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O. I n t r o d u c t i o n  

The algebraic cycles which lie in a smooth, projective algebraic 

variety, together with the various equivalence relations (such as nu- 

merical or algebraic equivalence) which may be defined on such cycles, 

constitute a purely algebro-geometric concept. One may, however, at- 

tempt to study these by transcendental methods, and historically much 

of the structure of algebraic cycles (such as the notion of linear 

equivalence of divisors as related to the Jacobian and Picard varie- 

ties) was discovered in this way. Conversely, the questions in com- 

plex function theory which arose initially from algebraic geometry 

are frequently quite interesting in themselves. For example, the 

first and second Cousin problems for divisors in C n were very much 

motivated by consideration of the Jacobian varieties of curves. 

In this paper ! shall give an expository account of a few tran- 

scendental methods for studying algebraic cycles of intermediate di- 

mension. The main technique to be discussed is the use of intermedia~ 

Jacobians, and concerning these I shall focus on two things: 

(i) how these complex tori may be used to give an interesting equiv- 

alence relation on algebraic cycles, which is between algebraic and 

rational equivalence, and which may well lead to a good generalization 

of the classical Picard variety °. 

o This is the so-called incidence equivalence relation which was in- 
troduced somewhat obscurely in [9]. An application of this equiva- 
lence relation is given in [4], where it is shown that it allows us 
to reconstruct a non-singular cubic-threefold from the singular locus 
of the canonical theta divisor on its intermediate Jacobian. 



(ii) how the intermediate Jacobians may serve to detect the quotient 

of homological modulo algebraic equivalence. 

The developments concerning (i) and (ii) are as yet incomplete, and 

one purpose of this paper is to formulate precise problems concerning 

intermediate Jacobians whose solution would very nicely yield the 

structure of the Picard ring (of. section i) of an algebraic variety. 

For all but one of these problems we can give a plausibility argument, 

and in all cases we can formulate and prove some analogue of the prob- 

lem for varieties defined over function fields. 

A second technique to be briefly discussed is the notion of 

posit~vlty for general algebraic cycles, and we shall propose a defi- 

nition which is suggested by looking at the cohomology classes on a 

smooth, projective variety which are represented using de Rham's 

theorem by positive differential forms. 

Most of the material given below has already appeared in [9], 

[i0], and [Ii]; however, here i have tried to give clearer and more 

precise formulations than before. The diseussion of intermediate 

Jaoobians has some points of contact with Lieberman's paper [22], and 

a few of the results on normal functions have appeared only in pre- 

print form. In discussing positivity for algebraic cycles, I have 

used Hartshorne's definition of an ample vector bundle [14], and the 

presentation has been influenced by recent results of Bloch and 

Geiseker [3] concerning the numerical positivity of such bundles. 

Finally, the study of algebraic cycles via transcendental methods 

which we have tried to present is, in spirit, very much akin to the 

treatment given by Kodaira in [17], [18], [19] for the structure of 

the divisors on a smooth, projective variety. 
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i. Algebraic cycles and equivalence r e l a t i o n s  

In this section we will give some concepts of a purely algebro- 

geometric nature. Then, in the remainder of the paper we will dis- 

cuss some transcendental methods for studying these concepts. 

We consider a complete, smooth, and projective algebraic varie- 

ty V over the complex numbers, and we want to discuss the algebraic 

cycles, and the various equivalence relations among these, which lie 

For this we recall that an algebraic cycle on V (cf. Samuel [24]). 

on V is given by 

(l.i) Z = nlZ I + ... + n Z 

where the Zj are irreducible algebraic subvarieties of V and the nj 

are integers. We say that Z has codimension q if all the Zj have co- 

dimension q, and will call Z effective if all nj are non-negative. 

We may write 

(1.2) Z : Z+ - Z_ 

where Z+ and Z_ are effective algebraic cycles, and this may be done 

in many different ways. 
! 

Two effective algebraic cycles Z and Z are strongly algebraical- 

ly equivalent if there is a connected algebraic variety T and an 



effective cycle W C T x V such that all intersections W t = 

= ({t} x V).W are defined and of the same dimension, and such that 

! 

Z = Wtl and Z = Wt2 for tl, t 2 GT. A general algebraic cycle Z 

is algebraically equivalent to zero, written 

Z ~ 0~, 

if we may write Z in the form (i.I) where Z+ and Z_ are strongly al- 

gebraically equivalent. An equivalent definition is that we may write 

Z = Z+ - Z_ where Z+ and Z_ are in the same (topological) component 

of the Chow variety of V. 

We will say that Z is rationally equivalent to zero, written 

z ~ O, 

if Z is algebraically equivalent to zero as above with the parameter 

variety T being a rational variety. If we take all the algebraic 

cycles on V modulo rational equivalence, there results the graded 

Chow ring I (cf. /13]) 

n 

c ( v ) - -  G c (v)  
q=O q 

where the grading is by codimension of cycles and where the product 

Cp(V) × Cq(V) ÷ Cp+q (V) 

is induced by taking the intersection of cycles. Implicit in this 

definition is the assertion that any two algebraic cycles Z and W 

on V are rationally equivalent to cycles Z' and W' which intersect 

properly and the resulting product (1.2) should then be well-defined. 

i A graded ring will be a graded, commutative ring with unit 

n 
R = ~ R such that the multiplication R × R + is com- 

q=O q P q Rp+q 

patible with the grading. 



All equivalence relations we shall consider will be weaker than 

rational equivalence, and will therefore generate naturally an ideal 

in C(V). We also recall that a map 

f: V + W 

between smooth, projective varieties V and W induces additive homo- 

morphisms 

I f,: C(V) ÷ C(W) 

(1.3) f*: C(w) ÷ C(V), 

which are related to the product (1.2) by the formula 

(1.4) f,(X)'Z = f,[X. f*(Z)] (X~e(V), YEC(W)). 

Geometrically, the map f, means "pushing cycles forward by f" and 

f* means "lifting cycles back under f". 

The cycles which are algebraically equivalent to zero generate 

a graded ideal 

n 
A(v) = ~9 A (v), 

q=0 q 

which is preserved under the maps f, and f* in (1.3). The quotient 

NS(V) = C(V)/A(V) 

will be called the Neron-Severi ring of V. For q : i, NSI(V) is 

just the group of divisors modulo algebraic equivalence, and is the 

usual Neron-Severi group of V. 

There is a homomorphism 

(l.S) h: C(V) ÷ Heven(v, ~) 

which sends a cycle Z~C (V) into its fundamental class q 

h(Z)~H2q(v, 77.), the latter being the Poincar& dual of the homology 



class carried by Z. The kernel of h is the graded ideal 

n 

~(v) : ~9 H (v) 
q:O q 

of cycles which are homologous to zero, 2 written 

Z ~ Oo 

We note that A(V)CH(V); i.e., algebraic equivalence implies homo- 

logical equivalence. 

A map f: V ÷ W induces on cohomology the usual maps 

f,: H*(V, ~) ÷ H*(W, ~) and f*: H*(W, Z) ÷ H*(V, ~), and the homo- 

morphism h in (1.5) is functorial with respect to these induced maps. 

Before defining the last equivalence relation, I should like to 

comment that there are in general two methods of studying algebraic 

subvarieties of arbitrary codimension: (i) by the divisors which 

pass through the subvariety, and (ii) by the subvarieties which meet 

the given subvariety. The first method (method of 8yzygies) has a 

global version in vector bundles and K(V); the second method (method 

of incidence) leads to an equivalence relation on algebraic cycles 

which will now be defined. 

Let Z be an algebraic cycle of codimension q on V and consider 

an algebraic family {W8}86 S of effective algebraic cycles of di- 

mension q- 1 whose parameter space S is smooth and complete. To be 

precise, we assume given an effective cycle 

W C S × V 

such that all intersections W : ({8} x V)'W are defined and of di- 
s 

mension q- i. By changing Z in its rational equivalence class, we 

may assume that the intersection W'(S ×Z) is defined and that 

2 Using l-adic cohomology, H(V) may be defined purely algebraically. 



D z = Prs[W.(S x Z)] 

is a divisor on S. This incidence divisor D z is the set of all points 

8~S such that W meets Z, and where the points are of course counted 
8 

with multiplicities ([9]). 

E x a m p l e .  The first interesting case is when dim V = 3 and Z 

is a curve. Then the W are also curves, so that the incidence re- 
8 

lation may be pictured something like this: 

Z 

(Fig. i) ~ W s 

The linear equivalence class of the incidence divisor D z is well- 

defined by the rational equivalence class of Z, and we shall say that 

Z is incidence equivalent to zero, written Z ~ O, if all such in- 

cidence divisors D Z are linearly equivalent to zero on the parameter 

space S. 

ideal 

The incidence equivalence relation again generates a graded 

n 
I ( v )  = ( ~  I ( v ) ,  

q:O q 

and this ideal is preserved by the maps in (1.3). 3 

(1.6) D e f i n i t i o n .  We define the Picard ring Pie (V) 

P i c  (V)  = C ( V ) / I ( V ) ,  

and we a l s o  s e t  P i c O ( v )  = A ( V ) / I ( V ) .  

by 

3 The incidence equivalence relation has been defined here by playing 
off Z against cycles whose codimension is dim(Z)- i. We could try to 
play off Z against all cycles whose dimension is S dim(Z) - i, but 
there is good evidence that this gives nothing beyond the case con- 
sidered here. 



As an initial justification for this definition, we observe that 

PiCl(V) is the usual Picard variety of V because of the following 

easy 

(1.7) temma. If Z is a divisor on V, then Z is incidence equivalent 

to zero if, and only if, Z i8 linearly equivalent to zero. 

Let us define a graded abelian variety to be a direct sum 

n 
A = ~ A 

q:0 q 

where each A is an abelian variety, and where A is made into a ring 
q 

with a trivial multiplication. We shall say that A is self-dual if, 

up to isogeny, Aq is the dual abelian variety An_q+ 1 to An-q+ I • 

In section 2 below we shall discuss a transcendental proof of the 

(1.8) P r o p o s i t i o n .  Pic0(V) is, in a natural way, a graded abelian 

variety. ~ 

We observe also that Pic0(V) is functorially associated to V 

in that the maps in (1.3) induce maps between A(V), I(V) and 

A(W), I(W) which make the obvious diagrams commutative. 

The outstanding question concerning NS(V) and Pic (V) is the 

Problem A. (i) Is the Neron-Severi ring NS(V) finitely gener- 

ated? (ii) i8 the graded abelian variety PieO(v) self-dual? 

The first part of this problem seems to be well known (I learned 

it from Mumford), and (1.8) together with the discussion in sections 

2 and 3 below should lend credence to the second part, which at any 

Thus each graded component PicO(v) 
q 

variety, and the induced product 

of Pic0(v) is an abelian 

A(V)/I(V) ~ A(V)/I(V) ÷ A(V)/I(V) 

is identically zero. I know of no algebro-geometric proof for either 
of these statements. 



event is known in the following special cases: 

a) q : 1 5 

b) dim V = 2m - 1 and q = m. 

Observe that Problem A would very nicely give the structure of Pic (V) 

because of the exact sequence 

(1.9) 0 + Pic0(V) + Pic (V) + NS(V) ÷ O, 

which results from the inclusions 

(i.lO) I(V) C A(V) C H(V) C C(V). 

2. I n t e r m e d i a t e  J a c o b i a n  v a r i e t i e s  

We want to discuss a transcendental method for studying the Chow 

ring C(V) and its various ideals (I.10) introduced above. This is 

the use of the Jacobian variety T(V) of the smooth, projective vari- 

ety V, which will be a graded, self-dual complex torus functorially 

associated to V and whose definition we will now give. G 

First we recall the Hodge decomposition [8] 

(2.1) Hm(v,~) = 6~ Hr'S(V) (Hr'S(V) : Hs'r(v) ) , 
r+8:m 

s In this case Pie$(V) 

Picard variety of V and 

ety of V. 

6 Thus T(V) : (~) T (V) 
q:O q 

is isogeneous to the dual torus Tn_q+l(V) of Tn_q+l(V) and Tq(V) 

where a map f: V ÷ W generates induced maps f,: T(W) ÷ T(W) and 

f*: T(W) + T(V) which satisfy the usual functoriality properties. 

is the identity component of the usual 

PicO(V) is isogeneous to the Albanese vari- 
n 

is a direct sum of complex tori Tq(V) where 
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and the associated Hodge filtration 

(2.2) Fm'P(v, ~) = ~ Hr'S(V). 
r+s=m 
s~p 

There is a useful method for describing the Hodge filtration in terms 

of the de Rham description of Hm(v, ~) together with the complex 

structure on V, which is the following: Let Am'P(v) be the vector 

space of global C ~ differential forms on V which have total degree m 

and have type (m,O) + ... + (m-p,p) (these are the same indices as 

in the definition of Fm'P(v, ~)). If Zm'P(v) are the d-closed forms 

in Am~P(v), then by de Rham's theorem there is a natural map 

Zm,P(v)/dAm-I,p-I(v) + Hm(v, ~). 

Because V carries a Kihler metric, this map turns out to be injective 

with image Fm'P(v, C), and so there results an isomorphism 

(2.3) Fm,P(v, (~) = Zm,P(v)/dAm-I,p-I(v). 

We shall use the following notations: 

H2q+-l(F) = (~) Hr 's(F)  = F 2 q - l ' q - l ( v ,  C) 
r+s=2q-1 

{ s~_q-i 

(2.4) 

,~2q-:] ( v )  = O 
r+s=2q-i 
r<=2q-i 

Hr,8(V) -_ H2q-I(v, ~)/H2q+-I(v) 

n 

q-1 

n 
H°dd(v) = (~ H 2 q - l ( F ) .  

q=l 

Observe the decomposition 

(2.5) H2q- l (F, (~)  = H2q-l(F) + H21- l (v)  
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of H2q-l(v~ ~) into a direct sum of conjugate subspaces. 

degenerate pairing 

H2q-I(v) ~H2n-2q+l(v) + H2n(v ~) ~ 

The non- 

induces a duality isomorphism 

(2.6) H2~-2q+I(v) ~ H2q- i (v) .  

De~ZnZtgon. The qth intermediate Jacobian Tq(V) i8 the complex 

toru8 H2~-I(v)kH2q-I(v,C)/H2q-I(v,~) ~ H2q-I(v)/H2q-I(v, ~). The 

n 

Jacobian variety T(V) i8 the direct sum ~ T (V) of the intermedi- 
q=O q 

ate Jacobians. 

From (2.5) together with the definition of the intermediate 

Jaoobian there results an ~-linear isomorphism 

(2.7) T (V) ~ H2q-I(v,~)/H2q-I(v, ~). 
q 

The complex Lie algebra of T (V) is H2q-I(v) and, using (2.6) and 
q 

(2.4), the holomorphic differentials on T (V) are given by the iso- 
q 

morphisms 

(2.8) H1,O(T (V)) ~ H2n-2q+l(v) ~ F2n-2q+l'n-q(v, ~). 
q + 

The intermediate Jaoobian defined above is closely related to, 

but not the same as, the intermediate Jacobian variety Jq(V) intro- 

duced by Weil [25] and studied by Lieberman [22]. The main points of 

comparison are: (i) there is a natural ~-linear isomorphism be- 

tween the two complex tort; (it) T (V) varies holomorphically with V 
q 

whereas Jq(V) does not, and (iii) Jq(V) is an abelian variety where- 

as T (V) has an r-convex polarization (cf. [8]). Apropos the point q 

(iii) just made, we recall from [8] the" 
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(2.9) Lemma. Let S be a complex 8ub-torus of T (V) whose complex q 

Lie algebra is contained in the subspace Hq-l'q(v) of the Lie algebra 

of T (V)° Then the r-convex polarization i8 O-convex on S, so that q 

in particular S i8 naturally an abelian variety. 

n 
We have defined the direct sum 6~ T (V) to be the (total) 

q:O q 

Jacobian variety of V by analogy with the classical definition of the 

Jacobian of a curve as being the complex torus associated to the 

period matrix of the differentials of odd degree on the curve. On 

the other hand, the Picard variety Pic (V), as defined in section i, 

is a purely algebro-geometric concept arising out of the notion of 

linear equivalence of divisors. The relation between these falls un- 

der the general heading of "Abel's theorem" and will be discussed in 

section 3. The fact that the Jacobian variety T(V) is a graded, self- 

dual complex torus functorially attached to V (cf. footnote 6) follows 

immediately from the definitions, the duality (2.6), and the functori- 

al behavior which the induced maps f, and f* on cohomology have with 

respect to the Hodge filtration (2.2). 

The algebro-geometric importance of the Jacobian variety rests in 

the fact that there is an Abel-Jacobi homomorphism 

(2.10) ¢: H(V) + T(V) 

whose definition is a generalization of the classical procedure for 

sending divisors of degree zero on a compact Riemann surface S into 

the Jacobian variety of S. To define ~, it will suffice to give 

meaning to a symbol 

(2.11) <~,Z> (¢ e HI'O(Tq(V)), Z ~Hq( V) ) 

which has the properties of (i) being a complex number, (ii) 

being defined modulo periods, and (iii) being linear in each factor. 
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Using the isomorphism (2.8), we may consider # as being a closed, C ~ 

differential form of type (2n-2q+l, 0) + ... + (n-q+l, n-q) and 

which is defined modulo exact forms dn where D is of type 

(2n-2q , 0) + ... + (n-q+l, n-q-l). Furthermore, Z~H (V) is rep- 
q 

resented by an algebraic cycle of codimension q which is the boundary 

of a (2n-2q+l)-chain F on Y.~ We then let 

(2.12) <~,F> = f ~ . 

F 

This symbol is well defined modulo periods since f dn = f n = 0 

F Z 

if ~ = d~ as above. Furthermore, it is clearly bilinear, and so we 

may then use it to define the Abel-Jacobi mapping (2.10). 

The mapping } has the following basic properties: 

(2.13) ~ is holomorphic on the ideal A(V) of cycles algebraically 

equivalent to zero on V. 

(2.14) The image #q[Aq(V)] of codimension q cycles which are alge- 

braically equivalent to zero is a complex sub-torus 10(V) whose Lie 
q 

algebra is a subspace of Hq-l'q(v). It follows then from (2.9) that 

10(y) is an abelian variety. 8 
q 

7 There is a foundational question here as to just what is meant by 
the equation "~F = Z". Moreover, we shall want to integrate over 
such "chains" r, and later on we shall want to let everything in 
sight depend on parameters. The foundational questions pose a sig- 
nificant problem which is resolved, using the theory of integral 
currents, in King's paper [16]. 

B The meaning of the notation IO(v) for the image in T (V) of cycles 
q q 

algebraically equivalent to zero will be discussed in section 4 be- 

IOW. 
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(2.15) The Abel-Jacobi mapping ¢ satisfies the hoped-for functorial 

properties. Thus, a holomorphic mapping f: V + W between smooth, 

projective varieties leads to commutative diagrams (cf. (1.3)) ~ 

~V H(V) ~ T(V) 

H(w) ~- T(W) 
~W 
~W 

H(w) ~ T(W) 

H(V) - ~ T(V) 
CV 

(2.16) A noteworthy special case of (2.15) occurs when we consider a 

fixed cycle Z6C (V). Intersection with Z induces a map 
q 

Z: Hp(V) + Hp+q(V), while cup-product with the fundamental class 

h ( Z ) C H 2 q ( v , Z )  l e a d s  t o  a h o m o m o r p h i s m  h ( Z ) :  Tp(V) + Tp+q(V), and  

we h a v e  a c o m m u t a t i v e  d i a g r a m  

H (v) P ~ T (w) 
P P 

z I I h(Z) 

Hp+q(V) > Tp+q(V). 
Cp+q 

Other basic properties of ~ occur when the complex structure of Y is 

allowed to vary with parameters; these will be discussed in section 5 

below. 

9 These properties, which are heuristically quite reasonable, were 
first proved by Lieberman [22] and then independently by myself, 
using residues, in [9]. They also follow from the results in [16]. 
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3. Concerning Abel 's  theorem 

We continue discussing the Abel-Jacobi mapping (2.10), and in 

this section we are interested in the kernel of @; i.e., what is the 

equivalence relation on cycles given by ~. In the classical case of 

.divisors, the equivalence of @ is linear equivalence, I° from which it 

follows that 

9: Pic~(V) + TI(V) 

is an isomorphism. In particular, this proves by transcendental meth- 

ods tha~ Pic~(V), as defined algebro-geometrically in section i above, 

is an abelian variety. For general codimension, one-half of the above 

version of Abel's theorem can be proved: 

(3.1) Proposi t ion  [9]. If Z~A(V) is algebraically equivalent to 

zero and ¢(Z) = 0 in T(V), then Z is incidence equivalent to zero. 11 

We want to restate (3.1) in a more suggestive manner. To do 

this, we let 

n 

K(v) : ~ K (v) 
q=l q 

be the kernel of the Abel-Jacobi mapping ¢ on A(V). It follows from 

(2.15) and (2.16) that K(V) is a graded ideal in A(V) which is func- 

torially associated to V. The quotient 

A(V)/K(V) ~ IO(V) 

i0 In the framework we are using, this result is proved by Kodaira 
in [18]. 

11 In the case of ourves~ this proposition corresponds to what is 
ordinarily the "more difficult" half of Abel's theorem, which is the 
construction of a linear equivalence using differentials of the third 
kind. 
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is an abelian variety by virtue of (2.14). 

inclusion 

K(V) C I (V) ,  

From (3.1) we have the 

and this leads to the commutative diagram 

(3.2)  

A(V) -> IO(v)CT(V) 

\ /  
PicO (V) , 

which is a direct sum of the commutative diagrams 

(3.2) q 

Aq(V). q ~ IO(V)q CTq(V) 

PicO(v) 
q 

for each q : l,...,n. 

(3.3) Corol lary .  Pic~(V) is an abelian variety for all q = i,...,~ 

(3.4) Corol lary .  The induced pairing A(V)/I(V)(~A(V)/I(V) +A(V)/I(V) 
n 

is zero, so that PicO(V) = ~ PicOq(V) i8 a graded abelian variety 
q=l 

according to the definition in section I. 

Using recent results of Deligne [5]~ the diagram (3.2) q 

further understood in one important special case: 

can be 

(3.5) Proposi£ien. Suppose that dim V = 2m - 1 i8 odd and consider 

the diagram (3.2) m. Then (i) the kernel of ~m is finite, and 

(ii) the auto-duality Tm(V) ~ ~m(V) induces an auto-duality 

Im(V) ~ ~(V) (both dualities are up to i8ogenie8). 12 

12 See next page. 
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(3.6) Corollary. In the diagram (3.2)q, the mapping ~q is an isogeny 

for q = l, n, or in case q = m and dim V = 2m - l. In both of 

these situations, the duality formula 

v 0 
PicOq(V) ~ Pien_q+l(V) 

holds true (up to isogeny). 

Problem B. (i) Is the mapping ~ in (3.2) an isogeny? (ii) !8 

the graded abelian variety IO(v) self-dual? 

An affirmative answer to this problem would settle part (ii) of 

problem A in section i. Furthermore, it would identify the the equiv- 

alence relation on A(V) induced by the Abel-Jacobi mapping as being 

the incidence equivalence relation (up to a finite group). As re- 

marked in [9], both parts of problem B would have an affirmative an- 

swer if we knew the general Hodge conjecture [12]. 

Thus far we have only considered the kernel of ~ on the cycles 

algebraically equivalent to zero, whereas ~ is defined on the cycles 

which are homologous to zero. In this regard, let me propose 

Problem C. Is the induced mapping 

~: H(V)/A(V) + T(V)/IO(v) 

injective (up to a finite group)? 

There are two bits of evidence for this problem. The first is 

that it would follow from a "relative version" of the Hodge conjec- 

ture, and the second is that one can prove an analogue of this prob- 

lem over function fields. The precise statement of this latter result 

will be given in section 6 below. 

12 The first significant special case of this Proposition is when 
m = i, which is the study of curves on a threefold. Applications of 
this are given in [4]. 
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4. Concerning the  i n v e r s i o n  theorem 

We continue to let V be a smooth, projective variety and denote 

by ¢: H(V) ÷ T(V) the Abel-Jacobi mapping defined in section 2. We 

further denote by I(V) and IO(v) the images of 

I ~: H(V) ÷ T(V) 

~: A(V) ÷ T(V), 

v 

so that I(V) is the group of invertible points on the Jacobian variety 

T(V) and IO(v) is the subgroup coming from cycles which are algebrai- 

cally equivalent to zero. We recall from section 2 that IO(V) is an 

abelian subvariety of T(V) whose Lie algebra is contained in the sub- 

n 
space ~ Hq-l'q(v) of H°dd(v).13 It is not possible to give any 

q:O 

such (linear) restriction on the points in I(V) ([I0]). 

The inversion problem is to describe the subgroups I(V) and IO(v) 

in an a priori manner. For IO(V) there is a candidate, which is again 

suggested by the Hodge conjecture (cf. Lieberman [22]). To say what 

this is, we let A (V) be the largest complex sub-torus of T (V) whose 
q q 

real Lie algebra is a sub-Hodge structure of H2q-I(v,R) which is de- 

fined over ~ and whose complexification is contained in 

n 

Hq'q-l(v) ~)Hq-l'q(v). We let A(V) = ~) A (V) and observe from 
q:0 q 

(2.14) the inclusion IO(v)CA(V) (cf. Grothendieck [12]). 

Problem D. Do we have the equality IO(v) = A(V)? 

If this question is answered affirmatively, then it follows that 

problem B in section 3 is also answered in the affirmative. In par- 

ticular, Pic0(V) as defined in section 1 would be a graded, 

13 In particular, except for q = i, n together with a few other 
special cases, we cannot expect ~ : H (V) + T (V) to be surjective. 

q q q 
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self-dual abelian variety and the notion of "incidence equivalence" 

would be justified• 

The question of finding the whole group I(V) of invertible points 

in the Jacobian is, to me, the most mysterious problem regarding alge- 

braic cycles. At least for other questions, such as the Hodge con- 

jecture or problems A, B, and D above, we have a plausible answer 

which has yet to fail (although there are precious few non-trivial 

examples)• 

Prc6£em E. Describe the subgroup I(V) of invertible points 

on T(V). 

In explicit terms, given a basis ¢i,...,¢g of 

HI'0(T (V)) ~ z2n-2q+l'n-q(V)/dA2n-2q'n-q-!(V) we want to know which 
q 

points (Zl,...,Zg) 6 C g are solutions of the inversion equations 

(4.1) 

I Zl : f(~l 
F 

Zg = f Cg , 
F 

where F is a 2n-2q+l chain whose boundary is an algebraic cycle• 

To add to the mystery surrounding this question, we shall see in 

section 6 below (cf. Corollary 6.14) that a knowledge of I(V) would 

have strong implications regarding the Hodge conjecture, but I don't 

see any reason that the converse statement should be true. 

Our final problem regarding I(V) and IO(v) was originally sug- 

gested to me by Mumford: 

Problem F. Is the quotient group I(V)/IO(v) finitely gener- 

ated? 

To motivate this problem, we observe that I(V)/IO(v) is a 
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aountable subgroup of T(V)/IO(v), and so we have a Mordell-Weil 

type of question. In this form, an analogue over function fields of 

problem F can be proved (cf. Proposition 6.8). If both problems D 

and F are answered in the affirmative, then we would have a positive 

answer to problem A. In fact, being very optimistic, if problems B-D 

and F could be answered affirmatively, then we could draw two conclu- 

sions: (i) that the purely algebro-geometric problem A has a posi- 

tive answer, and (ii) that the use of intermediate Jacobians 

provides a very strong transcendental method for studying algebraic 

cycles. 

5. Def in i t ion  of normal functions 

We want to discuss how the intermediate Jacobians vary with 

parameters. More precisely, we will consider a situation 

(5.1) f: X + S 

where X and S are smooth, projective varieties and where the fibres 

V 8 = f-l(8) are smooth, projective varieties for almost all 8~S. 

Letting T(V 8) be the Jacobian variety of such Vs, we want to fit the 

T(V 8) together and then discuss how the algebraic cycles on X relate 

to cross-sections of the resulting fibre space of commutative, com- 

plex Lie groups. In order to carry out this program we shall make 

the assumptions 

(5.2) S dim S = i, and 

L f has only non-degenerate critical points. 

The first assumption is not too serious, but the second one is much 

too restrictive and it should be possible to eliminate it entirely, 

especially in light of recent results of P. Deligne and W. Schmid 

(cf. problem G below). 
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We shall analyze the intermediate Jacobians along the fibres of 

f: X ÷ S in three steps. 

( a )  Loca l  t h e o r y  around a n o n - c r i t i c a l  v a l u e .  

t h e  u n i t  d i s c  { s e  ~ : Isl i }  a n d  A* = A - {0}  

punctured disc. Assume given a situation 

We let A denote 

the corresponding 

f: W+ A 

where W is a complex manifold (with boundary) and f is a proper, 

smooth, and projective hoiomorphic mapping. Thus the fibres V s are all 

smooth, projective algebraic varieties. Topologically, W is diffeo- 

morphic to the product V 0 × A so that we may identify all of the 

cohomology groups H*(Vs, ~) with H*(Vo, ~)i~ When this is done, the 

Hodge filtration 

Fm,P(vs,~ ) : Hm,O(v8) + ... + Hm-p,P(vs) 

gives a subspaee of Hm(vo ,c); this subspace has the two basic prop- 

erties: 

(i) 

(ii) 

(5.3)  

Fm'P(Vs,C) varies holomorphically with sCA 

the infinitesimal bilinear relation [8] 

d___ {Fm,P(vs C)} C Fm'p+l(vs,~) 
ds 

i~ To be precise, there is a retraction r: W ÷ V 0 and an inclusion 

i: V 8 + W. The composite map on cohomology 

r* "* 
H~(Vo , C) ~ H*(W, C) t > H~(Vs,~) 

is an isomorphism and gives the identification in which we are inter- 

ested. 
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is satisfied. Is 

From (i) it follows that we may canonically construct an analytic 

fibre space of complex tori 

(5.4) ~: T(W/A) ÷ 4 

with fibres ~-I(8) = T(V ). The holomorphic vector bundle of complex 
8 

Lie a l g e b r a s  a s s o c i a t e d  t o  ( 5 . 4 )  w i l l  be d e n o t e d  by 

~:L+A. 

The fibres L 8 of ~ are given by 

i ~ H°dd( V ). 
8 - 8 

Letting O(T(W/A)) denote the group of holomorphic cross-sections of 

the fibre space (5.4), the exponential mapping gives an exact sheaf 

sequence 

exp 
0 + A ÷ o(g) ÷ O(T(W/A)) + O. 

The sheaf A is a locally constant sheaf of Z-modules, which is easily 

identified by the isomorphism (cf. (2.7)) 

A a R°dd( Z)~ 
f, 

where R°dd(~) is the Leray direct image 8heal for the constant f~ 
sheaf ~ on W relative to the map f: W + S. 

is These two statements mean that we can choose vectors 

el(8),...,el(8) in Hm(Vo , C) with the properties that (i) the ej(8) 
vary holomorphically with 8 EA and el(8) A ... A el(8) ~ 0 ; 

(ii) the ej(8) give a basis for Fm'P(vs, ~) ; and (iii) the vec- 

tors dej(8)/d8 lie in Fm'P+I(vs, ~). 
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space (5.4). 

bundle 

We want now to discuss the implications of (5.3) on the fibre 

For this, we construct over A a holomorphic vector 

n 
J= ~Jq 

q=l 

where the fibre (Jq)80fJq is given by 

(Jq)s : H2q-I(vs ' ~)/F2q-l'q(Vs ' ~)" 

Then (5.3) implies that there is a homomorphism 

(5.5) D: O(T(W/A)) + ~i(I), 

and the subsheaf of sections v of T(W/A) which satisfy the equation 

(5.6) Dv = 0 

will be denoted by Hom (A,T(W/A)). Thus we have 

0 ~ Hom (A,T(W/A)) ......... > O(T(W/A)) > ~l(j). 

We will now explain the geometric meaning of the condition (5.6). 

For this, we let Z be an analytic cycle on W such that all intersec- 

tions Z s = Vs-Z are defined and induce an algebraic cycle Zs which 

is homologous to zero on V s . Using the Abel-Jacobi mappings 

¢V : H(Vs) ÷ T(Vz)' 
8 

we may define a cross-section v Z of the fibre space (5.4) by the rule 

(5.7) 

isfie8 

VZ(S) = ~V (Zs)" 
s 

P r o p o s i t i o n  [8]. The cross section v Z i8 holomorphic and sat- 

D~) Z = O. 
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(b) Local  t h e o r y  around a n o n - d e g e n e r a t e  c r i t i c a l  v a l u e .  

we assume given a situation 

f:W÷A 

Now 

where W is a complex manifold and f is a proper, projective holomor- 

phic mapping which is smooth except that 8 = 0 is a non-degenerate 

critical value for f. Thus the fibres V (s ~ O) are smooth, pro- 
8 

jective varieties while V 0 has an isolated, ordinary double point 

around which the mapping f has the local form 

2 
(Zl)2 + ... + (Zn+ I) = s 

for suitable holomorphic coordinates Zl,...,Zn+ 1 on W. 

We let W* : f-l(A*) = W - V 0 so that f: W ~ ~ A* is a differ- 

entiable fibre bundle. Consequently the fundamental group ~I(A',80 ) 

acts on the cohomology H*(V , ~), and we let I*(V , ~) be the sub- 
s O 8 0 

space on which ~I(A*,80 ) acts trivially (these are the so-called local 

invariant cycles). There is an obvious restriction map 

( S . 8 )  H * ( w , Z )  r* )z*(v ,~ ) ,  
s o 

which turns out to be an isomorphism in our case where V 0 has ordinary 

double points. 16 From this it follows that the stalk of the Leray 

direct image sheaf for Z on W is given by 

R ~ f , (~)O = I*(V sO,'~). 

16 This follows from an analysis of the topology of the degeneration 

V 8 + V 0 given by Lefschetz [21]. It has recently been proved by P. 

Deligne that r* in (5.8) is eurjective over ~ where V 0 has arbitrary 

singularities; this is the local invariant problem which is discussed 

in §15 of [7]. 
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The analysis of how the Hodge filtration {Fm'P(v s, C)} of 

Hm(Vs, ~) behaves as s + 0 is not too difficult in the situation 

at hand, and this analysis leads to the construction of a generalized 

Jacobian T(V O) with the following properties [i0]: 

(i) T(V O) is a commutative complex Lie group which fits into an 

exact sequence 

i ÷ (~* + T(V O) + T(V O) + O, 

where V0 is the standard desingularization of Vo.1~ 

(ii) There exists a complex-analytic fibre space 

~: T(W/A) ~ A 

of abelian complex Lie groups such that the fibres 5-1(8) = T(V 8) 

for all sEA. Furthermore, letting ~: L + A be the hoiomorphic 

vector bundle of complex Lie algebras, we have again the exponential 

sheaf sequence 

0 ~ A ~ 0(~) exp, O(T(W/A)) >0 

where, because of the isomorphism (5.8)~ the isomorphism 

A { R°dd(~) 
f~ 

of A with the Leray direct image sheaf holds just as before. 

(iii) If Z is an analytic cycle on W such that all intersections 

i? The "standard desingularization" of V 0 is obtained by blowing up 

the double point on V 0 to obtain a smooth, projective variety V0 con- 

taining a non-singular quadric which may be contracted to yield the 

singular point on V 0. 
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Z s = Z.Vs are defined and such that Zs is homologous to zero on V8 

for s ~ 0, then the Abel-Jacobi maps 

~v : H(Vs) ÷ f(Vs) (s ~ O) 
8 

induce a holomorphic cross-section v Z of T(W/A) over all of the disc A. 

Before going on, I should like to discuss briefly the possibility 

of extending (i)-(iii) to the case of general f: W ÷ A where V 0 is 

allowed to have arbitrary singularities. The main tools used in 

(i)-(iii) were the isomorphism (5.8), which related the topology of 

Vs0 and W by means of the action of ~I(A~,80) on H~(~0,~), and the 

knowledge of how the Hodge filtration on H*(Vs, C) behaves as s ÷ 0. 

Now the former has been done in general by Deligne and Katz, with one 

conclusion being the local invariant cycle theorem over ~ as dis- 

cussed in footnote 16 The latter has recently been done by W. Schmid, 

who has in particular verified the conjecture of Deligne as given in 

§9 of [7]. Thus, it seems that perhaps the time is ripe to work on 

the 

P~oblem G. Analyze the behavior of the Jacobian varieties along 

the fibres of f: W ÷ A where V 0 has arbitrary singularities. In 

particular, can we define a generalized Jacobian T(V 0) so that the 

analogues of (i)-(iii) above will remain valid? 

A side condition on This problem is given by remark 6.9 below. 

(c) Global theory and d e f i n i t i o n  of normal funct ions .  We assume 

now that we are given f: X ÷ S where S is a compact Riemann surface, 

X is a smooth, projective algebraic variety, and f is a holomorphic 

mapping which has only non-degenerate critical points. Thus, local- 

izing around a point s 0 6S, we find either the situation in (a) or 

(b) above according as to whether 80 is a regular or critical value 
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of f. We denote the critical values of f by {81,...,s N} and set 

S* = S - {81,...,8N} , X* = XIS*. Then f: X* ÷ S * is topologically 

a fibre bundle and so the fundamental group Zl(S*,80) acts on the co- 

homology H*(V 8 , ~). 
0 

ExampZe. To see how to construct such a situation, we take an 

arbitrary smooth~ projective variety X' embedded in a projective space 

P m" In ~m we consider a general pencil 

' ~ i (s) , = X " hyperplanes and we let V s 

tion of the hyperplane ~m_l(S) with X'. 

base locus V 0.V of the pencil I V sls ~PI' 

projective algebraic variety X together with an obvious mapping 

f: X ÷ ~i .18 The point 80e ~i is a critical value for f if, and 

only if, the hyperplane Pm_l(S0) is tangent to X' In this case, 

the singular points of VSO occur along the locus of tangency, and to 

say that s 0 is a non-degenerate critical value for f means that V 
s O 

should have one isolated, ordinary double point at the place of tan- 

I ~m_l(S)IsEp I of linear 

be the residual intersec- 

If we blow up X' along the 

then we obtain a smooth, 

gency of ~m_1(80).19 If all critical values for f are of this sort, 

then we shall say that IVsIsEPl is a Lefschets pencil on X', and 

in this case the resulting fibration f: X + Pl is of the type we 

want to consider. 

Returning to the general case of f: X ÷ S where f has non- 

degenerate critical points, we may combine the results of (a) and (b) 

to construct a complex-analytic fibre space of abelian complex Lie 

18 Set theoretically, X is the disjoint union U V of the hp- 
s6 PI 8 

perplane sections of X', and the map f: X + Pl sends xEY 8 onto 

8 E PI" 

is There is a nice discussion of these matters in the paper of 

Andreotti-Frankel [i] and in the exposes of Katz [15]. 
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groups 

~: T(X/S) -~ S 

with ~-l(s) : T(V s) the Jacobian, or generalized Jacobian if s is a 

critical value for f, of V s . The Lie algebras along the fibres of 

give a holomorphic vector bundle 

~: L + S, 

and we have the exponential sheaf sequence 

(5.9) 0 + A ÷ 0(~) ÷ O(T(X/S)) ÷ 0 

where the sheaf A is described by the isomorphism 

(5 i0) A ~ R°dd(z) 
• f, 

with the Leray direct image sheaf. We shall continue to denote by 

Hom (S~T(X/S)) the subsheaf of O(T(X/S)) of sections v which satisfy 

the condition Dv = 0 as explained in (a). 

Definition. The group Hom (S,T(X/S)) of global sections of 

Hom (S,T(X/S)) will be called the group of normal functions associ- 

ated to f: X ÷ S. 

We now want to relate the algebraic cycles on X to these normal 

functions• For this we let C(F) be the ideal in the Chow ring C(X) 

of all rational equivalence classes of algebraic cycles on X which 

lie in a fibre of f: X ÷ S. Similarly, we let Heven(F, Z) be the 

ideal in Heven(x~TA) which is given by the Poinoar~ dual of the 

image 

Heven(W8,~) ~ Heven(X, ~) (s ~S*). 

The quotients by these two ideals will be denoted by 
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I C(X/S) = C(X)/C(F), and 

Heven(x/S, ~) = Heven(z,~)/Heven(F,~). 

The fundamental class mapping (1.5) and the restriction mapping 

Heven(x ,~) r* Heven(y ~) induce maps 
) 8' 

(5.11) 

Heven(x/s, ~ ) r Heven( 
Vs,~), 

P 

and 

C(X/S) ~ Heven(x/s, 77..) >Heven(v8,~). 

Definition. The ideal Prim (X/S) in C(X,S) which i8 given by 

the kernel of p* in (5.11) will be called the ring of primitive alge- 

braic cycles for f: X ~ S. 

Similarly, we will denote by Primeven(x/s, Z) the kernel of r* 

in (5.11) To understand the importance of primitive cycles, we refer 

to the example of a Lefschetz pencil discussed above. On X', there 

il a famous theorem of Lefschetz [21] which states that, over 4, 

every cohomology class is the sum of a primitive class together with 

a class supported on a hyperplane section. In other words, the primi- 

T 
tive cycles are the "building blocks" for all of the homology of X . 

Now we can come to the main point. Referring to (5.7) there will 

be a homomorphism 

(5.12) v: Prim (X/S) + Hom (S,T(X/S)) 

which assigns to each primitive algebraic cycle Z on X the cross- 

section v Z given as follows: By changing Z in its rational equiva- 

= Z'V are lence class, we may assume that all intersections Z 8 8 

defined and induce algebraic cycles which are homologous to zero on 

V (s ~S*). Then we have the formula 
8 
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(5.13) vg(8) : CV (Zs) 
8 

where CV : H(V8) + T(V8) 
8 

tion 2. 

is the Abel-Jacobi mapping as given in see- 

In the next section we will give some results and open problems 

concerning this homomorphism (5.12). In the case where dim X = 2 

and the base S is the projective line PI' the normal functions were 

introduced by Poincar6 (1910) and used by Lefschetz [21] to give a 

complete analysis of the curves lying on an algebraic surface, in- 

cluding the results that: (i) homological and algebraic equivalence 

are the same for curves on a surface; (it) the Abel-Jacobi map 

~: HI(X)--+Pio[(X) 

is surjective (existence theorem for the Picard variety of an alge- 

braic surface); and (iii) a homology class FCH2(X, ~) is carried 

by an algebraic curve if, and only if, F is of type (i,i) (Lefschetz 

theorem). The proofs of these results were based on the formal prop- 

erties of normal functions together with the Jacobi inversion theorem 

for the Jacobians T(Vs). In the next section~ we shall point out that 

the formal properties mostly go through~ but~ as discussed in section 

4~ the inversion theorem is completely missing and this is the hangup 

in trying to understand algebraic cycles on X by means of normal func- 

tions. 

6. Some r e s u l t s  a b o u t  normal  f u n c t i o n s  

We retain the notations of section 5, so that we are studying a 

situation 

f:X÷S 

where f has only non-degenerate critical points. In this paragraph 

we shall make the additional assumption that the base S is a 



31  

projective line ~i" With this assumption, the Leray spectral se- 

quence for the constant sheaf ~ on X and the mapping f degenerates 

at the E 2 term (cf. [I]), from which we may draw the following con- 

clusions: 

(i) There is a filtration on Heven(x, ~) whose associated 

graded module is the direct sum 

Reven 
~2(s f~ f~ f~ 

, R even ~) + HI(s , R °dd ~) + HO(s , ~). 

(ii) The ideal Heven(F, ~) of Heven(x,~) is H2(S f~ , R even ~), 

and the subgroup of Heven(x, ~) of cycles which restrict to zero on 

even ~) + HI(s, ROdd ~). the fibres of f is H2(S , R f~ fe 

iiii) From (i) and (ii) there results the isomorphism 

. even. . 

We wish to study the group Hom (S,T(X/S)) of normal functions. 

For this we consider the cohomology sequence of the exponential sheaf 

sequence (5.9) together with the isomorphisms (5.10) and (6.7) to 

arrive at our basic diagram 20 

O--->HO(s,O(L ))/HO(s,A)---'.HO(S,O(T(X/S))) ~---~PrimeVen(x, ~) 

T T 
(6.2) 0 ~ Fix (T(X/S)) • Horn (S,T(X/S)) ~Primeven(x,~). 

T T 
0 0 

20 The subgroup Fix (T(X/S)) is defined to be the group of sec- 

tions ~ of HO(s,O(L))/HO(s~A) whose projections into 0(2(X/S)) 
satisfy the equation DB = 0 as explained above (5.5). 
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We want to relate the diagram (6.2) to the normal functions which 

arise from algebraic cycles. For this we consider the diagram 

( 6 . 3 )  

Hom (S,T(X/S)) . ~.....> Primeven(x, ~) 

s 
Prim (X/S) 

which arises from (6.2), (5.12), and (5.11). Speaking geometrically, 

assigns to a primitive algebraic cycle Z on X the normal function 

given by (5.13), and h assigns to Z its homology class in 

Heven(x ' ~)/Heven(F, ~). 

(6.4) Proposition [I0]. The diagram (6.3) is commutative, so that 

the homology class h(Z)EPrimeven(x, ~) may be computed from the 

corresponding normal function VZ" 

To give the geometric interpretation of Fix (T(X/S)), we observe 

from (2.15) that the inclusions V sCX induce a map 

(6.5) T(X) r ) Fix (T(X/S)). 

Moreover, in case X arises from X' by the method of Lefschetz pencils 

as discussed in the example of section 5, (2.15) leads to a commuta- 

tive diagram 

(6 .6 )  

r 
T(X) ~ Fix (T(X/S)) 

T(X' ) • 

(6.7) Proposition [8]. The restriction mapping r* in (6.5) i8 onto. 

Moreover, in case X arises from X v by Lefschetz pencils, the mapping 

p* in (6.6) is an isomorphism. 
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There are two geometric conclusions which may be drawn from (6.4) 

and (6.7). The first is: 

(6.8) (Mordell-Weil  for in termed ia te  Jacebians) .  The group 

Hom (S,T(X/S)) of normal functions is an extension of a finitely 

generated group by the "trace" or "fixed part" of the Jacobians along 

the fibres of the mapping f: X + S. 21 

(8.9) Remark. This result has been proved in [8] when S is a curve 

of any genus but where always f is assumed to have only non-degenerate 

critical values. Referring to problem G in section 5 where we asked 

for an analysis of how the Jacobians T(V ) behave as s tends to a 
8 

critical value 80 for a general mapping f: X + S, it should be the 

case that this analysis will lead to a proof of (6.8) for arbitrary 

mappings f. 

The result (8.8) may be thought of as an analogue of problem F 

in section 4 over function fields. 

The second consequence of (6.4) and (6.7) is 

(6.10) ( Induc t ion  p r i n c i p l e  for Le fsche tz  p e n c i l s ) .  Suppose that X 

arises from X' by the method of Lefschetz pencils. Then the study of 

the (rational equivalence classes of) primitive algebraic cycles on X' 

as regards the homology class h(Z') of such a cycle Z', or in case Z' 

is homologous to zero, the point ¢x,(Z') in the Jacobian variety of X', 

may be done by studying the Jacobians of the hyperplane sections of X' 

and using the method of normal functions. 

21 By definition, the fixed part of the family {T(Vs)}s£ S of 

Jacobians along the fibres of f: X ÷ S is the complex torus given 

by the image of the restriction mapping T(X) + T(Vs). The finitely 

generated group is identified in a special case by the exact sequence 

(6.13) below. 
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As mentioned at the end of section 5, this induction principle 

(6.10) may be thought of as giving the generalization of most of the 

formal properties possessed by the Jacobians of the curves in a 

Lefschetz pencil on an algebraic surface. However, the existence 

theorems are missing because we don't understand the group I(V 8) of 

invertible points in T(Vs) , a state of affairs which is made even more 

frustrating by the following: 

Let f: X + S be as above and define the group 

PrimH°dge(x, Z ) 

to be the subgroup of Primeven(x, Z) which comes from the subgroup 

n 

(~ Hq'q(x) of Heven(x,~). Obviously the diagram (6.3) may be re- 
q=0 

fined to a new diagram 

(6.11) 

Hom (S,T(X/S)) 6 ) Primeven(x, ~X) 

T T i = inclusion map 

Prim (X/S) h ~ PrimH°dge(x, ~Z). 

(6.12) Proposition. Suppose that X arises from X' by the method of 

Lefschetz pencils and where X' is a smooth hypersurface in a projec- 

tive space P2m+l" Then the images of i and 6 in (6.11) coincide, so 

that we have the exact sequence 

(6.13) 0 ÷ Fix (T(X/S)) + Hom (S,T(X/S)) + PrimH°dge(x, ~) ÷ 0. 

This proposition gives in a very special case the structure of 

the finitely generated group in the Mordell-Weil theorem (6.8). For 

the problem of constructing algebraic cycles, there is the following 
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(6.14) Corol lary .  Let X' be a smooth hypersurface in ~2m+l and 

F ~ Hm'm(Xt) A Prim2m(x',z) a primitive, integral homology class of 

type (m,m). Then r comes from an algebraic cycle if, and only if, the 

corresponding normal function ~rEH°m (S,T(X/S)) satisfies the in- 

version property that ~T(B) 6I(V s) for all sES ~. 

Thus, at least for smooth hypersurfaces in projective space, the 

construction of algebraic cycles in a given homology class is thrown 

back to the inversion problem as discussed in section 4. 

Because of the lovely result by Gherardelli [6] on the interme- 

diate Jacobian of the cubic threefold, we have the following 

(6.15) Corollary. Let V be a smooth hypersurface of degree three 

in P5 (V is a cubic fourfold). Then a class F6H2m(v, Z) is alge- 

braic if, and only if, F i8 of type (m,m) (for any m). 

7. P o s i t i v e  a l g e b r a i c  cyc l e s  

(a) Pre l im inary  comments on vec to r  bundles .  Let V be a smooth, 

projective algebraic variety and E ÷ Y an algebraic vector bundle 

V 

of rank r. We denote by P(E ) the projective bundle of the dual E 

of E, and shall use the notation ~ ÷ P(E) to denote the tauto- 

logical line bundle over P(E ). The isomorphism of cohomology 

Hk(v,O(E(~))) ~ sk(P(E),O(L(~))) 22 

may serve to eliminate confusion between bundles and their duals. 

Following Hartshorne [14], we say that E + Y is ample if the 

(~) 
the th symmetric power of E , and thus the fibre ~) ( 22 E is 

is the vector space of homogeneous forms of degree ~ on the projective 

space P(E)x. 
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tautological line bundle ~ ~ P(E) is ample, in the usual sense of 

the word for line bundles. An equivalent formulation is that the 

vanishing theorem 

~k(v, 0 ( ~ ( ~ ) )  ® S )  = 0 (k > o, ~ ~ ~O(S)) 

should hold for every coherent sheaf S on V. 

We shall also use the notion of very ample, which deals with the 

vector space HO(E) of holomorphic cross-sections of E ÷ V. First, 

we recall that E is said to be generated by its sections if the re- 

striction mappings 

HO(E ) ÷ E x ( xCV)  

are surjective for all points x. In this case there is an exact bun- 

dle sequence 

0 ÷ ~ ÷ V x HO( E ) ~ E + 0 

= {a6HO(~ ) : ~(x) = O} For ~6 ~x ' the where the fibre ~x 
V 

differential d~(x) 6 ~x ~ •x(V) is well defined, and ~ is very 

ample if ~ is generated by its sections and if we also have the sur- 

jection 

F > o .  

Geometrically, ~ is very ample if it is induced by a holomorphic im- 

mersion 

f : V + Grassmannian 

where the image f(V) is "sufficiently twisted". We recall that: 
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I 
E very ample 

E ample > E (U) 

ample, 2a and 

very ample for ~>=~o" 

For an algebraic vector bundle 

class 

÷ V of rank r the total Chern 

c ( E )  E c ( I E )  

may be defined [13]. Writing 

c(E) = c0(E) + el(E) + ... + on(E), 

we have e0(E ) = I.V and Ck(E ) = 0 for k > r. Let 

I = (io,...,i r) be an r-tuple of non-negative integers and 

III = i I + 212 + ... + rir. We define the Chern monomials 

i I i 
ci(~q) = Cl([~) ...Cr(~) r E Cll[(~q). 

From [ii] we recall chat there is a set P+(r) of polynomials 

P(Cl,...,c r) with rational coefficients, called positive polynomials, 

which has the properties: 

(i) The polynomials in ~+(r) form a graded, convex cone 

over ~+; 

(ii) all monomials c I are in ~+(r), but for r > i these do 

not generate ~+(r); and 

(iii) if E + V is a very ample vector bundle, then any posi- 

tive polynomial P(cI(E ),...,Cr(~)) is numerically positive in the 

sense that the intersection number 

23 It is not the case that ~ is ample if it is induced from a holo- 
morphic immersion f : V + Grassmannian, unless of course the rank 
of E is one. 
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(7.1) deg [P(cI(E ),...,Cr(E))'Z] > 0 

for every effective cycle Z of complementary dimension to 

P(Cl(~ ), .... Cr(E )). 

Remarks. For r = l, the only positive polynomials of degree k 

are the obvious ones 

Xo~ (XC~+). 

In this case, it is a theorem of Moishezon-Nakai [23] that the in- 

equality (7.1) is both necessary and sufficient for E ÷ V to be 

ample. 

2 
For r > i, there will be positive polynomials such as c I - o 2 

which are not positive linear combinations of Chern monomials. 

The positivity property (7.1) may well be true if we only assume 

that E + V is ample. For the Chern classes themselves, this has 

recently been given a very nice proof by Bloch and Geiseker [3]. 

In order to state our main problem about ample vector bundles, 

we first give the 

Def in i t ion .  E is numerically positive if, for each irreducible 

subvariety W of V and each quotient bundle ~ of E/W, the numerical 

positivity property (7.1) is valid. 

In [ii] it was proved, by differential-geometric methods, that a 

sufficiently ample bundle is numerically positive in the above sense. 

Contrary to what mistakenly appeared in [ii], the converse result 

does not seem to have been proved except in special cases; e.g., the 

result when dim V = i is due to Hartshorne. I should like to offer 

my personal apology for any confusion which may have arisen from this 

mixup. 
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Problem H. Find necessary and sufficient numerical conditions 

in order that a bundle ~ ~ V should be ample. More specifically, 

is it true that ~ is ample if, and only if, it is numerically posi- 

tive in the above sense? 

(b) P o s i t i v i t y  of d i v i s o r s .  Let D be an effective divisor on 

a smooth, projective variety V. Any of the following four equivalent 

conditions may be taken as the definition of what it means for D to 

be positive: 2~ 

(i) There is a very ample line bundle ~ + V such that D is a 

positive multiple of cI(L ) in the rational Chow ring C(V) ~ ~ 

(ii) For any effective algebraic q-cycle on V, the intersection 

number 

D(q)'z > O. 

(This is the Moishezon-Nakai criterion mentioned above.) 

(iii) Denoting by I(D) the ideal sheaf of D, we have the van- 

ishing theorem 

(7.2) Hk(v, I(D)~S) = 0 (k > O, ~ ~ ~(S)) 

for any coherent sheaf S on V. 

(iv) The complement V- D is an affine algebraic variety, and 

is therefore strongly-pseudo-convex in the sense of complex function 

theory. (It is not the case that V- D affine ~ D ample.) 

The condition (iv) implies the vanishing theorem 

(7.3) Hk(v- D,S) = 0 (k > 0) 

2~ We shall give the definition of positivity for non-effective di- 
visors in a little while. It may be that the adjective "ample" should 
be used rather than "positive" in the present context, but we prefer 
to stick to the older terminology. 
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in either the algebraic or analytic category. Conversely, the van- 

ishing theorem (7.3) implies either that V- D is an affine algebraic 

variety or is strongly-pseudo-convex according to the category in 

which we are given the result. 

I should now like to mention two uses of positive (effective) di- 

visors for problems in algebraic geometry. Both of these results are 

proved using the vanishing theorem (7.2), so that one might say that 

whereas the conditions (i) or (ii) are the more appealing geometrical- 

ly, it perhaps is (iii) which is the most useful technically. 

(a) If D is a positive divisor, then there is an integer ~0 such 

that the set of all effective divisors which are algebraically equiva- 

lent in the strong sense to ~D (~ ~ ~0 ) generates the identity com- 

ponent of the Picard variety of V. 2s 

(b) If {Vs}s~ A is any variation of the complex structure of 

V : V 0 given by a situation 

f: W + A 

in section 4(a), if F E H2(Vs, ~) ~ H2(V0 , ~) is the as discussed 

homology class of a divisor on V s for all s~A, and if h(D) = F in 

' which H2(V, ~), then for ~ ~ ~O there will exist divisors D s on V s 

vary holomorphically with s ~A and which specialize to ~D at 

8 : 0 . 26 

2s More precisely, we let A(Z) be the (normalized) component of the 
the Chow variety of V which contains the effective divisor ~D. Then 
for ~ > = ~0 the Abel-Jacobi mapping 

¢ : AIb(A(u)) + TI(V) 

is an isomorphism. This is proved in Kodaira [19]. 

26 This property might be stated as saying that "sufficiently posi- 
tive divisors are stable under variation of structure". 
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We now discuss briefly the notion of positivity for non-effective 

divisors. For this we observe that either of conditions (i) or (ii) 

still makes sense and may be used to define what it means for a gener- 

al divisor D to be positive. With this definition, there are two 

additional properties of positive divisors which I should like to men- 

tion: 

(c) If D is a (not necessarily effective) divisor which satis- 

fies (i) or (ii) above, then for ~ => D 0 the divisor ZD will be 

linearly equivalent to an effective divisor. 

T 
If D is a positive divisor and D is any divisor, then the (d) 

divisor 

~D + D' 

will be positive for ~ >= ~(D'). 

(c) Pos i t i v i t y  of general cycles. In view of the usefulness of 

positive divisors for problems in algebraic geometry, it is of impor- 

tance to have a definition for positive algebraic cycles of any co- 

dimension, i should like to propose such a definition which is based 

on the incidence relation discussed in section i. 

To motivate this, we first give a transcendental condition which 

should certainly guarantee that an algebraic cycle be positive by any 

reasonable definition. Thus, suppose that Z is an algebraic cycle of 

codimension q on V and let h(Z)EH2q(V,C) be the fundamental class 

of Z. The transcendental condition we have in mind is that, using 

the de Rham isomorphism, h(Z) should be given by a pos{t£ve (q,q) 

form @. This means locally 

(7.4) 0 = (~--~) q(q-l)/2 {~ @ A ~ } 

where the @ are (q,O) forms such that, for any set TI,...,T q 

linearly independent (I,0) tangent vectors, the contraction 

of 
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< 8 , T 1 A ... A Tq > ~ 0 

for at least one index ~. if this condition is satisfied, we shall 

say that Z is positive in the differential-geometric sense. 2~ 

(7.5) Example. Z is positive in the differential-geometric sense if, 

in the rational Chow ring C(V) ~Z~ , Z is a positive polynomial in 

the Chern classes of a very ample vector bundle (cf. [ii]). 

We want to draw an algebro-geometric corollary of the notion of 

positive in the differential-geometric sense. For this we suppose 

that {Ws}s& S is an algebraic family of effective algebraic (q-l) 

cycles on V and assume that this family is effectively parametrized 

in the sense that 

W : W , ==~ 8 : 81 
8 8 

Then from [4] we have the easy 

(7.6) Proposition. If Zie positive in the differential-geometric 

sense, then the incidence divisor D Z is positive on S. 

With (7.6) as motivation, we propose the 

(7.7) Definition. The algebraic cycle Z ECq(V) is positive if, for 

any algebraic family {Ws}se S of effective algebraic (q-i)-cycles as 

above, the incidence divisor D Z is positive on S. 

Using the Moishezon-Nakai numerical criterion for positivity of 

divisors recalled above, we want to give an equivalent numerical 

27 A divisor is positive in the algebro-geometric sense if, and only 
if, it is positive in the differential-geometric sense (Kodaira). 
If Z is smooth and is positive in the differential-geometric sense, 
then the normal bundle ~ + Z is ample according to the definition 
in section 7(a). 
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formulation of (6.5). 

correspondences 

For this we consider the effective algebraic 

WCS×V 

where dim [W.{s} x V] = q - i for all 8ES. We shall use the no- 

tation V k f o r  t h e  p r o d u c t  V x . . .  x ~ ,  Z k f o r  t h e  d i a g o n a l  c y c l e  

k 

o n  gk i n d u c e d  b y  Z o n  V, a n d  W = W ' { s }  x V. G i v e n  a s u b v a r i e t y  T 
e 

o f  S ,  we d e f i n e  t h e  e f f e c t i v e  a l g e b r a i c  c y c l e  & k ( T )  o n  t h e  p r o d u c t  V k 

by the rule 

&k(T) = {(Xl,...,x k) E V k : all xj~W s for some 8CT}. 

Then dim [&k(T)] = k(q - I) + dim T and codim [Z k] = kq. Using 

Moishezon-Nakai it follows that 

(7.8) Proposition. The cycle Z~Cq(V) is positive if, and only if, 

the numerical condition 

deg [zk.&k(T)] > 0 

is satisfied for all k-dimensional subvarietie8 of S. 

(7.9) Corollary. The positive cycles form a graded, convex cone 

n 

P(V) = ~ Pq(V) in the Chow ring C(V). 
q=O 

The analogues of the properties (i)-(iv) in section 7(b) for 

positive divisors are these: 

(i) In C(V)~ , Z is a positive linear combination of 

positive polynomials in the Chern classes of ample vector bundles. 

(it) The numerical condition (7.8) is satisfied. 

(iii) In case Z is effective, we denote by I(Z) the ideal sheaf 

of Z. Then we have the vanishing theorem 
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Hk(v, I(Z)Z(~ S) = 0 (k > > = q, ~ = v(S)) 

for any coherent sheaf S on V. 

(iv) Again assuming Z is effective, the complement V- Z is 

everywhere strongly (q-l)-convex and is strongly (n-q-l)-concave out- 

side a compact set in V- Z. 28 In particular, for any coherent ana- 

lytic sheaf S on V- Z we have 

(7.10) 

I Hk(v Z,S) = 0 (k > q) 

dim Hk(v- z,S) < oo (k < q, S locally free). 

The vanishing-finite-dimensionality theorem (7.10) is due to 

Andreotti-Grauert [2] and has been stated analytically as I do not 

know if the corresponding algebraic theorem has been proved. 29 

Concerning these four properties, the main facts which I know 

are these: 

Property (ii) is true if Z is positive in the differential- 

geometric sense (cf. Example (7.5)). 

If Z is smooth and is the top Chern class of a very ample vector 

bundle, then all of the properties (i)-(iv) are true [ii]. 

P r o b l e m  I. Are properties (i)-(iv) true for positive linear 

combinations of Chern classes of very ample vector bundles? 

2s In case Z is smooth, the (q-l)-convexity is roughly supposed to 
mean that the normal bundle of Z should be positive plus the assump- 
tion that Z should meet every subvariety of complementary dimension. 
The (n-q-l)-concavity is always present because Z is locally the 
zeroes of q holomorphic functions. 

29 To be specific, suppose that Z is smooth and the normal bundle 
÷ Z is ample. Then is it true that 

dim Hk(v - Z,S) < ~ (k > q) 

for any coherent algebraic sheaf S on V- Z and where the cohomology 
is in the Zariski topology? The corresponding analytic result is true 
by using (7.10). 
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The reason for stating this problem is two-fold: First, it may 

not be too difficult to prove it using the methods of [Ii] together 

with the analysis of the singularities of the basic Schubert cycles 

associated to a very ample vector bundle which has recently been given 

by Kleiman and Landolfi [20]. Secondly, in the rational Chow ring 

C(V) ~ every cycle Z is a linear combination of these basic 

Schubert cycles, so that problem H might suffice for many applications 

of positive subvarieties to problems in algebraic geometry. In this 

connection we shall close by mentioning the 

Problem J. Which analogues of the properties (a)-(d) in section 

7(b) for positive divisors are true for positive algebraic cycles? 
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Remark added in proof. A recent monograph by R. Hartshorne en- 

titled Ample 8ubvarieties of algebraic varieties (Springer-Verlag 

Lecture Notes #156) treats many questions closely related to our 

section 6. 


