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1. Introduction

It is best to work with unordered partitions. Thus if k is a positive integer, a partition of
length r of the interval [0, k] is a sequence, 0 = k0 < k1 < · · · < kr = k, of positive integers.
Set k′1 = k − ki.

Fix k, and let x, Y , and ∆ be three indeterminates. From the polynomial Pk(x, Y,∆) given
by ∑

{k1,...,kr−1}

xk−r
r∏

i=1

(
k′i + Y +∆(ki − ki−1)

)r−1∏
i=1

kik
′
1

−1.
In the summation r is not fixed, so that the sum runs over all unordered partitions of k. The

polynomial is of degree k in Y , and the coefficient of Y k is
(
(k − 1)!

)−2
.

It can be factored explicitly. For this it is convenient to write

∆ = hp,q(m) =

(
(m+ 1)p−mq

)2 − 1

4m(m+ 1)
.

Observe that if m ̸= 0, −1 then, given ∆, this equation can always be solved for p and q. Set

Ys(m) =

((
(1− k)2 − (p− q + s)2

)
m2 + 2

(
(1− k)− (p− q + s)p

)
m+ 1− p2

)
4m(m+ 1)

= h1,k(m)− hp,q−s(m),

Y ′r (m) =((
(k − 1)2 − (p− r − q)2

)
m2 + 2

(
(k − 1)k − (p− r − q)(p− r)

)
m+ k2 − (p− r)2

)
4m(m+ 1)

= hk,1(m)− hp−r,q(m).

Theorem 1.

(a) If m is defined by x = −m/(m+ 1) and if ∆ = hp,q(m), then

Pk(x, Y,∆) =
(
(k − 1)!

)−2 ∏
|s|<k

s≡k−1 (mod 2)

(
Y − Ys(m)

)
.
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(b) If m is defined by x = −(m+ 1)/m and if ∆ = hp,q(m), then

Pk(x, Y,∆) =
(
(k − 1)!

)−2 ∏
|r|<k

r≡k−1 (mod 2)

(
Y − Y ′r (m)

)
.

The purpose of this paper is to prove this theorem. As is explained in an appendix, it has
its origins in the theory of the Virasoro algebra and conformally invariant quantum fields.
Thanks are due to Y. Saint-Aubin for explaining to me the formulas (A.1), (A.2) proved by
him and Benoit in [BSA], for they were the starting point of this paper, to W. Casselman
for a number of conversations and, in particular, for checking the critical Identity 2.4 on the
computer long before I was able to prove it, to Lyman Hurd for instruction in the use of the
computer, and to W.-C. Hsiang for avuncular advice about the title.

2. Simple Reductions

The two parts of the theorem are equivalent. They are both stated, because they are both
to be used in the Appendix. If m′ = −m− 1 then

m+ 1

m
=

m′

m′ + 1

and
hp,q(m) = hq,p(m

′)

for all p, q. Thus upon interchange of p and q the expression Ys(m
′) becomes Y ′s (m).

It is enough to prove the first statement of the theorem. We begin with a sequence of
observations, stated as lemmas. To indicate the dependence of Ys(m) on k we write Y k

s (m).

Lemma 2.1.
Y k+2
s (m) = Y k

s (m)− 1− (k + 1)x.

The difference Y k+2
s (m)− Y k

s (m) is seen upon inspection to be(
(k + 1)2 − (k − 1)2

)
m2 − 2

(
(k + 1)− (k − 1)

)
m

4m(m+ 1)
=

km− 1

m+ 1
=

(k + 1)m

m+ 1
− 1.

Lemma 2.2. The product (
Y − Y k+2

k+1 (m)
)(

Y − Y k+2
−k−1(m)

)
is equal to

(Y +∆)(Y +∆+ k + 1) + (k + 1)x
(
Y + (k + 2)∆

)
.

The lemma is tantamount to two assertions:

Y k+2
k+1 (m) + Y k+2

−k−1(m) = −2∆− (k + 1)− (k + 1)x;

Y k+2
k+1 (m) + Y k+2

−k−1(m) = ∆(∆ + k + 1) + (k + 1)(k + 2)x∆.

The sum on the left of the first identity is equal to(
−2(p− q)2m2 − 4(k + 1)m− 4(p− q)pm+ 2(1− p2)

)
/4m(m+ 1).

Since
∆ =

(
(p− q)2m2 + 2(p− q)pm+ p2 − 1

)
/4m(m+ 1),

the first equality is immediate.
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For the second, one observes that the product on the left is(
(p− q)2m2 + 2

(
(k + 1) + (p− q)p

)
m+ p2 − 1

)2

− 4(k + 1)2
(
(p− q)m2 + pm

)2
16m2(m+ 1)2

.

and this is (
∆+

k + 1

2(m+ 1)

)2

− (k + 1)2
(
∆+ 1/4m(m+ 1)

)
(m/m+ 1).

The second equality follows.

Lemma 2.3.

(a) P1(x, Y,∆) = Y − Y 1
0 (m),

(b) P2(x, Y,∆) =
(
Y − Y 2

−1(m)
)(
Y − Y 2

1 (m)
)
.

The first assertion is clear; the second follows from the previous lemma and a direct
calculation of P2(x, Y,∆) as

(Y + 1 +∆)(Y +∆) + x(Y + 2∆).

Theorem 1(a) is thus seen to be equivalent to the validity of the following identity.

Identity 2.4. The polynomial Pk+2(x, Y,∆) is equal to the product of

(2.a)
(
k(k + 1)

)−2
Pk

(
x, Y + 1 + (k + 1)x,∆

)
and

(Y +∆)(Y +∆+ k + 1) + (k + 1)x
(
Y + (k + 2)∆

)
.

Fix r > −2 and consider on both sides of the identity the coefficient of xk−r. On the left it
is P r+2

k+2 (Y,∆), the sum over all partitions {k1, . . . , kr+1} of [0, k + 2] into r + 2 intervals of
the expression

r+2∏
i=1

(
k′i + Y +∆(ki − ki−1)

) r+2∏
i=1

(kik
′
i)
−1.

Since ki − ki−1 = k′i−1 − k′i, this equals

(2.b)
r+2∏
i=1

(
∆(Y + k′i−1) + (1−∆)(Y + k′1)

) r+1∏
i=1

(kik
′
i)
−1.

If Sr
k(Y + 1,∆) is the coefficient of xk−r in (2.a) then the coefficient of xk−r on the right

side of the identity is

(2.c) Sr
k(Y + 1,∆)(Y +∆)(Y +∆+ k + 1) + Sr+1

k (Y + 1,∆)(k + 1)
(
Y + (k + 2)∆

)
.

We fix k and r, and show that the coefficients xk−r on both sides of the identity are equal.
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3. Further Reductions

To calculate Sr
k(Y,∆) we have to expand the products

xk−s
s∏

i=1

(
k′i + Y + (k + 1)x+∆(ki − ki−1)

)
,

retaining only the coefficient of xk−r. Thus we obtain a sum over all partitions of k and over
all subsets Σ with r elements of those partitions of

(3.a) (k + 1)s−r
∏
i∈Σ

(
k′i + Y +∆(k′i−1 − k′i)

) s−1∏
i=1

(kik
′
i)
−1.

Observe that r is fixed but that s varies from term to term in the sum. The notation i ∈ Σ
is abusive. It is the interval I = [ki−1, ki] that belongs to Σ. Let eI = ki−1, e

′
I = k′i.

The union of the intervals I in Σ may or may not cover [0, k]. There will be a certain
number g(Σ) of open intervals or gaps left uncovered. We divide the endpoints θ of the
intervals in Σ into four types, the extreme, the bound, the left free, the right free. The
corresponding sets will be denoted Θe, Θb, Θlf , Θrf . The endpoint θ will be said to be
extreme if it is 0 or k, to be left free if it separates a gap on its left from an interval of Σ on
its right, to be right free if it separates an interval on its left from a gap on its right, and to
be bound if it is a common endpoint of two intervals in I.

Lemma 3.1. The coefficient Sr
k(Y + 1,∆) is the sum over all Σ with r elements of the

product of

(k + 1)g(Σ)−2
∏
I∈Σ

(
∆
(
Y + k + 2− (eI + 1)

)
+ (1−∆)(Y + e′I + 1)

)
and ∏

Θe

k
∏
Θb

θ(k − θ)
∏
Θlf

(k − θ)(k + 1 + θ)
∏
Θrf

θ(θ + 1)


−1

.

The product in the first factor is obtained by writing

k′i + Y + 1 +∆(k′i−1 − k′i) = ∆
(
Y + k + 2− (eI + 1)

)
+ (1−∆)(Y + e′I + 1).

The factor (k + 1)−2 is extracted from the factor
(
k(k + 1)

)−2
in (2.a). Ignoring it, we have

to evaluate the sum over all partitions containing a given Σ of

(3.b) k−2(k + 1)s−r

s−1∏
i=1

kik
′
i

−1.
The partitions containing Σ are obtained by partitioning all the gaps. Thus the sum of the
expressions (3.b) is the product of∏

Θe

k
∏
Θb

θ(k − θ)


−1
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with the product over all gaps of

(3.c)
(
a(a+ h)a′(a′ + h)

)−1∑
A

∏
j∈A

(a+ j)−1(a′ + h− j)−1(a+ a′ + h+ 1)|A|+1.

Here a is the left endpoint of the gap, a′ is the distance of its right endpoint from k, and h
its length, so that k = a+ a′ + h. If one of a or a′ is 0, it is to be omitted from the factor
preceding the sum, which runs over all subsets of {1, . . . , h− 1}.
The expansion (3.c) is the product of k + 1 with(

a(a+ h)a′(a′ + h)
)−1 h−1∏

j=1

(
1 +

a+ a′ + h+ 1

(a+ j)(a′ + h− j)

)
.

Upon simplification this become(
a(a+ h)a′(a′ + h)

)−1 h−1∏
j=1

(a+ j + 1)(a′ + h− j + 1)

(a+ j)(a′ + h− j)
=

1

aa′
· 1

(a+ 1)(a′ + 1)
.

The lemma follows. Notice that if, for example, a = 0 then it is to be omitted, and a+ 1 = 1;
so the right side of this equality is 1/a′(a′ + 1).
The expression (2.b) is equal to∏

I

(
∆(Y + k + 2− eI) + (1−∆)(Y + e′I)

) r+1∏
i=1

(kik
′
i)
−1.

The first product is over the intervals in the partitions. We expand this product by writing
each of the linear factors in the first product as a sum of four terms:

∆(Y + k + 2); −∆eI ; (1−∆)Y ; (1−∆)e′I .

To these we attach respectively the labels: (−1, 0); (−1, 1); (1, 0); (1, 1); or often, and
preferably, the symbols: ; ; ; . The labels or the symbols are to be regarded
as attached to the interval defining the linear factor, so that the label may be written(
α(I), µ(I)

)
. The first term defines the direction of the arrow. The whole collection of

symbols defines a diagram

(3.d) ,

the lengths of the arrows being the lengths of the partitions. Let a′, a, b′, b be the number of
arrows of the four types, so that a′ + a+ b′ + b = r + 2. Then P r+2

k+2 (Y,∆) may be written as∑
a′,a,b′,b

(−1)a∆a′+a(1−∆)b
′+b(Y + k + 2)a

′
Y b′Pk+2(a

′, a, b′, b).

The expression Pk+2(a
′, a, b′, b) is the sum over all diagrams (3.d) for which a′, a, b′, b have

the given values of ∏
I

A(I),

where
A(I) = e

µ(I)−1
I eI

′−1

if I is negatively oriented, and

A(I) = e′
µ(I)−1
I e−1I
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if it is positively oriented. It is again understood that eI or e
′
I is suppressed if it is 0. Moreover,

those diagrams for which the initial interval is of type ← or the final interval of type → are
excluded from the sum.

It is clear from Lemma 3.1 that Sr
k(Y + 1,∆) has a similar expansion∑

a′,a,b′,b

(−1)a∆a′+a(1−∆)b
′+b(Y + k + 2)a

′
Y b′Sk(a

′, a, b′, b),

where now the constraint on a′, a, b′, b is that a′ + a + b′ + b = r. If any of a′, a, b′, b is
negative then Sk(a

′, a, b′, b) is understood to be 0.
Observe that (Y +∆)(Y +∆+ k + 1) is equal to the sum of

∆2(Y + k + 2)2 + 2∆(1−∆)Y (Y + k + 2) + (1−∆)2Y 2,

−∆(1−∆)(k + 1)2 −∆(1−∆)Y (k + 1) + ∆(1−∆)(Y + k + 2)(k + 1),

and
−∆2(Y + k + 2)(k + 1) + (1−∆)2(k + 1),

while
Y + (k + 2)∆ = ∆(Y + k + 2) + (1−∆)Y.

Thus the identity is a result of the following lemma.

Lemma 3.2. Pk+2(a
′, a, b′, b) is equal to the sum of the four expressions:

Sk(a
′ − 2, a, b′, b) + 2Sk(a

′ − 1, a, b′ − 1, b) + Sk(a
′, a, b′ − 2, b);

(k + 1)2Sk(a
′, a− 1, b′, b− 1) + (k + 1)Sk(a

′, a, b′ − 1, b− 1) + (k + 1)Sk(a
′ − 1, a− 1, b′, b);

(k + 1)Sk(a
′ − 1, a, b′, b− 1) + (k + 1)Sk(a

′, a− 1, b′ − 1, b);

and
(k + 1)Sk(a

′, a, b′ − 1, b) + (k + 1)Sk(a
′ − 1, a, b′, b).

If we ignore the length of the arrows in (3.d) we obtain diagrams in which only the direction
and the type of arrow is significant. Given such a diagram, we let P (∗) be the sum over all
partitions and labelings of type ∗ of

∏
I A(I). To each diagram ∗ we can attach integers a′(∗),

a(∗), b′(∗), and b(∗). Then

Pk+2(a
′, a, b′, b) =

∑
Pk+2(∗),

the sum being over all diagrams with the given values of a′, a, b′, and b. For example, recalling
the conditions on the extreme arrows, we see that

Pk+2(0, 1, 1, 1)

equals
Pk+2( ) + Pk+2( ) + Pk+2( ).

In the same way,

Sk(a
′, a, b′, b) =

∑
Sk(∗).
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4. A Special Case

If a′ = b′ = 0 then Lemma 3.2 reduces to

Pk+2(0, a, 0, b) = (k + 1)2Sk(0, a− 1, 0, b− 1).

This is implied immediately by the following proposition.

Proposition 4.1. If a′(∗) = b′(∗) = 0 then

Pk+2(→ ∗ ←) = (k + 1)2Sk(∗).

The abstract diagram → ∗ ← is obtained by juxtaposing a sequence of diagrams of the
form

(4.a)
θ0 θ1
−−−−−→ · · ·

θi−1
−−−→−→

θi θi+1

←−←−−−− · · ·
θs

←−− ,

in which a sequence of positively directed arrows is followed by a sequence of negatively
directed arrows. The contribution to P (→∗←) from a concrete diagram, one in which the
endpoints of all arrows have been fixed, is the product over the diagrams (4.a) of

1

θ0

1

θ1
· · · 1

θi−1
(θi+1 − θi−1 − 1)

1

k + 2− θi+1

· · · 1

k + 2− θs−1

1

k + 2− θs
.

Notice that θi does not occur here and the only condition on the sequence

θ0, θ1, . . . , θi−1, θi+1 · · · θs−1
is that

θ0 < θ1 < · · · < θi−1 < θi+1 < · · · < θs−1 < θs.

Notice that 1/θ0 is suppressed if θ0 = 0 and 1/k + 2− θs is suppressed if θs = k + 2.
On the other hand, the abstract diagram ∗ begins with a sequence

→ · · · →,

that is then followed by a sequence of diagrams

← · · · ←−7−→ · · · →,

and finally by a sequence
← · · · ← .

Any or all of these sequences may be empty.
The expression (k + 1)2Sk(∗) will be treated using Lemma 3.1. Since we have multiplied

by (k + 1)2 the factor (k + 1)g(Σ)−2 may be replaced by (k + 1)g(Σ).
There are two simple but important relations to note before beginning:

(4.b)
∑

θ<j<η

1

(k − θ)j
· k + 1

(j + 1)(k + 1− η)
+

1

k − θ
· 1
η
=

1

(θ + 1)(k + 1− η)
;

(4.c)
∑

θ<j<η

1

η(k − j)
· k + 1

(k + 1− j)(θ + 1)
+

1

(k − θ)η
=

1

(θ + 1)(k + 1− η)
.

Since
1

j(j + 1)
=

1

j
− 1

j + 1
,

1

(k − j)(k − j + 1)
=

1

k − j
− 1

k − j + 1
,

the left-hand sides are easily calculated and found to be equal to the right-hand sides.
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We next calculate a factor of that part of Sk(∗) obtained from diagrams whose first segment
is

η1 θ1
−−−−−→

ηs θs
−−−−−→

with θ1, . . . , θs given. Fixing θ1 and summing over the possible η1, we obtain a contribution

(k + 1− θ1)


θ1−1∑
η1=1

k + 1

(k + 1− η1)(k − η1)
· 1
θ1

+
1

k · θ1

 = 1.

The factor k + 1 − θ1 comes from the product in the first term of Lemma 3.1. The factor
(k + 1) in the numerator in the sum comes from the first gap, which is present if η1 > 0 but
not if η1 = 0. The factor 1/θ1 is there whether θ1 is right free or bound. If θ1 is right free the
additional factor 1/(θ1 + 1) will be part of the contribution attached to the second arrow.
The factor (k + 1− η1)(k − η1) is there because η1 is left free if it is positive. If η1 = 0 then
it is extreme and contributes 1/k.

Passing on to the contribution from the second arrow, we fix θ1 and θ2, and form the sum,

(k + 1− θ2)


θ2−1∑

η2=θ1+1

k + 1

(k + 1 + η2)(k − η2)
· 1
θ2

+
1

(k − θ1)θ2

 =
1

θ1 + 1
.

Continuing, we obtain as the contribution from the initial segment, except for a supplementary
factor arising from the last arrow that is to be treated later,

1

θ1 + 1
· · · 1

θs−1 + 1
,

where 0 < θ1 < · · · < θs. In the same way the contribution of the final segment
η1
←−−−− · · ·

ηt
←−−−−

is
1

(k + 1− η1)
· · · 1

(k + 1− ηt−1)
.

We now turn our attention to the contribution of one of the intermediate segments

← · · · ← → · · · → .

First of all, fix θ, η and consider the total contribution of

θ i
←−−−−−−−

j η
−−−−−−−→

for all possible i, j. It is
(η − θ − 1)

(k − θ)η
.

Once again, if θ is left free we do not include the factor 1/(k+1− θ), and if η is right free we
do not include the factor 1/(η + 1), nor do we include a factor (k + 1) from a gap at either
end.
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For a fixed i and j the contribution is

θ + 1

k − θ
· 1

i(i+ 1)
· 1

(k − j)(k + 1− j)
· (k + 1− η)

η
· (k + 1) i < j,

θ + 1

k − θ
· 1

i(k − j)
· k + 1− η

η
i = j.

Fixing j and summing over i we obtain∑
θ<j<η

1

(k − j)
· 1

(k + 1− j)

k + 1− η

η
=

(η − θ − 1)

(k − θ)η
.

This is not a very useful form in which to have the contribution. To transform it, we prove
some simple lemmas. To have some notation, set

fθ(θ1) =
k + 1

(θ + 1)(k + 1− θ1)
θ > θ1,

= 1 θ = θ1.

Set

gη(η1) =
k + 1

(k + 1− η)(η1 + 1)
η1 < η

= 1 η1 = η.

Lemma 4.2. If θ and η are given, θ < η then∑
θ⩽θ1<η1<η

fθ(θ1)
(η1 − θ1 − 1)

(k − θ1)η1
gη(η1)

is equal to
1

(θ + 1)(k + 1− η)

∑
θ<θ2<η

θ2(k − θ2)

(θ2 + 1)(k + 1− θ2)
.

To calculate the sum over θ1, η1 we write

η1 − θ1 − 1 = (k − θ1) + η1 − (k + 1),

obtaining three sums that we easily evaluate using (4.b) and (4.c).∑
θ1

∑
η1

fθ(θ1)gη(η1)

η1
=

1

(θ + 1)(k + 1− η)

 ∑
θ<θ1<η

(k + 1)(k − θ1)

(k + 1− θ1)(θ1 + 1)
+ k − θ

,

∑
η1

∑
θ1

fθ(θ1)gη(η1)

(k − θ1)
=

1

(θ + 1)(k + 1− η)

 ∑
θ<η1<η

(k + 1)η1
(k + 1− η1)(η1 + 1)

+ η

,

−
∑
θ1

∑
η1

fθ(θ1)(k + 1)gη(η1)

(k − θ1)η1

=
1

(θ + 1)(k + 1− η)

− ∑
θ<θ1<η

(k + 1)2

(k + 1− θ1)(θ1 + 1)
− (k + 1)

.
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Replace in all three sums the right variable of summation by θ2. Note also that∑
θ<θ2<η

(k + 1− θ2)(θ2 + 1)

(k + 1− θ2)(θ2 + 1)
= η − θ − 1 = (k − θ) + η − (k + 1).

Then to complete the proof of the lemma, we have only to observe that

(k + 1)(k − θ2) + (k + 1)θ2 − (k + 1)2 + (k + 1− θ2)(θ2 + 1) = θ2(k − θ2).

Note that

(4.d)
θ′−1∑

η=θ+1

(k − θ)(k + 1− θ′)

(k + 1− η)(k − η)
= (θ′ − θ − 1) =

θ′−1∑
η=θ+1

(θ + 1)θ′

η(η + 1)
.

Lemma 4.3. If θ and η are given, η > θ, and

A =
∑

θ<θ1<···<θs<η

η · (θ1 − θ − 1)

θ1
· 1

θ1 + 1
· · · 1

θs + 1
,

B =
∑

θ<θ1<···<θs<η

1

θ1 + 1
· · · 1

θs + 1
(η − θs − 1),

then A = B.
Set

A′ =
∑

θ<θ1<···<θs<η

η(θ + 1)

θ1
· 1

θ1 + 1
· · · 1

θs + 1
,

B′ =
∑

θ<θ1<···<θs<η

1

θ1 + 1
· · · 1

θs−1 + 1
.

It suffices to show that A′ = B′. Clearly

B′ =
∑

θ<θ1<···<θs−1<η

1

θ1 + 1
· · · 1

θs−1 + 1
· (η − θs−1 − 1),

and

A′ =
∑

θ<θ2<···<θs<η

η · (θ + 1)

(
1

θ + 1
− 1

θ2

)
1

θ2 + 1
· · · 1

θs + 1
.

Since

η(θ + 1)

(
1

θ + 1
− 1

θ2

)
=

η(θ2 − θ − 1)

θ2
,

the lemma follows by induction, for it is clearly true for s = 1, when B′ = η − θ − 1 = A′.

Lemma 4.4. If θ and η are given, η > θ and

A =
∑

θ<ηs<···<η1<η

(k − θ)(η − η1 − 1)

(k − η1)

1

k + 1− η1
· · · 1

k + 1− ηs
,

B =
∑

θ<ηs<···<η1<η

1

(k + 1− η1)
· · · 1

(k + 1− ηs)
(ηs − θ − 1)

then A = B.
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This is the previous lemma in another guise. Before we begin transforming the contributions
of the intermediate segments, we treat the simplest case, that in which no intermediate
sequence occurs in ∗. Then → ∗ ← has concrete diagrams of the form

θ1
−−−→ · · ·

θs−1 θs−→−→
θs+1

←−−−− · · ·
θr+1
←−−− ,

and P (→ ∗ ←) is the sum over 0 < θ1 < · · · < θs−1 < θs+1 · · · < θr+1 < k + 2 of

(4.e)
1

θ1
· · · 1

θs−1
(θs+1 − θs−1 − 1)

1

k + 2− θs+1

· · · 1

k + 2− θr+1

.

The concrete diagrams of type ∗ with gaps are either of the form

θ1
−−−→ · · ·

θs−1
−−−−→

θs+1
←−−−− · · ·

θr+1
←−−,

in which there is a gap between θs−1 and θs+1 or of the form

θ1
−−−→ · · · →← · · ·

θr+1
←−−− .

In the first case the supplementary factors arising from the two internal arrows are 1/(θs−1+1)
and 1/(k+1−θs+1), together with a factor k+1 coming from the gap. This yields a contribution

(4.f) (k + 1)
1

θ1 + 1
· · · 1

θs−1 + 1

1

k + 1− θs+1

· · · 1

k + 1− θr+1

0 < θ1 < · · · < θr+1 < k.

Substituting θi for θi + 1 in this product we see that we obtain all possible sequences
contributing to (4.e) except those for which θ1 = 1 or θr+1 = k + 1. Subtracting a term (4.f)
from the corresponding term of (4.e) we obtain

1

θ1
· · · 1

θs−1

(
−θs−1 − (k + 2− θs+1)

) 1

k + 2− θs+1

· · · 1

k + 2− θr+1

.

Breaking this into parts, cancelling either θs−1 or k + 2 − θs+1, and then taking account
of the multiplicities with which the missing θs−1 or θs+1 could occur, we see that we have
contributions

−1
1

1

θ1
· · · 1

θs−2
(θs+1 − θs−2 − 1)

1

k + 2− θs+1

· · · 1

k + 2− θr+1

,

where
0 < 1 < θ1 < · · · < θs−2 < θs+1 < · · · k + 1,

and
−1
θ1
· · · 1

θs−1
(θs+2 − θs−1 − 1)

1

(k + 2− θs+2)
· · · 1

k + 2− θr+1

1

(k + 2)− (k + 1)
,

where
1 < θ1 < · · · < θs−1 < θs+2 < · · · < k + 2.

This accounts for all contributions to P (→ ∗ ←) except those for which θ1 = 1, θk+1 = k + 1.
However, concrete diagrams with no gap between θs−1 and θs+1 yield

1

θ1 + 1
· · · 1

θs−2 + 1

1

k + 1− θs+2

· · · 1

k + 1− θr+1

.
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Taking account of the multiplicity θs+2 − θs−2 − 1 with which the missing θs−1 = θs+1 can
occur, we see that we obtain exactly those contributions to P (→∗←) associated to sequences
θ1 = 1, θr+1 = k + 1.

We now suppose that there is at least one intermediate segment, and treat the contribution
of the first of these together with that of the initial segment. The junction of the two segments
has the form

θ1
−−→

θ2
−−→

θs−1
−−−−→

θs+1ξs+1
←−−−−−−−

θt ξt
←−−−−−

θ1 η1
−−−−−→ · · ·

θµ ηµ
−−−−−→ .

The arrow following upon ηµ is of the form ←. Suppose it begins at η.
If u = 1 let η′ = η, but if u > 1 we let η′ = ν2. If t = s+1, let θ′ = θs−1; otherwise let it be

ξt−1. If the initial segment is empty, take θ′ = 0. In the same way let η′ = k if it is otherwise
undefined. Then Lemma 4.2 transforms the contribution of the interval [θ′, η′] to

(4.g)
∑

θ′<θ′′<η′

θ′′

θ′ + 1
· 1

(θ′′ + 1)(k + 1− θ′′)
· k − θ′′

k + 1− η′
.

The (θ′′+1)(k+1−θ′′) in the denominator will not be touched. If t > s+1 we take θ′′/(θ′+1)
together with the rest of the contribution of the interval [θt−1, ξt−1] obtaining

θ′′

ξt−1 + 1
· 1

ξt−1
· θt−1 + 1

k − θt−1
.

Summing over ξt−1 we obtain
θ′′ − θt−1 − 1

k − θt−1
.

The contributions of the other intervals [θi, ξi], s+ 1 ⩽ i < k − 1 then yield the sum of

(4.h)
∑

θs−1<θs+1<···<θt−1<θ′′

θ′′ − θt−1 − 1

k − θt−1
· 1

k − θt−1 + 1
· · · k + 1

k − θs+1 + 1
,

and

(4.i)
∑

θs−1<θs+2<···<θt−1<θ′′

θ′′ − θt−1 − 1

k − θt−1
· 1

k − θt−1 + 1
· · · k + 1

k − θs+2 + 1
· (θs−1 + 1).

The first factor is there so that in both cases we can use 1/(θs−1 + 1) as the contribution
from the final arrow in the initial segment.

If t− 1 is s+ 1, this manner of expressing the contribution is not obviously meaningful. It
is better to take it as

(4.j)
∑

θs−1<θt−1<θ′′

(
θ′′ − θt−1 − 1

k − θt−1

)(
k + 1

k + 1− θt−1

)
+

(
θ′′ − θs−1 − 1

k − θs−1

)
· (θs−1 + 1).

Lemma 4.5. The sum (4.j) is equal to∑
θs−1<θt−1<θ′′

θt−1
k + 1− θt−1

.

Write the numerator in the first sum as

(k + 1)(k − θt−1)− (k + 1)(k + 1− θ′′).
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The first term yields ∑
θs−1<θt−1<θ′′

k + 1

k + 1− θt−1
.

The second may easily be summed in closed form to yield

−(k + 1)(k + 1− θ′′)

(
1

k + 1− θ′′
− 1

k − θs−1

)
.

Adding to this the final term in (4.j) we obtain(
−(k + 1)(θ′′ − θs−1 − 1) + (θ′′ − θs−1 − 1)(θs−1 − 1)

)
/(k − θs−1) = −(θ′′ − θs−1 − 1).

Since

θ′′ − θs−1 − 1 =
∑

θ′s−1<θt−1<θ′′

k + 1− θt−1
k + 1− θt−1

,

the lemma follows.
To deal with the case that t− 1 > s+ 1, we use Lemma 4.4 to write (4.h) as∑

θs−1<θs+1<···<θt−1<θ′′

(k + 1)

(
θs+2 − θs+1 − 1

k − θs+1

)(
1

k + 1− θt−1

)
· · ·

(
1

k + 1− θs+1

)
,

and (4.i) as∑
θs−1<θs+2<···<θt−1<θ′′

(
θs+2 − θs+1 − 1

k − θs+1

)
(θs−1 + 1)

(
1

k + 1− θt−1

)
· · ·

(
1

k + 1− θs+2

)
.

Applying Lemma 4.5 we obtain∑
θs−1<θs+1<···<θt−1<θ′′

θs+1

(
1

k + 1− θt−1

)
· · ·

(
1

k + 1− θs+1

)
.

Thus the conclusion is the same in all cases.
We put these contributions together with the contributions from the initial segment, writing

θs+1 as θs+1 − θs−1 − 1 + θs−1 + 1. This yields a sum of two terms. The first is

1

θ1 + 1
· · · 1

θs−1 + 1
(θs+1 − θs−1 − 1)

1

k + 1− θs+1

· · · 1

k + 1− θt−1
;

the second, in which the multiplicity of the missing θs−1 is taken into account, is

1

θ1 + 1
· · · 1

θs−2 + 1
(θs+1 − θs−2 − 1)

1

k + 1− θs+1

· · · 1

k + 1− θt−1
.

Observe that upon replacing θi + 1 by θi these products correspond exactly to the initial
contributions to P (→ ∗ ←), the second corresponding to θ1 = 1.

We now return to (4.g), and work towards the right; only the contribution (k−θ′′)/(k+1−η′)
being pertinent. If there is only one intermediate segment, so that the complete diagram ∗
has the form

θ1
−−→ · · ·

θs−1
−−−→

θs+1
←−−−

θt
←−−−−

η1
−−−−→

ηu
−−−−−→

ηu+2
←−−− · · ·

ηv
−−−→



14 ROBERT P. LANGLANDS

then the contribution from the right is treated like that from the left and is the sum of(
1

η2

)
· · ·

(
1

ηu + 1

)
(ηu+2 − ηu − 1)

(
1

k + 1− ηu+2

)
· · ·

(
1

k + 1− ηv

)
and (

1

η2 + 1

)
· · ·

(
1

ηu + 1

)
(ηu+3 − ηu − 1)

(
1

k + 1− ηu+3

)
· · ·

(
1

k + 1− ηv

)
.

The second corresponds to the contribution to P (→∗←) in which the final θ is k+1. Putting
all contributions together, first multiplying the two parts and then adding over all possible
sequences, and not forgetting (θ′′ + 1)−1(k + 1 − θ′′)−1 from (4.g) we see that we obtain
P (→∗←).
Suppose, however, that there is a second intermediate segment, so that where they abut

the diagram has the form

←−−
θ1

−−→ · · ·
θs

−−→
η1
←−− · · ·

ηt
←−−

ν
−−→

The contribution up to η1 is calculated as before. For example, if s = 1 it, or rather the part
coming from the right of θ′′, is

k − θ′′

k + 1− η1
.

More generally, using Lemma 4.3 and the obvious modification of Lemma 4.5, we obtain(
1

θ2 + 1

)
· · ·

(
1

θs + 1

)(
k − θs

k + 1− η1

)
.

The product (
1

θ2 + 1

)
· · ·

(
1

θs + 1

)
corresponds exactly to what we need for the comparison with the contributions to P (→∗←).

The final factor is to be put together with the contribution from η1 on to yield∑
θs<η1<···<ηt<ν

(
k − θs

k + 1− η1

)(
1

k + 1− η2

)
· · ·

(
1

k + 1− ηt

)(
ν − ηt − 1

(k − ηt)ν

)
.

The final factor is the contribution previously calculated for a diagram ←→. Lemma 4.4
replaces this with

(η1 − θs − 1)

(
1

k + 1− η1

)
· · ·

(
1

k + 1− ηt

)
· 1
ν
.

The initial terms correspond exactly to what is needed for the comparison. Keep the final
two for proceeding further to the right. Choose θ′, η′ as for (4.g). Thus θ′ is either ηt−1 or θs.
Then we have a contribution

(4.k)
∑

θ′<ηt<ν⩽η′

1

(k + 1− ηt)

1

ν
fη′(ν).

The sum is over ηt and ν.
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Lemma 4.6. The sum (4.k) is equal to∑
θ′<θ′′<η′

1

(θ′′ + 1)(k + 1− θ′′)
· k − θ′′

k + 1− η′
.

This is an immediate consequence of (4.b). The factor 1/(θ′′ + 1)(k + 1− θ′′) is what we
need for the comparison with the contribution to P (→ ∗ ←). The factor

k − θ′′

k + 1− η′
,

which we have seen before, is what we need to treat the second intermediate segment like the
first, and then inductively to proceed all across the diagram, thereby proving the proposition.

5. Completion of the Proof

The proof of Lemma 3.2 will now be reduced to Proposition 4.1. Although the value of
P (∗) or S(∗) depends on the directions of the uncircled arrows in ∗ it does not depend on the
directions of the circled arrows. They are important only when calculating Pk+2(a

′, a, b′, b) or
Sk(a

′, a, b′, b). Thus we sometimes indicate a circled arrow simply by the symbol .

Lemma 5.9.

(a) P ( ) = 1
k+1

P (→←).

(b) P (∗ ) = 1
k+1

P (∗ →←) + 1
k+1

P (∗ ←),

(c) P ( ∗) = 1
k+1

P (→← ∗) + 1
k+1

P (→ ∗),
(d) P (∗1 ∗2) = 1

k+1
P (∗1 →← ∗2) + 1

k+1
P (∗1 → ∗2) + 1

k+1
P (∗1 ← ∗2).

(e) S(∗1 ∗2) = 1
k+1

S(∗1 ←→ ∗2) + 1
k+1

S(∗1 ← ∗2) + 1
k+1

S(∗1 → ∗2).

In the formula (e) for S both ∗1 and ∗2 may be empty, but in the formula (d) for P they
must not be, as ∗ must not be in formulas (b) and (c). Since P ( ) = 1, P (→←) = k+1,
the first formula is clear. Consider the second. The contribution of a concrete diagram

θ
∗

is of the form A · 1/θ. The contribution of

θ
∗ −−−−−→

θ′
←−−−−−

to P (∗ →←) is A · (1/θ)(k + 1− θ), while that of

θ
∗ ←−−−

to P (∗ ←) is A. The formula (c) is of course proved in exactly the same way. For (d) the
verification is also similar. The diagram

∗1
θ1 θ2 ∗2

contributes a term A · (1/θ1) · (1/k + 2− θ2) · B. The contributions of the three diagrams
appearing on the right are respectively:

A · 1
θ1
· 1

k + 2− θ2
· (θ2 − θ1 − 1) ·B; A · 1

θ1
·B; A · 1

k + 2− θ2
·B.
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Proving the final formula is just a little less simple because we cannot operate entirely
with concrete diagrams. The pertinent part of the concrete diagram for the left side of (e) is

θ θ1 θ2 η

| | | |.
θ1 and θ2 are the endpoints of and θ and η are the closest endpoints of the arrows
in ∗1 or ∗2. If ∗1 is empty then θ = 0 and if ∗2 is empty then η = k.
The contribution from the interior of the interval [θ, η] is∑

θ⩽θ1<η1⩽η

fθ(θ1) ·
1

(k − θ1)η1
· gη(η1).

By this we mean that the factors 1/θ and 1/(k − η) are not taken into account.
On the other hand, replacing the undirected arrow in the interval θ1, θ2 by the

directed arrow →, we obtain ∑
θ⩽θ1<η1⩽η

fθ(θ1) ·
k + 1− η1
(k − θ1)η1

gη(η1).

Taking instead ←, we obtain ∑
θ⩽θ1<η1⩽η

fθ(θ1) ·
θ1 + 1

(k − θ1)η1
gη(η1).

Next, inside the same interval [θ, η] we insert two opposing arrows

θ
|

θ1 η1
←−−−−−−−−−−−−−−−

θ2 η2
−−−−−−−−−−−−−−−−→

η
| .

We have to take the sum∑
θ⩽θ1<η1⩽θ2<η2⩽η

fθ(θ1)

(
θ1 + 1

(k − θ1)η1

)
gθ2(η1)

(
k + 1− η2
(k − θ2)η2

)
gη(η2).

Use (4.b) to sum over η1 to obtain∑
θ⩽θ1<θ2<η2⩽η

fθ(θ1)

(
1

k + 1− θ2

)(
k + 1− η2
(k − θ2)η2

)
gη(η2).

Then sum over θ2 to obtain ∑
θ⩽θ1<η2⩽η

fθ(θ1)
η2 − θ1 − 1

(k − θ1)η2
gη(η2).

The last formula of the lemma follows immediately on replacing η2 in this sum by η1, for

(θ1 + 1) + (k + 1− η1) + (η1 − θ1 − 1) = k + 1.

It is clear that the expansion permitted by this lemma can be iterated so that Pk+2(a
′, a, b′, b)

becomes a weighted sum of P (∗), where ∗ is a diagram with no circled arrows, and with
its extreme arrows pointing inwards. The diagrams that we obtain have distinguished
subdiagrams of the type →←,→, or ←, each provided with a supplementary orientation.
Suppose there are c, c+, c− distinguished subdiagrams of the three types with negative
orientation and d, d+, d− with positive orientation. Then a′ = c+c++c−, d

′ = d+d++d−. In
addition, P (∗) is to be provided with the weight (k+1)−a

′−b′ . Since the weight is independent
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of ∗ it can often be ignored. Each ∗ that occurs is actually of the form → ∗1 ← with a′1 = a′,
b′1 = b′. By Proposition 4.1 we may replace (k + 1)−a

′−b′P (∗) by (k + 1)2−a
′−b′S(∗1).

There are many types of diagrams that contribute to the sum of Lemma 3.2, and it is best
to introduce a supplementary label, because the same diagram ∗2 may contribute more than
once. This supplementary label is one of the diagrams:

; ; ; ;
; ; ; ; .

Each of the diagrams defines two numbers e′, the number of negatively oriented circled arrows,
and f ′, the number of positively oriented circled arrows. If a′2 = a′(∗2), b′2 = b′(∗2) then
a′2 + e′ = a′, b′2 + f ′ = b′ and the weight attached to the contribution with the double label is
(k + 1)2−e

′−f ′
.

For example, the term 2Sk(a
′ − 1, a, b′ − 1, b) is the sum of contributions from pairs

(∗2, ) and pairs (∗2, ), while Sk(a
′, a, b′ − 1, b) is the sum of contributions

from pairs (∗2, ).
Using the lemma to expand, we obtain the common weight (k + 1)2−a

′−b′ . The terms
of the expansion are labeled by the same supplementary diagram ∗′3, and by a diagram ∗3
with no circled arrows but with a certain number of distinguished subdiagrams of the form
←→,→, or ←. Each of these subdiagrams is provided with an orientation, corresponding
to the orientation of the circled arrow from which it arose. Let there be i, i+, i− negatively
oriented arrows of the three types and j, j+, j− positively oriented. Then a′2 = i+ i+ + i−,
b′2 = j + j+ + j−.
We have to establish a bijection between the diagrams ∗1, taken with multiplicity, and

the diagrams (∗3, ∗′3), also taken with multiplicity. Suppose ∗1 is obtained from ∗ =→ ∗1 ←.
Thus ∗ is obtained by introducing one of the three diagrams →←,→,←, in place of each of
the circled arrows.

Let D1, . . . , Ds be the introduced diagrams of the form →←, so that ∗ has the form

→ · · · D1−→←− Ds−→←− · · · ← .

Thus there are s+ 1 sequences Si of arrows, from the beginning to the beginning of D1, from
the end of D1 to the beginning of D2, and so on. In Si, 1 ⩽ i < s, let there be pi positively
directed arrows and qi negatively directed arrows. Let p′i of the pi arrow arise from positively
directed circled arrows by the substitution of → for , let p′′i arise from negatively directed
circled arrows, and let p′′′i be original arrows. Define q′i, q

′′
i , q

′′′
i similarly. Define ps, qs, p

′
s, p

′′
s ,

p′′′s , q
′
s, q

′′
s , q

′′′
s in the same way, except that the two end sequences are put together for the

counting. Then the multiplicity with which the diagram with given locations of the Di and
given Si, as well as given p′i, p

′′
i , p

′′′
i , q

′
i, q
′′
i , q

′′′
i contributes is

s∏
i=1

pi!

p′i!p
′′
i !p
′′′
i !
· qi!

q′i!q
′′
i !q
′′′
i !

.

Between the center of Di and that of Di+1, 1 ⩽ i < s there is at least one diagram ←→. Let
the first be Ei. If there is such a diagram after Ds, let Es be the first. Consider the number
of ways of assigning to the arrows between the centers of Di and Di+1 that do not lie in Ei

both circles and circled directions, and in such a way that the total number of each is as
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before . The number is
pi!

p′i!p
′′
i !p
′′′
i !
· qi!

q′i!q
′′
i !q
′′′
i !

.

Notice that we have begun to describe the diagrams ∗3 for which E1, . . . , Es−1, and Es if it
has been assigned, are the diagrams ←→ introduced in the expansion.

If Es does not exist, then the multiplicity with which we can make the various assignments
up to the center of D1 and after the center of Ds is

ps!

p′s!p
′′
s !p
′′′
s !
· qs!

q′s!q
′′
s !q
′′′
s !

.

Notice that the extreme arrows of ∗ no longer play a role; they are replaced by the first arrow
of D1 and the last of Ds.
To make the comparison, we note that if Es does not exist then Ds is determined as the

final subdiagram of the form →←. We also agree that Ei and Di, 1 ⩽ i < s are to be
obtained from circled arrows with the same orientation. Moreover if Es does not exist, then
we take ∗′3 to be or , according to the circled orientation of the arrow yielding Ds.
We finally note that Di is determined by Ei. We simply move to the left from Ei to the first
diagram →←.

Thus the bijection with multiplicity is established between diagrams ∗1 in which Ds is the
final diagram →← in ∗ and diagrams (∗3, ∗′3) in which ∗′3 has only a single arrow.

If Ds is not the final diagram →← then Es exists, and we take it as coming from a circled
arrow with the same orientation as Ds. The only difference in the counting of the multiplicities
is that for the contribution to Ss we remove the arrows in Es as well as the extreme arrows
and only add the first arrow of D1 and the last of Ds. To make the count come out correctly,
we adjoin the supplementary ∗′3 with two arrows, each of which has three states that can
be interpreted as circled with positive orientation, circled with negative orientation, and
uncircled. Observe that this argument is also valid for the case that s = 0.
A pair of tables for the case r = 1, a′ = a = b = 1, b′ = 0 may help. Diagrams with the

same label, which lies between (i) and (v), are matched in the bijection.

Initial Expanded ∗ ∗1 s
1 (i)
0 (iv)
0 (v)
1 (ii)
0 (v)
1 (iii)
0 (iv)

Initial ∗2 Expanded ∗3 ∗′3
(i)
(ii)
(iii)
(v)
(iv)
(v)
(iv)
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Appendix

The Virasoro algebra g as an infinite-dimensional Lie algebra over C with basis Lk, k ∈ Z,
and C and is defined by the conditions:

(i) C is central

(ii) [Li, Lj] = (i− j)Li+j + δi,−j
i(i2−1)

12
C.

The facts reviewed below can be found in [KR].
The Verma modules are infinite-dimensional vector spaces Vh,c on which g acts and are

attached to two real parameters h and c. They are defined by the condition that they be
universal with respect to the following property.

Vh,c is generated by a vector vϕ satisfying:

Cvϕ = cvϕ, L0vϕ = hvϕ, Lnvϕ = 0, n > 0.

Thus Vh,c has a basis

vk1,k2,...,kr = L−k1 · · ·L−krvϕ, k1 ⩾ · · · ⩾ kr > 0.

However it may have other convenient bases as well. It carries a unique hermitian form ⟨u, v⟩
satisfying

(i) ⟨vϕ, vϕ⟩ = 1; (ii) ⟨Lku, v⟩ = ⟨u, L−kv⟩.
Let P (n) be the number of partitions of n. Then the space Vn spanned by{

vk1,...,kr

∣∣∣ ∑ ki = n
}

has dimension P (n). If {·, ·} is the hermitian form defined by {vk1,...,kr , vl1,...,ls} = 0 unless
r = s, k1 = l1, . . . , kr = lr then the matrix Hn(h, c) of ⟨·, ·⟩ on Vn with respect to {·, ·} is a
polynomial in h and c whose determinant is a constant times∏

pq⩽n

(h− hp,q)
P (n−pq).

If we introduce m by the condition c = 1− 6/m(m+ 1), then

hp,q = hp,q(m) =

(
(m+ 1)p−mq

)2 − 1

4m(m+ 1)
p, q ∈ N.

In particular if n = pq then det Hn vanishes on the curve h = hp,q(m). A null vector is
obtained by taking some row ck1,...,kr(m) of the matrix adjoint to Hn, and then setting

wp,q(m) =
∑

k1+···+kr=m

ck1,...,kr(m)vk1,...,kr .

Choose the row so that the vector
(
ck1,...,kr(m)

)
does not vanish identically. Since the

coordinates of this vector are rational functions of m, we may write
(
ck1,...,kr(m)

)
as the

product of a rational function of m and a vector up,q(m) =
(
dk1,...,kr(m)

)
with coefficients

that are polynomials in m whose greatest common divisor is 1. To stress the dependence on
p, q, for it is important, I write

dk1,...,kr(m) = dp,qk1,...,kr
(m).
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To pass to a more convenient notation we take this p, q to be p′, q′ and with another p, q
we set ∆ = hp,q(m). We form the rational functions of m, Y , ∆ defined by

ak1,...,kr(m,Y,∆) = (kr + · · ·+ k2 + y +∆k1)(kr + · · ·+ k3 + Y +∆k2) · · · (Y +∆kr)

and by

Pp′,q′(m,Y,∆) =
∑

k1⩾···⩾kr>0
k1+···+kr=p′q′

ak1,...,kr(m,Y,∆)dp
′,q′

k1,...,kr
(m).

The highest power of Y that appears in Pp′,q′(m,Y,∆) is Y n, where n = p′q′, and it appears

with coefficient dp
′,q′

1,...,1(m).
On the other hand, set

Y p′,q′

r,s = hp′,q′(m)− hp−r,q−s(m).

Conjecture. If ∆ = hp,q, then

Pp′,q′(m,Y,∆) = dp
′,q′

1,...,1(m)
∏

r+1≡p′ (mod 2), |r|<p′

s+1≡q′ (mod 2), |s|<q′

(
Y − Y p′,q′

r,s (m)
)
.

It is important to observe that p, q and p′, q′ play utterly different roles in this identity.
Before explaining the significance of this conjecture, I observe that for generic m the null
space of Hn(h, c), h = hp′,q′(m), c = c(m) is of dimension 1. Moreover, for all k1, . . . , kr such
that

∑
ki = n the vector

vk1,...,kr = L−k1 · · ·L−krvϕ
lies in Vn, whether k1, . . . , kr are in decreasing order or not. In addition, it is not difficult to
show that ∑

k1+···+kr=n
k1⩾0

ek1,...,krak1,...,kr(m,Y,∆)

depends only on the vector ∑
k1+···+kr=n

ek1,...,krvk1,...,kr .

Thus if ∑
ek1,...,kr(m)vk1,...,kr

is any vector with values in the null space of Hn(c, h) the function

P (m,Y,∆) =
∑

ek1,...,kr(m)ak1,...,kr(m,Y,∆)

is determined by the coefficient p(m,∆) of Y n. Provided that this is not zero, the conjecture
is tantamount to

P (m,Y,∆) = p(m,∆)
∏
r,s

(
Y − Y p′,q′

r,s (m)
)
.

In the two extreme cases, p′ = 1 or q′ = 1, Benoit and Saint-Aubin [BSA] have found an
explicit formula for ek1,...,kr(m):

a) q′ = 1

(A.1) ek1,...,kr(m)

(
−(m+ 1)

m

)n−r


r−1∏
i=1

(k1 + · · ·+ ki)(ki+1 + · · ·+ kr)


−1

,
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b) p′ = 1

(A.2) ek1,...,kr(m)

(
− m

m+ 1

)n−r


r−1∏
i=1

(k1 + · · ·+ ki)(ki+1 + · · ·+ kr)


−1

.

The conjecture in these extreme cases follows immediately from these formulas in Theorem 1.
The quotient of the Verma module Vh,c by the space of null vectors is an irreducible module

Mh,c. Select two parameters ∆′, ∆′′, as well as a third parameter ∆. A primary holomorphic
field attached to these parameters is a formal series.

Φ(z) = z∆
′′−∆′−∆

∑
k∈Z

φkz
k.

Here φk is a matrix φk,n′′,n′ , n′ ⩾ 0, n′′ ⩾ 0, n′, n′′ ∈ Z and

φk,n′′,n′ : M ′
n →M ′′

n′′ .

We have set M ′ = M∆′,c, M
′′ = M∆′′,c, c = c(m), and

M ′
n′ =

{
v ∈M ′ ∣∣ L0v = (∆′ + n′)v

}
, M ′′

n′′ =
{
v ∈M ′′ ∣∣ L0v = (∆′′ + n′′)v

}
.

Moreover φk,n′′,n′ = 0 unless k = n′′ − n′, so we write φn′′,n′ for φn′′−n′,n′′,n′ .
The formal series Φ(z) is said to define a primary holomorphic field of weight ∆ if the

identity

(A.a) LkΦ− ΦLk = zk+1 d

dz
Φ +∆(k + 1)zkΦ

is valid for all k ∈ Z. The formal identity translates immediately into real identities for the
operators φn′′,n′ between finite-dimensional vector spaces. Although it is usually ignored, a
basic problem is to decide for what values of ∆′, ∆′′, and ∆ a primary field exists. This is
particularly important for the discrete series parameters m ⩾ 2, m ∈ Z,

h = ha,b(m), 1 ⩽ a < m, 1 ⩽ b < n+ 1.

Thus ∆′, ∆′′, ∆ are all to belong to this set, ∆′ = hp′,q′ , ∆
′′ = hp′′,q′′ , ∆ = hp,q.

It appears that it is not difficult to prove the existence of Φ(z) satisfying (A.a) provided
one can construct φ0,k, φk,0 for all k ⩾ 0, satisfying the conditions implied by (A.a). It is
moreover easy to see that φn′′,n′ is the adjoint of the operator φn′,n′′ attached not to ∆′, ∆′′

but to ∆′′, ∆′ and the same ∆. Thus the necessary and sufficient condition for the existence
of Φ(z) is that φ0,k exist for all k for the parameters ∆′, ∆′′ and φ0,k for the parameters ∆′′,
∆′.

It is clearly enough to determine the conditions for the first problem. Normalize Φ so that
φ0,0 : v

′
ϕ → v′′ϕ. A simple calculation shows that

φ0,kv
′
k1,...,kr

= ak1,...,kr(m,∆′ −∆′′,∆)v′′ϕ, k =
∑

ki.

Thus a necessary and sufficient condition for the existence of φ0,k is that

u =
∑

ck1,...,krv
′
k1,...,kr

= 0

imply that

(A.b)
∑

ck1,...,krak1,...,kr(m,∆′ −∆′′,∆) = 0.
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It will probably be easy to show that if the condition (A.b) is satisfied by one null vector,
then it is satisfied for all null vectors obtained from it by repeatedly applying elements of
the Virasoro algebra. After that, it should not be too difficult, using results of Feigin and
Fuchs [FF], to show that for the discrete series it is enough to verify it for u = up′,q′ and

u = um−p′,m+1−q′ . Provided that dp
′,q′

1,...,1(m) and dm−p
′,m+1−q′

1,...,1 (m) are not zero, and this seems
likely, although I am not at the moment clear as to how it is to be proved, then the conjecture
implies that the operators φ0,k exists for all k and only if

(A.c) ∆′ −∆′′ = Y p′,q′

r1,s1
(m)

and

(A.d) ∆′ −∆′′ = Y m−p′,m+1−q′
r2,s2

(m),

for some pairs r1, s1, r2, s2 satisfying r1 ≡ p′ + 1, r2 ≡ m− p′ + 1, s1 ≡ q′ + 1, s2 ≡ m− q′

modulo 2, and |r1| < p′, |s1| < q′, |r2| < m− p′, |s2| < m+ 1− q′.
For the present it is sufficient to examine the first equation, our only purpose being to

verify that it leads to explicit conditions on p, q, p′, q′, and p′′, q′′. Set p0 = p− r1, q0 = q−s1.
Since

∆′ −∆′′ = hp′,q′ − hp′′,q′′ ,

we infer from (A.c) that

(p′′ − q′′)2m2 + 2(p′′ + q′′)p′′m+ p′′2 = (p0 − q0)
2m2 + 2(p0 − q0)p0m+ p20.

This equation is readily seen to be equivalent to the condition that either

(p′′ − q′′)− (p0 − q0)m+ (p′′ − p0) = (p′′ − p0)(m+ 1)− (q′′ − q0)m = 0

or
(p′′ − q′′) + (p0 − q0)m+ (p′′ + p0) = (p′′ + p0)(m+ 1)− (q′′ + q0)m = 0.

The second equation is obtained from the first on substituting p′′ → m− p′′, q′′ → m+1− q′′.
Since all quantities involved are integers, all solutions of the first equation are of the form

p′′ = p0 + am, q′′ = q0 + a(m+ 1), a ∈ Z. Since 0 < p, p′, p′′ < m, 0 < q, q′, q′′ < (m+ 1),
the integer a must be 0, ±1 although not all these values are necessarily allowed.

The conclusion is that the conjecture leads to explicit, albeit somewhat elaborate, necessary
and sufficient conditions on p, q, p′, q′, p′′, q′′ for the existence of a primary conformally
invariant holomorphic field. There is a close connection between the problems of existence
and the problem of establishing fusion rules. The conditions derived from the conjecture are
close to those the attentive reader of the discussion of fusion rules in [BPZ] would expect,
although perhaps not exactly the same.
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Note added in proof. After this paper was submitted two preprints came to my attention
that render the combinatorial arguments in it superfluous from some points of view, although
not necessarily redundant. First of all, G. Felder in BRST Approach to Minimal Models has
used the BRST method to construct primary fields and the conjecture of the appendix follows
readily from his conclusions. Moreover, B. L. Feigin and D. B. Fuchs in Cohomology of some
nilpotent subalgebras of the Virasoro and Kac-Moody Lie algebras take the direct algebraic
approach of the Appendix to the existence of primary fields, but deal with the whole matter
much more efficiently, more generally, and more elegantly. It is in particular clear from their
discussion that the conjecture is an easy consequence of results already in [FF].
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