SUPPLEMENTARY COMBINATORIAL LEMMAS

ROBERT P. LANGLANDS

Situation as in $\S 8$ of Boulder E.S. ${ }^{1}$ and notes B. ${ }^{2}$

- Λ non-singular $\Longleftrightarrow\left\langle\lambda_{F}^{\prime}, \Lambda\right\rangle \neq 0$ and $\left\langle\mu_{F}^{\prime}, \Lambda\right\rangle \neq 0$ for all i and F.
- H non-singular $\Longleftrightarrow \lambda_{F}^{i}(H) \neq 0$ and $\mu_{F}^{\prime}(H) \neq 0$ for all i and F.

If F is a subset of $\{1, \ldots, p\}$, set

$$
\xi_{F}^{\Lambda}(H)=\left\{\begin{array}{lll}
1 & \text { if } \begin{cases}\lambda_{F}^{i}(H)\left(\mu_{F}^{i}, \Lambda\right)<0 & i \in F \\
\mu_{F}^{i}(H)\left(\lambda_{F}^{i}, \Lambda\right)<0 & i \notin F\end{cases} \\
0 & \text { otherwise }
\end{array}\right.
$$

Set

$$
\alpha_{F}^{\Lambda}=1+N(F)+N\left\{\mu_{F}^{i} \mid i \in F,\left(\mu_{F}^{i}, \Lambda\right)<0\right\}+N\left\{\lambda_{F}^{i} \mid i \notin F,\left(\lambda_{F}^{i}, \Lambda\right)<0\right\}
$$

Lemma. If Λ and H are non-singular,

$$
\sum_{F}(-1)^{\alpha_{F}^{\Lambda}} \xi_{F}^{\Lambda}(H)=0
$$

(i) The left side is independent of H. We argue as in B . Choose $F_{1}, F_{2} H^{\prime}$, and $H^{\prime \prime}$ as there. We have to show that

$$
\begin{equation*}
(-1)^{\alpha_{F_{1}}^{\Lambda}} \xi_{F_{1}}^{\Lambda}\left(H^{\prime}\right)+(-1)^{\alpha_{F_{2}}^{\Lambda}} \xi_{F_{2}}^{\Lambda}\left(H^{\prime}\right)=(-1)^{\alpha_{F_{1}}^{\Lambda}} \xi_{F_{1}}^{\Lambda}\left(H^{\prime \prime}\right)+(-1)^{\alpha_{F_{2}}^{\Lambda}} \xi_{F_{2}}^{\Lambda}\left(H^{\prime \prime}\right) \tag{*}
\end{equation*}
$$

[S.2] Some observations
(a)

$$
\begin{array}{ll}
\mu^{j}=\mu_{F_{1}}^{j}=\mu_{F_{2}}^{j} & 1 \leqslant j<k \\
\lambda^{j}=\lambda_{F_{2}}^{j}=\lambda_{F_{2}}^{j} & k<j \leqslant p
\end{array}
$$

(b)

$$
\begin{array}{ll}
\operatorname{sgn} \lambda_{F_{1}}^{j}\left(H^{\prime}\right)=\operatorname{sgn} \lambda_{F_{1}}^{j}\left(H^{\prime \prime}\right) & 1 \leqslant j<k \\
\operatorname{sgn} \lambda_{F_{2}}^{j}\left(H^{\prime}\right)=\operatorname{sgn} \lambda_{F_{2}}^{j}\left(H^{\prime \prime}\right) & 1 \leqslant j<k \\
\operatorname{sgn} \mu_{F_{1}}^{j}\left(H^{\prime}\right)=\operatorname{sgn} \mu_{F_{1}}^{j}\left(H^{\prime \prime}\right) & k<j \leqslant p \\
\operatorname{sgn} \mu_{F_{2}}^{j}\left(H^{\prime}\right)=\operatorname{sgn} \mu_{F_{2}}^{j}\left(H^{\prime \prime}\right) & k<j \leqslant p
\end{array}
$$

(c) $\lambda_{F_{2}}^{k}$ is a positive multiple of $\mu_{F_{2}}^{k}$.

[^0](d)
\[

$$
\begin{array}{ll}
\lambda_{F_{2}}^{j}=\lambda_{F_{1}}^{j}+c^{j} \lambda_{F_{1}}^{k} & 1 \leqslant j<k \\
\mu_{F_{1}}^{j}=\mu_{F_{2}}^{j}+e^{i} \lambda_{F_{2}}^{k}=\mu_{F_{2}}^{j}+d^{j} \mu_{F_{2}}^{k} & k<j \leqslant p
\end{array}
$$
\]

(e) As a consequence of (b) if $1 \leqslant j<k$

$$
\operatorname{sgn} \lambda_{F_{1}}^{j}\left(H^{\prime}\right)=\operatorname{sgn} \lambda_{F_{2}}^{j}\left(H^{\prime}\right) \Longleftrightarrow \operatorname{sgn} \lambda_{F_{1}}^{j}\left(H^{\prime \prime}\right)=\operatorname{sgn} \lambda_{F_{2}}^{j}\left(H^{\prime \prime}\right)
$$

Because of (d) one of these holds and hence both hold.
Also if $k<j \leqslant p$

$$
\operatorname{sgn} \mu_{F_{1}}^{j}\left(H^{\prime}\right)=\operatorname{sgn} \mu_{F_{2}}^{j}\left(H^{\prime}\right) \Longleftrightarrow \operatorname{sgn} \mu_{F_{1}}^{j}\left(H^{\prime \prime}\right)=\operatorname{sgn} \mu_{F_{2}}^{j}\left(H^{\prime \prime}\right)
$$

and because of (d) one of these holds. [S.3]
(f) If $1 \leqslant j<k$

$$
\operatorname{sgn} \lambda_{F_{1}}^{j}\left(H^{\prime}\right)\left(\mu_{F_{1}}^{j}, \Lambda\right)=\operatorname{sgn} \lambda_{F_{2}}^{j}\left(H^{\prime}\right)\left(\mu_{F_{2}}^{j}, \Lambda\right)=\operatorname{sgn} \lambda_{F_{2}}^{j}\left(H^{\prime \prime}\right)\left(\mu_{F_{2}}^{j}, \Lambda\right)=\operatorname{sgn} \lambda_{F_{1}}^{j}\left(H^{\prime \prime}\right)\left(\mu_{F_{1}}^{j}, \Lambda\right)
$$

$$
\text { If } k<j \leqslant p
$$

$\operatorname{sgn} \mu_{F_{1}}^{j}\left(H^{\prime}\right)\left(\lambda_{F_{1}}^{j}, \Lambda\right)=\operatorname{sgn} \mu_{F_{2}}^{j}\left(H^{\prime}\right)\left(\lambda_{F_{2}}^{j}, \Lambda\right)=\operatorname{sgn} \mu_{F_{2}}^{j}\left(H^{\prime \prime}\right)\left(\lambda_{F_{2}}^{j}, \Lambda\right)=\operatorname{sgn} \mu_{F_{1}}^{j}\left(H^{\prime \prime}\right)\left(\lambda_{F_{1}}^{j}, \Lambda\right)$
If any of the numbers in (f) are positive then all terms of $* *$ are zero and we are done. Suppose they are all negative. Interchanging H^{\prime} and $H^{\prime \prime}$ if necessary suppose that $\lambda_{F_{1}}^{k}\left(H^{\prime}\right)\left(\mu_{F_{1}}^{k}, \Lambda\right)<0$. Then $\lambda_{F_{1}}^{k}\left(\mu_{F_{1}}^{k}, \Lambda\right)>0$. There are two possibilities.
(A) $\operatorname{sgn}\left(\mu_{F_{1}}^{k}, \Lambda\right)=\operatorname{sgn}\left(\lambda_{F_{2}}^{k}, \Lambda\right)$. Thus the right side is zero. The left side is

$$
(-1)^{\alpha_{F_{1}}^{\Lambda}}+(-1)^{\alpha_{F_{2}}}=0
$$

(B) $\operatorname{sgn}\left(\mu_{F_{1}}^{k}, \Lambda\right)=-\operatorname{sgn}\left(\lambda_{F_{2}}^{k}, \Lambda\right)$. Then the questionable equality is

$$
(-1)^{\alpha_{F_{1}}^{A}}=(-1)^{\alpha_{F_{2}}}
$$

which is valid since $\alpha_{F_{1}}^{\Lambda}-\alpha_{F_{2}}^{\Lambda}=0$ or 2 .

Compiled on July 3, 2024.

[^0]: ${ }^{1}$ Langlands, Robert P., Eisenstein Series, Algebraic Groups and Discontinuous subgroups, AMS, Proc. of Symp. in Pure Math., vol IX

 2 "Notes B" refers to "Some lemmas to be applied to the Eisenstein series."

