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A THEOREM CONCERNING THE DIFFERENTIAL EQUATIONS 
SATISFIED BY NORMAL FUNCTIONS ASSOCIATED 

TO ALGEBRAIC CYCLES 

By PHILLIP A. GRIFFITHS* 

In this paper we shall give a general discussion of normal functions 
culminating in a result characterizing those normal functions arising 
from algebraic cycles as being solutions to a family of ordinary differ- 
ential equations parametrized by the hypersurfaces of large degree 
passing through the given cycle or through one homologous to it. In 
Section 1 the theorem will be informally discussed for the case of curves 
on a surface where a minimum of technical machinery is necessary. 
Along the way we give proofs of the main classical results in the theory 
of normal functions and find some new information on the Hodge 
bundles arising from a Lefschetz pencil of curves. Then in Section 2 
we turn to higher dimensions. Following a discussion of the definition 
and basic properties of normal functions we analyze the Hodge bundles 
arising from the cotangent spaces to the intermediate Jacobians in a 
Lefschetz pencil (c.f. (2.13c) and (2.14c)), and then shall reprove the 
result (c.f. (2.9) for the statement) characterizing the fundamental 
classes of normal functions by their Hodge type. Finally, after some gen- 
eral observations on Picard-Fuchs equations we formulate and prove our 
main result Theorem 2.2, and then conclude the paper with some ob- 
servations concerning the problem of constructing algebraic cycles. 

Unless otherwise specified, homology will be with Z-coefflcients and 
cohomology with C-coefficients. Hopefully the other notations and ter- 
minology are standard. 

1. Discussion of the Theorem for Curves on a Surface. 

a) Let S be a smooth algebraic surface and L - S a very ample 
line bundle, which we shall think of as the hyperplane bundle for the 
embedding S c- pN induced by the complete linear system IL 1. Recall 

t 
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NORMAL FUNCTIONS ASSOCIATED TO ALGEBRAIC CYCLES 95 

that a Lefschetz pencil is a pencil of curves I Ct I selected from IL I such 
that the generic curve Ct is smooth and the singular curves Ct,, . . ., CtN 
are irreducible with one ordinary double point not in the base locus 
B = Co. Coo of the pencil. A general pencil is obtained by selecting a 
line in the dual projective space pN* parametrizing the curves in IL 1, 
and the pencil is Lefschetz when this line meets the hypersurface S* C 
pN* dual to S transversely at smooth points. It is classical how one 
understands the topology of S in terms of the monodrony on a general 
Hi(Ct) where t varies over P1 - {tI, . . ., tN}, and we shall review this 
below as needed. At the moment we shall discuss the Hodge bundle 
associated to the pencil. 

Over the PI parametrizing the curves in the pencil there is a vec- 
tor bundle E - PI, the Hodge bundle, whose fibre over t E PI - 

{tl, ..., tN} is the vector space H0(Oct') of holomorphic differentials 
on the smooth curve Ct. Each singular curve Ctoe has a normalization 
Cta, a smooth curve of genus one less than that of a generic Ct and 
having on it two marked points which when identified give back the 
singular curve Cto. The fibre Et, then consists of the meromorphic 
differentials on Ctc. having at most logarithmic singularities at the 
marked points. 

Alternatively, we may describe the sections of the Hodge bundle by 
using residues. Given an irreducible curve C E IL I defined by a section 
s E H0(Os(L)), there is the Poincare residue sequence 

0O -Qs Qs _.QS2(L) 
Res 

-WC O0. (1.1) 

When C is smooth, wc = ?c' is the usual sheaf of holomorphic differ- 
entials; when C has a double point wc exactly corresponds to mero- 
morphic 1-forms on C having at most logarithmic singularities over 
the double point. For all t, then, the fibre of the Hodge bundle is 

Et = HO(wct). 

Denoting by -1 E HI (is') the Chern class of L - S and using h I (is2(L)) 
= 0, the exact cohomology sequence of (1.1) gives a commutative 
diagram 

0 -H0(Qs2) - H0(oi2s2(L)) -- HO(wc) - HI(Us2) - 0. 

I! (1.2) 

H0(Us') 
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By the Hard Lefschetz theorem, v1 induces an isomorphism, and the 
image of 

H0(Os') - H(cwct) 

may be thought of as the fixed part of the variation of Hodge structure 
defined by the curves Ct; this image therefore defines a trivial summand 
of the Hodge bundle E - p 1. 

To analyze the variable part of E we choose sections so and s. E 

H(OWs(L)) defining Co and COO (assumed smooth) and set St = SO + ts00. 
For w E H0(Qs2(L)) and t' = llt, since 

Res( =t' Res( 
\so + tS,~~ t'so + S. 

we deduce that the exact sequence in (1.2) globalizes over PI to give 

0 -H0(Qs2) -H0(o2s2(L)) 0 0 (1)- E -H(Us2) 0. (1.3) 

Here the vector spaces Hq(US2 ) and H0(Qs2(L)) are thought of as trivial 
bundles over PI, 0(1) has the usual meaning, and we are retaining E 
to denote the corresponding sheaf Op~(E). With the usual characters 

g =h I(Ct) 

q = h,O(S) 

Upg h2,0(S), 

we infer from (1.3) that the Grothendieck decomposition of E is given by 
given by 

E -= 9(q) (D ( O t(ki + 1)) k i 2 O, (1.4) 
i=l 

so that the variable part E, = (S) 0(ki + 1) of the Hodge bundle is 
positive. By tensoring (1.3) with 0((-2) and taking cohomology, using 
HI'(P, 0((-2)) _ C we deduce the isomorphism 

HO(P', E & 0((-2)) = H0(Qs2) (1.5) 
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a fact which may be seen directly as follows: Each holomorphic 2-form 
w on S may be uniquely written 

w = p(t) A dt, 

where easy local considerations show that po(t) E HO(wct). Since dt has 
a pole of order 2 at t = oo we infer that p(t) E HO(P', E 0 
vanishes to 2nd order there. 

We remark that the exact nature of the numbers ki in (1.4) has to 
do with the linear series I K - , 1 for A = 0, 1, . For example, from 

pg = Ski 

we see that the canonical series is empty exactly when all ki = 0. Simi- 
larly, if K - L I is empty then the ki are all either zero or one, and so 
(1.4) becomes 

E-O ((q) ) (9(1l)g-q-pg) ) (9(2)Pg, 

a situation which may always be achieved by choosing L sufficiently 
ample. 

b) To discuss how the topology of S is described by the Lefschetz 
pencil it is useful to take two points of view. One is intuitive as in the 
Borel tract [6] or in the beautiful exposition [9], and the other is by 
applying Morse theory and the Leray spectral sequence as in Andreotti- 
Frankel [1]. 

In either case some local analysis around the critical values is neces- 
sary, and for this the essential points are the following: In the complex 
t-plane mark a non-critical reference point to and draw non-intersecting 
paths -ya from to to t,. Then there is for each a a vanishing cycle ba E 

Hi(Ct.) such that as t moves along 'ya the displaced cycle b6(t) on Ct 

shrinks to the double point as t - t,. The locus of 6a(t) along this path 
then gives a cone Aa E H2(5, Ct.) with aAa = bac. If -y E Hi (Ct.) is any 
other cycle and we displace -y along a closed loop turning once around 
ta, the change in -y is measured by the Picard-Lefschetz formula 

7' - 7/ + (7X, b") ba. (1.6) 

To give what intuitive remarks about topology we shall require we 
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recall that the primitive cohomology Hprim 2 (S, Q) is represented via 
Poincare duality (and ignoring torsion) by 2-cycles r E H2(S) such that 
the intersection cycle r * CFO = 0 in Ho(CtO). For t in the punctured 
t-plane P -{t1, ..., tN we locally write 

where yt E Hi(Ct, Ct n rt) is a path on C, which maps to r * Ct in 
Ho(Ct n rt). An obvious extension of (1.6) to the relative case gives that 
as t turns once around ta, 

'Yt - 'yt + Xa 6a 

where X) = (-yt, 6a) is an integer. Since yt is invariant when t transverses 
a sufficiently large circle (we assume that t = oo is not a critical value) 

S)Xa 6a = 0 in Hi(Ct0). (1.7) 

By virtue of this relation, the relative 2-cycle 

X, A Aa E H2(S, Cto) (1.8) 

is in the image of the mapping 

H2(S) - H2(S, Cto) 

and an easy argument shows that F is represented by the cycle (1.8). 
Summarizing, the primitive homology is given by cycles (1.8) satisfying 
(1.7) where the coefficients X. are determined by considering the vari- 
ation of a chain pyt with yt = r . Ct. 

We now describe the same situation in the Andreotti-Frankel ter- 
minology. By blowing up S at the base locus B = Cto * COO of the pencil 
we obtain the smooth surface X = U tEP Ct, which then admits an 
obvious fibering f:X - PI. The Leray spectral sequence for the con- 
stant sheaf Z degenerates at E2 (Andreotti-Frankel, loc. cit.), and the 
primitive part of H2 (S, Q) C H2 (X, Q) is easily seen to lie in the term 
E21 = H'(Pl, RAJ Z). 

Now then to describe H' (P', Rf1 Z) we choose the covering { Uo, Ui, 
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UN} of Pl where Uo = Pl - {tl, ..., tN} and UaY is an e-disc 
around ta. For this covering the 1-cocycles are just 

H HO(Ua*, Rfl Z), 

which we may think of as being given by an invariant 1-cycle in each 
punctured disc Ua*. For a primitive class given by (1.8) the corre- 
sponding Cech class is Ha {Xa* 6a}. Similarly, a class in Hprim?(B) is 
represented by a zero-cycle D of degree zero supported on the base 
locus. On each curve Ct we may write D = yt for some 1-chain ayt 
whose variation around t = tot leads again to a Cech cocycle in 
Ha HO(Ua*, Rf 1 Z). These two subspaces of H0(P1, Rf 1 Z) C H2(X, Z) 
are orthogonal under the cup product, and again modulo torsion there 
is a decomposition 

H1(P1 Rf1 Z) -Hprim0(B, Q) ) Hprim2(S, Q). (1.9) 

c) Having described the Hodge bundle and homology in our pencil 
Ct I we now turn to the family of Jacobians. In general, if C E IL I has 

only ordinary double points the (generalized) Jacobian variety J(C) is 
defined to be 

HO(wc)*/Hi(C*, Z) 

where C* = C-{ double points}, and where H1 (C*, Z) is embedded as 
a discrete subgroup of HO(Oc)* by integration. By elementary duality 
theory (or directly) 

J(C) H1'(O9c)/H'(C, Z). 

Returning to our pencil, it is easily verified that 

J = U J(Ct) 
tEP1 

forms naturally a complex manifold (c.f. Jambois [5]) such that J - Pl 
is an analytic fibre space of complex Lie groups. The crossy sections of 
this fibre space are by definition the group of normalfunctions. 
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The origin of the word "normal functions" may be explained this 
way. Given w E H0(Qc2(L)), as explained above in Section la) we obtain 
the holomorphic section 

w(t) = Res ( X ) E H?(wct) = E 

of the Hodge bundle. Since J(Ct) = Et*/(periods), we may view a 
normal function v as a multi-valued holomorphic linear function on Et 
for t E PI - {ti, .. ., tN} which has a suitable growth property (noted 
below) as t - ta. Suppose we let 

I(t) = (I>, c(t)> 

denote this function. Analytic continuation of v(t) around t = t, adds 
on a period 

Ir (t) = )YXa w(t) (1.10) 

where &,, E Hi (Ct, Z) is the vanishing cycle. In this way the sections of 
J - PI may be represented by suitable multi-valued analytic functions 
whose local monodromy has the form (1.10). 

Since analytic continuation around a suffi1ciently large circle leaves 
v(t) invariant, and since w was arbitrary, we infer that 

X2Xa6a=0 in Hi(Cto,Z). 

Thus, by the discussion centered around (1.7) and (1.8), to each normal 
function v we may assign the primitive cycle E,a X,a Aa E Hprim2(S, Q); 
this is called thefundamental class -qp of the normal function. 

Normal functions and their fundamental classes may also be de- 
scribed using the fibering f:X - Pl of the blown up surface X = 
U tEPW Ct. The basic observations are that 

Rfasasoc E* a.i1 1) 

is the sheaf of Lie algebras associated to the analytic fibre space J - pI1, 
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and that the sheaf of discrete subgroups is 

Rf'Z C Rf'O. 

In other words, denoting still by J the sheaf of holomorphic sections of 
the family of Jacobians, we have the exact sheaf sequence 

O -Rf IZ -Rfl I_ J - o. (1.12) 

To compute the cohomology sequence we refer to (1.4) to conclude that 

HO(P 1, Rf IO) _= HI (S, 0) 

It follows that, with the non-standard notation J(S) = H' (S, e)/H' (S, Z) 
for the Picard variety of S, the fixed part of the family {J(Ct)} is J(S) 
and the exact cohomology sequence of (1.12) leads to a commutative 
diagram 

O - J(S) - H?(P', J) - H'(P', RfZ) - H'(P', Rf'O)- (1. 13) 

Hprim2(S, Q) - H2(OS). 

Here the vertical map a is given by the Leray spectral sequence according 
to (1.9) and the composition ca6(v) = rj gives the fundamental class 
of v, as may be verified using the Cech covering described above. As 
for the vertical map 1, from (1.5) and (1.11) 

HI (P l, Rf' O) HI (P l, E*) 

HO(P', E 0 (9(-2))* 

HO (Us2)* 

H H2(OS), 

where we have used Serre duality twice. This allows us to derive the 
basic result, due to Lefschetz, characterizing the fundamental classes 
of normal functions: 
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A class E7 Hprim2(S, Z) is the fundamental class of a normal func- 
tion if, and only if, 7 is of Hodge type (1, 1). (1.14) 

To prove this result we need only show that the mapping Hprim2(S, Q)- 
H02(S) in (1.13) is that given by the Hodge decomposition, and then 
the theorem follows by exactness of the cohomology sequence. This veri- 
fication is "just" a commutativity check. 

Actually, it is quite instructive to give the classical global argument, 
for which the basic formula is the following: If v is a normal function 
with fundamental class E. X) Aa, and if w(t) = Res (w/so - ts) is a 
holomorphic section of the Hodge bundle, then we claim that 

v(t) = A (1.15) 
a 1 2 -x V to t-s 

where 7rds) is the period (1.10) of w(s) over the vanishing cycle b. 

Proof. On the complex t-sphere minus the cuts -y. from to to tc we 
may view the normal function v(t) as being a single-valued holomorphic 
function having the following properties: 

i) near the critical point to the difference 

v(t) 2 -1 7r(t) log (t- ta) 

is holomorphic and single-valued (thus v(t) has the jump Xa xo(t) 
across the cut -y.), and 

ii) vI(t) vanishes to the same order k + 1 (k 2 0) at t = oo as the 
section w(t) of E - Pl. 

On the other hand, suppose we consider the potential-theoretic 
integral on the right hand side of (1.15). This integral has the jump 

X. Ira (t) across -y., and the difference 

Xa 'ira(s) ds _ 
i7r,(t) log (t - t) 

27 _-1 ito s 2-r -,v-1 

is single-valued and holomorphic at t = ta. Moreover, using (1.7) which 

implies that a X)alra(t) - 0, the integral is single-valued outside a 
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large circle. To examine its behavior near infinity we set t' = lit and 
write it as 

ta (rc (s /I 1 ' ) ds16 
to 

It follows that the difference of v(t) and the integral is single-valued 
and holomorphic on the t-sphere and vanishes at t = oo, which then 
establishes (1.15). 

Now (1.14) is an immediate consequence. Using (1.16) we have 
near t = oo 

v(t) = - " (s 7r(s) ds) t + (1.17) 
1=0 =1 2 -x l to 

If w(t) vanishes to order k + 1 at infinity the same must be true of v(t), 
and therefore if k 2 1 

0 == 2 7r 1r(s) ds I (1.18) 
a=1 2r -1 t Jr 

where r = La Xa A,a is the fundamental class of v and sp = w(t) A dt E 
H0(Qs2) (c.f. (1.15)). This exactly says that r has Hodge type (1, 1). 

Conversely, if r = sc X, Aa is any primitive cycle on S so that (1.7) 
is satisfied, then we may define a section of J - PI outside of t = 00 by 
the formula (1.15). The conditions that this section extend across t = oo 
are exactly that r be orthogonal to H0(Qs2), and this establishes (1.14). 

d) We now take up the interplay between normal functions and 
the algebraic curves on S. If Z is a primitive algebraic 1-cycle (=divisor 
in this case) on S, then each intersection 

Zt = Z * Ct = N pi(t) - qi(t) 

is a divisor of degree zero on the curve Ct, and so represents a point 
vz(t) E J(Ct). Thinking of normal functions as multivalued sections of 
the Hodge bundle, the definition of vz(t) is given by the usual abelian 
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sum 

pi(t) 

vz(t) = @(t) (1.19) 
qi(t) 

where w (t) is any local holomorphic section of E Pl. This formula 
makes sense provided that Z does not pass through any of the double 
points of the singular Cta, a circumstance which may always be achieved 
by moving Z in its linear equivalence class and noting that by Abel's 
theorem the abelian sum (1.19) remains invariant. 

We denote by vz the normal function associated to the cycle Z. 
The basic topological property of the map {divisors} - {normal func- 
tions} is 

Thefundamental class of vz is equal 
to thefundamental class of Z. (1.20) 

Indeed, write Zt = 3t for a 1-chain eyt so that (1.19) becomes 

vz(t) = (t), 
'Yt 

and then as t turns around t, the analytic continuation 

vz(t) V vz(t) + wa co(t) 

is exactly reflected by the transformation 

t- et + Xa 6a 

Consequently, both fundamental classes are represented by the cycle 
Ea xc Aa. 

The main existence theorem, which is due to Poincare, states: 

Every normalfunction is of the form vzfor some algebraic cycle. (1.21) 

When combined with (1.14) and (1.20) we obtain Lefschetz's original 
proof of his famous (1, 1) theorem. 
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The existence theorem (1.21) amounts to the Jacobi inversion 
theorem with dependence on parameters. Namely, select one of the base 
points p of the pencil j Ct as a base point (different use of the word) 
on each Riemann surface Ct. If for generic t the point i(t) E J(Ct) is 
not in the translate of the theta divisor by -gp, then as w varies over 
HO(PI, E) the equations 

M it) 
v(t) = S @(t) (1.22) 

will have a unique solution 

g 

Dt iSl pi(t). 

This divisor obviously varies holomorphically with t, and at points where 
either t = ta is a critical value or else v(t) E J(Ct) becomes a special divisor 
easy arguments show that Dt remains uniquely determined. In this way we 
have traced out an algebraic curve D = U Dt on S, which provides the 
essential step in the proof of (1.21) in this case. 

In the situation where the equations (1.22) do not determine a 
unique Dt for a generic t, we will have dim IDt D = r > 0. Then by 
imposing r independent base point conditions at p we generically deter- 
mine a unique Dt, and the argument proceeds as before. 

In concluding this discussion we note that if we vary the normal 
function by the image of the fixed part 

J(S) - H?(PI, J) 

in (1.13), we may construct a family of linearly inequivalent curves 
parametrized by the Picard variety of S. This was the first complete 
proof of this existence theorem and provided the original motivation 
for the introduction of normal functions. 

e) Now, as indicated in the introduction and will be explained 
more fully below, the formal aspects of the above discussion carry over 
to higher dimensions with intermediate Jacobians replacing Jacobians. 
In particular, the analogue of Lefschetz's characterization (1.14) of the 
fundamental classes goes through (c.f. Section 2b)), but the funda- 
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mental existence theorem (1.21) does not generalize due to the failure 
of the inversion theorem for intermediate Jacobians. This suggests that 
we re-examine the normal functions for curves on a surface having in 
mind the following general philosophy: In higher dimensions a particular 
Hodge structure will in general not arise from a geometric situation, but 
a non-trivial global variation of Hodge structure should come from 
algebraic geometry. Now we are not able to reprove the existence theorem 
without using Jacobi inversion, but we are able to show by suitable 
differentiation that, in a certain sense, knowing the normal function 
vz allows us to determine the equations of Z. 

Our discussion of this will be facilitated by introducing some classi- 
cal notation. We imagine S as being generically projected into P3 having 
there an affine equation 

f(x, y, z) = 0 

where f is a polynomial of degree d, and where the Lefschetz pencil is 
given by the plane sections y = t. If D is the double curve of S, then it 
is well known that by residues 

Q5s2 O(d - 4)(-D) 

and consequently QS2 (L)_ O(d - 3)(-D). Sections in H0(US2 (L)) are 
then given by polynomials p(x, y, z) of degree d - 3 passing through 
the double curve (adjoint conditions), and the corresponding section of 
the Hodge bundle is 

@(t) = Res (Res (x(y,Yz) dxA dyA dy)) 

p(x, t, z) dx (1.23) 
af (123 
az(x, t, z) 

Recall that a normal function is given by a multi-valued holo- 
morphic function v(t) on P - {tI, .. ., tWj which has certain prescribed 
behavior at the critical values t = ta and at t = oo, and whose indeter- 
minacy is given by period 
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7r(t) = Eo(t), 8 E Hl(Ct, Z). (1.24) 

Now it is well-known that these periods satisfy a linear differential 
equation (Picard-Fuchs equation) 

dk 7r(t) 
P(t, d/dt)7r(t) = 

- 
rk(t) ) = (1.25) 

k (dt) 

with rational functions rk(t) as coefficients, and it is suggested that we 
apply the Picard-Fuchs operator P(t, d/dt) to the normal function v(t) 
to obtain a single-valued rational function r(t) which should then reflect 
properties of v. 

More precisely, we denote by D the Gauss-Manin connection for 
the cohomology bundle H = Ut,,t HDRI (Ct) over P1 - {tl, ..., tNv}. 

Its characteristic property is that we can differentiate under the integral 

d Dco(t) 
dt | <(t) = L dt (1.26) 

In fact in our case we may take 

Dw(t) a_(t) 

dt at 

-a /p(x, t, z) dx 

at V af t Z) 

to be the result of formally differentiating w(t). What is important here 
is that Dw(t)/dt is a rational 1-form of the 2nd kind on Ct whose co- 
homology class in HDR1 (Ct) is well defined. If the genus of Ct is g then 
the classes 

Dw(t) D2___(t) 
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will be dependent in HDR'(Ct), and so if they generically span a sub- 
space of dimension 1 there will be a minimal linear relation on Ct 

rk- (D(t ) k (t), (1.27) 

where s? is the restriction of a rational function on S and the rk(t) are 
rational functions of t. It is clear that by using (1.26) the relation (1.27) 
implies the differential equation (1.25). 

In order to simplify the following discussion we will assume that 
the irregularity q(S) = 0 (the general case will be taken up in Section 2 
below). Then there is no fixed part to the family of Jacobians J(Ct), and 
according to Lefschetz [6] the global monodromy group acting on 
H1(Ctr) is irreducible (in general, it is irreducible on the variable part 
of the cohomology). It follows that the order 1 of the equation (1.25) 
is 2g, since the classes {co, Dw(t)/dt, D 2w(t)/dt2, * } span an in- 
variant subspace of HDR' (Ct) which must then be all of this group. The 
general solution to (1.25) is then of the form 

2g ( 
E cj co(t), ci E C, (1.28) 

J=1 

when bi, ..., 62g give a basis for HI (Ct). 
Now to each normal function v(t) we associate the rational function 

P(t, d/dt)v(t). A basic result is Manin's theorem [7]: The kernel of the 
mapping 

v(t) - P(t, d/dt)v(t) (1.29) 

consists exactly of the torsion elements in the group of normalfunctions. 

Proof. If the right-hand side of (1.29) is zero then v(t) has the 
local form (1.28). By analytic continuation around the critical value 
t = tcr we infer that 

X" w(t) = S c,G5j, 6a) w(t), (1.30) 

where the Xa are the coefficients in the fundamental class E ), Aa of v. 
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By differentiation we deduce that (1.30) holds for any class in HI (Ct); i.e. 

Scj(bj,6a) X= EZ 

for all al. Since the global monodromy group is irreducible, the 2g X N 
matrix (b8, 68y) has maximal rank 2g. It follows that the bj are rational 
numbers, and hence that some multiple mv = 0. Q.E.D. 

f) By virtue of (1.29) we may ask if additional information may 
be obtained by further differentiation, and our main result (Theorem 
1.36) will be that this is indeed the case. 

As a preliminary to stating this theorem we need to observe that 
for the pair consisting of a smooth manifold N and submanifold S the 
relative de Rham cohomology H*(N, S) may be computed from the 
complex of differential forms s? on N such that s? I s 3 0. In case N is 
a smooth algebraic variety and S an algebraic subvariety we may simi- 
larly define the algebraic de Rham hypercohomology and extend Groth- 
endieck's algebraic de Rham theorem to this situation. 

Returning to our consideration of curves on a surface, for an arbi- 
trary integer k > 0 we let E E I kL I and assume for the moment that 
E does not have multiple components, so that a Et = E* Ct is smooth 
for t in a Zariski open set U C Pl. Given a section wc(t) E HO(coct) of the 
Hodge bundle as above, we may consider the relative class w(t) E 
HDR' (Ct, Et). Denoting by DE the Gauss-Manin connection for the 
relative cohomology bundle UtEU HDR' (Ct, Et), exactly as in the pre- 
ceding discussion there will be a Picard-Fuchs operator 

/ 
~~dk 

P(t, d/dt, E) = E rk (t E) )k (1.31) 
k=O (dtjk(.1 

corresponding to a minimal relation 

/ DE kW(t) 

E2rk(t,E) -= 0 
k=O (dt) k 

in HDRI (Ct, Et). It is also the case that the coefficients rk(t, E) are 
rational functions of t E P1 and of E E I kL j, at least provided we nor- 
malize by requiring ri(t, E) = 1. 
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We will now show: For generic E and co(t), the equation (1.31) has 
the maximal possible rank 

1 = 2g + kd-1 (1.32) 

where d = cl2(L) is the degree of L. 

Proof. We consider the exact homology sequence 

0 -H (C - Hi (Ct, Et) - Ho(Et) - Z - 0. 

The kernel of Ho(Et) - Z corresponds to zero cycles of degree zero 
supported on Et, and so the global monodromy group operating here 
is irreducible provided that the curve E is irreducible (it is essentially 
the Galois group of the branched covering E P pl). Consequently, the 
global monodromy group acting on H (Ct, Et) preserves the subspace 
H1 (Ct) and acts irreducibly on this subspace and on the quotient space. 
If the span of {co(t), DEW(t)/dt, *..} fails to be all of HDR1(Ct, Et), 
then writing 

kd 

Et =E pi(t) 

and recalling that p E Ct denotes a basepoint, we will have in a small 
t-disc 

Pi(t) 
O = ci cot + co(t) (1.33) 

where -y is a constant linear combination of cycles in Hi (Ct). By analytic 
continuation of this equation around a branch point of E P p1 where, 
e.g., pi andp2 come together and interchange, we deduce that 

P2(t) 

(C1 - C2) co(t) = 0. 
l1(t) 

Since co(t) is assumed generic this implies that ci = C2. Continuing in 
this way we infer from the irreducibility of E that all ci are equal, and 
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so (1.33) becomes 

o = c (s A @(t)) + co(t). 

By analytic continuation of this equation around the critical points 
t = tc we deduce that (^y, &r) = 0 for all vanishing cycles 6a, and hence 
-y =O. Q.E.D. 

We remark that, just as for ordinary polynomials, the operator 
P(t, d/dt, E) may become reducible for special E E I kL I. What is 
important for our purposes is the observation that if under a special- 
ization E -Eo the coefficients rk(t, E) specialize to rational functions 
rk(t, Eo) which are not identically infinite, then the solutions to the 
O.D.E. P(t, d/dt, Eo)7r(t) = 0 are obtained by specializing solutions of 
P(t, d/dt, E)7r(t) = 0, and hence are constant linear combinations of 
periods of w(t) over cycles in H1 (C,, Eo,). 

Now suppose that Z is a primitive algebraic cycle on S with cor- 
responding normal function vz. If we want, by a linear equivalence we 
may think of Z as the difference of two smooth curves. Then for any 
Eo E I kL I passing through Z and for which P(t, d/dt, Eo) exists as a 
specialization-which will be the case for generic Eo E I kL I containing 
Z provided that k is sufficiently large-the normal function vz satisfies 
the relative Picard-Fuchs equation 

P(t, d/dt, Eo)vz(t) = 0. (1.34) 

Conversely, suppose that a given normal function v(t) satisfies 
(1.34) for some Eo. Then by our remark about the solutions to (1.34) 

v(t) w(t)= 

where -y is a constant linear combination of cycles in HI (C,, Eo,). By 
considering the monodromy around the critical values t = t., we deduce 
that 

(y, at) = At E Z 

for all ce, and then E. X., Aa E H2(S, C,t) gives the fundamental class 
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rv of the normal function, which is consequently in the image of 

H2(Eo, Q) - H2(S, Q) (1.35) 

since the locus of the 1-chain -y(t) in the slit plane will give a 3-chain r 
with alr - X. Aa modulo Eo. 

Summarizing, we have established the following: 

THEOREM. For a given normal function v and each divisor E E 
kL I we consider the equation 

P(t, d/dt, E)v(t) = 0. (1.36) 

Thinking of E as variable, those divisors for which P(t, d/dt, E) is de- 
fined and (1.36) is satisfied are exactly the divisors for which the funda- 
mental class q, is in the image of the mapping (1.35). 

2. Discussion of the Theorem in Higher Dimensions. 

a) We want to extend the result just given to higher dimensional 
varieties. For reasons stemming from the Lefschetz hyperplane theorem 
and Hard Lefschetz Theorem the crucial case is the middle dimension - 

i.e., we consider primitive algebraic n-cycles Z on a smooth projective 
variety M of complex dimension 2n. As in the case n = 1 of curves on 
a surface we assume given a very ample line bundle L - M and Lefschetz 
pencil I V, I selected from the complete linear system IL 1. The critical 
values t = ti, ..., tN correspond to Vt,c having acquired one ordinary 
double point. As t- t there will be a vanishing cycle &, E H2n-1 (Vt), 
and the Picard-Lefschetz transformation on H2n-1 (Vt) as t turns around 
tcr is 

-Y - z-Y ? (-Y, 6") ba. (2.1) 

Marking a path from a fixed point to to t. the locus of the vanishing 
cycles 6a along this path traces out the relative cycle Aa E H2m(M, VO). 
Ignoring questions of torsion the primitive part of H2n (M, Q) is exactly 

1c.f. the discussion in [6] reducing the Lefschetz (1, 1) theorem in general to the 
case of curves on a surface. 
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represented by relative cycles 
- 

X.A, satisfying Ea )\a & = 0 in 
H2n-I(Vo). In fact the topological discussion in the case n = 1 (c.f. 
Section lb)) goes over pretty much verbatim, the only real differences 
occurring between odd and even dimensions. Thus a primitive algebraic 
n-cycle Z on M satisfies either of the equivalent conditions: Z * Vt = 0 in 
H2n-2(Vt; Q); or, in cohomology, the fundamental class rz maps to zero 
under the restriction mapping H-'(M, Q) H H-n (Vt, Q). Given such a 
primitive algebraic n-cycle Z, its corresponding relative cycle E. XaAa 
is obtained by writing 

Zt = Z vt = et 

when yt E H2n-I (Vt, Zt). As t turns around the critical value t., by an 
obvious extension of (2.1) we have 

-yt 
- /t ? Xa ba. 

Then it is proved as before that these X. are the coefficients in the rela- 
tive cycle corresponding to Z. 

Before taking up normal functions we must discuss a little Hodge 
theory. For a smoothw projective variety V we denote by Hm(V) the com- 
plex cohomology and recall the Hodge decomposition 

Hm(V) = i Hpq(V), 
P+q=m 

qHP(V) = HqP(V). 

It will be convenient to consider also the Hodge filtration defined by 

FkHm(V) = 0D HPm(-P(V). 
p-k 

We may think of H( V) as either de Rham cohomology or Cech co- 
homology for the constant sheaf C. In each of these cases the Hodge 
filtration has a useful description which we shall now recall. Denoting 
byAP q(V) the smooth (p, q) forms on V, byFkAm(V) = EDp-kAP'?'-P(V) 

the Hodge filtration on forms, by Z(FkAm(V)) the d-closed forms, and 
finally by ?vk the sheaf of closed holomorphic k-forms on V we have 
the following (c.f. [3]): 
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There are natural isomorphisms 

Z(FkA n(V))/d(FkAm-l (V)) Hn-k(V, O2Vk) (2.2) 

FkH"'(V) 

Now suppose that V has dimension 2n - 1. Setting 

H+(V) = FnH2n-1(V), and 

H-(V) = H2n-I(V)IH+(V) 
- _ H+(V)* 

the intermediate Jacobian2 is defined to be 

J(V) = H-(V)/H2n-'(V, Z) 

H+(V)*IH2n-l (V, Z) 

where the second isomorphism results from duality. Thus, a point v E 
J(V) is given by a linear function on H+(V) taken modulo those linear 
functions arising by integration over cycles, which are called periods. 
Each algebraic (n - 1)-cycle Z C V which is homologous to zero de- 
fines a point vz in J(V) by the linear function 

(-ti (2.3) 

where -y is a real (2n - 1) chain with dy = Z and 

w> E z (FnA 2n -1 (V))/d (FnA 2n -2 (V)) =_ H +( V) 

using (2.2). It is straightforward to verify that (2.3) is independent 
modulo periods of the choice of -y and of the choice of form representing 
a class in H+(V), and so represents a well-defined point in J(V). When 
n = 1 we just have the familiar mapping from divisors of degree zero 
to the Jacobian variety of a curve. 

2We shall only be concerned with the intermediate Jacobian in the middle dimension. 
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Some properties of the mapping (2.3) which are more or less im- 
mediate from the definition are these: 

i) vz varies holomorphically with Z; 
ii) consequently, v maps rationally equivalent cycles to the same 

point, and we are free to utilize the moving lemma to put cycles 
in general position; and 

iii) if the Hodge decomposition is skew to the rational cohomology 
in the sense that 

H2-'(V, Q) n (H -'(V) i) H -M'(V)) = (0), (2.4) 

then v maps algebraically equivalent cycles to the same point. 

The next properties have to do with a holomorphic family { Vt} tEB of 
smooth Vt's. We denote by H - B the cohomology bundle with Gauss- 
Manin connection D; thus 

H = U H2n-'(Vt) 
tEB 

and the equation D-yt = 0 defines the local condition that cycles zt E 
H2'-I(Vt) be displaced from a fixed cycle -Yto by diffeomorphisms Vt0- 
Vt. We recall that the 

FkH = U FkH2n-1(Vt) 
tEB 

give holomorphic sub-bundles and D(FkH) C OB' (Fk-l H). The relevant 
properties of (2.3) with dependence on parameters are these: 

iv) the intermediate Jacobians J(Vt) vary holomorphically with t, 
and J = U tEB J(Vt) forms in a natural way an analytic fibre 
space of complex tori over B; 

v) if Zt C Vt is an algebraic (n - 1)-cycle which varies holo- 
morphically with t and which is homologous to zero, then vZt E 
J(Vt) varies holomorphically with t; and finally 

vi) the section vz of the fibre space J -B defined by vz(t) = VZt 
as in v) just above is quasi-horizontal in the sense that 

Dvz = 0 (2.5) 



116 PHILLIP A. GRIFFITHS 

where 

D:((J) _M -(F"+'H) 

is the mapping induced from the Gauss-Manin connection 
(c.f. [3]). 

Our last properties have to do with the behavior of J(Vt) 
as t approaches a critical value t = t, in the Lefschetz pencil 
IVtI onM, andthey are: 

vii) there is naturally defined a generalized intermediate Jacobian 
J(Vta) (whose precise properties will be recalled as needed 
below) such that 

J= U J(Vt) 
tEP1 

forms naturally a fibre space of complex Lie groups over P1 
extending the previously defined family over P -{t, .. ., tN; 

and 
(viii) given a primitive algebraic n-cycle Z on M with Zt = Z* Vt, 

the cross-section vz(t) E J(V,) defined for t ? ti, . . ., tN by v) 
above extends across the critical values to give a quasi-hori- 
zontal section of J- P. 

Definition. The normalfunctions associated to the Lefschetz pencil 
Vt I are the quasi-horizontal holomorphic cross-sections of J -_ PI. 

Intuitively we may view a normal function v as follows: First we 
define the Hodge bundle 

E = U To(J(Vt))* 
tEP1 

to be the bundle of dual spaces to the Lie algebras of the J(Vt); note 
that for t not a critical value the fibre 

Et =_ FnH2n- l Vt); 

the remaining fibres Et,, will be identified below. If w(t) is any mero- 
morphic section of the Hodge bundle E P pI, then considering v as a 
multi-valued section of E* we obtain a multi-valued meromorphic 
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function 

(v, co(t)> (2.6) 

on PI -{t, ..., tN}. Under analytic continuation around t = t. this 

function changes by adding on a period X.a a, c(t) where &. is the 
vanishing cycle. Assuming that t = co is not a critical value, as t de- 
scribes a circle ItI = r of sufficiently large radius the function (2.6) 
analytically continues back to itself, and consequently 

N 

Xa j w(t) = 0 

for all co(t). It follows that 

N 

E X,ba = 0 inH2 -I(Vt0) 
U=1 

and therefore E. Xa Aa E H2.(M, Vto) defines a primitive class ?ip E 

Hprim2 (M, Q), which we shall call the fundamental class of the normal 
function v. 

In more precise terms, if we let 

X= U Vt 
tEP' 

be obtained by blowing up the base locus B = Vto V.O of the pencil, 
then X fl PI is an analytic fibre space and it is a consequence of 
Lefschetz theory that (c.f. [1] and (1.9)) 

HI(PI, R?2n-'Z) 0 Q _ Hprm2(M, Q) ( Hprm22(B Q). (2.7) 

On the other hand there is an exact sheaf sequence 

0 - Rf2n-Z - E*-J- 0, 

of which a piece of the cohomology sequence is 

H0(P1, J) 6 H'(P1, Rj2"'Z)- H'(P', E*). (2.8) 
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The normal function v gives a section in HO(P1, J), and the fundamental 
class 71p is just the projection of b(v) in Hprim2n(M, Q) using (2.7). That 
these descriptions agree is accomplished by computing H1(P1, Rf2n-1Z) 

from the covering { Uo, U1, ..., UN} of PI where Uo = Pl -{t i, 
tN} and Ua! is a small disc around ta, just as was done above (1.9). 

Of course if the normal function v arises from a primitive algebraic 
cycle Z on M then their fundamental classes are the same; this follows 
from the above discussion. In particular 

77v E Hnn(M) n Hprim2n(MI Q). 

Conversely, it was proved by Zucker [10] that: 

A cohomology class 71 E Hprim2n (M, Q) is the fundamental class of a 
normalfunction if and only if it has Hodge type (n, n). (2.9) 

This result had been previously established by Spencer Bloch and the 
author for sufficiently ample Lefschetz pencils, and we shall give this 
argument in the next section as a preliminary to discussing Picard-Fuchs 
equations. 

The upshot is that we have a complete generalization of the Lefschetz 
part of the classical theory of normal functions, but of course what is 
missing in Poincare's existence theorem. Now the existence theorem 
would undoubtedly follow from the Jacobi inversion theorem for the 
J(Vt)'s (c.f. [11]), but it is well known that for n > 1 this result is false. 
In fact, assuming for simplicity of notation that H2n-1(M) = 0 (e.g., 
take M C P2n+1 to be a smooth hypersurface), by taking I Vt I from a 
sufficiently ample linear system we may assume that h2n-1'0(Vt,) ? 0. 
Recalling that the global monodromy action of 7r I(PI - {tI, ..., tN}) 

on H2,-1(Vto, Q) is irreducible, it follows that (2.4) is satisfied for 
generic t, since otherwise the left-hand side would give an invariant 
subspace. Therefore the group of invertible points on a generic J(Vt) is a 
countable subgroup, one which will however be infinite provided that 
there is a primitive algebraic n-cycle Z on M with 71z ? 0 in H2n(M, Q). 
In a sense the basic difficulty here is that for higher weight not all 
Hodge structures come from geometry, even in the broadest motiv- 
theoretic sense. However, since a non-trivial variation of Hodge structure 
is in general supposed to come from geometry, and in fact since it seems 
that the family of determinantal varieties constructed from the differen- 



NORMAL FUNCTIONS ASSOCIATED TO ALGEBRAIC CYCLES 119 

tial of the variation of Hodge structure obtained by looking at the linear 
maps of different ranks must be non-trivial, what is suggested is that 
we investigate further the infinitesimal properties of normal functions. 

b) Before taking up Picard-Fuchs equations it will be useful to 
analyze the Hodge bundle E - Pl. We recall (c.f. Schmid [8]) that the 
general fibre is Et = H+(Vt), and those sections of E defined in a punc- 
tured disc 0 < It - t, I < c around the critical value t, and which 
extend are defined by the growth condition 

co (t) = 0(-log It - tal). (2.10) 

In order to isolate the essential points we shall consider the case where 
dim M = 4 and the line bundle L - M is chosen sufficiently ample to 
insure that 

HP(M, UMq(kL)) = 0 for p, k > 0. (2.11) 

Along the way we shall then simply state the general conclusions which 
may be drawn from similar arguments (for details, c.f. Zucker's paper 
[10]). 

To begin, by the Lefschetz hyperplane theorem we may consider 
H3(M) as a subgroup of H3(Vt) (t ? ti, ..., tN), and in fact we may 
write 

H3(Vt) = H3(M) (? Hvar3( Vt) 3 (2.12) 

where H3(M) represents the fixed part of the variation of Hodge struc- 
ture defined by the {FkH3(Vt)}, and where Hvar3(Vt) is the orthogonal 
complement of this fixed part relative to the cup product on H3(Vt). We 
shall represent Hvar3( Vt) by residues of meromorphic forms on M having 
poles along Vt and where the filtration by order of pole corresponds to 
the Hodge filtration, and then it will be easy to see how this represen- 
tation varies with t. 

Suppose then that V E IL I is a smooth divisor, denote by QMP(kV) 
the sheaf on M of meromorphic p-forms having a pole of order <5k 

3his decomposition is defined on rational cohomology. 
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along V and by QMP(kV) the subsheaf of closed forms. We claim then 
that there are a pair of exact sequences4 

0 - QM4 f2M4(V) - __Qv3 0 ? (2.13) 

ro QM3(V) ~ M(V) - QM4(2V) - 0 
(2.14) 

LO ~ QM3 - QM3(V)_Ee_s_V2 . 0 

(recall that Q4 = Q since dim M = 4), where in both cases "Res" is 
the Poincare residue operator. 

Proof. In local coordinates x, y I, y2, y3 where V is given by x = 0, 
a section of QM4(2V) is 

f (x, y) dx A dyi A dy2 A dy3 

Setting 

f(x, y) dyl A dy2 A dy3 g (x, y) dxc A dy2 A dy3 
x x 

we will have dp = f provided that af/ax = ag/lay, and this implies 
the surjectivity of d in (2.14). The Poincare residues are defined by 
showing that a section 7 of Q2MP(V) has the local form 

dx 
r7 = aA - + r 

x 

where a and r are holomorphic forms, and then setting Res - = a I V. 

It is well-known that this procedure is well-defined and takes closed 
forms into closed forms.5 

4 When dim V = 2n - 1 there are n such sequences. 
5What is actually going on here is that Q2Mk(V) are the closed forms in the log com- 

plex QMP(log V), and the Poincare residue Res:QMP(log V) - QvP-1 is defined and 
commutes with d. 
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Using 2.2 and (2.11) the exact cohomology sequences of (2.13) and 
(2.14) give commutative diagrams 

o - H4,0(M) - H0(QM4( V)) -Re' H3'0(V) - H4"1(M) _ 0 

l 71/ (2.13a) 

H3'0(M) 

H0(QM3(V)) - H0(QM4(2V)) - H'(QM3(V)) - 0 

2) H1(QM3) _ 
H1(QM3(V))-- -RHe(Q2) -H2(QM3) (2.14a) 

HO(QM2) H1(QM22) 

where -q E H'(QMl) represents cl(L). By the Hard Lefschetz Theorem 
the -q in (2.13a) and the - on the right in (2.14a) are isomorphisms, so 
that by (2.2) and (2.12) 

fRes H0(f2M4(V)) = F3Hvar3(V) 

Res H'(QM3(V)) = F2Hvar3(V). 

Combining these identifications with the definition of primitive classes 
we obtain from (2.13a) and (2.14a) the sequences 

O- F4Hprjm4(M) H0(QM4(L)) -F3Hvar 3(V) 0 (2.13b) 

- F3Hprim H(M)lH'(M3(V))-F2Hvar3(V) 0 (2.14b) 

q ~~~~~~~~~~~~~~~~~~~11 
H0(f2M4(2L))/dH0(QM3(L)) 

We now think of V as varying in the pencil I Vt j. The Hodge bundle 
decomposes 

E = Ef i) E, 
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into a fixed and variable part. By (2.12) 

Ef = 2H3(M), 

while for t ti, ...,tN 

(E)t= F2Hvar3(Vt) 

= F3Hprim 4(M) \ (H0(Q M4(2L))/dH0(UM3(L))) (2.15) 

by (2.14b). In fact, the isomorphism (2.15) also holds for the critical 
values t = t,: If co E H0(UM4(2L)) gives a form with a double pole along 
Vt,af, then the formula 

lim Res w = C t w(pc- (2.16) t tct Ja(t) 

is valid and defines the point residue of X (c.f. [4]), where here pa! de- 
notes the double point of Vtce. If Vtc. - Vtk, is the canonical desingular- 
ization, then this point residue is the obstruction to c inducing a class 
Res c E F2H3(Vt,). In general Res c gives a differential of the 3rd kind 
on V,,L, and its residues there are just ? C te w(pce). The situation is 
in fact completely analogous to curves acquiring double points. 

Concerning the growth estimate (2.10), suppose that M has dimen- 
sion 2n and w E H0(QM2n(kL)). Then according to [10] 

Res w = O(- It In-k log It 1), 

so that for k < n - 2 we may write 

lim FkH2n-l (Vt) = FkH2nl- (Vt), t-tcl 

while for k = n - 1 this is only true on that part of FkH2n-l(Vt) having 
zero residue in the above sense. In particular, 

h2nllkk(Vt7) = h2nkk (Vt), k < n - 2 

n,n-1(Vta) = hnn-l(Vt)-1 
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In all these cases the canonical extensions of the Hodge bundles is given 
by taking residues of forms in H0(QM2n(kL)). 

Now using the above notation Ev for the variable part of the Hodge 
bundle and letting E 3,0 C Ev be the part corresponding to F3Hvar3(Vt), 
the sequences (2.13b) and (2.14b) globalize to 

0 - F4Hprim4(M) -. H0(QM4(L)) 0 (9(2) -E 30 0 (2.13c) 

O F3Hprim4 (M) 5 - Ev-O 
(2.14c) 

o- H0(QM3(L)) 0 (1) - HO(QM4(2L)) 0 (2) -. -. 0 

For example, if c E HO (QM4(2L) and if so and s0O E1 H?(M, L) are sec- 
tions defining VO and VO. respectively, then so + ts0o defines Vt and 
Co/(so + ts0.)2 E HO(QM4(2Vt)). Setting t = l/t' 

((s o t2) t Rest (t'so + S0.)2 ) 

and this defines the map HO(QM4(2L)) 0 (9 p(2) - Ev. We shall analyze 
the above two sequences individually. 

For the first we tensor with ( (-1) and Op (-2) and take cohomol- 
ogy sequences to obtain 

O(QM4(L)) =_ HH(P', EV 0& 0(-1)) 

H0(QM4) _ H0(P1, EV (0 0(-2)). 

The second isomorphism means that the top degree holomorphic dif- 
ferentials on M are uniquely of the form 

p= co(t) A dt 

where c(t) E H3,0(Vt) vanishes to 2nd order at t = co, generalizing a 
phenomenon we noted previously for curves on a surface. 

Coming to (2.14c) we again tensor with (9p1(-2) and take cohomol- 
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ogy to obtain 

fo H?(3(-2))-H0(P1, E (0 O(-2))- F3Hprim4(M-O 

0H(5 (-2)) =_ HO (QM4(2L)). 

The forms in HO(UM4(2L)) give differentials in H0(QM4(VO + VJ)) by 
the map c -. W/sos.. Taking double residues we obtain a holomorphic 
2-form on the base locus B. Consequently the above sequence may be 
rewritten as 

0 - F2Hvar2(B) - H0(P1, E ( 9 0(-2)) -F3Hprim4(M) 0. (2.15) 

We are now ready to sketch the proof of (2.9). Referring to (2.8) 
and (2.7) and using that H0(P1, E 0 (9(-2)) is dual to H1(P1, E*) we 
obtain from these together with (2.15) the diagram 

HO(PI J) - Hprim4(M Q) Hprim2(B Q) 

0 
I~~~~~~~~~~~~~~~~~~~~~~~~~ 

F3Hpri 4(M)* -Hprjm"2(M) 0S H prim o4(M) 

H1(P1, E*) (2.16) 

I 
F F2H2(B)* _ H0 2(B) 

What must be verified now is that the "obvious" maps in (2.16) render 
the diagram commutative. The obvious maps are just the projections 

Hprim4(M, Q) Hprim 193(M) (i HprM0'4(M) 

Hprim 2(B, Q) -H02(B) 

in the Hodge decompositions of cohomology. The proof of this is the 
same as the case n = 1 given above. Once this is done, ignoring ques- 
tions of torsion we will have found a section v E H0(P1, J) whose funda- 
mental class is a given element of Hprim4(M, Q) n H22(M). The dif- 
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ferential 

Dv E HO(Pl, Qpi I (E3,0*)) 

11 
H0(P1, E3,0* 0 (9(-2)) 

0 

by (2.13c). Thus the quasi-horizontality condition is automatically satis- 
fled for any v E HO(Pl, J), and this completes the proof of (2.9). 

c) The discussion in Section ld) and e) concerning Picard-Fuchs 
equations and their relative counterparts now carries directly over. In 
fact we can be quite explicit. Given X E H0(QM4(L)) we have a holo- 
morphically varying section 

(.o(t) = Res (~ 'S)E H3(V~)=H.(.7 ( ) (So + ts,, ) = (t H, (2.17) 

The Gauss-Manin connection is then given by 

dt Res ((0 + )2) 

Since the global monodromy action on the variable part of H3(Vt() is 
irreducible, we infer that for generic t 

C Dco(t) D 2CO(t).. 3V. span '() dt ' (dt)2 H 
var3( ) 

Recalling that dim Hvar3(Vto) = 2g is even, there will be a unique 
normalized O.D.E. 

2g dk7r(t) 
-, 

k-O (dt)k r2g(t)= (2.18) 

satisfied by the periods 7r(t) = w o(t) of w(t). We denote by P(t, d/dt) 
the differential operator on the left in (2.18). If v is any normal function 
viewed as a multi-valued holomorphic section of E*, then setting v(t) = 
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(v, W(t)> 

P(t, d/dt)v(t) = r(t) (2.19) 

is a rational function of t. Indeed, it is single-valued and has no essential 
singularity at the critical values. As before the kernel of the map 

v - P(t, d/dt)v 

consists exactly of the torsion elements in H0(P1, J)/J(M), where J(M) 
is the intermediate Jacobian of M viewed as the fixed part of the family 
{J(V)} . 

We may estimate the degree of the rational function r(t) as follows: 
The singularities of P(t, d/dt) occur at the critical values t = t" together 
possibly with the points where the DkCo(t)/(dt)k fail to span Hvar3(Vi). 
The latter are, however, only apparent singularities of v(t), while the 
former are regular singular points. Since around t.> the function v(t) has 
the form 

v(t) = (holomorphic function) + (period), 

it follows that r(t) has a pole of order c 2g at each t.,. Thus we obtain 
the bound: 

degr(t) < hvar1(Vto)>N (2.20) 

where N is the number of critical values in the pencil I Vt 1. Geomet- 
rically, N represents the degree of the hypersurface M* dual to M 
embedded in projective space by the complete linear system IL 1. 

If now E E I kL j is such that a generic Et E ln Vt is smooth 
(thus E may have isolated singularities), and if w(t) is given by (2.17), 
then w(t) E H3'0(Vt) restricts to zero as a form on Vt and so defines a 
relative class in HDR3(Vt, Et). Letting DE denote the Gauss-Manin 
connection for the relative cohomology bundle U HDR3(Vt, Et) there 
will be a minimal relation 

DE kW(t) 
P(t, d/dt, E)X(t) = S rk(t, E) (d)k = 0 (2.21) 

in HDR3(Vt, Et). As usual we normalize by taking r1(t, E) = 1. 
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THEOREM. For a given normal function v and each divisor E E 
I kL I we consider the equation 

P(t, d/dt, E)v(t) = 0. (2.22) 

Thinking of E as variable, those Eofor which the operator P(t, d/dt, Eo) 
is obtained by specialization from a generic E(6) and for which (2.22) is 
satisfied are exactly the divisors for which the fundamental class r * is in 
the image of 

H2n(EO, Q) - H2n(M, Q). (2.23) 

The proof of this result is, at this juncture, pretty much verbatim 
that for the special case of curves on a surface discussed in Section le) 
above. Rather than belabor the details it seems more interesting to offer 
some observations on the theorem vis a vis the problem of constructing 
algebraic cycles. 

According to (2.9), given a class ?7 E Hprim2"l(M, Q) n H'1""(M) there 
will be a normal function v whose fundamental class is 77. We then 
consider the mapping 

E - P(t, d/dt, E),(t), (2.24) 

and view it as a rational mapping 

|kL I _ pm(k) (2.25) 

where pm(k) is obtained by adding the hyperplane at infinity to the 
vector space of rational functions of some fixed degree d(k).7 We then 
claim that: 

The Hodge conjecture is true if and only if, for k sufficiently large 
the image of the rational mapping (2.24) passes through the origin 
in pm(k). (2.26) 

Proof. If Hodge is true, then 7 = 77z is the fundamental class of 
some algebraic cycle Z and (2.22) will be satisfied for those Eo E I kL I 

6 We will see below that this is not a serious qualifier. 
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which pass through Z. (Here, there is some problem about the special- 
ization question and this will be discussed below.) 

Conversely, we assume by induction that Hodge is true for smooth 
varieties of dimensions less that dim M. By the various Lefschetz theo- 
rems we then reduce to primitive cohomology in the middle dimension 
(c.f. Section 2a) above). Given ?7 E Hprim2n(M, Q) nf Hn(M) coming 
from a normal function v we infer that 77 is in the image of (2.23) for 
some divisor Eo. Now Eo must be singular (c.f. the following discus- 
sion), but by applying mixed Hodge theory [2] we may conclude that 
7 ultimately comes from (n, n) classes on smooth varieties of dimension 
less than dim M, and then by the induction assumption 77 will be alge- 
braic. Q.E.D. 

Now of course an obvious possibility would be to show that, for k 
sufficiently large, the rational mapping (2.25) is surjective. This could 
be done by counting dimensions and estimating the rank of the Jacobian 
matrix at a generic E. In fact the latter is not too difficult; a generic 
fibre is given by all E for which 

P(t, d/dt, E)v(t) = r(t, E) = r(t) 

is a fixed rational function. Differentiating this equation with respect 
to E we obtain a homogeneous equation satisfied by i(t), and the num- 
ber of these may be estimated. It is also possible to estimate m(k) by 
using the regularity theorem to estimate the degree of the rational func- 
tion r(t, E) in a manner similar to (2.20). When carried out my crude 
count showed that the dimensions on both sides of (2.25) grow like 

C -C kn + (lower order terms), 

but the coefficient of kn appears to be larger for the right-hand side of 
(2.25). This is probably correct since one does not expect to get off so 
easily. 

It is also quite instructive to think about the divisors Eo for which 
(2.22) might be satisfied. The basic observation is 

71f we write P(t, d/dt, E) in the form Sk [Pk(t, E)/qk(t, E)][dk/(dt)k] where the 
Pk and qk are polynomials, then as E specializes to Eo it may happen that some qk (t, Eo) 
-0. In this case under the mapping (2.24) Eo will go to the hyperplane at infinity. 
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If r7 ? 0 is in the image of the mapping (2.23), then Eo 
must be singular. (2.27) 

Indeed, the Lefschetz decomposition into primitive homology implies 
that the primitive cycles are exactly those which are not supported on 
a smooth divisor in the linear system I kL 1. 

Now, given this it none-the-less seems reasonable to hope that for 
sufficiently large k we may find an Eo with only ordinary double points 
which supports 77.8 This raises the question of just how allowing Eo to 
have double points might increase the rank of H2,, (E0), and this hap- 
pens as follows: Let A = Pi + ... + pa be the zero-cycle of double 
points on Eo and denote by , the ideal sheaf of A. We picture Eo as 
the limit of smooth divisors E, as t - 0. Then to each Pk there corre- 
sponds a vanishing cycle 6k(t) E H2,,1 (E,) which shrinks to the point 
Pk as t - 0. Suppose now that some linear combination 

E Xk 6k(t) = 0 in H2n-1(E,). (2.28) 

Writing Ek Xk 6k(t) = h(t) for a 2n-chain y(t) and letting t - 0 we 
obtain a cycle y = y(O) in H2,,(Eo). Conversely, any new cycle in 
H2n (E0) arises in this way. 

To put the condition (2.28) in algebro-geometric form we recall 
from Section 2b) above that, if E - Eo denotes the canonical desingu- 
larization, we have 

h2nl--k,k(-) = h2n-1-k,k(E), k < n - 2, 

while the expected value for h11, '1(E) is given by 

h" "-1(X) = h" I,1(E) - deg A. (2.29) 

Now, assuming for simplicity of notation that L has been replaced by kL 
so as to have Eo E IL I, the postulated equation (2.29) will be correct 
exactly when the zero-cycle A imposes independent conditions on the 
linear system [K + nLj. This follows from our discussion of point 

8This may be proved by writing Z as a difference of effective smooth subvarieties 
in the (rational equivalence ring) (0 Q. Many of the following observations were known 
to Spencer Block, and also to Herb Clemens in connection with his work on double solids. 
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residues centered around (2.16). The correct formula for the right-hand 
side of (2.29) is 

hIIII- I() = h'(E) - deg A + hI(,5,(K + nL)), (2.30) 

where the superabundance h' (q (K + nL)) exactly measures the failure 
of the points of A to impose independent conditions on I K + nL 1. 9 

All of this is very clear for curves on a surface. If M is a surface 
and Eo E IL I is an irreducible curve with only double points, then on 
the one hand the linear series I ,(K + L) I cuts out the canonical 
series on Eo, while on the other hand the genus of Eo is given by 

ir(Eo) = xr(E) - deg A. 

Consequently, A imposes independent conditions on [K + L j, and the 
only way we can have hI (9, (K + L)) ; 0 is for Eo to become reducible; 
in this case dim H2(Eo) clearly goes up accordingly. 

In general, we may say that the zeros of the equation (2.22) as E 
varies are detecting by analytic and topological means the solutions to 
the following algebro-geometric problem: 

Among zero cycles A on Mflnd those for which 

Jdim Iqa2(kL)I O0 

Ldim I ,(K + nkL) I < dim [K + nkL -deg A. 

Fortunately the Lefschetz (1, 1) theorem for curves on a surface was not 
formulated in this way or else it might not have been proved. 

9This observation follows from the exact cohomology sequence of 0 -S , (K + nL) - 

OM(K + nl) - CA - Oand h'(OM(K + nL)) = 0. 
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