SOME RESULTS ON ALGEBRAIC CYCLES
ON ALGEBRAIC MANIFOLDS

By PHILLIP A. GRIFFITHS

0. Introduction. The basic problem we have in mind is the
classification of the algebraic cycles on an algebraic manifold V.
The first invariant is the homology class [Z] of a cycle Z on V;if Z
has codimension ¢, then [Z] € Hy, o(V.Z) (n=dimV). By analogy
with divisors (c.f.[18]), and following Weil [22], if [Z]=0, then we
want to associate to Z a point ¢,(Z) in a complex torus 7,(F)
naturally associated with V. The -classification question then
becomes two problems :

(a) Find the image of ¢, (inversion theorem) ;
(b) Find the equivalence relation given by ¢, (Abel’s theorem).

We are unable to make substantial progress on either of these. On
the positive side, our results do cover the foundational aspects of the
problem and give some new methods for studying subvarieties of
general codimension. In particular, the issue is hopefully clarified to
the extent that we can make a guess as to what the answers to
(a) and (b) should be. This supposed solution is a consequence of the
(rational) Hodge conjecture; conversely, if we know (a) and (b) in
suitable form, then we can construct algebraic cycles.

‘We now give an outline of our results and methods.

For the study of g-codimensional cycles on V, Weil introduced

certain complex tori J,(¥); as areal torus,
J(V)=H%2"YV,R)/H*"Y(V, Z).

These tori are abelian varieties. We use the same real torus, but
with a different complex structure (c.f. §§1,2); these tori T,V)
vary holomorphically with ¥V (the J (V) don’t) and have the
necessary functorial properties. In general, they are not abelian
varieties, but have an r-convex polarization [9]. However, the
polarizing line bundle is positive on the “essential part ” of
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T,(V). Also, Ty(V)=J,(V) (= Picard variety of V) and T,(V)=
J,(V) (= Albanese variety of V).

Let =, be the cycles of codimension ¢ algebraically equivalent
to zero on V. There is defined a homomorphism ¢, : Z, - T,(V) by

$(2) = l{ @* | /(periods), where I'is a 2n— 2¢+1 chain with ' =Z

and wl,..., o™ € H2*~2t(J C) are a basis for the holomorphic
one-forms on T,(V). Using the torus 7,(V), this mapping is holo-
morphic and depends only on the complex structure of V (c.f.§3);
this latter result follows from a somewhat interesting theorem on
the cohomology of Kahler manifolds given in the Appendix following
§10. In §3, we also give the infinitesimal calculation of ¢; the
transposed differential ¢* is essentially the Poincaré residue operator
(c.f. (3.8)). For hypersurfaces (¢=1), the Poincaré residue and
geometric residue operators coincide, and the (well-known) solutions
to (a) and (b) follow easily.

In §4, we relate the functorial properties of the tori T, (V) to
geometric operations on cycles. The expected theorems turn up, but
the proofs require some effort. We use the calculus of differential
forms with singularities. In particular, the notion of a residue
operator associated to an irreducible subvariety ZcV appears. Such
a residue operator is given by a C* form ¢ on ¥—Z such that: (1) ¢
is of type (2¢—1, 0) +... 4+ (¢, ¢—1); (2) =0 and W is a C
(¢, q) form onV which gives the Poincaré dual 2{Z] € H**(V) of [Z];
and (3) for I' a 2n — k chain on ¥ meeting Z transversely and 7 a

smooth 29—k form onV, we have the residue formula: lim [ $An
=0 1".(6 T{)

= [ u, where T is the e-neighborhood of Z in V. The construction
) 4

of residue operators is done using Hermitian differential geometry;
the techniques involved give a different method of approaching the
theorem of Bott-Chern [4]. One use of the residue operators is the
explicit construction, on the form level, of the Gysin homomorphism
i,: H¥(Z) -~ H4**(V) where we can keep close track of the
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ALGEBRAIC CYCLES ON ALGEBRAIC MANIFOLDS 95

complex structure (c.f. the Appendix to §4, section (e)). This is
useful in proving the functorial properties.

In §5 we give one of our basic constructions. If [Z]= 0 in
Hy,—o(V, Z), and if  is a residue operator for Z, we may assume
that dyr= 0. Then ¢ is the general codimensional analogue of a
logarithmic integral of the third kind ([17]). The trouble is that J
has degree 29— 1 and so cannot directly be integrated on V to give a
function. However, ¢ can be integrated on the set of algebraic
cycles of dimension g—1 on¥. We show then that Z defines a divisor
D(Z) on a suitable Chow variety associated to V, and that  induces
an integral of the third kind on this Chow variety. The generalization
of Abel’s theorem we give is then : D(Z) is linearly equivalent to
zero if ¢,(Z)=01in T,(V). As in the classical case, the proof involves
a bilinear relation between i and the holomorphic differentials on
T,(V). Also, as mentioned above, the “only if”” part of this state-
ment (which is trivial when ¢=1) depends upon the Hodge problem.
Our conclusion from this, as regards problem (b) is : The equivalence
relation defined by ¢ should be linear equivalence on a suitable
Chow variety. In particular, we don’t see that this equivalence
should necessarily be rational equivalence on V.

In §6 we give our main result trying to determinethe image of ¢.
To explain this formula (given by (6.8) in §6) we let {E,} be a
holomorphic family of holomorphic vector bundles over V. We
denote by Z,(E,) the ¢® Chern class in the rational equivalence
ring, so that {Z (E,)} gives a family of codimension ¢ cycles on V.
Our formula gives a method for calculating the infinitesimal
variation of Z,(E,) in T,(V); it involves the curvature matrix @ in
E, and the Kodaira-Spencer class giving the variation of E,.

The crux of this formula is that it relates the Poincaré and
geometric residues in higher codimension. The proof involves a
somewhat delicate computation using forms with singularities and
the curvature in E,. In §8 we give the argument for the highest
Chern class of an ample bundle. In §7 it is shown that we need only
check the theorem for ample bundles ; however, in general the Chern
classes, given by Schubert cycles, will be singular, except of course

PHILLIP A. GRIFFITHS 15



96 P. A. GRIFFITHS

for the highest one. So, to prove our formula in general we give in
§9 an argument, which is basically differential-geometric, but which
requires that we examine the singularities of Z/(E,).

The reason for proving such a formula is that the Chern classes
Z(E,) generate the rational equivalence ring on V. So, if we could
effectively use the main result, we could settle problem (a). For
example, for line bundles (¢=1), the mapping in question is the
identity; this gives once more the structure theorems of the
Picard variety. However, we are unable to make effective use of
the formula, exceptin rather trivial cases, so that our result has
more of an intrinsic interest and illuminating proof than the
applications we would like.

In the last part of §9 we give an integral-geometric argument,
using the transformation properties of the tori Ty (V) and the
relation of these properties to cycles, of the main formula (6. 8).

Finally, in §10 we attempt to put the problem in perspective.
We formulate possible answers to (a) and (b) and show how these
would follow if we knew the Hodge problem. The construction of
algebraic cycles, assuming the answer to (a) and (b), is based on a
generalization of the Poincaré normal functions (c.f.[19]) and will
be given later.

To close this introduction, I would like to call attention to the
paper of David Lieberman [20] on the same subject and which
contains several of the results given below. Lieberman uses the Weil
Jacobians [22] to study intermediate cycles; however, his results are
equally valid for the complex tori we consider. His methods are
somewhat different from the ones used below; many of our arguments
are computational whereas Lieberman uses functorial properties of
the Weil mapping and his proofs have an algebro-geometric flavor.

More specifically, Lieberman proves the functorial properties of
the Weil mapping in somewhat more precise form than given below.
Thus his results include the functorial properties (4.2) (the hard one
arising from the Gysin map) and (4. 14) (the easy one using restriction
of cohomology), as well as (4.12) which we only state conjecturally.
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From the functorial properties and the fact that the Weil mapping is
holomorphic for codimension one, Lieberman concludes the analyti-
city of this mapping (given by (3.2)) in general. (It is interesting to
contrast his conceptual argument with the computational one given
in [9].) In summary, Lieberman’s results include the important
general properties of the intermediate Jacobians given in §1-4 below.
Also, the conjectured Abelian variety for which the inversion
theorem ((a) above) holds was found by Lieberman using his
Poincaré divisor, and the proof of (10.4) is due to Lieberman.

The reason for this overlap is because this manuscript was done
in Berkeley, independently but at a later time than Lieberman
(most of his results are in his M. I. T. thesis). By the time we
talked in Princeton, this paper was more or less in the present
form and, because of the deadline for these proceedings, could
not be rewritten so as to avoid duplication.

TABLE OF CONTENTS
0. Iniroduction.
1. Complex Tori Associated to Algebraic Manifolds.

2. Special Complex Tori.
(In these two sections, we give the basic properties of
the tori T (¥).)

3. Algebraic Cycles and Complex Tori.
(We give the mapping ¢,: =, > T,(V), show that it is
holomorphic, compute its differential, and examine
some special cases.)

4. Some Functorial Properties.
(The transformation properties of the tori T,(V) are
related to geometric operations on cycles. The residue
operators are used here, and they are constructed in
the Appendix to §4.)
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5. Qeneralizations of the Theorems of Abel and Lefschetz.
(Here we show how the equivalence relation given by
¢, relates to linear equivalence on Chow varieties
attached to V. The generalized bilinear relations are
given also.)

6. Chern Classes and Complex Tori.
(We define the periods of a holomorphic vector bundle
and give the basic formula (6.8) for computing the
infinitesimal variation of these periods.)

7. Properties of the Mapping { in (6.8).
(Here we discuss the formula (6.8) and prove it for g=1.

It is also shown that it suffices to verify it for ample
bundles.)

8. Proof of (6.8) for the Highest Chern Class.
(This is the basic integral-differential-geometric argument
relating the Poincaré and geometric residues via the
Chern forms.)

9. Proof of (6.8) for the General Chern Classes.
(Here we discuss the singularities of the Chern classes and
show how to extend Poincaré residues and the argument
of §8 to the general case.)

10. Concluding Remarks.
(We formulate what we feel are reasonable solutions to
problems (a) and (b) above, and discuss what is needed
to prove these.)

Appendiz: A Theorem on the Cohomology of Algebraic Manifolds.

1. Complex Tori associated to Algebraic Manifolds.  Let V' be
an n-dimensional algebraic manifold and L — V the positive line
bundle giving the polarization on V. The characteristic class

w e H¥(V) o H*(V,Z) may belocally written as w———-;:{Egzg dz® A\ dz°}
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ALGEBRAIC CYCLES ON ALGEBRAIC MANIFOLDS 99
where X g,zdz*d7’ gives a Kiihler metric on V.
a.B

According to Hodge, the cohomology group H*(V, C) decomposes
as a sum:

B(V,C)= > poa(y),
Ppta=2
where H?4(V) are the cohomology classes represented by differential
forms of type (p, 9). Under complex conjugation, H?4(V)= He?(V).

Consider now the cohomology group

2n—2¢4+1
H’Eﬂ—2§+1(V, C) = Z H2n—2q+l—r,r{p] (1.1)

r=0

and choose a complex subspace ScH2-%+1(V, C) such that

S8 =0and§ + 8 = H™-%+1(}, C); (1.2)
2n—29+1
8 = Z S n H¥=2%+1-n1(Y7) (1.3)
=0

(i.e. § is compatible with the Hodge decomposition (1. 1));
Hr=a+ln—(}) ¢ 8. (1.4)

Under these conditions we shall define a complex torus T, (S) such
that the space of holomorphic 1-forms on T,(S) is just 8. There are
three equivalent definitions of T, (8).

DeriNiTIiOoN 1. Choose a basis wl,...,w™ for 8 and define the

Jo!
b 4
lattice I'(8) ¢ C™ of all column vectors m,=| - where

[om

Y

Y €Hy,_95.1(V, Z). To see that I'(S) is in fact a lattice, we observe
that rank(H,, , .,(V,Z))=2m and so we must show :

If vy € Hyy_pyiy(V,Z) are linearly independent over R,
then = , ..., m,  are also linearly independent over R. But if
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id;]w“=[m‘ =0
j=1

¥ k
L a5

je1

then also I w* =0, since ¥ = 0.

k
% % Yi

j=1

k -
This says that X «y; is orthogonal to 8+ 8 =H*"%*1(V, C)
j=1

k
and so X oy = 0.
i=1
If then T,(8)=C™T'(S), then T,(S) is a complex torus associated
to S c H**~%+1(y, C).

DErFINITION 2. Let Hy, .. ,(V,C)=H**~%+1(V,C)*bethe dual
space of H**~%+1(V, C) so that 08 >H>~%+(V, C) dualizes to

0‘(_‘8*“(_“-H2n424+1(v, C)- (1-5}

Then H,,_5,.4(V, Z)c Hy, 5, ,(V,C) projects onto a lattice I'(S)cS*
and 7),(S) =8*|T'(8). (Proof that Definition 1 =Definition 2: choosing
a basis ol,..., o™ for § makes §*= C™ by l(w*)=1, where
b

. Thenm,(0*)= [ w* = (% y) so that I'(S) is the same
Y

L

lattice in both cases.)

DerFiNITION 3. Let 9 : Hy, ., 1(V, C) » H2 (¥, C) be the
Poincaré duality isomorphism and 0 < S8* <« HX YV, C) the

sequence corresponding to (1.5), I'(S) c 8* the lattice correspond-
ing to I'(S). Then T,(S) = S*T(S).

Observe that if H*(V) c S, then H*"*—*(V) c8* and vice-versa.
In particular, 8 is the dual space of §* by:

<w,¢>=ij\¢ weS, $e8*). (1§

¥V
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Thus 8 = H"(T,(8)), the space of holomorphic 1-forms on T(8)-

2. Special Complex Tori. The choiceof § c H**~%+1(V,C)depends
on the properties we want T),(S) to have; the results on algebraic
cycles will be essentially independent of § because of condition
(1.4).

Examrrs 1. Welet S= 3 H»~¢++1a~0~randset T,(S)=T,(V).

r=0
These tori have been studied in [9], where it is proved that T,(7)
varies holomorphically with V.

The trouble with T,(V) is that it is not polarized in the usual
sense ; however, for our purposes we can do almost as well as
follows. Recall [23] that there is defined on H¥~Y(V, C) a
quadratic form @ with the following properties :

(a) @ is skew-symmetric and integral on H¥~1(V, Z)

c &YV, C);
(b) QUH™(V), H™*(V)) = 0ifr #17',s 4 ; (2.1)

(c) QH™(V), H_""{_-V)) is nonsingular ; and
(d) QH?TY(V), H*™(V)) > 0.

It follows that Q(S*, 8*) = 0 and that, choosing a basis «!,..., o™
for 8, there is a complex line bundle L — T,(8) whose characteristic
class w(L) € H¥(T,(8),Z) n HY(T,(S))is given by

i kagm“/\t_fr"},

a,f=1

L) =t
(L) Qw{
where the matrix H = (hz) = {iQ{e,,-éﬂ}}‘l and [ w*A\ e = 8.

4
Diagonalizing H, we may write

ol = Et;‘ { i e A a=} , (2.2)

a=1

where ¢, = +1 and ¢, = +1 if w* € H"*Lo~¢(V). Thus we
may say that :

PHILLIP A. GRIFFITHS 21



102 P. A. GRIFFITHS

There is a natural r-convex polarization [10] L — T,(V) (2.3)
(r = number of « such that ¢, = —1) and the characteristic class of
L is positive on the translates of H*~1¢(V).

ExampLE 2. We let § =3 Hr-t+r+lLa—a-2r and set J (V) =

r
T,(8). This torus is Weil’s intermediate Jacobian [22] and from (2-1)
we find :
There is a natural 0-convex polarization (= positive line bundle)
K —>J, (V). (2.4)
Referring to (2.2), we let ¢* = " if ¢, = + 1, ¢* = w®if ,=— 1.
Then the ¢* give a basis for H°(J,(V)) and

oK) = 5| 2, # F1. (2.5)
We recall [23] that H*(J(V), O(K*)) =0 for p>0,5>0 and
that HOWJ,(V), O(K*)) bas a basis 6, ..., Oy given by theta functions
of weight u.
CoMPARISON OF T (V) aND J, (V). In([9]itis proved that there
is a real linear isomorphism £ : T,(V) = J,(¥) such that
(i) £*¢* =wife, = +1and£*¢* = ife, = —1;
(ii) £&*(XK)=L;and
i) if Q =¢£%@,){ I @°}, then the Q, give a basis of } (2.6)

a= —1
H'(T,(V), OL*)), and H(T(V), OI#)) = 0 for
p>0,85#r. J
Some Spmoman Cases. For ¢ = 1, Ty(V) = J(V) =
HO\(V)/H(V,Z) is the Picard variety of V [22]. For g =mn, T.(V)=
J (V) = H*'(V)[H* Y(V.,Z) is the Albanese variety [3] of V.
For ¢ =2, To(V)=H"*(V) + H¥(V)/H3(V, Z) and Jo(V) =
H'2(V)+H3O(V)/H¥V,Z) ; this is the simplest case where
T,V) #dJ (V).
Some IsogENy PropErTIES. We let S, c H*~%+1(V, C) be the
subspace corresponding to either T,(V) or J (V) constructed above,
and we let SF ¢ H¥7}(V,C) be the dual space. Then we have

22 SELECTED WORKS WITH COMMENTARY



ALGEBRAIC CYCLES ON ALGEBRAIC MANIFOLDS 103

H%Y(V,C)—> 8F —> 0

T

H*~Y(V,Z)

and T,(V) or J,(V) is given as S:/I‘;" where I} is the projection of
H*~Y(V,Z) on 8.

Suppose now that s € H»?(V) n H*(V, Z). Then, by cup-product,
we have induced :

¥
S —> 854

T T 2.7)

P: _Ilb)' I‘;‘H

which gives i : T(V) > T, (V) or : T (V) >J, (V). We want to
give this mapping in terms of the coordinates given in the first
definition of paragraph 1.

Let wl, ..., o™ = {w*} be a basis for 8, c H*»~%+(V, C) and
¢%,....¢* = {¢*} be a basis for 8,,, c H¥~2-2+1(} C). Then
b ANF =2 m,w* and

o

J¢A¢’= I &, (2.8)

¥ y- Z{¢)

where D () ey, 5, (V,Z) and y<H,, o (V,Z). Now M = (m,)

E m, x

a=1 -

y'é('ﬁ) #] ’

so that $(I,) c T,,,. It follows that, in terms of the coordi-
nates in Definition 1, s is given by the matrix M.

is a k x m matrix giving  : C*— C* by ¢ and

x| =
4

fi]-

:Emﬂ{w“]=[{{lm¢’

PHILLIP A. GRIFFITHS 23



104 P. A. GRIFFITHS

Now suppose that ¢: H¥~1(V,C) - H?+%-1(} () is an iso-
morphism. Then ¢: 8F=8; , ;and §(I'}) is of finite index in I'y, . Thus
g: T(V)> Tpu,(V)is an isogeny, as is also ¢ : J (V) =T, (V).
Taking ¢ = "~ %*1, where w is the polarizing class, and using [23],
page 75, we have :

@"~ %+ T (V) - Ty_opa(V), and } P

AT (V) 5Ty _in(V)

are both isogenies for g < [n + 1] 3

Finally, using [23], Chapter IV, we have :
For p < n — 2¢ + 1, the mappings
«?: T(V)—> T, V), and

(2.10)
@®: Jo(V) >y (V)

make T,(V) isogenous to a sub-torus of 7,,,(V), and similarly for
J,(V)and J, (V).

SoMe FuNoTIONALITY PROPERTIES. (iven a holomorphic
mapping f: V' —V, there is induced a cohomology mapping f*:
H2-1(V, C) - H4-Y(V', C) with f*(SX(V)) c SH(V'), f*TH(V)) c
T} (V') (using the obvious notation).

This gives

(2.11)

f*: T(V) > T,(V'), and
J*: J (V) = J (V).

On the other hand, if dim V=nand dim V' =»’, weset k=n—n'
and from f,: Hpp o,01(V', C) > Hyy 9319 41(V, C) we find a
mapping
: (v’ T ..(V), and
f* q( )_> q-l—l'( ) {212)
Je 2 J(V') > dy (V).

Suppose now that f: V' -V is an embedding so that V' is an
algebraic submanifold of V. Then V' defines a class
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(V1€ Hy, 5(V,Z)and D[V'] =Y e H*(V,Z) n H*(V). We assert
that :

In (2.11) and (2.12), the composite mapping
Jaf*: (V)= Ty 1 (V) is just ¥ T(V)—>T,.:(V) as given by
(2.7) (and similarly for J,(V)). (2.13)

Proor. We have to show that the composite
™
H®-Y(V,C) -{—> H=-Y(}’, C) ﬁ» H¥+%-Y C) (2.14)
is cup product with ¥. In homology (2.14) dualizes to
fu L
Hyy1(V, C) — Hyp (V' C) <— Hyy 0 4(V,C)  (2.15)
where f* is defined by

*

f
Hyyo 1(V,C) > H,_,(V",C)

l.@ T@"‘ (2.16)
f*
H2n—2q—2k+l(y’ C) 3 Hﬁn—i’k—%+1(yr’ C}
If we can show that f,f*(y)=[V'Ly for y e Hypor1(V, C),
then [fu f*é= | $= [ ¢=[¥A¢($cH%"1(V,C)), and we
¥ Sof*y [vl-y ¥
are done. So we must show that, in (2.15), f*isintersection with V",

and this a standard result on the GQysin homomorphism (2.16)
(c.f. (4.11) and the accompanying Remark).

3. Algebraic Cycles and Complex Tori. Let V = V, be an alge-
braic manifold, S c H**~%+Y(¥, C) a subspace satisfying (1.2)-
(1.4), and T,(S) the resulting complex torus. We choose a suitable
basis wl,...,0™ for 8= HY(T,(8)) and let 5, = {set of algebraic
cycles Z c V which are of codimension ¢ in V and are homologous
to zero}. Following Weil [22], we define

¢y Z, > Ty(8) (3.1)

ag follows: if Z € 3, then Z =00y, 24, for some 2n — 2q + 1 chain
C, and we set
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4(2)=|[ | (3.2)
c.

Since C is determined up to cycles, ¢,(Z) is determined up to vectors

[ | (y € Hyp_ggqr(V. Z), and 50 ¢, is defined and depends on

y -

the subspace of the closed C* forms spanned by wl,..., w™; this restric-
tion will be removed in the Appendix to §3.

Now, while it should be the case that é, is holomorphic, we
shall be content with recalling from [9] a special result along these
lines. Consider on ¥ an analytic family {Z,},ca(A = disc in A-plane)
of g-codimensional algebraic subvarieties Z, C V. Locally on V,
{Z,}ea is given by the vanishing of analytic functions fi(z1,...,2%A),
verfi(2Y,-., 2% A). We define ¢: A~ T,(8) by ¢ (X) = ¢(Zy— Zo)-
Using (1.4), we have proved in [9] that

¢: A>T (S) is holomorpbic and
¢4 {Ty(A)} c HH(V).

We may rephrase (3.3) by saying that ¢*: S, —~T,(A)* is deter-
mined by ¢*| H*—¢+12=4(V) (c.£.(1.4)).

(3.3)

CONTINUOUS SYSTEMS AND THE INFINITESIMAL CALCULATION
OF ¢,. Suppose that the Z, cV are all nonsingular and Z = Z,.
We let N - Z be the normal bundle of Z c V, so that we have the
exact sheaf sequence

0 —> 0,(N*) —> Q};, —> Q@ —> 0. (3.4)

Since dim Z =n— ¢, from (3.4) we have induced the Poincaré
residue operator

Qi+t — QN —> 0 (3.5)

as follows : Let ¢ € QpF*? ;7y,...,75—, be tangent vectors to Z;

n a normal vector to Z. Lift  to a tangent vector % on V along
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z' Then <¢! TIA s Tn—-q@ "?) == <¢= TIN - A Tn—q A ;]\ >:
where ¢ € Q% F+1.

From (3.5) and Q)7+ » Q32+ we have
*

¢
H—(V Qy ) — H"9(Z, Q3~Y(N*)). (3.6)
On the other hand, in [16] Kodaira has defined the infinitesimal

displacement mapping
p: To(A)—= HYZ, 0,(N)). (3.7

To calculate ¢*, we have shown in [9] that the following diagram
commutes:

o

Ty(A)y* E® (3.8)
‘\p*
H"YZ Q5 YN¥*)) = HY(Z,0,(N))*.

In other words, infinitesimally ¢ is essentially given by £€* mn (3.6).

Hr 140 ) = H Viﬁ?l_ﬁ—l)

SoME SpeEciaL Cases. (i) In case ¢g=mn, Z is a finite set of
points 2y,..., 2, (Z is a zero-cycle) and (3.6) becomes:

f* r
HY(V) — > T, (V)* (3.9)
i=1
where {*(w) = X (), w € H¥(V) being a holomorphic 1-form on
j=1
V. In particular, ¢* is onto if £* is injective.

(i) In case g=1, Z c V is a nonsingular hypersurface. Then
there is a holomorphic line bundle E ¥ and asection ce H(V, 0, (E))
such that Z ={zeV:0(z)=0}. From the exact sheaf sequence

o

H(Z, 0,(N)) —-§—> H\(V, Oy), (3.10)

where we claim that £ in (3.10) is (up to a constant) the dual of £*
in (3.6) (using H* (V) = H™~Y(V)*).
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Proor. We may choose a covering {U,} of V by polycylinders
such that Z n U, is given by o,= 0 where o, is a coordinate function
if U,nZ#@ando,=1ifU,nZ=0. Then o,/0s= f,s Where {f,g}
e HY(V, 0%) and gives the transition functions of E—~V. Let 0=
{6,} € H(Z, 0z(N)) and w € H*»—1(V). We want to show that, for
a suitable constant ¢, we have

li(ﬁ)f\w=cj(9,f*w). (3.11)
Z
If Z o U, # @, we may write w = w, A do, where w, is a C° (n—1,

n — 1) form in U, such that w, | Zn U, is well-defined. In U, n Uy,
w = w,\ do, = w, A\ d(f,5 05) = @08 A df,g + fagwe A dog 80O that
wy| Z o U, 0 Up=fg3'wslZ 0 U, 0 Up. This means that {w,|Z n Uy}
gives an (n— 1, n—1) form on Z with values in N*, and so
{6,0,1Z 0 U} gives a global C®(n—1,n— 1) form on Z (since
8, = f.30s on Z o U, Uyp). It is clear that {0, )| Z= {f,w,} s0
that the right hand side of (3.11) is

[ (.0 (3.12)
F4
On the other hand, choose a C* section @ = {0,} of E— V with

@|Z = 6. Then 0 = o£(6) where £(0) is a C® (0, 1) form giving a

Dolbeault representative of £(6) € H'(V, Oy) in (3.10). Let T', be

an e-tube around Z and ¢ = 9- Then the left hand side of (3.11)
o

is [60) Aw=lim | E@)Aw=—1lim [$Aw(since diAw)=
v 0 V-T, 0 8Te

5 A w) =0 A ). Locally § A @ = 0,0,/ 9% o that

-4

lim [ $Aw=lim [ {8,m} A % _ 9ni f {@,w,1% 0 U} =
«—>0 87, a Z

0 3T,

2mi [ {0, w,}, which, by (3.12), proves (3.11).
z

Appendix to § 3: Some Remarks on the Definition of ¢,. At the
beginning of Paragraph 3 where ¢, : 5, > T,(S) was defined, it
was stated that ¢, depended on the vector space spanned by
wl,..., ™ and not just onS. This is because, if we replace w® byw® +

dn®, then | w*+dp* = [ w* + [ 7* (Stokes’ Theorem).
Con—2g+1 c z
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One way around this is to use the Kahler metric on ¥ and choose
w!, ..., o™ to be harmonic. This has the disadvantage that harmonic
forms are mot generally preserved under holomorphic mappings.
However, if we agree to use the torus 7),(V) (S=Z H*—t+1+nn—¢=1(}))
constructed in Example 1 of §2, it is possible t(: give ¢,:Z,~> T, (V)
purely in terms of cohomology, and so remove this problem in
defining ¢,.

To do this, we shall use a theorem on the cohomology of algebraic
manifolds which is given in the Appendix below. Let then Q%be
the sheaf of holomorphic ¢g-forms on V and Q2 c Qf the subsheaf of
closed forms. There is an exact sequence:

d
0 > ¢ > QI > Qi+l >0 (A3.1)
(Poincaré lemma), which gives in cohomology (c.f. (A.7)):

8
0—> HP~Y(V, QY )— H?(V,Qf)— H?(V, Q) —> 0. (A3.2)
From (A3.2), we see that there is a diagram (c.f.(A.16) in the

Appendix):
H(V,C) = H(V,0)

H™=Y(V, Q}) c H"(V, C)

A

H—9(V, Q%) c H(V, C) (A3.3)

A
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Thus {H~%(V,Q2)} gives a filtration {Fj(V)} of H'(V,C); and
Fy(V)|Fpua(V)= H™UV, Q). It is also true that Fj(V) depends
holomorphically on ¥V [9].

To calculate Fj(V) using differential forms, we let A*"~* be

the C® forms of type (s,r— s)on V, B" = 3 A% ~*, and B}? the
5>q
d-closed forms in B™. Then dB™ c B;*"?, and it is shown in the

Appendix (c.f.(A.18)) that
Fy(V)=Bp¢/dB— c H'(V, C). (A3.4)
We conclude then from (A3.4) that:

A class ¢ € Fi(V) c H'(V,C) is represented by a closed C%

form ¢ = Eﬂ Por—o(Pyp_g € A7), defined up to forms (A3.5)

d"}: Z d"?c.r-x_.-
839

In particular, look at Ff;’l_‘q"ff‘(li’);'ri Hr=artprm=g—r{J).

A ¢ € B2*~%+ln-¢+l jg defined up to Eo O i Saeigia B
iz

[ Mp—gs14+sm_g—1-s = 0 for an algebraic cycle Z of codimension ¢
z
(Zisoftype (n — q,n — q)). Thus [ ¢ (8C=2Z) depeonds only on

Con—2¢+1

the class of ¢ € F2*- %1 (V) c H*~%*+1(¥, C). This proves that:

For the torus T,(V) constructed in §3, the mapping (A3.6)
¢, : Z,—~ T,(V) dependsonly on the complex structure of V. '

For the general tori 7,(S) we may prove the analogue of (A3.6)
as follows. First, we may make the forms !, ..., o™ subject to
9w® =0, duw* =0, because S = X Sn H* X*+1-7"(V) and so

W = H(w®) + d&* (€ =harmonic part of «*) and #(w*) =
=2 ‘;f(w:—q+l+r.ﬂ-—q-r) with a‘gea(w:—q+l+r,n—-q—r) = 0 =

Ef(w“_ﬁl“m_q_,). Thus we may choose a basis o!, ..., @™ for 8
with dw* = 0 = du".
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Second, let 1 be a C® form on V with 8dn = 0= adn. We claim that
dy = 9d¢ for some £. Since dn= 8n + o, it will suffice to do this for
dn. Now write 7 = ', 1 + 00*G,n + 9*9G,n, where H#, is the
harmonic projector for [[], = 89* 4 8*3d and @, is the corresponding
Green’s operator. Then én = 99* @ Gyy. On the other hand, since
39 =0, 3= () + 90* G, 8. But #, =, and G, = G, so
that 3y = 85(3* G,n) as desired.

Finally, let w €S satisfy 8w =0 = Gw and change w to w +dy
with 9(w + dn)= 0= 3(w + d). Then w + dy=w + 83¢ for some £.
We claim that [w =éfw + 99¢, where C is a 27— 2¢ + 1 ¢hain with

¢

30 = Z. If f —_— Z fn_q_]_,.lﬂ_._q_l_,,-‘ then

gaﬁf sé[ d(3¢) =ZJ' 1 M- =zj %, —gn-q1=0since ZcVisa
complex submanifold. This proves that:

If, in the definition of ¢,: 5, — T, (V) in (3.1), we make

the w* subject to dw*=0= du*, then ¢, is well-defined | (A3.7)
and depends only on the complex structure of V.

This is the procedure followed by Weil [22].

REMARK. A(3.8). Let D=20; then D: AP0 4?7+1e+1 and D2—0,
If H7(V) are the cohomology groups constructed from D = 33 and
H(V) the deRham groups, there is a natural mapping:

Hyy (V) —> HY(V). (A3.9)

4. Some Functorial Properties. (a) Let W,_, c V, be an algebraic
submanifold of codimension k. We shall assume for the moment
that there is a holomorphic vector bundle E — ¥V, with fibre C?, and
holomorphiec sections oy, ..., 0,_;.; of E such that W is given by
oy A - A 0,_3 41 =0. Thus, the homology class carried by W is the
k-th Chern class of E - V (c.f.[5]). Following (2.11) there is a
mapping .

1;,(V)-‘-> T (W) (4.1)
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induced from H¥-1(V, C)—»>H%~}(W,C). We want to interpret
this mapping geometrically.

For this, let {Z,},ca be a confinuous system as in paragraph 3.
Assume that each intersection Y, =Z,.W is transverse so that
{¥,}hea gives a continuous system on W. Letting ¢,(V)(A)=
$,(Z, — Zp)eTy(V) and ¢ (WM =¢,(Y) — Yo)eT (W), we would
like to show that the following diagram commutes:

V)

i* (4.2)

A (W)

i

T(W)

This would interpret (4.1) geometrically as “imtersection with W”.
Proor. Let S, =X Hr-etitna—e-r(7) c H¥»~%+1(V, C) be the
=20

space of holomorphic 1-forms on T,(V) and &', ..., «™ & basis for
Sy. IfC, is a 2n— 2¢ + 1 chain on V with 3C, = Z, — Z, then

$(M(A) = g «*| . Similarly, let 8y c H¥*~%~%+1 (W, C) be the
A
holomorphic 1-forms on T,(W) and ¢, ..., ¢ a basis for 8. Letting

D, =0C,.W, 3D, =Y, — ¥, and ¢(W)A) = {);#‘ .

Actually, in line with the Appendix to §3, we should use the
isomorphisms F2-211(V) =8y, FR 2 441(W) =Sy (cf. (AS.5)),
and choose «!, ..., w™ and ¢',...,¢" as bases ofF”‘_;i'i“l(]?) and
Fan 2 2+1 (W) respectively. We assume this is done.

We now need to give i*: C™—C’ explicitly using the above bases.
Let ¢y, - » en €Sy cH*¥ (¥, C) be dual to ol,...,a™and fy, ..., Jr

e 8t c H*(W,C) dual to é%,...,¢". Then fa*Neg=255
v
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_Il;qi_‘“ Af, =&. Now i*(e,) = 3 M,f, for some r X m matrix M,

p=l

and s*: Ty (V) >T,(W) is given by M: C™ Cr (c.f. just below (2.7)).

-

[o®

Vo

To calculate M s weleti, : HPr—2%—20+1( () >H*=2+1(y, C)

be the Gysin homomorphism defined by:

H¥—2%—2+1(p Q) bx > Hn—2+1(p, C)
T-"é’w T.@y (4.3)

s
Hy (W, C)———H, (¥, C).

Then 1, (¢°) = § m,, % and M J. w®| = E -mpﬂ_[ w®| =
a=1 ¥ am=1 ¥
- ! ()| = WJ; # | (cf. (2.16)) where y e Hyp 001 (V, Z) is

a cycle on V. This gives the equation

M j-mu == j£*¢’ = .[¢° ’ (4.4)

W.y

for y € Hy,_5,,1(V,Z). To prove (4.2), we must prove (4.4) for the
chain C, with 90, = Z, — Z, ; this is because, in (4.2),

#HNN =M| [ o | and (W)X =| [ &|. Thus to
C W.C)

prove the formula (4.2), we must show :
The Gysin homomorphism
iy %2+ C)» H2-%+Y (Y C) (4.5)
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(given in (4.3)) has the properties :

iy : FE Mo U(J) o FR-2by(F); (4.6)
and
j iy = _[ é. (4.7)
c Ww-C

where C is a 2n — 2¢ + 1 chain on V with dC = Z, Z being an
algebraic cycle on V meeting W transversely.

This is where we use the bundle E — V. Namely, it will be proved
in the Appendix to §4 below that there is a C* (k, k — 1) form
defined on V— W having the properties :

oy =0 and 3% =¥ is a C° form on V which represents the
Poincaré dual 9(W) € H»¥(V,C) n H*(V,Z) ; (4.8)
to give i, in (4.6), we let ¢ € BIn-2%-2tLa-k=2+1(f) represent a

class in F2"-2%-%+1(}) and choose ¢ € B2r—2-2a+La-k-¢tl(y)

n—k—g+1
with {55 W = ¢. Then d( A\ ¢) is a current on V and
iy(¢) = di N\ @) ;and (4.9)
lim j YA = I - (4.10)
e>0.g o, c'w

where T, is the e-tube around W and 7 g B -2k=2rti k=gl ),

Remark. The composite

i* i
Fog2oasi(V) — FRREE(W) — FRgieiy)  (4.1n)
is given by i i*n = digAn) = YAnne Bie-2-2okla-R—g+1(})).
this should be compared with (2.16) above.

PROOF OF (4.6) AND (4.7) FROM (4.8) — (4.10). Since iy (P) =
—d(y A §) and $A$ e Br-mnetl g (4) e BIoMtlaeri(Y)
which proves (4.6) (c.f. (e) in the Appendix to Paragraph 4).

To prove (4.7), we will have

[iy¢=lim [ iy($)=(by Stokes’ theorem) [ $Ag.But
c >0 C-C-T, ac-c.-T,)
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AC—C.T)=(Z2—2%.T)—C.3T,and so [ iy¢=—lim [ ¢$AQ
c

«+0 C-4T,

(since | :,b/\$=0)= [ ¢ by (4.10).
2-2-T,

C-W

REMARK 4.12. Actually (4.2) will hold in the following
generality. Let V, V' be algebraic manifolds and f: V' - V a holo-
morphic mapping. Let X (V) bethe algebraic cycles Z c V of codi-
mension q which are homologous to zero and similarly for Z (V”).
Then there is a commutative diagram :

v
s sER 2 7y

-

¢,(V") )
Z(V)SER.—— TV

where 8.E.R. =suitable equivalence relation (including rational
equivalence), and where f*(Z)=f~1Z)={z'e V': f(z)e V} in case
Z is transverse to f(V'). '

(b) XKeeping the notation and assumptions of (4a) above,
following (2.12) we have:

ty: T (W)= T, (V) (4.13)

and we want also these maps geometrically. For this, let {¥,},., be
a continuous system of subvarieties ¥,cW of codimension g. Then
Y, c ¥ has codimension k + ¢ and so we may set

qbq-l-k( V) (A)=¢q(ya_ YD} € Tq-i—k( V}) qsq(W)()"): ¢q(Yl_‘ YO) € TV(W}'

We assert that the following diagram commutes :

o
A iy (4.14)
th*( V'J
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This interprets i, in (4.13) as “inclusion of cycles lying on W into V.
Proor. Asin the proof of (4.2), we choose bases wl,..., o™ for

Sy c Hn~%-%+Y(Y, C) and ¢, ..., ¢ for Sy c H~ 2%+, C).

Then

(M= {«,f andé, (V) ()= 19| where 30,=7,— 7.

We now need i, explicitly. Let e, .... ¢, be a dual basis in
8tc H%+%-Y(V,C) to o, ...,w™and f,, ....f, in Spc H*~ (W, C)
be a dual basis to ¢!, ...,4". Then i, in (4.14) is induced by the
Gysin homomorphism (4.6) i,: H¥~Y(W,C) - H¥+*~1(V, C).

Write 1,(f) =X m,e, so that M =(m,)is an m X r matrix
a=1

M:C" - C™ which gives 5, T (W) - T, (V).

Now Mé, (W) (X) = | Zm,, [ ¢"| so that, to prove (4.14), we

jw==§ma,j¢ﬂ (4.15)

for y a suitable 2n— 2k—2¢-+1 chain on W. Since
i*: [n-%-u+l(y C)-»> H>-2-u+L(W, C)
satisfies [i*(w)A ¢ = [ w/Aiy ¢, we have i*w* = X m,¢ in
4 4

p=1

H2v—2%-2+1(W, C). On the other hand, since i* satisfies ¢*{F(V)}

.
c Fi(W), we have, as forms i*o* = X my, ¢ +du* (p* €
p=1
B—2%-2%+1n—k—¢+1(})) so that [ «* = X m,, [ ¢° as needed.
Ca p=1 C)
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Remarx. To prove (4.14) for J(W) and J . (V), we use that
i*d = 9i* and i*0= 3i* on the form level, so that i*w* =

= f} Mm@ + 382"‘ and then, as before,

p=1
r

J. W= 2 m,, j ¢
Cc) p=1 C)

(¢) We now combine (a) and (b) above. Thus let W c ¥ be a
submanifold of codimension k and {Z,},., be a continuous system
of codimension g on ¥ such that Z,.W = Y, is a proper intersection.
Then {Z,},.s defines ¢,: A —> T,(V) and {¥,},., defines Poix: A >
T4+x(V). Combining (4.2) and (4.14), we find that the following is a
commutative diagram:

T(V)
¢V

¥
AZ8W) | T(W) (4.16)

T

Sera(V) +
T, 4(7)

Combining (2.13) with (4.16), we have the following commutative

diagram:
/T,( 7)
i 1? (4.17)
1
S

Tese(V)
where ¥ € H**(V) n H*(V, Z) is the Poincaré dual of W e
Hyp (V. Z) (cf.(2.7)).

REMARK. Actually, we see that (4.17) holds for all algebraic
cycles W,_, c V,, provided we assume a foundational point con-
cerning the suitable equivalence relation (= S.E.R.) in Remark 4.12.
Let 2/ (V) be the algebraic cycles of codimension g which are homo-
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logous to zero, and assume that S.E.R. has the property that, for

W
any W,_,C V,. the mapping Z,(V)/S.E.R. —> Eﬁk(V)IS.E.R. is

defined and W(Z) = W.Z if the intersection is proper (Z € Z(V))-
Then we have that: The following diagram commutes:

T(V)SER. . (V)
W ¥ ¥ =D(W)). (4.18)

Po+k
2 V)SER. 2 Tl
Proor. The proof of (4.17) will show that (4.18) commutes
when W is a Chern class of an ample bundle [11]. However, by [12]
the Chern classes of ample bundles generate the rational equivalence
ring on V, so that (4.18) holds in general.

Appendix to Paragraph 4. Let E > V be a holomorphic vector
bundle with fibre C¥, and oy, ..+ s %—g+1 holomorphic cross-sections
of E— V such that the subvariety W = {or N NGy gi1 = 0} is &
generally singular subvariety W,_,cVa of codimension ¢. (Note
the shift in indices from §4.) Then the homology class We
Hy_oulV, Z) is the Poincaré dual of the g™ Chern class ¢ €
H®(V,Z) (c.f. [11]). We shall prove: There exists a differential
form ¢ on V such that

Y isof type (¢, ¢ — 1),isC”in V — W,and &) = 0; (Ad.1)
) = dypisC® on ¥V and represents ¢, (via deRham); (A4.2)

¢ has a pole of order 2q — 1 along W and, if w is any closed
on— 2q formon V, [ ¢\ @ =1lnm [ ¢ N « where T,cVis
v

e»0 8T,
the e-tubular neighborhood around W. (A4.3)
Proor. For a kX k matrix A, define P,(4) by:
. k
T
det (é—" A+l ) = zﬂ P (A) . (A4.4)
q—
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Let P/(4,,..., 4,) be the invariant, symmetric multilinear form

obtained by polarizing P, (4) (for example, P,(4,,...,4,)=

1/k! X det(4} ..., 4%,) where A% isthe o' column of 4, ; c.£. (6.5)
Tk

below). Choose an Hermitian metric in E - V and let ® e
AY(V, Hom(E. E)) be the curvature of the metric connection.
Then (c.f. [11]):

¢, € H¥(V,C) is represented by the differential form
P,@)=P,@,...,0). (A4.5)

What we want to do is to construct ¢, depending on o, ..., Op—q41
and the metric, such that (A4.1)-(A4.3) are satisfied. The proof
proceeds in four steps.

(2) SOME FORMULAE IN LOCAL HERMITIAN GEOMETRY. Sup-
pose that Y is a complex manifold (¥ will be ¥— W in applications)
and that E—Y is a holomorphic vector bundle such that we have
an exact sequence:

0——S >E—>-Q—0 (A4.6)

(in applications, § will be the trivial sub-bundle generated by
Opyeees Op_g+1)- We assume that there is an Hermitian metric in E
and let D be the metric connection [11]. Let ey,..., ¢, be a unitary

k
frame for E such that ey, ..., ¢, is a frame for S. Then De, = X 6 ¢,

om]

where 67 -+ 62 = 0. By the formula Dge, = 2 0es(a =1, ..., s),
=1

there is defined a connection Dg in S, and we claim that Dy is the
connection for the induced metric in S (c.f. [11], §1.d).

Proor. Choose a holomorphic section e(z) of S such that
€(0) =¢,(0) (this is over a small coordinate neighborhood on Y).

Then De=0 since D"= 3. Thus, writing e(2)= X £%,, 0= D"¢e=

E=1
¥ ] k L]
2 0%, + X £00e,+ X X £46¢,. At z = 0, this gives
a=1 a,f=1 p=s+1a=1
{ ; e k
2 (9°(0) + 65)e; + X 64¢, = 0. Thus 6 = 0 and, since
f=1 p=s+1
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k P
(D" — Dije, = X 6%, Dy =0d. By uniqueness, Ds is the
pu=5+1
connection of the induced metric in S.

REMARK. (A4.7) Suppose that S has a global holomorphic frame
0y, 0y Write o, = X £e;. From 0= 3o,= D"0, = 5_} (3¢ +

p=1 p=1
+ X £05)e,, we get %+ 056 =0 or fg=— 5¢¢~1. This gives
y=1
0, ='E-19¢ — Bt (A4.8)
1 g1

0
Now write § = ( ) where 0! = (63), 62 = (64), etc. Then

10s
6 63
2° 1' (o 2 4 £l 0 ‘—8; 5.
6% = 0 = 0} (since 6} +°6; = 0). Letd=|_g o and 6=0-+¢=

"

0 63)°

curvatures @ and 0. Setting 6,= 6 + t¢, we have a homotopy from ]
- : - 96

to 6 with 6, = G=_‘).

o 8 with 6, qS( b=

Now let P(4) be an invariant polynomial of degree ¢ (c.f. §6
below) and P(4,,..., 4,) the corresponding invariant, symmetric,
multilinear form (c.f. (6.5) for an example). Thus P(A)=P(4,..., 4).

Set "
q
Q=2 P@.... 4" Q) (A4.9)
i=1 !

1 Ca S~
(81 g Then 6 and 6 give connections D and D in E with

and define ¥, by:
1
¥ =J Qdt. (A4.10)
0

What we want to prove is (c.f. [11], §4):
¥, is a C form of type (¢, g—1)on ¥ satisfying

» b (A4.11)
a¥, =0, 3%, = P(@) — P(O).
Proor. It will suffice to show that
0Q, = 0, and (A4.12)
PO, = Q. (A4.13)
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By the Cartan structure equation, @, =d6,+ 6, \ 6, =d(8 +t$) +
(6+t)A(6+id) =d0+OAO+Udd+SNO+ ONP) +12% A\ d=
=0 -+ D¢ + 124 A 4. Now

6162 o N — O — 016 o
bne=("g gy ma Do = (_ gy~ ) +2(7 Rl pgy).

This gives

s 1 1 g2
®,=9—H(_gf 092)+(t3—23)(€231 92(;1); (Ad.14)
1~z
D¢’ =0; and (A4.15)
[ 00 — 61 g 0
7o =(_eo) + (700 _aw)  @ew

It follows that @, is of type (1, 1) and so @, is of type (¢, ¢ — 1),
asis ¥,.

By symmetry, to prove (A4.12) it will suffice to have
9P(0,,...,0,¢')=0. Let D,=D, + D, bethe connection correspond-
ing to 6,. Then D;Q, = 0 (Bianchi identity) and 9P(0Q,, ..., 0,, ¢')=
=P(,...,D6,..,0,¢)+P@O,...0,D )= P@O, ... 0, D $).
But Dj¢'=D"¢'+1[¢,¢'] =0+1¢',¢']=0 by (A4.15). This
proves (A4.12).

We now calculate 8 P(©,, ..., ¢', ..., @)=3P(., DO, ...,
¢, ....0,) + P@,,..., D/¢',..., 9,) + ZP@O,,...,¢',..., D} ©,,-) =
P@©,,...,D] ¢, ..., 0,) (since D; @, =0 by Bianchi). Then we have

Di§ = D¢ +1i4, T —
1
(by (A4.16)) ( o 0) gt 1)(3 gz 9%%). But, by (A4.14),

) 0 —6} 0162 0
@=( o o)”“‘”( 0 ﬂfﬁé)’

so that
i 0 A
‘)Dﬂqst_@‘_ ( @2 @ ) -—-[ﬂ‘, @} (A417)
where 7 = ((1) 0) Using (A4.17),
2Q,— P(®) == {2P(6,, ..., D}$', — PO, ... CH)
= XPO, ... [m 6], . G‘) =0. Thls proves (A4.13) and completes

the proof of (A4.11).
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Return now to the form @, defined by (A4.9). Since O,=0 +
tD$ +1t2$ A ¢, we see that @, is a polynomial in the differential
forms @, 6, (1< po<kl<a<ss+1<p<k). Write
Q, =0(l) to symbolize that each term in @, contains no more than
1—1 terms involving the & and 6. We claim that

Q, =0 (2¢— 1). (A4.18)

Proor. The term of highest order (i.e. containing the most 6
and 6%) in Q is (B[20-1ZP([$, ¢l ¢ s [$ $]). Now, by
invariance,

P($, ¢Lews@'ees [ $1)= — P, [$, 6], [ &' o5 [ 61)

= — 3 Pl [ 4L, [# ¢])
since [ ¢, [¢,4]] = 0 and [¢, '] = £ [¢, ¢]. But, by invariance again,
P($, [$. ¢), ..., [¢, $]) = 0. Since all other terms in @, are of order
2q —2 or less, we obtain (A4.18).

It follows from (A4.10) that
¥, =0 (29 — 1). (A4.19)
(b) SOME FURTHER FORMULAE IN HERMITIAN GEOMETRY.

Retaining the situation (A4.6), we have from (A4.11) and (A4.19)
that:

P(©)— P@)=3¥, where 3%, =0, ¥, =0 (2¢—1).  (A4.20)
Now suppose that S has fibre dimension k—¢+-1 and that:

S has a global holomorphic frame o, ..., og_g4;. (A4.21)
Let L, ¢ S be line bundle generated by o, and S;=S/L,. Then o,
gives a non-vanishing section of S; and so generates a line bundle
L, c S,. Continuing, we get a diagram:

0—>L, —>S8 —>S, —0
0—L, —>S, > S, > 0

: (A4.22)
0 > L, > S, 41 > Sy > 0
0—> Ly o\, —> S, —>0
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All the bundles in (A4.22) have metrics induced from S; as a C®
bundle, STL; @...® L;_,,, (this is actually true as holomorphiec
bundles, but the splitting will nof be this orthonormal one).

Now suppose that we use unitary frames (e, ..., ¢_,41) for S
where e, is a unit vector in L. If 5= (63) is the metric connection
in S, then 6% gives the connection of the induced metric in L,
(c.f. (a) above). This in turn gives a connection
i 0 0
ys = (y2=0%) with curvature I's = s,

0 %I 0 IEH

in S. Now the connection 8 = 6s®0q in E has curvature

= (@5 0 I'so
0= Welet I' = be the curvature of the con-
7s 0
nection in E. Then the same argument as used in (a) to
0 6,
Q

prove (A4.20), when iterated, gives
P(®)— P(I')=3¥, where ¥, = 0 and ¥, =0 (2¢). (A4.23)

The congruence ¥, = 0(2g) is trivial in this case since deg¥, =
29 — 1. Adding (A4.20) and (A4.23) gives:

P©)— P(I') =a(¥, +¥,). (A4.24)
The polynomial P(A4) is of degree ¢, and we assume now that:
P(4)=0if 4 =(g£,) where A’is a (g — 1) X (7— 1) matrix. (A4.25)

We claim then that
P(') =3¥, where 0¥; = 0 and ¥, = 0(29). (A4.26)
Proor. Each line bundleL, hasaholomorphic section o, = |o_Je,.
From 0 = do,= 9| g,|€, + |0,| 0% €., we find 8 = — 5-log |o, | and
62 = (83— 9) log | o, |, and (A4.27)
I's =233 log |o,|. (A4.28)
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Now P([)=P(Ts +Oq,.., Ts +0g) = % (f) P(T's:0,) (since

- r+e=q
g r>0 r 8
o
P(q, - 8) =0by (A4.25). Let =2 0 0| mp
‘-—'q-—"‘ 0 9k—q+1
0 0
6
D, ¢=0 where y is the connection i O |in
Y
., [Ts0
L1® ---@ L.E—Q-!—l @Q. AISO D_yf - 0 0 . Set'
q) :
¥, — P, Ts; O,).
3 HZQ (?, 63 “‘f‘: »ﬁ) (A4.29)
r>0 e £

Then ¥, =0 since D¢ =0=D,Ts= D, O, and 3¥; =
p> (f) P(E; ) = P(T) since D7¢ =T, DiTs=0 = D]Oq. This

r+g=q
=0 T &

shows that ¥; defined by (A4.29) satisfies (A4.26).
Combining (A4.24) and (A4.26) gives:

P(@) =03¥ where¥ =¥, + ¥, +¥;, 0¥ =0, ¥=06(29). (A4.30)

Let ¥ be given as just above by (A4.30); ¥ is a form of type
(g, ¢ — 1) on Y. Suppose we refine the congruence symbol =so that
n =0 (I) means that 7 contains at most I— 1 terms involving 6},
gk—2+e, .., 6%, 6}_ .5 ---» 0. Then, for some constant c,

W=cfl 0240 . 650}, ., --- O} (20—1). (A4.31)
We want to calculate ¢ when P(4) = P,(A) corresponds to the Q'

Chern class (c.f. (A4.4)). By (A4.19),¥, =0 (2¢— 1) and an inspec-
tion of (A4.9) shows that ¥, =0 (2¢— 1). Thus ¥ =¥, (29— 1).

k k
To calculate I's, we have ' = d6z=d0% + 3 6%A 62— 3 6% A 62
p=1

p=1

x
=0*— X 02A 0. Thus I'=0(0) for « >1 and

«
p=1
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k

N=— X G A8&0).
pe=k—g+42
It follows that P, Ts, Op)=0(2¢g—1)ifr—1>0, and so
—_—
r—1 I
¥, =P,(¢, 0) (27— 1).
—

g-1
Now, by the definition of P, P,(¢, © Q) =(i/2m)% (1/q) 6] det (O).

=

H{

—g+1
But (@) =0 + E s A 67, so that (@) = 62 A 61(0). Combi-

a=]

ning these relations gives ¥y = (i/27)7 (1/g) 61 det (6% 61) (2¢— 1) or
q
‘I’a = (%) (— 1}9(:1-1){2 ﬁgr 9§—q+2 61 91_1*_2 9; {2{1 _ 1)' (A4 ' 32,

Combining (A4.30) and (A4.32) gives
P,(©) =¥ where 0¥ =0 (A4.33)

and

=—T(@8} B2 . 6 6], .02 —1)

(T(q) = (1/2mi) (— 1)na—Di2), (A4.34)

(¢c) REDUCTION TO A LOCAL PROBLEM. Return now to the notation
and assumptions at the beginning of the Appendix to §4. Taking
into account (A4.6), (A4.21), (A4.30), and letting Y=V — W, we
have constructed a (¢, ¢ — 1) form Y on V — W such that 34 =0,
-é'gﬁ = P(0) =¢,, and such that =0 (2g). This proves (A4.1),
(A4.2), and, in the following section, we will interpret ¥ =0 (2q)
to mean that ¢ has a pole of order 2¢—1 along W.

Let w be a closed 2n — 2¢ form on ¥V and 7T the e-tube around W.
Thenj'c Aw=I1lm [ gAw =lmn-— _[gEAmsmced(:ﬁ/\w)—-

>0 V=T e+0

P, (0) /\ w. This proves (A4 3).

For the purposes of the proof of (4.2), we need a stronger version
of (A4.3); namely, we need that

lim -I «ﬁ/\n—j’n, (A4.35)

Ld ]
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where 7€ B?*—2%#~-%+1n=k=a+1(V) and C is the 2n—2g+1 chainon V
used in the proof of (4.2). In other words, we need to show that
integration with respect to i is a residue operator along W. Because
both sides of (A4.35) are linear in 7, we may assume that % has
support in a coordinate neighborhood. Also, because ¢ will have
a pole only of order 2¢ — 1 along W, it will be seen that both sides
of (A4.35) will remain unchanged if we take out of W,_, an
algebraic hypersurface H, , , which is in general position with
respect to C. Thus, to prove (A4.35), we may assume that:

n has support in a coordinate neighborhood on V
(A4.36)

where o3 A ... AGy_gyp # 0, oy # 0.
This is a local question which will be resolved in the next section.

We note in passing that (4.9) follows from (4.10) when C is a
cycle on V,so that (4.2) will be completely proved when (A4.35) is
proved in the local form (A4.35) above.

(d) CompLETION OF THE PROOF. Over C" consider the trivial
bundle E = C* x C* in which we have an Hermitian metric (4,(2))

z'l
(z = are coordinates in C*; 1< p, o< k). We suppose that there
zﬂ
are holomorphic sections oy,..., 0,_,; generating the sub-bundle
S'= C"x {0?x C*?} of E, and let o; be a holomorphic section
Zl
-ﬁ'
of the form o(z) = z . Then the locus o; A ... AGp_gy; =0 is
0 |
given by z! = ... =27 =0, so that we have the local situation of
(A4.6) (S is generated by S’ and ¢, on C* — C*~9), (A4.21) and
(A4.36). We consider unitary frames e,,...,¢, for E where
e :|ﬂ.| ,and ey, ..., &_,., is a frame for S. Thuse,..., ¢ _,,;isa
o

frame for S |C" — C"—,
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k
Write De; = X 8¢, (6f is of type (1,0) for p> 1) and set
p=1

Q=—T(q)0} 05 9+2...66,_,,5... 6;. If nis a compactly supported
2n — 2q form on C", we want to show:

I n=—lim j Q A, (A4.37)
cn—¢ 0 57,
where 7, is an e-ball around C*~? c C*. Having done this, we will,
by almost exactly the same argument, prove (A4.35).

k
Using the metric connection, we write De; = X 8% e,. Then the

o=1
l-forms 6° are smooth on C" for p 3 1, o # 1. If we can show that
the €2 have a first order pole along C"*? c C*, then it will follow
that Q has a pole of order 2¢g— 1 along C*~? and that our con-
gruence symbol “="" (c.f. just above (A4.31)) refers to the order of
€, (2)
: as a vector

pole along C*~9.  We consider each vector e, =

& (2)
field f, = j‘: e"(z)—a on C" and, letting f, = 9 (a=k+1,...,n)
? P9z ¢ 928 Tl

g=1
we have a tangent vector frame fi, ..., f, on C* such that f,, ..., fp _o11,
Jos1s - » [, are tangent to C*~? c C* along C*™?. Let !, ..., o™ be

the co-frame of (1, 0) forms; then if z = Ez’a_aj, dz = if,w’

j=1 0% j=1
k—qg+2 n
But z =0, + X Ae, + X 2%, so that dz = D'o; +
a=2 a=k+1
k—g+2 f o
Y (96, +ADe)+ X f, »*. This gives:
a=2 a=k+1

w1=2E01|9}‘;
kE—g+1

=lo|t+ X A0 (p=k—g+2..,k);
am2

. oue (A4.38)

=3+ X ;\393‘ (¢=2,...., k—¢qg+1);and
B=2

o* = dz* (e=k+1,...,n).
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Tt follows that 6!, 8 have a first order pole along C"~? and that

0= (%)a (= l)q(f-l).’ﬂ Io_ll]:m ol F—1*2 _ oF oF-te & (2¢g — 1).

(A4.39)

The situation is now this: On C*, let f,, ..., f, be a tangent {rame

such that f, 1, ..., f, is a frame for {07x C*~%} c C* (thus fy, ..., f is

a normal frame for C*~2 ¢ C*). Let w', ..., «" be the dual co-frame
and 7 be a compactly supported 2n — 2¢ form. Then we need

—lim J"AA: j 7 (A4.40)

e=>0

8T cn—4q

y q -— — -
where A = (%) (= 1)¥e—Di2 _ L en.. of@ .., T, is the

lo[*?

z

e-tube around C*?cC"* and ¢ = 2 o Jp = LS
0 lol
0
If now the metric in the tangent frame is the flat Euclidean one
and 7, the normal neighborhood of radius ¢, then A is minus the
volume element on the normal sphere of radius e. Writing 7 =
(0, 2) + | fi | N A . A A@HA L AW + 4" where 7’ =

Ol ..., 0%, wl,..., 09, it follows that
—lim [ gAA= I 700, 2) ! ... W Wt Q" = J' 7.
e+0 9T, cn—q or—t

On the other hand, if .’f‘: is another e-tube around C*~¢, by Stokes’
theorem

| [ nAA=[ nAAI<| [ d AN

oT, 6?"‘! Tluﬁ
Since 7 is smooth and dA has a pole of order < 2g — 1 along C*~¢

(in fact, we may assume dA = 0), lim | [ d(y A A)|=0. Thus,
2 F

the limit on the left hand side of (A4.40) is independent of the T
(as should be the case).
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Now z = i A f (=) + § A, f,(2), and we set z, = f} 0 W
1 a=1

el p=g+

then the left hand side of (A4.40) is —lim [ nAA. Butz =

e=+0 2n]=¢

|z, fi, and by iterating the integral, we have

—Hqu/\A: j [—lim j ai Ak

«+0 7 «>0 .
—q Py g
‘ o z-z, -(comt.ant
j 7?{0’ Z) = ]-lm j A (.uq"'l ..Tw“(lﬁq‘i'l EE}" = -[ 7?,
e=+0 | |
cn—gq Zn| = e —q
z — zn = constant o

To prove (A4.35), we refer to the proof of (4.2) (c.f. the proof
of (3.3) in [9]) and see that we may assume that C is a (real)
manifold with boundary 9C = Z. 1In this case the argument is
substantially the same as that just given.

(6) Corncrupine REMARKS ON REsIiDUES, CURRENTS, AND
THE Gysin HomoMorPHiISM. Let V' be an algebraic manifold and
WcV an irreducible subvariety which is the ¢ Chern class of
an ample bundle E — V. Given an Hermitian metric in E, the
differential form PF,(0) (@ = curvature form in E) represents
the Poincaré dual 2(W) € H**~%(V,Z) of W € Hy, _o,(V,Z). The
differential form ¢ (having properties (4.8)-(4.10) which we cons-
tructed is a residue operator for W; that is to say:

yisa C® (g, ¢ — 1) formon ¥V — W which has a pole of order 2¢ — 1
along W; (Ad.41)

df = 0 and df = o = P,(0) is the Poincaré dual of W; (A4.42)
and for any 2n — & chain I' meeting W transversely and any
smooth 2n — 2¢ — k form 9,
lim — J A= [ n (Residue formula). (A4.43)
«+0 r.a7, F.W
This formalism is perhaps best understood in the language of
currents [14]. Let then C™(V) be the currents of degree m on V;
by definition, § € C™(V) is a linear form on A*"~™(V) (the C® forms

PHILLIP A. GRIFFITHS 49



130 P. A. GRIFFITHS

of degree 2n — m) which is continuous in the distribution topology
(c.f. Serre [21]). The derivative dd eC™+1(V) is defined by

(d0,Ay = 0,dx) for all A e A%~m-1(V). (Ad.44)
Of course we may define 96,36, and speak of currents of type
(r,s), ete. If Z™(V) c C™(V) are the closed currents (d8 = 0), then

we may set H™(V) = Z™(V)/dC™~ (V) (cokomology computed from
currents), and it is known that (c.f.[14])

H™V)Z s#™(V). (A4.45)
Now P,(0) gives a current in C%(V) by { P,(0),A) = ng{Q) AA
(Ae A*~%(V)). By Stokes’ theorem, dP,(®) in the sense of currents

is the same as the usual exterior derivative. Thus dP,(@) = 0 and

P(0) € H* (V).
Also, W gives a current in C*¢(V) by { W, A) = [ A (Aed®*~¥(V)).
i

By Stokes’ theorem again, dW = 0 (if W were a manifold with
boundary, then dW would be just aW).

Now ¢ gives a current in C%“?"Y(V) by <, 2> = [ ¢ A A (this is
W

because ¢ has a pole of order 2¢ — 1). To compute dy eC*(V), we
have, for any Ae 42~%(V),

Ju’r;’\d:\: lim j g A dA = lim[ J —d ANA)+dg A A
v

e=+0 e+0
;.—"?‘l

F—Te¢

=lim - J d(h A A) +lim J. PO)AX = — j A+ jPe{G)) A A,
¥

e+ 0 «+0

F=T, ¥ =T W

which says that, in the sense of currents,
dy = P0) — W. (A4.45)
Thus, among other things, the residue operator i expresses the
fact that, in the cohomology group #%(V), P, (0 )= W (which
proves also that P,(Q) =2(W)). The point in the above
calculation is that dis in the sense of currents is not just the exterior
derivative of ¢; the singularities force us to be careful in Stokes’
theorem, so that we get (A4.45).
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Suppose that W is non-singular and consider the Gysin homo-
morphism H¥(W) - H*+%(V), Given a smooth form $ € AX(W)

which is closed, we choose ;? € A¥(V) with :ﬁ?[ W =d¢. Then the
differential form i,(¢) =d(@ A $)=P,©) A & — ¢ A d'$ will have
only a pole of order 29— 2 along W (since dng=0, the term of
highest order in ¢ involves only normal differentials along W, as

does d;), and so 1, ($) is a current in C*+29(V). We claim that,
in the sense of currents, di, (¢) = 0.

Proor. [ d($A $)AdA= Lim [ digA 3)AdA
v e=>0 V—T‘,

=—1lim [ dgAP)AI=lm [ §A P
e=+0 2Te¢ e=+0 8T«

(since dif A :;g: P,(0) A $ is smooth). But ¢ A d:ﬁ? has a pole of order
2g— 2along W so that lim [ $AddA A = 0).
«+0 2T,

Thus i,(4) is a closed current and so defines a class in
¥+ %(V) = H**%(F); because of the residue formula (A4.43).7, ()
is the Gysin homomorphism on ¢ € H¥(V).

Of course, if we are interested only in the de Rham groups
H¥(W), we may choose gb so that qu = 01in T, for small ¢(since W is a
C=retraction of T,). Then d() A g&) is smooth and currents are un-
necessary. However, if we want to keep track of the complex
structure, we must use currents because W is generally not a holo-
morphic retraction of T. Thus if .;SEF“(W) (sothat g = o + ... +
$rz-1), we may choose qﬁ € F¥(V) with qﬁfW ¢, but we cannot
assume that d — 0 in T.. The point then is that, if we let F¥(W)
and Z1M(V) be the cohomology groups computed from the
Hodge filtration using currents, then we have

FrlVys FE2(M); (A4.46)

and the Gysin homomorphism i, : HY(W)—> H**%(V) satisfies
i FY(W)—>FE2(V) and is given, as explained above, by

iy (@) =d($ A ) e ZLLA). (A4.47)
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In other words, by using residues and currents, we have proved
that the Gysin homomorphism is compatible with the complex
structure and can be computed using the residue form.

5. Generalizations of the Theorems of Abel and Lefschetz. Let
V =V, be an algebraic manifold and Z =Z,__ an ¢ffective algebraic

l
cycle of codimension g; thus Z = 3 »n,Z, where Z, is irreducible
a=1

and n,> 0. We denote by ¢ = ®(Z) an irreducible component
containing Z of the Chow variety [13] of effective cycles Z on V
which are algebraically equivalent to Z. If Ze®, then Z — Z is
homologous to zero and so,asin §3, we may define ¢,: ® = T, (V).
Letting Alb(®) be the Albanese variety of @, we in fact have a
diagram of mappings :

o

b0 Alb(®)
Sl l““’ (5.1)
P T,(®, 7).

q

Here T,(®, V) is the torus generated by ¢,(®) and 34 is the usual
mapping of an irreducible variety to its Albanese. Thus, if §!,...,¢™

are a basis for the holomorphic 1-forms on @, then §,(Z) =

|
where [Z J* mecans that we take a path on © from Z to Z and in-
tegrate . We may assume that ! = ¢¥(w1),..., ¥ = ¢¥(«*) where

W', ..., o* give a basis for the holomorphic 1-forms on T (D, V)
I A%

(w* € H*=2+12=0(V)) and then «gds(2) = ag| * =|: ,
gl e

where [Z w* means [rw® if " is a 20 — 2¢ + 1 chain on ¥V with

o'=2-17.

Let now W =W,__, be a sufficiently general irreducible sub-
variety of dimension ¢ — 1 (codimension n — ¢ + 1) and £ = Z(W)
an irreducible component of the Chow variety of W. Each Z e ®
defines a divisor D(Z) on X by letting D(Z) = {all W € Z such that
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1 i
W meets Z}. Thus, if Z= X n,Z,, D(Z)= 3 n, D(Z,). Letting
=1

a=1
“=" denote linear eguivalence of divisors, we will prove as a
generalization of Abel’s theorem that:

D(Z) is algebraically equivalent to D(Z), even if we only

assume that Z is homologous to Z ; (5.2)
and
D(Z) = D(Z) if $,(Z) =0 in T,(®, V). (5.3)

ExampLE 1. Suppose that Z is a divisor on V ; then ®is a
projective fibre space over (part of) Pic(V) (= Picard variety of V)
and the fibre through Z € ® is the complete linear system | Z |. Now
W is a point on ¥V and =7V, and D(Z) = Z as divisor on .
In this case, (5.3) is just the classical Abel’s theorem for divisors
[17]; (5.2) is the statement (well known, of course) that homology
implies algebraic equivalence. The converse to (5.3), which reads:

¢,(2) = 0if D(Z)= D(Z), (5.4)
is the trivial part of Abel’s theorem in this case.

ReMARE. We may give (5.3) asa functorial statement as follows.
The mapping ® - Div(Z) (given by Z - D(Z))induces ® — Pic(Z).
From this we get Alb(®) - Alb(Pic(X)) = Pi¢(X), which combines
with (5.1) to give

A(e) fo, Pio(3)
P
l% L2 (5.5)
T,(0, V)

Then (5.3) is equivalent to saying that £, factors in (5.5).

Proor. For z; e Alb(®), there exists a zero-cycle Z;, + ... + Zy
on @ such that zy= 83(2Z, + ... + Zy). Let Z =2, + ... + Zy
be the corresponding subvariety of V. Then ay(Z) =¢,(Z— NZ)
and, assuming (5.3), if ¢,(Z — NZ) =0, then £,(Z) =0 in Pic(Z).
Thus, if (5.3) holds, ker «, > ker &, and so ¢, factors in (5.5).
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ExampLE 2. Let Z= point on ¥V so that ®=V, Alb(®)=Alb(V).
Choose W to be a very ample divisor on V ; then X is a projective
fibre bundle over Pic(V) with |W| as fibre through W (c.f.[18]). Now
D(Z) consists of all divisors W € Z which pass through Z. In this
case, (5.3) reads:

Albanese equivalence of points on V implies linear
equivalence of divisors on X. (5.6)

ReMARK. There is a reciprocity between @ and Z ; each W € X

defines a divisor D(W) on ® so that we have Alb(%) 5, pie (@).
Then (5.5) dualizes to give :

Alb(Z) & Pic(®)

l«: ,f; (6.7)

-
Ve

Ts—~¢+ l(zl V)

For example, suppose that dim V =2m + 1 and ¢ =m +1. We
may take W = Z, £ = @, and then (5.5) and (5.7) coincide to give:

Alb(®) e Pic(®)

//"
1%, //Zo (5.8)
>
T(2.¥7)

Given Z, ® as above, there is a mapping

H(®, Z) —> Hyy_ g, (V. Z) (5.9)

as follows. Given an r-cycle I' on @, 7(I") is the cycle traced out
by the varieties Z, for y € T". Suppose that ® is nonsingular. Then
the adjoint *:H*™=%+7(V)> H'(®) is given as follows. On
® X V,thereisacycle T with pry7T.{Z X V} = Z (Z € ®). Wethen
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fiawe o Vi
l ﬂ
o
* = m o HN-%H () s () (5.10)

(here =, is inlegration over the fibre). Since ® is nonsingular D(W)
( =divisor on ®) gives a class in H}(®). In fact, we will show,
as a generalization of the Lefschetz theorem [19], that

7% Hi-0Ha =) 6 YD) (5.11)
and, if w € H*~ 9L a—¢+1() ig the dual of
WeH, . 1(V)nHy o(V,Z), then :
The dual of D(W) is 7*w € H“1(®). (5.12)
In other words, an ¢ntegral cohomology class w of type (n— q + 1,
n— ¢ + 1) on V defines a divisor on @.
Remark. In (5.11), we have
* : LA V) —- H (D) ; (5.13)
this 7* is just ¢F : HY(T,(V)) > H*(Alb(®)) where ¢, is given by
(5.1).

RemaRrk 5.14. The gist of (5.2), (5.3) and (5.11), (5.12) may be
summarized by saying: The cohomology of type (p,p) gives alge-
braic cycles, and the equivalence relation defined by the tori
T,(V) implies rational equivalence, both on suitable Chow varieties
attached to the original algebraic manifold V.

The problem of dropping back down to V still remains of course.

(a) A GENERALIZATION OF INTEGRALS OF THE 3RD KIND TO
HIGHER CODIMENSION. We want to prove (5.2) and (5.3) above.
Since changing Z or Z by rational equivalence will change D(Z) or
D(Z) by linear equivalence and will not alter ¢ (Z), and since we
may add to Z and Z a common cycle, we will assume that
Z = Ez', nZ, Z = i‘, m,Z, where the Z_, Z are Chern classes of

a=1 p=1
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ample bundles (c.f. §4 above) and that all intersections are
transversal. To simplify notation then, we write ¥ =Z — Z and

i
Y = X n;¥; where the Y; are nonsingular Chern classes which meet
i=1

!
transversely. We also set | Y |=UY, V- Y=V —|Y|.
j=1

A residue operator for ¥ (c.f. Appendix to §4, section (e) above)
is given by a C® differential form ¢ on ¥V — Y such that :

(i) ¢ isof degree 2¢ — 1 and =gy, 1 o + - + ¥, 41
(¢, ¢ is the part of ¢ of type (s, ¢)) ;
(i1) 8 =0 and 3_:,& =@ where ® is a C*® (¢,g) form on ¥V giving
the Poincaré dual of Y € H,,_,,(V, Z);
(iii) ¢ — ¢, ,—; is C® on V and ¢ has a pole of order 2¢ — 1 along
Y;and
(iv) forany k + 2¢ chainI"on V which meets ¥ transversely and
smooth k-form w on ¥V

I @ = — lim I ¥ A @ (Residue formula) (5.15)

«+0
r-¥ r-arT

where T, is an e-tube around Y.

From (A4.1) —(A4.3) and (A4.35), we see that a residue operator
¢; for each Y; exists. Then ¢ = EI ng; is a residue operator for ¥
(the formula (5.15) has to be intje;;)reted suitably).

If Y =0in H,,_,,(V, Z), then we may assume that 3 y=0. (5.16)

Proor. 5-,&=¢Dis aC® form and @ =0 in HYY(V). Then ©® = 51;
where 7 =0*G3® and 97p=0 since 99*= — 9%9, 9G53 = G309,
d®=0. Sincenis of type (g,g — 1), we may take 3 — 7 as our residue
operator.

REMARK 5.17. If Y is a divisor which is zero in H,, ,(V, Z),
then 3 is a holomorphic differential on ¥— ¥ having Y as its loga-
rithmic residue locus (c.f. [18]).
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REmARrk 5.18. Let Y be homologous to zero and § be a residue
operator for ¥ with diy = 0 (c.f. (5.16)). Then ¢ gives a class in
H#~Y(V—Y), and § is determined up to H¥ (V) + ...+
H%=1(). We claim that

H*~Y(V — Y) is generated by H*~'(V) and the y;.

Proor. Let §; be a normal sphere to ¥; at some simple

point not on any of the other ¥,’s. We mapZ® =Z @...® Z into
1

1
Hyy ((V—Y)by (,..., ) > 2 o8, Since [; ¢ = + 1, we must
im1

show that the sequence

i
ZO — 5 Hy (V—Y)—> Hy_,(V)—> 0  (5.19)
is exact. By dimension, Hp, ,(V — Y) maps onto H,, (V). If
o€ H, ,(V—Y)isan integral cycle which bounds in ¥, then o=2dy
for some 2g-chain y where y meets ¥ transversely in nonsingular
points p, e Y. If p, € ¥}, then clearly o ~X §;, so that Z® gene-
rates the kernel of 7, in (5.19). ’

Consider now our subvariety W = W__, with Chow variety Z.
We may assume that Wliesin ¥— Y and, for WeZ, W lyingin V-7,
we may write W—W = oI" whereI' is a 29— 1 chain not meeting Y.
Clearly I' is determined up to Hy,_,(V—Y). We will show:

There exists an integral of the 3™ kind 0 on Z whose logarithmic
residue locus is D(Y), provided that ¥ =0in H,, . (V,Z). (5.20)

Proor. Let ¢ be a residue operator for ¥ with dij = 0. Define
a 1-form § on £ — D(Y) by :

9=d{§¢}=d[£¢} . (5.21)

This makes sense since dif =0. We claim that
8 is holomorphic on L — D(Y).

Proor, Let Z*=X — D(Y) and T* c Z* X V the graph of the
correspondence (W, z) (ze W) (i.e. W € Z* is a subvariety of V and
ze V lies on W). Then we have
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i~

w
T¢—V.

|=

b
Now &*: A™(V)—>A™(T*) (4™ (*) =C= forms of type (r, s) on*); since
& is holomorphic, &* 7 = 2 &*. On the other hand, the integration
over the fibre m, : Arte-laHa=1(T¥) 5 474(3*) is defined and is
determined by the equation :

j w*¢An=I $ A 7*n, (5.22)

Te T*
where 7 is a compactly supported form on T*. Since [ dmedp A=
x'
— 1yt | ¢Aﬂ*5q = [ dpATH) = J ﬁ*(a_gf:)r’\n for all 7,
T e e
511-* = m, 0. Lets%; A+~ 18+¢-1(}) - A(Z*) be the composite
me@*. Then 3r* =* 3 (this proves (5.11)).

Now let ¢ € A%~V — Y) be a residue operator for ¥. Then
by the definition (5.21), § = *¢ € A*%(Z*) and df = *dy = 0.
This proves that § is holomorphic on Z*.

Now ¥ =,E n Y, where the Y are subvarieties of codimension
=]

i :
gon V. We have that D(Y)= Z 0, D(Y;) and = 2 n; ;. We will
=1 j=1

prove that ¢ has a pole of order one on ¥ with logarithmic residue
n; there.

ProoF. We give the argument when Y is irreducible and ¢ = n.
From this it will be clear how the general case goes.

Let A be the unit disc in the complex i-plane and {Wi }ea &
holomorphic curve on Z meeting D(Y) simply at the point £ = 0.
Then W, meets ¥ simply at a point z, € V. We may choose local
coordinates 7., ..., z* on V such that zy=Y is the origin. Now
(,5_? { Y §d7...d2"d7" .. R dz"}where zf= 5 |2

a=1
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and ¢, is smooth. We may assume that W, is given by 2! =t

and, to prove that 8 has a pole of order one at ¢ = 0, it will suffice

to show that [[]|0Adi| is finite. It is clear, however, that
A

§[ 18 Ad%| will be finite if [ | Ad3F|is finite. But

A

lz% <1

1 1
I AdZ | < ¢ {]dz "'f:;fl'"d?‘l} (¢ = constant),
so that [ [ AdZ1] is finite.
2% <1

We now want toshow that [ 6= +1 (i.e. § has logarithmic
le=1

residue +1lon I(Y)). Letd= U W,. Then [ 6 =[4. If T. =

|¢j==1 [#]=1 1
{z: 1z] <<}, then setting I'={ U W}~ T, ' = § + 3T.. Thus
<1

J¢¥ =— [ ¢ =+1 as required.
F aT,

Remare. Let Y c V be as above but without assuming that
Y=0in Hy, , (V, Z). Let § be a residue operator for ¥ and
0 = 7*) = @,n*¢. The above argument generalizes to prove :

0 = 7*() is a residue operator for D(Y). (5.23)
We have now proved (5.20), and with it have proved (5.2),

since D(Y) will be algebraically equivalent to zero on = because of
the existence of an integral of the 3™ kind associated to D(Y).

Proor oF (5.12). Let Y cV be as above and interchange
the roles of ¥ and W in the statement of (5.12). Let we
H%%(V) be the dual of Y eH,, ,(V,Z) and let ¢ be a residue
operator for Y. Then (c.f. (5.23) above) *§ =60 is a residue
operator for D(Y)cZ, and so (c.f. Appendix to §4, section (e)) 36 is
the dual of D(Y)e Hyy_o(Z, Z) (N =dim Z). But 30 — r* 3 —* w,
and so (5.12) is proved.

(b) REecrerocrry RELATIONS IN HIGHER CODIMENSION. Let
Y = Z — Z be as in beginning of §5, section (a) above. We assume
that ¥ =0in H,, _ 2(V,Z) so that D(Y) is algebraically equivalent
to zero on Z = X(W). Let ¢ be a residue operator for ¥ and = +*J
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be defined by (5.21). Then (c.f. (5.20)) 6 is an integral of the -
kind on £ whose logarithmiec residue locus is D(Y).

Now ¢ is determined up to § = H* M9(V)+...+ He?p—1(T).
Since r*(HP*™*~1-7(V)) = 0 for r > 0, 6 is determined up to 7*(8)
where only 7*(H??~(V))c H*(Z) (cf.(5.11)) counts. Let us
prove now :

D(Y) = 0 on T if, and only if, there exists w € H"*(Z) such that
[, 0+w=0(1) for all 5€H,(E— DY), Z). (5.24)

Proor. If w exists satisfying [;0+w =0(1) for all €
H,(Z— D(Y), Z), then we may set :
w

f(W) =exp (I 6 + w) , (exp & = €2¥). (5.25)
W

This f(W) is a single-valued meromorphic function and, by (5.20),
(/) = D(Y).
L df _ w

Conversely, assume that D(Y)= (f). Then 8 — Ty
will be a holomorphic 1-form in H'%(Z), and for §€ H,(Z— D(Y), Z),
_[6 +w= 5%1-1 [ %{ = ?z_ii j d log f =0 (1). This proves (5.24).
Y ¥ ¥
Suppose we can prove :
There exists neS such that [ +n=0(1) for all leH,, (V-7Y, Z)
if and only if, ¢,(¥Y)=01n T (D, V) T (V). (5.26)

Then we can prove the Abel’s theorem (5.3) as follows.

Proor. If ¢,(Y) =0 in Ty(D, V), then by (5.26) we may find
ne S such that [ y+7=0 (1) forallI'e Hyy_(V— Y,Z). Set w= 1%y
e H9(X). Then, for é € HI(E— DY), Z), IG 0 +w= _rs ™+ 1) =
Jun ¥ +n=0(), where 7 is given by (5.9). Using (5.24), we have
proved (5.2).

ReMARK 5.27. The converse to Abel’s theorem (5.2), which

reads :
¢¢(Y)=0 in Tqi Y) if D(Y)=0 in =, (5.28)
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will be true, up to isogeny, if we have :
The mapping =*: H¥~1(V)>H"(X) is into. (5.29)
Proor. Referring to (5.5), we see that +* is
(Lo)s: To(T(®, V)~ To(Pic(Z)),

so that {, is an isogeny of 7,(®, V) onto an abelian subvariety of
Pic(2).

PROOF OF (5.26). Let I, ..., I, be a set of free generators
of Hy_,(V, Z) (mod torsion). We may assume that I, lies in
Hy, (V- Y, Z), since [, y=10(1) for all 8in H,,_,(V— Y, Z) which
are zero in Hy,_,(V, Z) (c.f. (5.19)). Choose a basis 9, ..., 5™ for §

and set 7, = ; 71, Then m, € C* and we let S be the subspace
o

generated by m,..., m,. The lattice generated by integral vectors
B

[ : | projects onto a lattice in C*™/S, and the resulting torus
jem

is T(V).

Proor. We may identify C** with H*~}(V, C) = H,,_,(V, C)*;
S is the subspace H¥—1%V) 4 ... 4+ H%9}(¥), and the integral
vectors are just HX~Y}(V,Z). Thus the torus above is

H"LYY) +- ... + H%2-Y(V)|H%-Y(V, Z). Let () = f!;"a ()

projects onto a point =() € T,(V), and we see that:

The congruence [r+n=0(1) (I' e H,,_,(V— ¥,Z)) can be solved
for some 7 € 8 if, and only if, #(y)) =0 in T (V). (5.30)

Thus, to prove (5.26), we need to prove the following reciprocity
relation:

7(P) = ¢,(¥) in T, (V). (5.31)
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Let epeﬂ"z"‘gq“(V,Z} be the harmonic form dual to
I eH,_,(V,Z). We claim that, if we can find ne§ such that
we have

[4,_ je, =(I,.0) +j.1,: (p=1.....2m), (5.32)

then (5.31) holds.

Proor. By normalizing ¢, we may assume that » =0 in (5.32).
Let e*e H¥~1(V) be the harmonic form defined by [ye, A ¢ =8.
Choose a harmonic basis !, ..., w™for H**~2+1.0 4 4 gr—o+ls—¢

and let ¢!, ..., ¢™ be a dual basis for H*"1¢ 4 . + H%*~! Then
2m m -

o*=2 p, e and ¢f = X (8" + B.d*). It follows that =() is
p=1 a=1

2m
given by the column vector{ X u, [ ¢ . From (5.32), we have
p

p=1 I

2m Zm 2m
e | ¥ — ] Zp.e, =2 p (T, C), which says that
£ Cp=1 pe=1

p=1

ém ) 2m !J.’l
T o J} — {Jo*} =Z(T,0) 1 - ;
p=1 Iy c p=1

: . Hem

which lies in the lattice defining T,(V). Thus #(§) = ¢,(Y) in Ty (V).
Q.ED.

Thus we must prove (5.32), which is a generalization of the
bilinear relations involving integrals of the third kind on a curve (c.f.
[24]). We observe that, because of the term involving », (5.32) is
independent of which residue operator we chcose. We shall use the
method of Kodaira [17] to find one such ¢; in this, we follow the
notations of [17].

Let then y**~%(z, £) on V X ¥V be the double Green’s form
associated to the 2n — 2¢ forms on ¥V and the Kahler metric. This
is the unique form satisfying
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1
(a) B,y H(z, 8) = > 07(2) A B(6),
j=1

where the 67 are a basis for the harmonic 2n — 2¢ forms ;

(b) y*~*(z,£) is smooth for z ¢ and has on the diagonal
z =¢ the singularity of a fundamental solution of the Laplace
equation ;

() Y*"H(z, £) = y**~#(¢, z) and is orthogonal to all harmonic
2n — 2q forms (i.e. [ y**~%(z, §) A , 0/(£)=0forallzandj =1, ...,});

(d) 8y H(2,£) = dy* 271 (z,£), and ** y**~(z, £) = y%(z,§).

Define now a 2n — 2¢ form ¢ by the formula :

$(2) ZI YRz, €)dE. (5.33)
Y
Then ¢ is smocth in ¥— Y and, by (b) above, can be shown to have
a pole of order 2g — 2 along ¥. We let
P = dg. (5.34)
Then ¢ is a real 2¢~1 form. Since Y is an algebraic cycle, ¢ will
have type (n— ¢, n— ¢) and so =4’ " where §' has type
(99— 1) and ¢" = ’. We will show that 2J' is a residue operator
for ¥ and satisfies (5.32).

We recall from [17], the formula :

j g — j e, = (T,.C), (5.35)

which clearly will be used to give (5.32).

First, 4 has singularities onlyon ¥ and dy = d * dp= — * 8dp =0
(c.f. Theorem 4 in [17]), and 8= S dp= 4 x d*> § =0, so that i is
harmonic in ¥ — ¥. Thus ¢’ and 4" are harmonic in V — Y.

Let J be the operator on forms induced by the complex structure.
Then J*=* J and J ¢ =¢ (since J T(¥)=T,(Y)). Thus y=* dJ$ =
+JJ ' dJp=J%(L8— 8L)$p=—J 1% 8L¢ since 8 4 =0. This
gives that J¢ = — d = L¢, so that, using Jp = i()’ — ¢'), we find :
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2 =g— T =y +d(* Lg). (5.36)

Now 2y’ is a form of type (¢, ¢ — 1) satisfying 8}’ = 0 = 9}’ and
combining (5.35) and (5.36),

J 24 — Je, = (T,.0). (5.37)
i ¢
Finally, the same argument as used in [17], pp. 121-123, shows that
2J" has a pole of order 2¢ — 1 along Y and gives a residue operator
for Y. This completes the proof of (5.32) and hence of (5.3).

6. Chern Classes and Complex Tori. Let ¥V be an algebraic
manifold and E_,— V a C® vector bundle with fibre Ct. We let
Z(E,) be the set of complex structures on E,— V (i.e. the set of

holomorphic bundles E— V with EZ E_). For such a holomorphic
c®

bundleE—» V (EeZ (E,)), the Chern cycles Z, (E) (g =1, ..., k) (c.f.

[11], [12], [13]) are virtual subvarieties of codimension g, defined up

to rational equivalence. Fixing E e 2 (E,), Z,(E)— Z,(Ey) e X, and

we define

¢, : Z(E,) = T,(8), (6.1)
by ¢, (E) =¢,(Z,(E) — Z,(E,)) (EcZ(E,)). We may think of ¢,(E)
as giving the periods of the holomorphic bundle E. In addition to
asking for the image ¢,(2(E,)) c T,(S), we may also ask to what
extent do the periods of {E} € Z(E,) give the moduli of E? By
putting things into the context of deformation theory, we shall
infinitesimalize these questions.

Let then {E,},., be a family of holomorphic bundles over V
(A = disc in A-plane). Relative to a suitable covering {U,}of V,
we may give this family by holomorphic transition functions
g.5(A): Uy 0 Ug—> GL(k) which satisfy the cocycle rule :

Q’u.c(}l} Qay()‘) = 9’«,()‘) in Uy,n Un 0 U‘y' (6.2)

We recall that Kodaira and Spencer [15] have defined the infinitesimal
deformation mapping :

8: T,(A) - HY(V, O(Hom (E, E,))). (6.3)
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Explicitly, 8 (;j ) is given by the Cech cocycle £,5 = gos(A)g,5(A)~?
(§op = 89,5/9A); the cocycle rule here follows by differentiating (6.2).

Now define ¢, : A > T\(8) by ¢,(A) = ¢,(E,) (E, being the base
point). Recall (c.f. (3.3)) that (¢,), : (To(A)) c H*19(V), so that
we have a diagram (¢, = (¢,)) :

HY(V, O(Hom(E, E)))

/ |
|

|

\ +
HyV, Q1)

What we want is {: H{V, O(Hom(E, E))) - HYV, Q') which
will always complete (6.4) to a commutative diagram.

To(4) 4 (6.4)

We bave a formula for { (c.f. (6.8)) which we shall give after some
preliminary explanation.

First we consider symmetric, multilinear, invariant forms
P(4,, ..., A)) where the A4, are k X k matrices. Invariance means
that P(gd,g~%, ..., 94,97") = P(4,, ..., 4,) (9eGL(k)). Such a
symmetric, invariant form gives an invariant polynomial P(4) =
P(4,..., 4). Conversely, an invariant polynomial gives, by
polarization, a symmetric invariant form. For example, if P(4) =
det(A4), then

Py, ... 4) =2 D det (4 ..4*) (6.5)
k! w= (g, mg) L a
where 7 = (m, ..., m) is a permutation of (1, ..., k) and 43 is the
«® column of 4,
The invariant polynomials form a graded ring I, = X I, which
220
is discussed in [11], §4(b). In particular, I, is generated by
Py, Py, ..., P, where P, € I, is defined by

k
de t( +u) = > B4) ¥, (6.6)

g=0
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Let now P €1, be an invariant polynomial. If
A, A?»%=(V, Hom(E, E))
(= space of C®, Hom (E, E)-valued, (p,, ¢,) forms on V),
then P(d,, ..., 4,) € 47(V) (p =3 fi g il q,,) i4a global form

a=1

and 5P(.A1, s Ay) = i‘, :]:P(...,EAE,...). We conclude that

P gives a mapping on«c:;bomology i
P: H%(V, Q% (Hom(E, E)))Q® ...® H* (V, Q” (Hom(E, E)))
> HY(V,QP). (6.7)
Secondly, E >V defines a cohomology class
®e HY(V,Q'(Hom (E, E))) (O is the curvature in E; c.f. [1]),

which is constructed as follows: Let 6={6,} be a connection of

type (1,0) for E- ¥V Thus 6, is a k X k-matrix-valued (1, 0)

form in U, with 6, — g,,0,9' =9 49,5 in U, n U,. Letting

0, = 36,, 0, =g,,0,9' in U, U, and so defines @ e H'(V,Q!

(Hom(E, E))) (® is the (1,1) component of the curvature of 6).
Our formula is that, if we set

{(n) =qP(O, ...0,7) (neH(V,0(Hom(E, E)))), (6.8)
g—1

then (6.4) will be commutative, Note that, according to (6.7),
L(n)e HY(V,Q11), so that the formula makes sense.

We shall give two proofs of the fact that { defined by (6.8) gives
the infinitesimal variation in the periods of E. The first will be by
explicit computation relating the Chern polynomials P,(0, ...,®; =)

g—1
to the Poincaré residue operator along Z/(E); both the Chern

polynomials and Poincaré residues will be related to geometric
residues in a manner somewhat similar to§4 (especially the Appendix
there). After preliminaries in §7, this first proof (which we give
completely only for the top Chern class) will be carried out in §8.
The general argument is complicated by the singularities of the
Chern classes.
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The second proof is based on the transformation formulae deve-
loped in §4; it uses an integral-geometric argument and requires
that the family of bundles be globally parametrized.

Some ExamprEs. Let E -V be a holomorphic vector bundle
and 6e H°(V,0) a holomorphic vector field. Then 8 exponentiates
to a one-parameter group f(A): ¥ >V of holomorphic auto-
morphisms, and we may set E, =f(A)*E (i.e., (E,), =E; ;) Let
w=P,0, ..., 0) be a (g, q) form representing the ¢'* Chern class;
we claim that the infinitesimal variation in the periods of E is
given by

{8, wdeHWU-1(P), (6.9)

Proor. Since ( ,w)=( 0,P,(0,...,0)>
=3XP,(0,..,{8,0),..,0) =gqP,0,..,0;(86,0)),

PR
using (6.8) it will suffice to show that ¢ 6, @ >e H(V, Hom(E,E))
is the infinitesimal deformation class for the family {E:} ={f(N*E}.

Let P — V be the principal bundle of E -> ¥ and 0 —>Hom(E,E)—»
T(P)/G@ >T(V) >0 the Atiyah sequence [1]. The cohomology

sequence goes H°(V,0 (T(P)/@®))) -H (V, @)—SJ—H‘{V, Hom(E,E))),
and in [8] it is proved that &(f) =( 8, ® and is the
Kodaira-Spencer class for the family {E,}. (This is easy to see
directly; ©@ e HY(V, Hom(T(V), Hom(E,E))) is the obstruction
to splitting the Atiyah sequence holomorphically, and the
coboundary & is contraction with ©. But §(8) is the obstruction
to lifting 6@ to a bundle automorphism of E, and so gives the
infinitesimal variation of f(A)*E.)

ReMARK. The formula (6.9) is easy to use on abelian varieties
(w and 6 have constant coefficients) but, in the absence of knowledge
about the algebraic cycles on V, fails to yield much new.

ExaMPLE 2. Suppose that {E,},., is a family of flat bundles
(i.e. having constant transition functions). Then, by (6.8 ), we see that:

The periods ¢,(E,) are constant for ¢> 1. (6.10)
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ReMARE. This should be the case because E, is given by a
representation p, : m(V)—> GL(k). If we choose a general curve
C c V, then = (C) maps onto m(V), and so {E,} is given by p,: m(C) -
G@L(k). Thus E, is determined by E,|C, and here the period ¢,(E,) is
only one which is non-zero (recall that we have 0 — T'(V) — T,(C)).

ExampLE 3. From (6.8), it might seem possible that the periods
of E, are constant if all of the Chern classes of T, are topologically
zero and det E, =L is constant. This is not the case. Let C be an
elliptic curve and V = P, X C. Take the bundle H— P; of degree 1
and let J, > C be a family of bundles of degree zero parametrized
by C. Set E,=H®J,)® (H® J,)*. Then det E, = 1, ¢,(E,;)
= —¢,(H?=0. If e H*(C) is the tangent to {J,}>C, then the

tangent n to {E,} is (g ~ 90), and, if @ is the curvature in H, then the

e 0

0.5 ) Then P,(Qg; n) = — (@) % 0

curvature in E; is O = (
in HY3(V).

ExampLE 4. Perhaps the easiest construction of Pic(V)
(c.£.[18]) is by using a very positive line bundle L -V, and so we
may wonder what the effect of making vector bundles very positive
is. For this, we let 4 (V) = ¢,(Z,(V)) c To(V) (4,(V) is the part
cut out by algebraic cycles algebraically equivalent to zero); 4,(V)
is an abelian subvariety of T,(V) which is the range of the Weil
mapping. Let ®? be the algebraic cycles, modulo rational equiva-
lence, of codimension p. Then we have (c.f. §4)

D? Q@ AV) > A, ,(V) (6.11)
(obtained by intersection of cycles). Weset I, (V)= X ®? Q@ 4, (V)
PAgm=r
>0

(this is the stuff of codimension r obtained by intersection with
cycles of higher dimension) and let

N (V) =4(V)[L(V) (6.12)

(here N, (V) stands for the new cycles not coming by operations in
lower codimension). Then (c.f. §7 below):
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Let {E,} be a family of bundles and L — ¥ any linc bundle.
Then ¢,(E,) = ¢,(E, ® L) in N (V). (6.13)

In other words, as expected, the essential part of the problem
isn’t changed by making the E, very positive.

ExamMPLE 5. Here is a point we don’t quite understand. Let
{E,} be a family of bundles on V=V, (n> 4) and let S c V be a
very positive fwo-dimension subvariety. Then E, - V is uniquely
determined by E, -8 (c.f. [8]). From this it might be expected that,
if the periods ¢, (E,) and ¢,(E,) are constant, then all of the periods
¢,(E,) are constant. However, let 4 be an abelian variety and
I hems,0) & family of topologically trivial line bundles para-
metrized by A€ H'(4, 0). We let L,, L,, L; be fixed line bundles

with characteristic classes w,, w,, w; and set

E,=J,L)oJ,L)® J, L,).

2,0 0
Then the tangent 7 to the family {E,} is 9= | 0 2,0 | and
w; 0 0
the curvature @ = | 0 w, 0 | .Then Py (@ ;7) = Tracen =2, +
0 0 w,

Ay + Ay. Setting A3 =— A, ~ A; we have P,(Q;n) =0. Now P,(9;7)
= Ny + oy + Lo + Jop + Qo + Ao, = A(wy — @) +
Ay (w3 — wp), and P3(0; 1) = \wywg + hwwy + ho,w, =
Ay wy(wg — wy) + A0, (wg — @,). Clearly we can have P,(0;7%) =0,
Py(0; 1) =2 (w3 — w;) (wy — w,) 7% 0.

ExamprLe 6. Examples such as Example 5 above show that the
periods fail quite badly in determining the bundle. In fact, it is
clear that, if K(V) is the Grothendieck ring constructed from locally
Jree sheaves ([12]), the best we can hope for is that the periods
determine the image of the bundle in K (V).

Let us prove this for curves:

If V is an algebraic curve and E — V a holomorphic vector bundle,
then the image of E in K(V) is determined by the periods of E. (6.14)
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ProoF. Let I, be the trivial bundle of rank k; we have to show
that E =det E @ I, [in K(V) (where k is the fibre dimension of E).
The assertion is trivially true for k=1; we assume it for & — 1. Since
the structure group of E may be reduced to the triangular group [2],
in K(V) we seethat E=L, @ ... ® L, where the L_ are line bundles.
We choose a very positive line bundle H and sections &, €
H°(V, O(H ® LY)) which have no common zeroes (since k& > 1).
Then the mapping f — (f &y, ..., f &) (f€0) gives an exact bundle
sequence 0 > H L, ® ... @ L, - Q — 0 where Q hasrank £ — 1
and det Q = H* det E. By induction, Q = H* det E ® I, in
K(V), and so E = det E ® I, in K(V) as required.

7. Properties of the Mapping { in (6.8). (a) BEHAVIOR UNDER
DIRECT SUMS. Let {E,}, {F,} be families of holomorphic bundles
over V. What we claim is:

If (6.4) holds for each of the families {E,} and {F,}, then it holds
for {E, ® Fy}' (7.1)

Proor. By linearity, we may suppose that the {F,} is a constant
family; thus all F, =F. Letting E =E,, the Kodaira-Spencer
class §(d/aA) for {E, @ F} lies then in H(V, 0(Hom(E, E))) c
HY(V, O(Hom(E®@F, E® F))). If 6 is a (1, 0) connection in E
and g a (1, 0) connection in F, then fgep = 6z @ 65 (= (gE g ))

®
is a (1,0) connection in E@F and Ogey = O @ Op. From

det (% Oper + u) — det (%TGE+ M) det (2_; O + ?«I).

we get that
Pg(@EQF) = E Pr(GE)P:(GF) (72)

r+s=¢

Now (7.2) is the duality theorem; in the rational equivalence ring,
we have

.

4=
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Then ¢,(E, ® F) =¢,(Z, (E,® F) — Z(E® F))
= ‘f"(.f. 1 {Z,.(E,). Z,(F) — Z,(E). Z,(F)})

r+gm=g
= +2- ‘#g([zr(Ea)_ Zr(E)]'Z‘(F))
= (by (4.18) Z{ Y¥,(F)4,(Z(E,) — Z,(E))

F+gmg
where ¥, (F) = P,(0g) € H*(V) o H*(V, Z) is the Poincaré dual to
Z,(F) and ¥,(F): T(V) > T,,,(V) is the mapping given by (2.7).
It follows that:
{‘)éq(E)a @ F)}* = E Ps(@F) {95r(E).) }* . (704)

str=gq
Assuming (6.4) for the family {E,}, the right hand side of (7.4)
is X rP,.,(@g; 1)P,(Og). Since we want this to equal

r+e=g—1

qP, (0 @ Op; 7@ 0), to prove (7.1) we must prove the algebraic

g—1
identity:

¢F,(A@B;é@0)= X rP.,,(4;§P(B), (1.5

ria=g—1
g—1

where 4, B, £ are matrices.

Expanding P, (4 @ B; ¢ @ 0) gives

s
9P, (40 B:t0 0=2¢(?] ) P40 0;£0 0,00 B
g—1 r I
(8 =q—r — 1). Thus, to prove (7.5), we need to show:

e
P @B =g (1] )R e 0 t00 00 B).  (.6)
Clearly the only question is the numerical factors; for these
may take 4, B, £ to be diagonal. Now in general if 4,,..., 4, are
Al
0o 4

diagonal matrices, say 4, =

] » then P(4,, ..., 4,)=
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. 3 Am... A™ where the summation is over all subsets = =(m,...,
1 1 t 1 ¢

of (1,..., k). Thus q(g: 1)PW(AQBO; £@®0; 0 B)

T

=g-1—1)7 (q: 1) X An . Arrgrrel Brrer B

— (l ¥ AT A"rf’r+l) (.l »B1... B”l)
r! . gl

=rP,(A; £)P,(B). This proves (7.6)

r

(b) BEHAVIOR UNDER TENSOR PRODUCTS. With the notations
and assumptions of 7(a) above, we want to prove :

If (6.4) holds for each of the families {E,} and {F,}, then (6.4)
holds for E,® F,. (7.7)

ProOF. As in the proof of (7.1), we assume that all F, =F,
E,=E, and then
) (.a%) =7 Q® 1 in H{(V, 0(Hom (E, E))) @ H°(V, O(Hom (F, F)))
CHT-(I;, @(HOI.II (E® F, E® F))) Where .q =] HI(V‘ Q(Hom (E, E))) iS

8 ( §aj ) for the family {E,}. Also, to simplify the algebra, we assume

that F is a line bundle and set w = 2_:7 Op (= ¢,(F)).

Now Oggr = 0g®1 + 1®0g is a (1, 0) connection in EQF with
curvature Opgr =0 ®1+180g. We claim that

PGeor) = = (*77)urpio0) (1.8)

rtie=g

Proor. P, (AQ1+1QB)= > (E)P,(A ®1,1® B). Assum-
r+s=¢q —_— —

ing that 4 is a kX k matrix and B=(b) is 1 X 1, we have
P(A®1,1Q B) = Z¢, P4} (s=g—1r) and we need to
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Al 0

determine the c,,. Letting 4 = " g

» P(A®1,1Q B)=

1 (k—
— EA’“ AT b = (8!)61 ( B r)ZA”l...A”rb', so that

P(AQ1+1®@ B)= I (q) -1 (k‘) A AT =

F4gmg r q! 8
m

> (k ; ?.)P, (A)b*. This proves (7.8).

Hu?[r:the\ rational equivalence ring, we have
Z,EEF = T (") awrze,. (7.9)
As in the proof of (7.4) frem (7.3), we have
$EQF), = +Z (k N ")w‘{s&,(Ea)}*. (7.10)
ris=q

Using that (6.4) holds for {E,}. the right hand side of (7. 10) becomes
¥ ( B ¥ l)w'rP,+1 (®g;n); to prove (7.7) we must prove

r+s=g—1 $ "}""

the algebraic identity :

IP(ARI+1® B; 7®1)= > ("_ - 1) br P +1(A 7).

aei THe=g—1 s

" (7.11)
PROOF oF (7.11). qP(AQ1+1Q B; Q1) =
_ (‘-’—I)P(A@l,wl 1® B) =
r+lm§r—

S—
t

( 1) A Arryreahree e =
o r+c-q 1q!

q-— ) ( —-f—l)(g—r— 116 A™ . A7 rre1 —

r+a-q—1 (g — 1) !

_ ( "-9'-—1) .”Awr’}ﬂr_‘_]_bl =
r+¢-¢ 1

k—r—1
- 2 ( i )b' 7P,y (A 7).
r+s=q—1 ez 28
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(c) AnpLE BunprLes. IfE — V is a holomorphic bundle, we let
I'(E) be the trivial bundle V X H%(V,0(E)). Then we say that E 1
generated by its sections if we have :

0—>F——I'E)—> E—— 0. (7.12)

Now o€F, is a section o of E with o(z) =0; sending
o >do(z) eE, T} (V) gives

d
F—> EQTXYV). (7.13)

In [11], E was said to be ample if (7.12) holds and if 4 is onto in
(7.13). In this case, to describe the Chern cycles Z(E), we choose
k general sections gy, ...,0;, of E» V. Then Z, (E)cV is given by
o1 A - A p_gyq =0. (Note that Z,(E) is given by o, p ... Agp=0
and Z,(E) by o; =0.) The cycles Z,(E) are irreducible subvarieties
defined up to rational equivalence.

If now E—> V is a general holomorphic bundle, we can choose
an ample line bundle L - V such that EQL is ample ([11]). Suppose
we know (6.4) for ample bundles. Then (6.4) holds for EQL and L.
On the other hand, if (6.4) is true for a bundle, then it is also true
for the dual bundle. Since E=(EQL)®L*, using (7.6) we conclude:

If (6.4) is true for ample bundles, then it is true for all holo-
morphic vector bundles. (7.14)

Let then {E,} be a family of ample holomorphic vector bundles
and Z, =Z,(E,). We may form a confinuous system (c.f.§3); we
let Z =2, and N - Z be the normal bundle and ¢: A - T, (V) the
maippng (3.1) on Z,— Z,. Then, combining (6.4) with the dual
diagram to (3.8), we have :

)
To(A) —— H(V, O(Hom(E, E)))
$a
lp g {7.16)

(2, O(N) ——> He=4(V)
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Actually this diagram is not quite accurate ; E, determines Z,(E,)
only up to rational equivalence, and we shall see below that
there is a subspace L (E) c H(Z,O(N)) such that we have :

Ty(d) i » H'(V, O(Hom(E, E)))

p L (7.16)

H°(Z,0(N))/L,(E) ——E-—)» H-14(y)

Now in §9 below, we shall, under the assumption H( V,0(E)) = 0,
construct
6: H'(V,0(Hom(E, E))) -~ H%(Z, O(N))/L, (E) (7.17)

such that

3
To(A) —s HY(V, 0(Hom(E, E)))
P g

H%(Z,0(N))/L,(E)
commutes. Putting this in (7.16), we have:

In order to prove (6.4), it will suffice to assume that E — V is
ample, H'(V, O(E))= 0, and then prove that the following diagram

commutes. (7.18)
HY(V, 0(Hom(E, E)))
{
] He-Ly(V) (7.19)
e
HY%Z, O(N))|L,(E)

where ¢ is given by (3.6), { by (6.8). and 0 by the §9 below.

Remark. In case g=k = fibre dimension of E, Z c V is the
zero locus of o€ HYV,0(E)). Then L,(E)=rHYV,0(E)), where
r: Oy(E) > O04(N) is the restriction mapping, and 6 in (7.17) is con-
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structed as follows. Let ne HY(V,0(Hom(E,E))). Then 7.c€
HYV,0(E)) =0 and so 73.0= dr for some rel' (V.E) (=0C%
sections of E— V). We set 8(y)=17|Z. If also 5.0 =207, then
d(7 — 7)=0so0 that 6(n) is determined up to rH(V.0O(E)).

(d) Bemavior 1IN EXACT SEQUENCES. Let {E,}. {S,}, {Q,} be
families of holomorphic vector hundles over ¥ such that we have

0—>S,—>E,—> Q,—> 0. (7.20)
We shall prove:

If (6.4) holds for each of the families {S,}. {Q,}, then it is true
Jor {E,}. (7.21)

Proor. The exact sequences (7.20) are classified by classes
e e HY(V.0(Hom(Q,,S,))), with e giving the same class as €' if,
and only if, e= d¢’ (A% 0). If we show that the periods of E, are
independent of this extencion class e, then we will have ¢,(E,)=
$,(S,®Q,) and so we can use (7.1). But ¢,(e) (extension class e) =
¢,(te) for all £ # 0, and since ¢,(te) is continuous at ¢t = 0, ¢,(E,) =
$,(8,©Q,). Thus, in order to prove (7.21), we must show :

Suppose that {E,} is a family with 0 =S —E,—~ Q — 0 for all X.
Then L(n) = 0 in (6.8) where

n=2 (3_) e H(T".0(Hom E.E))). (7.22)
aA

Proor or (7.22). Assuming that E = E; with

w

0—>S—>E —Q —0, (7.23)

we clearly have %e HYV.0(Hom Q,S))) c HY{(V,0(Hom(E.E))).
Let 7 be a C*(0,1) form with values in Hom(Q,S), and let e,,...,¢
be a local holomorphic frame for E such that e ,...,e is a frame
for S. Then ¢,,,,...,, projects to a frame for Q, and locally

7= (’h: 7312). Since 7S =0 and 7(E)CS. 9, =15 = n5s =0
N21 MNaz

and 5= (g g“).
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Suppose now that we can find a (1, 0) connection in E whose
local connection matrix (using the above frame) has the form

-~ a].1 ’él! =N ] 611 612
8 = ~ ) Then the curvature 3 — @, — ( ~ ) and it
(0 P £ 0 0,

follows that Pq(@g; 7) =0.
g=1
Then let 6 be an arbitrary (1,0) connection in E. Locally
f = (B“ 9”), and we check easily that 6,, is a global (1,0) form

21 %22

with values in Hom(S,Q); let £ = (g g)e A4V, Hom(S,Q)) and
21

let : Q—~ E be a (¢ splitting of (7.23). Then ¢ = I — ¢ : E- S
and satisfies §(v) =v forv € S. Welet

=0—g¢y (7.24)
. ~ 2 011 612

be the (1, 0) connection for E. Then 8|S = 0 and so § = (0 2 )
22

as required.

(e) PROOF OF (6.4) FOR LINE BUNDLES. Let E — V be a line
bundle; we want to prove (6.4) for any family {E,},., with E, =E.
By (7.14), we may assume that E - V is ample and Z c V is the
zero locus of a holomorphic section o € H(V, O(E)). Using (7.18),
to prove (6.4) we need to show that the following diagram commutes:

H\(V, 0)

19\;\* H*Y(V) (7.26)

3
H%(Z, O(N))/H'(V, O(E))
where { is now-é% (identity). Let w € H*~(V) and n e H(V, 0) =
H%'(V). To prove the commutativity of (7.25), we must show :

)

% | 7he= [ o neee. (7.26)
¥ z
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The argument is now similar to the proof (3.10). Letting T, be

an e-tubular neighborhood of Zin V, [ A w=1lim [ % A w.
v 0 V=T,

On the other hand, %o = or for some 7€ [ (V,E), and
6(7) =712 € H(Z,0F). On V—T, nAw=10A ==
o

'a(i’;\ w) =d(1’/\ m), andsolim [ 7 A @=1lim — [ %
g a 0 V=T, 0 T, O
2

1

| T€* w by the same argument as used to prove (3.10).
z

CoroLLARY 7.27. (6.4) holds whenever E — V 1s restricted to
have the triangular group of matrices as structure groups.

Proor. Use (7.21) and what we have just proved about line
bundles.

8. Proof of (6.4) for the Highest Chern Class. Let E — V be an
ample holomorphic vector bundle (c.f. (7.14)) with fibre C¥and such
that HY(V, O(E)) = 0. The diagram (7.19) then becomes, for ¢ = k,

H(V, O(Hom (E, E)))

(8.1)
HE1(1),

H%(Z, ON))|rH’(V, O(E))

Let n € HY(V, O(Hom (E, E))) be given by a global Hom(E, E)-
valued (0, 1) form % and suppose ce€HOV, O(E)) is such that
Z={c=0}and 1.0 =0 in HY(V, O(E)). Then y.c = 9+ where
risaC® sectionof E— V,and 7| Z = 0(n). If € H**+1"~¥(¥) and
O is a curvature in E, then we need to show that

{E*w.szkPE(@;q]/\w, (8.2)

z v k-1

where £* we H"¥(Z, Q*~¥(N*)) is the Poincaré residue operator
(3.6).
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What we will do is write, on ¥V — Z, kP,(0; n) = &y, where i, is
E-1

a C®(k — 1, k — 1) form. Then, if T, is the tubular e-neighborhood

of Zin V, _[kP(@ 7) A w = lim j Ay A ) = — lim _[ 0y A w.

k—l «e+0 V-T, PE ]
We will then show, by a residue argument, that — im [ J, A w=
>0 IT,

JE¥ w.7.
z

Suppose now that we have an Hermitian metric in E — V. This

metric determines a (1, 0) connection 8 in E with curvature @ = 2.
Let o* on V — Z be the C™ section of E*|V — Z which is dual to ¢

(using the metric). Setting A = 7@ o*, 7 =7 — A is C*(0, 1) form
with values in Hom(E, E)|V — Z and 5.0 =1.0 — 3 (+ @ o*.0)=
n.o— 51’ = 0.

On the other hand, we will find a C*(1, 0) form y on¥V —Z, which
has values in Hom(E, E), and is such that Do = y.o. Then

b=10— y gives a C® connection in E |V — Z whose curvature

0=0 -—-héy satisfies ©.c=0. Since kPl(@; ;) = 0 (because
=1
@.aEOE?p.a), it is clear that,on V — 2,
k Py(©; 7) = kP, @+ By; 5§ + 0A) = Oy,
2 E-1

and this will be our desired form ¢,. Having found i, explicitly,
we will carry out the integrations necessary to prove (8.2).

() AN INTEGRAL FORMULA IN UNITARY GEOMETRY. On CF =

— {0}, we consider frames (z;¢,,..., ¢;) whereze Ctand €g,..., 618 8
unitary frame with e, = —T Using the calculus of frames as in [5],

|2
k &=
we have : De, = Z (6 + 6 =0). In particular, the differential

forms & (.Del, e ) are horizontal forms in the frame bundle over
k

C*. Since 0:32=D”(|z}el)=5|z]el+ ]z|(z 6";'3,),“'8 find
p=1
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_alz]
(2]
that ' = 0 (x =2, ..., k) and 6} =23 log | z|, so that

0} =(9 —3d). log|z].
Given a frame (z;ey, ...,&), the e, give a basis for the (1,0)

that 6 =0 (x=2,...,k) and 6] = = —dlog | z|. It follows

tangent space to C* at 2. Thus there are (1, 0) forms w?, ..., o* dual
to ey, ..., &, and we claim that
wl=2|z|6F

) 8.3
o =|2z|0% (@ =2, ..., k) &

E
ProoF. By definition dz = X w’e,. But z=|z |e; and so dz =

p=1
B

@z +1216}) e; + Z |2 |05e,. Since 6y = ill-z_ll,we get (8.3)
z

a=2

by comparing both sides of the equation :

k k
3 wfe, = 2|z [0} ¢y + X |z|0fe,.

p=1 a=2

3 E
Now let == 2 7%, and w = X £w’ be respectively a smooth

p=1 p=1

E
vector field and (1, 0) form on C¥. Then {w, 7) = X §7°is a C”
p=1

function on C*. We want to construct a (k — 1, k — 1) form (:il;('f)
on CE such that

w, 7)o =1lim j%(r)/\w, (8.4)
«+0

where B, c C* is the ball of radius e. Let I'(k) be the reciprocal
of the area of the unit 2k—1 sphere in C* and set

13
a?x}(r)%ifl){fz—ll_[mpri7’9;91'1_[9:6;}. (8.5)

a=1 f=2 a#f

What we claim is that

3 (), as defined by (8.5), is @ (k— 1, k—1) form on C* satisfying (8.4).
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Proor. It is easy to check that J:;('r) is a scalar C® form on
~ k k
Ctoftype (k—1,k—1). Noww = X £ = |2](2£,6] + X £,69),

p=1 am2
and so

k k
o A =T > ~e o ] o . (8.6)

=1 a=2

Using (8.6), we must show: If fis a C* function on CF¥, then

k
lm () | s o ] ] oz 62 =10 (8.7)

2B, B
But, by (8.3), w'w?®?...w*"a* =2|z|*~16}626} ... 66}, and so

k ~
(k)6 IT 62 6! is a 2k —1 form on C* having constant surface
a=2

integral one over all spheres 9B, for all e. From this we get (8.7).

21

Remargs. (i) Using coordinates z = ‘ :
2

k o L ~~
, (— 1p=1+830dd . ddEt ... d% .. d2
61626} ... 6561 — Z T . (8.8)

pe=1
(ii) If p is a C* differential form on C* which becomes infinite

at zero at a slower rate than 31(-.-), then

lim I wA g (7) = lim [ o A W(7) + p). (8.9)
«+0 53 «+0 o3,

(ii) On C' x C*, let w be a C° form of type (I + 1,1). Then,

k k
if 7= X ¢ is a C® vector on C¥, we may write w = X y, A o’
p=1 p=1

lA
where the C® form £*w.7= X 7*y, is of type (I,1) on C! and is

a=

uniquely determined by « and .

Suppose now that w has compact support in C’ (i.e. is supported
in A' x C*for some polycylinder A* c C¥). Then, as a generalization
of (8.4), we have
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«+0

Jf*w-7=lim j $e() A @ (8.10)
cf dxan

Note that £*w = is here the Poincaré residue of w on

Ve
C' % (el xCh

(iv) Combining remarks (ii) and (iii) above, we have:

Let w be a C* form of type (I + 1, 1) with support in A' X C* and
let ¢, () be a O form on C* x C* whose principal part (i.e. term
with the highest order pole on C' x {0}) is $,,(-r) given by (8.5).
Then (8.11)

J £*w.7 = lim I w A gy (7). (8.12)

e+0

ct Clx 8B,

(b) Some FormuLaE IN HERMITIAN GEOMETRY. Let W bea

complex manifold and E - W a holomorphic, Hermitian vector
bundle with fibre C*. We suppose that E has a non-vanishing
holomorphic section o and we let S be the trivial line sub-bundle of
E generated by . Thus we have over W

0—>S—>E—>Q—0. (8.13)

We consider unitary frames e,, ..., ¢, where e;= l-il is the unit vector
o
in S. The metric connection in E gives a covariant differentiation

De, =X 65¢,(6°+ 2 = 0) with D" = 3. From 0 =3o=D"(|c|e,) =

k
(51a|+|an9:’)e1+1a|( Ee%e,),weﬁnd

6 =0 (x=2,..., k), 0} = (3 — 3) log | o]. (8.14)

k
A W (a|ai+zole}')e1+;aa( 5 e;ea) =

k
|a|{ 20Ve, + X B‘i‘eu]» = y.c where
a=2

k
y=20e;@ & + > bie, @t (8.15)

a=2
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is a global (1, 0) form with values in Hom(E,E). In terms of matrices,

208 0..0
#  0..0
y=1| . (8.16)
&  0..0

Letting P y, we get a (1, 0) connection Din E with D* = 3and

Do=o. This was one of the ingredients in the construction of ¥,
outlined above.

For later use, we need to compute dy = D"y. Since y is of type
(1,0), D"y.is the (1, 1) part of Dy =dy + 0 A y+ y A 0. Also, we
won’t need the first column of D"y, so we only need to know
(Dy), =2 6 yo, + X 92 0;(since y5 = 0) = ¢ 1. This gives the
formula : ’

» 20 6] ... 206} 6}
. 07 6%... 62 6}

dy=|. TP TR (8.17)
* @&e. &g

As another part of the construction of y, with 3y, = kP,(0; »),
—

-1
x 2
we let 7= 2 1%¢, be a C* section of E with 07 = 5.c (c.f. below
p=1
(8.1)). Set
k
A=1Q0c*= > ™ e @l (8.18)
p=1|0|
In terms of matrices,
1 0...0
| O I
A= — |- . (8.19)
jod | =, * °
* 0..0

We want to compute the Hom(E, E)-valued (0, 1) form 3}, and
we claim that
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k
= Z ne,@ef — 1 Z e, ® €. (8.20)

p=1 lole=
ProoOF. 5)«:5—:-@ o*+r® do*
E k &
= re @ e* 4 7% D"(—l)
Z M p® 1 ; P ® | 0.]

* — —
(since re—‘[ = ¢*and 97 = 7.0). Now D"(i) =3( 4 ) ey +

o |o| lo]

k %
X D'ef and D"ef = X 6% ¥ = — X 6¢*(since 6+-0*=0). But

|UI p=1 p=1

‘“a(_l) —~ 1 gr— 1 (Flog|o|—0")=0 by (8.14) so that

lo| | ol el
® -
D"(i) =1 5 g (since 67 =0 by (8.14)). Thus A —
ol o] a=2
i
e, ® e} — l_ll 2 7 0le, @ € as required.
p=1 Ofpa

In terms of matrices,

{n} ".T‘?f ’I”‘S;l [s g g
o a
- 1
I\ = - | A » e el (821)
YTy k)
2 2 Tk % kgl Eopl
ni ]G’| Y IU’I ‘T‘ 92...7 3k‘l

(c) CompLETION OF THE PROOF. Given E—V and ceHYV,0 (E))
with Z={z e V: o(z) = 0}, we let E-E— {0} and lift E up to
lie over E. Letting W —E, the considerations in 8(b) above apply,

as well as the various formulae obtained there. Using o: V—Z—E,
we may pull everything back down to V— Z. In particular, | o | may
be thought of as the distance to Z, and the forms & will go to

infinity like% near Z (c.f. 8(a)).
a

Now, since 0.0 =3dy.o and 5.0 = dA.c on V — Z, we have

0 =kP(© — 3y; n— 0A). (8.22)
k-1
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Expanding (8.22) out, we will have
kPO ; n) = d,, (8.23)
—
E—1
on V—Z. It is clear that i, will be a polynomial with terms contain-
ing @2, n2, 6°, 7. Furthermore, from (8.16), (8.17), and (8.21), the

highest order term of ¢, will become infinite near Z like I—Ii"‘:f s
a
From (8.5) and (8.11), the expression
— lim I AR (8.24)
e=+0

€

will depend only on this highest order part of ¢,. Let us use the

notation = to symbolize “ignoring terms of order i or less.”
a
Then from (8.22), we have
= (—1YkP, (y; dy; A (8.25)
~

1 k-2
This is because © and 7 are smooth over Z. Note that the right hand

side of (8.25) behaves as near Z. Using (8.5) and (8.11)

I o 121:-1
from 8(a), to prove the commutativity of (8.1), we must show:
(= 1fkP, (y; 3y; a2)

et
= 1

1 k-2
T (k) £ -
—WialTee+2 S g0 e«s;} 8.26
2ol {‘T 1:2[ 1 ::Z; Y1 H 1 ( )

a#f

where y, §y, and 9A are given by (8.16), (8.17), and (8.21).

The left hand side of (8.26) is, by (A4.4)
20;" 261" 0}... 7'6% ... 26} 6}

1 1 1 & 6; 6; 0y 76} 67 63
(?z?s) F—D)1] il nget :

6 0 6.0 ... &6
(8.27)
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Fixing o, the coefficient of 716} on the right hand side of (8.27) is
62 6 6...2..6 6
(—1edet | :
& &g . &6
(& means that the column beginning 838, is deleted). This last

determinant is evaluated as

> sgn 7070520} .... ()6+-16}, (8.28)

where the sum is over all permutations of 2,....,k. Obviously then
(8.28) is equal to (k— 1)!(— 1)*~16% II 6§6;. This then gives for
B+a

the coefficient of 7! in (8.27) the term

1\*(k—1)T
o I 626, 8.29
(32) Sor Lo (8.29)
In (8.27), the term containing 7*0; is
B

267 30" B i 207 6}

03 ¢ 6 6 6

(— 1) det,, , 1 1 Y -1 E

o 6 O3 & &

= 2(k — 1)1656Y ( T 3;9;)9;.

r#he
Thus, combining, (8.27) is evaluated to be

T'(k) - . -
— g mT ] aa o > # ] erer)

a=2 B=2 a#8
where I'(k)~! = [w'w?@?... %" «* in 8(a). Comparing with (8.26)

8B,
we obtain our theorem.

9. Proof of (6.8) for the General Chern Classes. The argument
given in section 8 above will generalize to an arbitrary nonsingular
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Chern class Z,(E). The computation is similar to, but more compli-
cated than, that given in §8, (a)-(c) above. However, in general
Z,(E) will have singularities, no matter how ample E is. Thus the
normal bundle N —>Zg(E) is not well-defined, and so neither the
infinitesimal variation formula (3.8) nor (7.16) makes sense as it
now stands.

We shall give two proofs of (6.8). The first and more direct
argument makes use of the fact that the singularities of Z,(E) are
not too bad; in particular, they are “rigid,” and so the argument in
§8 can be generalized. The second proof will use the transformation
formulae of §4; it is not completely general, in that we assume
the parameter space to be a compact Riemann surface and not
just a disc.

FrrsT PROOF OF (6.4) (BY DIRECT ARGUMENT). To get an under-
standing of the singularities of Z (E), let o;, o, be general sections
of E-»V so that Z,_,(E) is given by o; Aoy=0. If, say,
o,(29) 7% 0, we may choose a local holomorphic frame e,, ..., ¢, with

3
e; = o;. Then op(z) = Elf“(z}e“, and Z, ,(E) is locally given by

£2=...=£&=0. We may thus assume that the singular points

of Z,_,(E) will come where o, =0=0,. If n> 2k, there will be such

points ; choosing a suitable holomorphic frame ey, ..., ¢, we may
k k

assume that o,(2) = X 2%, and oy(2) = X #**%¢,. Then Z,_,(E)

a=1 a=1
is locally given by

22l PAte =0 l<a<B<Ek). (9.1)
For example, when k= 2, (9.1) becomes z'z*% — 222® = 0, which is
essentially an ordinary double point.

Now let {E,} be a family of ample (c.f. §7) vector bundles satisfying
HY\(V,O(E,)) =0 (cf. (7.18)). Then we may choose general
sections ¢;(2), ..., 5(A) of E, which depend holomorphically on A;
in this case, Z,=Z/(E,)is defined by o;(A)A ... Acp_,,,(2) =0.
Letting Z = Z,, we see that, although the Z, aresingular, the
singularities are rigid in the following sense:
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There are local biholomorphic mappings f,: U - U (U = open
set on V) such that Z, o U = f\(Z n U). (9.3)

We now define an infinitesimal displacement mapping:
p: To(A) - HYZ, Hom(I[I%, 0y)), (9.4)
where I ¢ Oy is the ideal sheaf of Z. To do this, let 21, ..., 2" be
local coordinates in U and f(z; A) = f, (2) the ma.ppings given by

(9.3). Let 8,(z) be the local vector field E aaf; (2, )‘} If £(2) is
i=1

a function in I (so that £(z) =0 on Z), then 6,.£ gives a section of
0y |I = 0,. Furthermore, the mapping £ = 0;. £| Z is linear over
0, and is zero on I?, so that we have a section of Hom(I/I2, @)
over U.

To see that this section is globally defined on Z, we suppose that

_ﬂ: U — U also satisfies }i(z nU)=Z,nU. Then?(z ;A =f(h(z, A);A)
where h(z;0) : Za U —>Z n U. Then

5o a¢ of oW o off ag
,Z;“zﬁ (X 5 @)= 37 N o +Z BA);d) 2 -
Thus, atA—OandforzeZ 07.6—0,.¢
3 2
~S 2L w0 X w5 ErhEN0]0, =0
From this we get that 67§ = 6,£ in 0. The resulting section of

Hom(I/I%, 0,) is, by definition, p(%).

Examrres. (a) In case Zisnonsingular, Hom(I/I%, 0,) =0,(N)
where N — Z is the normal bundle; then p(a ) € H(Z, 0, (N)) is

just Kodaira’s infinitesimal displacement mapping (3.8).

(b) In case ZcV is a hypersurface, p(%)g vanishes on the

singular points of Z. This is because § =7g where g(z) = 0 is a minimal
equation for Z n U. Then, in the above notation, ¢ £|Z =n9b,.91Z,
and 6,.g vanisheson g =0, dg = 0, which is the smgula.r locus of Z,
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Now suppose thatdim Z =#n — gand that v = X w3 d2’zd’

[=(iseenin—g+1)
J=01-in—g)

is a O form of type (r —¢ + 1,2 — q). Then

oft , . ~ )
I,?r:,; + o7 éj;— dzr A ANdZUA L NdEn—erL A dZ

(91'»‘-") =

is a 0® (n—¢q, n—q) form in U whose restriction to the manifold
points Z,, c Z is well-defined. Thus, there exists a C® (n — g, n-—q)

def.
form Q = { {* o, P(B%L) > on Z,, such that [ Q = [ Q conver-
z

e
ges. Just as in the proof of (3.7) (c..f.[9], § 4), we can now prove:

The differential ¢, : Ty(A) - H*"29(V) of the mapping

() = ¢,(Z, — Z) (9.5)
18 grven by

0 . 4 0
Irﬁ*(a)/\w—-j@ @, p(a—)l)>, (9.6)
14 z
where the right-hand side of (9.6) means, as above, that we take the

Poincaré residue £*w of w on Z_, and contract with p(%)e

reg

HY%Z, Hom(I[I2, 0,)) given by (9.4).

ExampLE. The point of (9.5) can be illustrated by the following
example. Let Z c C? be given by xy = 0 and 8 € Hom(I/I2, 0,) by
6(xy) = 1. Then, on the z-axis (y = 0), 6 is the normal vector field

1 2 ; on the y-axis, § is} _8 . If now w = dady, then, on the z-axis,
z oy y ox

{ £*w,0 )= : dz and so [ { £*w, 0 ) becomes infinite on the
z Z reg
singular points of Z.
More generally, if g(r, y) =2° — ® with (a, b) =1, and if f¢
Hom(I[I?, 0,) is given by 6(g) =1, then 8 corresponds to the

1 4 3
normal vector field — — . Thus, if w = dxdydz, ¢ £*w, 0 > =
~ dg/%y 3y < 2
ﬁ@i. Letting = =%, y =1, we have
(99/2y)
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. b2 JtIZa—Edtﬂ
< e*w, 9)-(;)' ""ta(b——l)_-’

which may be highly singular at =0 ( = Z,).
We now reformulate (9.5) as follows.

Let {E,},ca be our family of bundles and ¢: A > T, (V) the
mapping (3.1) corresponding to Z (E,) — Z,(E,). If o;(2), ..., 03 ()
are general sections of E, — ¥V which depend holomorphically on A,
then Z,(E,) is given by 0;(A) A ... Aoz_,41(3) =0. We let ¥, cZ,
be the Zariski open set where o,(A) A ... A 6, (A) 0. Then ¥,cV
is a submanifold (not closed) and {Y,},., forms a continuous system.
We let p:Ty(A) - HY,O(N)) (where N - ¥ = Y, is the
normal bundle) be the infinitesimal displacement mapping. If then
¢ € H*~1+1L.2~4(V) we have the formula:

l?”*(a—i) A¢=l<p(£),5*¢>, (9.9)
where ¢*(£—) € H4W(V) and &%) € A" *"~94Y, N*) is the

Poincaré residue of ¢ along Y.
With this formulation, to prove (6.4) we want to show that

j@(%) £y = [qP,(u;n){\ s, (9.9)

Y ¥V g=—-1

where © is a curvature in E - V and y € H*(V, Hom(E, E)) is
the Kodaira-Spencer class 8(%) (c. £.(6.3)).

Now Z,, ,(E)is defined by o; A ... A op_,=0,and welet Wc V
be the Zariskiopenset oy A ... A 0;_, #0; thus W=V~ Z_,,(E).
Clearly we have

[ar@ . omny={r@ .0inrp  ©10
v 71 W -1

On the other hand, over W we have an exact sequence

0—>S—E;,—> Q—0, (9.11)
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where S is the trivial bundle generated by o, ..., Oy Suppose
that we have an Hermitian metric in E - ¥V such that © is the
curvature of the metric connection. Using this, we want to evaluate
the right hand side of (9.10).

We now parallel the argument in §8 for a while. Since HY{(V, I(E))
=0, go, = gyﬂ for some C* section y, of E > V(a =1, ..., k— g).
On W=V-Z,,(E) we find a section , of E* > ¥V such that
&> 05> =85. We claim that we can find such {, having a first
order pole at a general point of Z, , (E).

Proor. On W, we look at unitary frames €, ... ,¢, such that
k—g
€ s &g 18 & frame for S. Then o, = T h,e, where det(h,,)
B=1
k—g
vanishes to first order along Z,,,(E). Set {, = % (A™")s €5 ; then
s=1

$lis 05 :E; (}‘_l)yakﬁ.\ (e;',', 6> = 33

*
REMARE. Inthe case k—g=1,¢ =L and [, =%,
layl LA
k—g —
On W, wedefiney = (2 {, ® 7.). Then dy.0, = 7.0, and so,

a=1
if 3 =7 — 9y, 7.0,=0and 7 has a pole of order one along Z, . ,(E).
By Stoke’s theorem then,

JQP,-, ©,...,0;9) = I gP,(®, ..., 0; 7). (9.12)
W

g—1 W g—1

In terms of the natural unitary frames for 0 S - E; - Q- 0,
I ( 0 * )
1= 0[s/"

We now work on the curvature @. The curvature © in S eQ W

may be assumed to have the form © — (g (E;Q) (since @g = 0), and

the same techniques as used in the Appendix to §4 can be applied
to show:

GP,(O, ..., 0; %) — g PO, ..., 0; %) =3\, (9.13)
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where A has a pole of order 2¢ — 1 along Z_,(E) (c f. (A4.24) and the
accompanying calculation). By Stoke’s theorem again,

JQP.,(@,-..,@; ?;)z-[qP,{@,...,@; 7. (9.14)
iv -1 W v

From (9.9), (9.10), (9.12), and (9.14), we have to show

I(P(%), &y = qu,(@....,@;’a}) A . (9.15)
¥ W

g—1

* ~ ~
Now write 7 = (0 " ); clearly we have P,(0,...,0;7%) =
Q

0 1
7
P (Oq; .-, Og; 1mq)- Thus, to prove (9.9), we need by (9.15) to
a-1
show that

l<p () &> = 11 4P@q, .., Og; mg).  (9.16)

The crux of the matter is this. Over W, we have a holomorphic
bundle Q - W and a holomorphic section ¢ € HY(W, 0(Q)); o is
just the projection on Q of o,_,,, € H'(V, @(E)). The subvariety
Y is given by o =0, and the normal bundle of ¥ is Q — Y. Thus

p(% ) is a holomorphic section of Q - Y, and (9.16) is essentially

the exact analogue of (8.2) with Y replacing Z and W replacing V.
To make the analogy completely precise, we need to know that 74

and p( %) are related as in (8.2). If we know this, and if we can

keep track of the singularities along Z,,,(E), then (9.16) can be
proved just as (8.2) was above. Thus we need the analogues of
(7.17) and (7.19); what must be proved is this:

There exists a C® section 7 of Q — W such that 7| Y is

p(%) and 97 =17q0. (9.17)

In addition, we must keep track of the singularities of = along
Z,.+(E) so as to insure that the calculations in §8 will still work.
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For simplicity, suppose that ¢ =% — 1 so that Z,_,(E) is given
by ; A 0, =0and Z(E) by o, =0. Let E, - V be given by {g,,()}
(c. f. §6) and o;(A) by holomorphic vectors {o;,(A)} (j =1, 2). Then

0;.(A) :guﬂ(‘\)ajﬂt)() and

da;, (A) do5(A) 09.5(A) -1
=2Vl — g (X)) A)o; g
— 2\ guﬁ( ) A =k EX) gu.ﬁ()‘} {g-:ﬂ( )Ujﬁ(’\)}
At A =0, this says that
do;
3(.6_.;) =17.0;, (9.18)

where a_;r" is a zero cochain for the sheaf O(E) and n={j,, g;'} is the
Kodaira-Spencer class (6.3).

Let ’ denote & ] . Then from (9.18) we have

a=0

(6r A o) =01 Aoyt Aoy =n.(c; A 7). (9.19)

Thus, over Z,_,(E), (oy A 0,)’ is a holomorphic section of

A*E > Z,_,(E). On the other hand, over ¥ = Z,_ (E) — Z, (E),

oy is non-zero. Since S cEy, is the sub-bundle gencrated by o,, we
have on W an exact sequence:

0—>S—>Ey—> o0, AE,—>0, (9.20)
where the last bundle is the sub-bundle of A2E,, of all vectors
¢ such that £ A o, =0in AEy,.

Along Y, 0, Ao, =0and 50 oy A (o; A 0,)' = 0; thus (o, A 0,) is a
section along ¥ of o; AE. But o; AE is naturally isomorphic to
Q and, under this isomorphism, we may see that

@A) =o(5)- (9.21)

Thus we have identified p(i) .
dA
Let now 5 € A% (V, Hom(E, E)) be a Dolbeault class correspon-
ding to {j,s gz'}- Then no, = 9y, and 7.0, = dy, where Y1, Y2 are C%

sections of E — V. Clearly these equations are the global analogue of
(9.18). In particular, we may assume that, along Z,_,(E),
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’ r a
“1/\"'2+°’1A‘72=}’1/\°'z+‘71/\?z=9(ﬁ)- (9.22)

Now y, A 3 + 03 A 72 is a C* section of A’Ey, - W, but will not
in general lie in oy A Ejp cA’E,,. However, letting y = {; ® y, be
as just above (9.12) (thus {, is a C* section of E}, > W satisfying
{1, o, ) =1), we may subtract

y-(oyAog) = iAoy + “1/\<£1: 730 71

from y; A 0y + o, A y, without changing the value along Y. But then
T=y1AC+ AV — Y. (o Ao =01 Aya— <L o> o1 AYy
lies in o; A Ep. This gives us that :

7 1is a C®section of Q - W such that = | Y:p(%). (9.23)

Also, 97 = gyl Aoy + oy _/\5)!'2 — gy.(crl/\ o,)=
1.0y A0y +0, Aoy _5}’-(0'1A 0y) = (n— 3—3’)-‘71/\ Ogi— ??-(31 A 03).
Under the isomorphism o; AEy = Q, %.(03 A 05) = oy A %o, (since
7.0, =0) corresponds to 7q.0, i.e. we have

ot = 1qo. (9.24)
Combining (9.23) and (9.24) gives (9.17).

The only possible obstacle to using the methods of §8 to prove
(9.186) is the singularities along Z_, ;(E). Now 7 has at worst a pole
of order one along Z,,,(E), Og has a pole of order 2, and so the
forms which enter into the calculation will have at most a pole of order

2q along Z,, ,(E). But this is just right, because Z,,,(E) has (real)
codimension 2q 4 2, and we can use the following general principle.

Let X be an n-dimensional compact, complex manifold and ScX
an irreducible subvariety of codimension r. If Qisasmooth 2n-form
on X—8 with a pole of order 2r —1 along S, then [ Q converges.

x-s

Furthermore, if Q,, Q, are two C* forms on X —§ such that deg(£;)
+ deg(Q,) = 2n— 1 and such that {order of pole of (Q,)} + {order

of pole of (Q,)} =2r—2,then [ dQ; A Q,=(—1)%% [ Q AdQ,.
X-—-5 x-s
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Proor. The singularities of S will not cause trouble, so assume
8 is nonsingular and let 7, be an e-tube around §. Then clearly
lim [ Qconvergesand, by definition, equals _[ Q= _|' Q. Also,

-0 X-7,

ondT, | Q,
_[ dp< ¢’ lim _[ Q,ANQ,=0.

=0 3T,

SECOND PROOF OF (6.4) (BY FUNCTORIALITY). We shall consider
over V a family of holomorphic vector bundles {E,},., parametrized
by a nonsingular algebraic curve C; this family is given by a holo-
morphic bundle & >V X C whereE, =& |V x {A}. Welet X =V x C
and ¥V, =V X {A}, V=V, where X €C is the marked point. It
may be assumed that & - X is ample and HY(V, O(E,)) =0 =
HYX, 0(€)) =0 for all AeC (c.f. §7(c)).

Let Z, c X be the ¢** Chern class of & - X and ZA)=Z,.V,;
thus Z,(2) is the ¢** Chern class of E, — V. More precisely, letting
m:X -V be the projection, #(2,.V,) = Z,(A) is the ¢*® Chern
classof E, > V.

Now let
2, =2,V — 2.V, = Z,.(V,— V) and Z, = Z,() — Z,().

Then Z, is a cycle of codimension g + 1 on X which is algebraically
equivalent to zero, and Z, = n(Z,) is a similar cycle of codimension
gon V. Using an easy extension of the proof of (4.14), we have :

Ty4:1(X)

5 J,,* (9.26)
% T(V),

where m,: H¥X, C) - H*(V,C) is integration over the fibre and
$o+1(X)A) = $g+1(X)Z,) (similarly for (V).
In infinitesimal form, (9.26) is:
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Hoa+1 (X)
¢W+I(X):k
- (9.27)
T,,(0) l

We let o = (V) 55) #nd @ = s ( 2

in H=14(V). The class w € H*~14(V) is characterized by

) , 80 that 7, Q=w

I QA ¥ = j wA i, for all § € H*—9+L »=y(P).  (9.28)

The family of divisors V, c X defines ¢,(X): C — T',(X), and,
from the mapping

$1(X)s : T, (C) - H*(X), (9.29)

d
)
measured in the Picard variety of X. Letting ¥ € H*(X) be the
Poincaré dual of &, we have by (4.17) that

Q = ¥, (9.30)

we let 0 =¢ (X )*( ) . Thus @ is the infinitessmal variation of V,

Because V, c X is a divisor and because of (3.10), we know how
to compute 6 € H*(X). By (9.30), Q € H%**+1(X) is known, and so
we must find =, Q. This calculation, when carried out explicitly,
will prove (6.4).

First, let L — X be the line bundle [V, ] and ¢ € H(X, O(L))
the holomorphic section with V, given by ¢ = 0. Then L|V = N is
the normal bundle of V in X; in fact, N - V is clearly a trivial

: e x d . .
bundle with non-vanishing section 7 where A is a local coordinate

on C at A, Choose a C® section 7 of L - X with 7|V = %
and write

37 = fo. (9.31)
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Then, by §7(e), § € H*(X) and gives ¢,(X), (%) . By the same

argument as in (3.10), we have:

[ (BF)A w* p=—lim E(I)lzf At = [ (%,f*(‘f’}\ 7))
o ¥

x >0 3T,

(§* being given by (3.6))= [ ;X » E¥Y> A, Combining, we have
14

[QAm=]< a_i E4F  for all § € Hr-+1a~2(); by (9.28),

we see then that

a *
w=m,(Q)= a,f Y. (9.32)

This equation is the crux of the matter; in words, it says that:

The infinitesimal variation of Z/(E) in T (V) is given by the
Poincaré residue, relative to 9/dA along ¥ X {A,} in ¥ XC, of the form
Py(0,..., 0) onV X C where O is a curvature in & -V XC. (9.33)

Since ® |V = O is a curvature in E— ¥V, and since
i} d
<'§i! Pq(®:"'!®)>_q})§(®-"s ®s< a:@))v

to prove (6.4) we must show that:

< aa—)‘ , 0> = n € H*(V, Hom(E, E)) is the Kodaira-Spencer class

s(g;‘) given by (6.3). (9.34)

Let then A be a neighborhood, with coordinate A, of A, on C and
{U,} an open covering for V. Then & |V X A is given by transition
functions {g,,4(z, A)}, and a (1, 0) connection 8 for &>V xC is given
by matrices 6, = 0,(z, A; dz, dA) of (1,0) forms which satisfy

_ ag 9
O — 90092 = d9up 955" = (Z a—z"‘}’ de? + a;“’ d.\)g;;. (9.35)
k

The curvature © | U, X A is given by © |U, X A = 36,. Thus
(%, ©>|U, x A is given by 3¢ Eai’ 6.>. But, on U, x {A}
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2 ] I s
(Ao = 0), we have ( % 6,> — 9ap 3 Bp > gapl = gqu@l, 8o
that 5{ 4 .(%, 6.>1U0, X {AD}} is a Dolbeault representative of the

Cech cocycle {§,5 95'} = 8(%) by (6.3). Thus 8(6—8,‘) is given by

< %, @) | ¥ X {A} which proves (9.34).

10. Concluding Remarks. Let V be an algebraic manifold and X,
the group of algebraic cycles of codimension ¢ which are algebrai-
cally equivalent to zero. Letting T (V) be the torus constructed
in §2, there is a holomorphic homomorphism
¢: Z, > T (V), (10.1)
given by (3.2). Letting 4, be the image of ¢, we have that:
4, is an abelian variety (c.f. (2.6)) and To(4,) c H(V). (10.2)

The two main questions are: What is the eguivalence relation
defined by ¢ (Abel’s theorem), and what is Ty(4,) (inversion theorem)?
While we have made attempts at both of these, none of our results
are definitive, and we want now to discuss the difficulties.

The obvious guess about the image of ¢ is:
To(4,) is the largest rational subspace contained in H*=14(¥). (10.3)

REMARE. A subspace 8§ c HM(V) is rational if there exist
integral cycles I, ..., Iy € Hy,_(V, Z) such that § = {w € H*"14(V)
for which J- =10, p=:"1; 3}.

T,

14

We want to show that:
(10.3) ie equivalent to a special case of the (rational) Hodge
conjecture. (10.4)
Proor. Let S cH*9(V) be a rational subspace and Sy c
H*%~1(V, R) the corresponding real vector space of all vectors w+w
(we8). Then Sg n H%~}(V, Z) is a lattice Ty and Sg/T's = J,(V)
is a torus which has a complex structure given by: Sc Sz ® C is
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the space of holomorphic tangent vectors of J, (V). Furthermore,
Jo(V) is an abelian variety which will vary holomorphically with
V, provided that its dimension remains constant and that Sg(¥)
varies continuously (c.f. §2). The space of holomorphic 1-forms on
J (V) is 8* c Hr-t+1n—q(]),

Now suppose that Z c J, X V is an algebraic cycle of codimension
g on J, X V such that, for a general point AeJ,, Z-{A} X V = 2,
is a cycle of codimension ¢ on V. This gives a family {Z)hres, of
codimension g-cycles on V, and we have then a holomorphic
homomorphism

$:J, > T,(V). (10.5)
At the origin, the differential is
by 1S > HI-M(), (10.6)

and to compute ¢, we shall use a formula essentially proved in the
last part of §9: Let eeS be a (1,0) vector on J,and ¥ on J,x V the
(¢, g) form which is dual to Z. Then (e, ¥ ) is a (¢ — 1,g) form on
J, X V and we have (c.f.(9.33)):

Pu(e) is { e,V ) restricted to {0} x V. (10.7)

What we must do then is construct arational (g, g) form ¥ on I, xV
such that, according to (10.7),

(e ¥ )isequaltoeon {0} x V. (10.8)

Let ey, ... , ¢, be a basis for § c H*~1¢ and 4, ..., ¢, the dual basis

for §* c H"~4*1"~¢, Then the iy, can be thought of as (1, 0) forms on

J,» the ¢, become (1, 0) vectors onJ,, and( e,,3, ) = & on J,. Welet

!

¥=> 4,06 +%8%) (10.9)

p=1
Then ¥ is a real (¢,9) form on J, X ¥ and (e, ¥)=eisa(g—1,q)
form on V. Thus (10.8) is satisfied and, to prove (10.4) we need
only show that ¥ is rational.

If f1,--., fa is & rational basis for Sy c H¥~}(V,R)and §,,..., 6,, a
2r

dual rational basis for Sg cH**~%+1(V R), then e,= XM, f, and
o1
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f, = Xm_e¢, + m_ e, This gives mM = [ and mM = 0 where m is

p=1
Io

anr X 2rand M a 2r X r matrix. Thus (2)(11{5) = (0 I)' We

2r -
also see that ¢, = Xm0, and so ¥ = E(m M, + m M, )0.Q [,

=1

== §f¢®f=‘ which is rational on J, X V.

-

ReMARK. A similar class ¥ of J, x V has been discussed by
Lieberman, who calls it a Poincaré cycle, from the case g=1. In
this case Jy(V) = Pic(V)~ H*(V)/HY{V,Z), and there is a line
bundle & —»J, X V with ¢,(#) =¥ and such that £ |{A}x V=L,
is the line bundle over V corresponding to A e H* (V) HYV,Z)

c HY(V,0%).

We now prove:

If (10.3) holds, then the equivalence relation defined by ¢ in
(10.1) is rational egquivalence on a suitable subvariety of a Chow
variety associated to V. (10.10)

Proor. Let Z c V be an irreducible subvariety of codimension
g on V¥, and let ® parametrize an algebraic family of subvarieties
Z cV such that Ze®. Then (c.f.§5) ¢ is a subvariety of the Chow
variety of Z.

Now, if (10.3) holds, then in proving it we will certainly be able
to find a family {W,} of effective subvarieties W, cV of codimension
n —q + 1 which are parametrized by A € J,_.,, and such that
Sp—g+1(¥y - Wy) = A. Then, as in §5, each Z e ® defines a divisor
D(Z) on J,_,,, and we want to prove :

D(Z) = D(Z) if, and only if, ¢,(Z — Z) = 0 in T (V). (10.11)

Let ¢ be a residue operator for Z — Z (c.f. §5(a)) and eet
W

8=d{ _[A g{;} on Jy_ 4y (c.f(5.21)). Then € is a meromorphic

W,
form of the third kind on J,_,,; associated to the divisor

D(Z) — D(Z). By (5.24), we have:
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D(Z)=D(Z)on J,_,.,, if, and only if, there exists w e H(J, —a+1)
such that [ 8 + w = 0(1) for all e H, (Ta—gs1.Z)- (10.12)
]

Denote by 8§ c H*~%*~¢+1(V) the largest rational subspace; then

§ is the holomorphic tangent space to J,_,,,. The holomorphic

one forms H“(J,_,.,) are then §*c H%~(V). Given Q€S*, the
corresponding form we H'(J,_,.,) is defined by

Wa

w=d“n

Wo

Given 8 € H,(J, 441, Z), there is defined a 29— 1 cycle
T(3) € Hy,_4(V, Z) by tracing out the W, for Ae 8. Clearly we have

jﬂ-}—w: j ¥ +Q (10.13)
& T(3)
Combining (10.13) and (10.12), we see that:
D(Z) =D(Z)on J,_,,, if, and only if, | ¢ + Q =0(1) for some
r
QeS*and all Te H,,_,(V, Z). (10.14)

Now taking into account the reciprocity relation (5.30), we find
that (10.14) implies (10.10).

RemaRk. The mapping T: H,(J, .11, Z) > Hy,_1(V, Z) may
be divisible so that, to be precise, (10.10) holds up to isogeny.

ExamPLE 10.15. Take g =n, so that ®is a family of zero-cycles
on Vandé,: ® - T,(V) is the Albanese mapping. Then o1 =
J, =Pic(V) and we may choose {W,},pi(yy to be a family of
ample divisors. In this case we see that:

Albanese equivalence on @ is, up to isogeny, linear equivalence
on Pic(V). (10.16)

The conclusion drawn from (10.4) and (10.10) is:

The generalizations to arbitrary cycles of both the inversion theorem
and Abel’s theorem, as formulated in (10.3) and (10.10), essentially
depend on a special case of the Hodge problem. (10.17)
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The best example I know where the inversion theorem (10.3)
and Abel’s theorem (10.10) hold is the case of the cubic threefold
worked out by F. Gherardelli. Let ¥ c P, be the zero locus of a
nonsingular cubic polynomial. Through any point 2 in V, there
will be six lines in P, lying on V. (10.18)

Proor. Using affine coordinates z, y, 2, w and taking z, to be the
origin, V will be given by f(x,y,2, w)=0 where f will have the form
f(@,y,2,w) =2 + §2(, Y, 2, w) + g5(2, ¥> 2, W)- Any line through z,
will have an equation 2 = agf, § = o;f, z=,f, w= ogt. If the line
is to lie on V, then we have oyt -+ g5, %55 g, %3)¢%+ 5(0%, 15 o, o)
— 0 for all ¢; thus «y = ¢ and g,(0, &y, g, o) = 0 = g5(0, ay, %, o).
Thinking of [«;, &y, %] as homogeneous coordinates in P,, the lines
through z, are given by the points of intersection of a quadric and
cubic in P,, so there are six of them.

Let @ be the variety of lines on V. Then it is known that @ is a
nonsingular surface and the irregularity A%'(®) is five. But also
B'2(V) = 5 and K%¥(V) = 0. Thus, in this case, J4(V) = T,(V)is the
whole torus. Fixing a base point z, € @, there is defined ¢,: D> Ty(V)
by the usual method. What Gherardelli has proved is:

$o: Alb(®) — T'y(V) is an isogeny. (10.19)

Thus, in the above notation, we have:

For the cubic threefold V, 4, = J, = T, and so the inversion
theorem (10.3) holds. Furthermore, the equivalence relation given
by the intermediate torus is, up to an isogeny, linear equi-
valence on . (10.20)

APPENDIX.

A Theorem on the Cohomology of Algebraic Manifolds. Let V' be
a compact, complex manifold and AP4(V) the vector space of
C> forms of type (p,q) on V. From

9: AP(V) > A?H1(V), 8% =0, 1 i)
3. APA(V) > APAN(V), 32 =10, 00 + 30 =0, | o

we find a spectral sequence (c.f.[7], section 4.5) {E?7} with EP?
= H2Y(V)Z HY(V, QF) (Dolbeault). This spectral sequence Wwas
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discussed by Frolicher [6], who observed that, if V was a Kdhler

manifold, then EP? = EP? =... = E?2. This proved that:
There is a filtration F313(V) c...c F3*4(V) = H?*%(V, C) such
that FZ+(V)/F2ii(V)= HE2(V)=HY(V,Q?). (A.2)
Thus
PRr(v) = Z H2+ra-7(T). (A.3)
>0

We call the filtration (A.3) the Hodge filtration. Our object is
to give a description of the Hodge filtration {Fy(V)} using only
holomorphic functions, from which it follows, e.g., that the Hodge
filtration varies holomorphically with V. It will also prove that
F2+(V)= ker d n (ZAW’H( V)) / d(z A?+m-'-1(V)), (A.4)

r=0 r=0
which is the result (A3.5) used there to prove (A3.6), the fact

that the mappings ¢,: X, - T,(V) depend only on the complex
structure of V.

(a) Let ¥V be a complex manifold and QF the sheaf on V of closed
holomorphic p-forms. There is an exact sheaf sequence:

a
0—>QF— Q7 —— QPF1 0. (A.5)

TaeorEM A.6. (Dolbeault) In case V is a compact Kihler
manifold, we have HY(V, QP) - HY(V, QF) - 0, so that the exact
cohomology sequence of (A.5) 1is

00— HY{(V Q2*1) — HY(V, Q) — HY(V, Q?) —> 0. (A.7)
Proor. We shall inductively define diagrams:

Ha—k—l( v, Qg+k+ 2)

%1 _— 18
/
— o
HY(V,Q7) — 5 HI-¥(V,Qp+k+1) (A.8),

He-*(V, Qr+E+1)

(k=0,...,9), where the first one is:
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He-\(V, Qp+2)

a,/ Pl ls
=
HY(V, Q%) ——-H(V, Q2+1) (4.8),

~

Hﬂ( V’ Qr+1),

and where (A.8), will define %4 after we prove that g, = 0. In

(A.8),, the mapping § is the coboundary in the exact cohomology
sequence of

d
0——p QP +E+1 > QptE+1 > Qp+E+2 > 0.

We want to prove that «, — 0. If %11 =0, then o,

= 0 so0 it will
suffice to prove that % =0. Now (A.8), is
0
H(V, Q) —2s HY(V,Qa+7+1) (A.8),
}‘ l

Ho( V, Qetr+ l),

and so we have to show that B,

= 0. Thus, to prove Theorem (A.6),
we will show that:

The maps B, in (A.8), are zero for k — 0,..., q (A.9)
The basic fact about Kihler manifolds which we use is this:

Let ¢ € 429(V) be a C=(p, g) form with 3¢ =0, 5o that ¢ defines a
class ¢ in the Dolbeault group HZA(V)=x HYV, QF). Suppose

that ¢ = 9y for some Y € AP~14(V). Then ¢ =0in HEY(V). (A.10)

Proor: Let [J; and Hj be the Laplacian and harmonic projection
for 3, and similarly for [, and H,. Thus Hj; is the projection of
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474(V) onto the kernel H2/(¥)of [, and likewise for H,. Since [ J;
is self-adjoint and [J3 =[J,(becauseV is Kihler), H;=H, . Thus, if
$=0, H,($) =Hy($)=0. But if H3($)=0 and 3=0, $ = 92*G;¢
where 3* is the adjoint of @ and Gj3 is the Green’s operator for [];
(recall that ¢ =Hj3(¢)+ [13G7 (¢) and @ G; =Gj d). Thus ¢=0 in
HZ(V)if ¢ = 3.

Now B,: H24(V)-> HZ*19(V) is given by By(4) = 9¢ so that B, =0
and «, is defined.

Write 3¢ = dg, where y; € A2+14=1(V). Then 3(3yy) —— 93¢, —
— 3¢ =0 so that 3y, is a d-closed form in A?+>¢-1(V). We claim
that, in the diagram

H-(V, Q2*9)

-
g - 18
-
~ o
HYV,Q?) ——— HY(V, Q%) (A.8),

~ |

H-Y(V, Q2+),

Bi($) = 3.

Proor. We give the argument for ¢ = 2; this will illustrate how
the general case works. Let then {U_} be a suitable covering of
¥V with nerve %, and denote by C%(¥, 8) (Z%¥, 8)) the g-cochains
(g-cocycles) for Awith coefficients in a sheaf S. Now ¢ € Z%(, Q?), and
¢ = 8¢, for some £, € YU, A47°) (47 being the sheaf of C* (p, q)
forms). Then 3¢, € ZY(%,47) and B¢, = 8¢, for ¢, CO(Y, 471). Now
4 € Z(Y, 47?) and the global form £ € 472(V) defined by £ | U, =3¢,
is a Dolbeault representative in H2(V,Q7) of ¢.

Clearly 06 e AP+%%(V) is a Dolbeault representative of Bo(d)
€ HY(V,Q7+1), and 8¢ = ay, for some i, € A?*VY(V). We want
to find a Céch cochain 6 € C1(¥, QP*') with 8 =2a4. To do this,
we lot (=3¢, +y, e C°U, A7*1'). Then 30, — — 3¢+ 3 =0 so
that {3 =0}, for some A, eCO(Y, A7+10). We let {, = df, + 8A,
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€CYY, AP+19). Then 8, = 03¢, = ¢, and 3L, = — 00&, + SN, =
— 00¢, + 8Ly, = — 08¢, + 08¢, = 0 so that 6 =, e C{Y, Q?*Y). In
(A.8)y, & ($) e H(V,QP+2) is represented by 96 € Z1(YA, QF*1).
Observe that 836 = 83, = 8(3%; + 8d),) =0.

We now want a Dolbeault representative for 86 € Z*(U, Q?*!).
Since 90 =83, where 9A, e C°(¥, A?*%%), such a representative
is given by 002, € Z°¥,4?*%1). But 30\, = — 000y = — 0l,=
— 8(0¢, + )= —3y,; that isto say, — 9y, is a Dolbeault represen-
tative of «;(¢) e H(V, QP+2), which was to be shown.

Now B,(¢) =0 by the lemma on Kahler manifolds, and so 9¢; =
s Where i, € AP+24-%(V). Then () = — 0= — 0%y =050
that o, is a d-closed form in A?P*+32-2(V). As before, we show
that, in the diagram,

HY(V,Q7%)
2k

HY(V,Q?) 2, geyy,00+)

N

" HO-3(V,Q7+3),

(A.8),

Ba($) = Oy

Inductively then we show that Bi(¢)=0 in He~k(V, QrtE+l)
because fB,(¢) = 3y for some i € AP he=¥(V). At the last step,
B,($) = 0 because no holomorphic form on ¥ can be d-exact. This
completes the proof of (A..9), and hence of Theorem (A.6).

Examrres. For ¢ =0, the sequence (A.7) becomes
0——> HY(V, QF)—> H°(V, Q?)—> 0, (A.11)
which says that every holomorphic p-form on V is closed (theorem of
Hodge).
For p =0, (A.10) becomes:

o
0—> H-1(V, Ql)y—> HY(V,C) —> H(V, 0)— 0, (A-12)
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and « is just the projection onto H%'“(V):H“( V, 0) of a class
ée€ HY(V,C). In particular, for ¢g=1, we have:
0 — HY(V,QY)—— HY(V.C) —> HYV,0) —>0. (A.13)
As a final example, we let HY(V, 0*) be the group of line bundles
on V. Then we have a diagram

0 —> HYV, Q%) —> H(V, Q) — H(V, Q1) —> 0

A
Td log -~ (A.14)
o7 a
H(V, 0%)

(bere ¢, is the usual Chern class mapping).

(b) What we want to show now is that there are natural injections

A
0 —> HY(V, Q) —> Hr+9(V,C) (.10
such that
(i) the following diagram commutes:

0 —> H*(V,C) = H*+(V,C)
1s I
1s "
A
0—> HY(V, Q?)—— H?+4(V, C)

E ||

A
00— HGHI(‘V_, Qg:+1) R H‘p+g( V’ C) (A.lﬁ)
T‘S Il
1s [i
A
0 — H(V,Q2*7) —> H?*Y(V, C);

1

0
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(ii) the following diagram commutes:

A
HY(V, Q?) — H?*(V, C)

l l (A.17)

He(V, ﬂ”)—)H’i’;’(V),

where H29(V) is the space of harmonic (p,g) forms;

(iii) In the filtration {F2+¢(V)} of H?*¢(V, C) arising from the
spectral sequence of (A.1),

F219(V) is the image of HY(V, Q?); and is represented by

a d-closed form ¢e X AP+ 7(V) defined modulo dyf where
r=0
ge X APtra-r=1([) (cf. (A.4)). (A.18)

r>0

Proor oF (i). This is essentially a tautology; the vertical maps

d are injections by (A.7), and so the requirement of commutativity

defines A : HYV,Qf) »H?P*(V,C). For later use, it will be

convenient to have a prescription for finding A, both in Céch
theory and using deRham, and so we now do this.

Let then {U,} be a suitable covering of V with nerve ¥ and let
¢ € HY(V,QP). Then ¢ is defined by ¢ e Z%¥U, O?), and $=dyf,
for some ¢, € CYU, Q?~'). Now ddy, =8dy, =8¢ =0 so that
¢y =28, € Z71 (Y, QF~1). In fact, $, = 8(¢) in (A.186). Continuing,
we get $ye ZUH3(Y, QF~2), ..., on up to ¢, € Z*+(Y, C) (C=QY),
where ¢ =, =0 ¢, with ¢,_; = difj, (f, €C***~1 (Y, Q?~F)), and
then A(¢) =¢,.

To find the deRham prescription for A, we let 4** be the sheaf of
C= forms of type (s, t) on V and B* = 3 A**"*~. Also, B* will be

r>0
the closed forms. Then dB* c Bi**!, and we claim that we have

exact sheaf sequences:

d
0 —> B¥—» B% — BW+l 5 (. (A.19)
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Proor. Let ¢ be a germ in B}*!'andwrite ¢ = X ¢, .\, ,.
r20

Since d$=0, 3, = 0 and 50 ¢,,,, =3,,. Then $— d,, € B+,
and continuing we find ¢, ..., Y, 00 With ¢ — d(,, + ... + Pert0)
€ By*t+10. But then ¢ — d(f,, + ... +¥,14) is a closed holomorphic
s +¢+1-form, and so ¢ — dg,, + ... +d,,,0) =dn,,.0; ie. d is
onto in (A.19), which was to be shown.

The exact cohomology sequence of (A.19) gives:

0—> H'(V, B}**')—> H*Y(V,B¥) —>0 (r> 1);

A.20
0— H(V, B¥**+1)[dH(V, B*) —> H}(V, B#*)—> 0. ( )

Using these, we find the following diagram:
H'(V’ Q:) = H(V, Bg:,O)
12
H-Y(Y, B (A.21)
I
I
HY(V, B~) = H(V, BP1)[dH(V, BP~1);

the composite in (A.21) gives

A
0 —> HY(V, QF) — B?4(V)[dBPA=} (V) —>- 0. (A.22)

This A is just the deRbam description of A in (A.16), and by
writing down (A.22) we have proved (iii) above.
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