 (1954), 55~
169. His methods are applied in his paper "Deficit and Bezout Estimates”

which appears in Part B of these Proceedings.

4. Turning now to higher codimension problems, we want to study a holomor-—
phic mapping £:¢€" + M where M is a smooth projective variety. Let w
be a Kihler metric on M, ¢ the usual Kdhler form on ¢n, and set

(c.f. 85 of [5])

1

—+ PR n-q
= [ E? A

tq(r) =

(10)

r o
Tq(r) = £ tq(p)7;

If Al £ ... 2 An are the eigenvalues of f*w relative to ¢, then
clearly
t(r) =—2— [ o (A,....A "0 (11)
q 2n-29q g1 "n
b B
r
: th : R
where oq is the g elementary symmetric function of Al,...,An. The

order functions Tq(r) are the basic quantities regulating the growth of f£f.

Given positive increasing functions A(r), B(r) we write
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to mean that Aa(r) £ CB(r) X C'A(xr) for positive constants C,C'. Then
clearly

Tl (r) ~ T(L,r) where L + M is a positive line bundle; and the
Tq (r) are intrinsically defined in the sense of the equivalence

relation ~ ,

(Actuall t. i insic i
Y. the Tq(r) are intrinsic in a somewhat more refined sense, but

we won't be concerned with that here.) To see better what the T (r) are
a ,

consider the case of
£:62 > P2

and let ® be the standard Kdhler metric on 2. Then

T, (r) = u/r N(D,r)dp (D)
1 Dem2*

[

AcIP

(12)

T2 (r) 5 N(a,r)dy (n),

where in the first equation D runs over the lines in P2 ., and in the
second A varies over the points in P2,

If we now look to see what happens to the lower and upper bounds in the
general case, then there is considerable trouble. To begin with, Cornalba

and Shiffman (4] gave an f such that, for a suitable A ¢ JPZ,

um [2® [
r+ NG, ] -0 -

Thus, the lower bound (8) and the analogy with algebraic mappings are
gone. Secondly, there is a famous example of Fatou~Bieberbach giving

.02 2 :

£:¢¢ > P such that image £(c?) omits an open set in 2 , and con-

sequently the Liouville theorem fails in higher codimension.

Roughly speaking, the reason for these troubles might be explained as
follows: A map

£:¢2 » ¢2¢c p2 is given by

£lz02)) = (£) (2),2)) ) £,(z,2,))
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. . 2
where fl,f2 are two arbitrary entire functions on €°. BAs we go
to infinity, these two functipns may not "interact" properly, and

the study of the common zeroes {fl =0, f2 =0} doesn't at first
sight seem to be that much more promising than in the case of two real ana-
lytic functions on R2 . Further evidence for this point of view is pro-
vided by the theorem of Chern [3] in the following form due to Wu:

Given f: C2 -+ ]P2 , suppose that

N E SN
um (& = 0. (13)
e T, (r)

Then the image £(C2) is dense in B2,

Geometrically, tl(r) is the integral of )\1 + )\2 whereas T2 (xr)

has to do with }‘1)‘2' Thus, if the mapping functions fl'f2 do interact
to the extent that, e.qg., Az gec Al (so that £ is quasi-conformal),
then the Liouville theorem holds.

After all these negative remarks, I should like to mention a little the-
orem which, it seems to me, bodes well for the study of value distribution
theory in higher codimension, although not necessarily in the codimension
one format. Namely, for a holomorphic mapping £:¢2 > B2, we may ask
what, if any, relation holds between the two order functions '1‘1 (r) and

T, (r)? For £:¢2 > ¢2 C P2 of the form
f(zl,zz) = (zq + hiz,), z,),

1 and it follows that

the Jacobian  J(f)

T2(r) = 0{log r)
(14)

Tl(r) ~ M(hz.r)

Consequently, Tl(r) is independent of '.[‘2 (r), which may seem a little
surprising in view of (12). On the other hand it may be proved that in

case f omits a divisor D with ucl(D) +cl(K]P2)_>_ 0
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log Tz(r) <2 log Tl(er) + uTl(Or) + 0(1) o > 1), (15)
and in case the image f(cz) misses an ample divisor
T,(r) $C T, (8r)° 6 > 1) (16)

To me this result says two things:

(i) Holomorphic mappings do have in higher codimension a certain amount
of symmetry, since an estimate (15) certainly doesn't hold in the real-
analytic case.®

(ii) The canonical line bundle plays a very special role in the study of
holomorphic mappings, not only for the study of divisors in the equi-dim-

ensional case as mentioned in (9), but in higher codimensional questions

also, as evidenced by (15).

5. As for how the study of Nevanlinna theory in higher codimension should
proceed, I might offer the following suggestions: To begin with, value
distribution theory in the classical situation of an entire meromorphic
function was always balanced by, and frequently motivated by, a wealth of
special functions whose behavior one wished to study. For example, the de-
cisive upper bound (2) was originally found by Hadamard in connection with
his study of the zeroes of (s) vis & vis the distribution of prime num-
bers. Moreover, for such application it was obviously necessary to have an
upper bound for every value a, and not just the average statements which
may be proved in several variables (c.f. Stoll [9]).

Now in several variables it seems to me that the naturally posed prob-
lems deal more with classes of holomorphic mappings rather than with speci-

fie functions. As an example of this, suppose that A is an affine alge-

* In general, the only relation between T, (r) and T_(r) arises from
the inequalities 1 2
A 4+
I( 1 A

5 (Cauchy-Schwarz)

JOA) s/ o+ )

— S1a ¥
< 2
y £ [f Al + Az) ] [N
2
{arithmetic and
geometric means),

so that both Tl(r) and Tz(r) are dominated by the intrinsically de-
fined, but non-geometric, quantity J'r(fB
o
5}
of (15) and (16) are given in the paper by J. Carlson and the author in
these proceedings.

2 .4
(] +1,) ¢)p—° . The proofs
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braic variety. Then the even rational cohomology ring Hev(A,Q)

:?; qu(A,Q) is realized by homotopy classes of holomorphic mappings
q.‘_‘

£: A - Grass(r,N) of A into a Grassmannian {6]. Such maps have an in-
trinsic notion of growth, and it is reasonable to ask how much growth must
f have in order to realize a given class [ € qu(A,Q)? For example, we
cannot take f to be algebraic unless non-trivial conditions on the Hodge
type of ¢ are satisfied. Closely related to this existence question is
the problem of uniqueness: If £. A -+ Grass(r,N) is algebraic and can be
holomorphically deformed to a constant, then can this be done algebrai-
cally? 1In all these guestions, value distribution theory in higher codi-
mension should play an essential role, and conversely such algebra-geome-
tric considerations furnish us with a wealth of naturally given classes of

holomorphic mappings to study.
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