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The Laplace-Beltrami operator on the upper half-plane with respect to the hyperbolic
metric is

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

The arithmetic interest of the eigenfunctions of ∆ invariant under the modular group
Γ = SL(2,Z) and its congruence subgroups was signalled by Maass [17], who was inspired by
earlier work of Hecke. If γ ∈ GL(2,Q) then Γγ = γ−1Γγ ∩ Γ is of finite index in Γ. Thus if
det γ > 0 so that γ also acts as a fractional linear transformation on the upper half-plane
one can introduce the operator

Tγ : f →
∑

δ∈Γγ\Γ

f(γδz), Im z > 0.

It is called a Hecke operator. It commutes with ∆, and acts on its eigenspaces. The study
of these operators and of those appearing in Hecke’s work promises to be of considerable
importance for diophantine problems, in particular for the investigation of the Dirichlet series
to which the names of Artin and Hasse-Weil are attached. However the spectral theory of
∆ on Γ-invariant functions is a purely analytic problem, of interest in its own right for any
discrete subgroup Γ of SL(2,R) whose fundamental domain has finite volume. If the quotient
of the upper half-plane by Γ is compact the spectrum is discrete, but otherwise there is a
continuous spectrum and the corresponding eigenfunctions are called Eisenstein series.

If the quotient is not compact there are cusps. By way of illustration we may assume that
∞ is a cusp. This means that Γ contains a subgroup of the form

Γ0 =

{(
1 na
0 1

) ∣∣∣∣∣ n ∈ Z

}
and that a part of the fundamental domain can be taken to be{

z = x+ iy
∣∣ −a/2 < x ⩽ a/2, y > b

}
.

Here a and b are positive real numbers, and for convenience we take a = 1.
Then a function ψ invariant under Γ has a Fourier expansion

ψ(x, y) =
∞∑

n=−∞

ψn(y)e
2πinx,
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and ψ0(y) is called the constant term at ∞. If the constant term at all cusps is 0 then ψ is
called a cusp form. If ψ is an eigenfunction of ∆ then

ψ′′
n − 4π2n2ψn =

λ

y2
ψn,

so that
(1) ψ0 = αy1/2+s + βy1/2−s,

with s2 − 1
4
= λ. For n ̸= 0 the equation has an exponentially increasing solution, which

can play no role in the spectral theory, and an exponentially decreasing solution, which is
thus square-integrable in a neighborhood of the cusp for the invariant volume is dx dy/y2.
As a consequence one can expect that the spectrum of ∆ in the space of cusp forms will be
discrete. This was proved by Roelcke [18].

On the orthogonal complement, with respect to the inner product defined by the invariant
area dx dy/y2, of the space of cusp forms functions are controlled by their constant term.
Thus on this space ∆ can be regarded as a perturbation of the operator y2d2/dy2 on the
half-line y ⩾ 1 with respect to the measure dy/y2, or rather of the direct sum of r such
operators if there are r cusps. Consequently there should be an r-fold continuous spectrum
of Lebesgue type on −∞ < λ ⩽ −1

4
together with a finite set of discrete eigenvalues.

The present problem has a special feature: the perturbed eigenfunctions can be constructed
explicitly. Observe that F (z, s) = y1/2+s, z = x+ iy, is an eigenfunction of ∆ as are all its
translates by elements of Γ. The series

E(z, s) =
∑
Γ0\Γ

F (γz, s)

converges for Re s > 1
2

and gives an eigenfunction of ∆. One can build the analogous
function for each cusp, try to analytically continue it to Re s = 0, and in this way obtain
the eigenfunctions for the continuous spectrum. The problem was posed by Roelcke, and
solved by him for congruence subgroups, for which these Eisenstein series reduce to classical
series which can be treated with the help of the Poisson summation formula. The general
problem he could only solve partially, but he was able to continue analytically to the region
Re s > 0 with techniques from operator theory [19]. The discrete spectrum lies in the interval
−1

4
< λ ⩽ 0 and the associated eigenfunctions are residues of E(z, s).

The problem was also considered by Selberg, who solved it completely [21]. For his proof, at
least for one of them, the essential tool for the analytic continuation is provided by inequalities
for the coefficients in (1) when ψ is an Eisenstein series. These are obtained by integration
by parts of truncated functions [15] or by Fourier analysis [16]. Selberg never published a
complete proof (cf. [20, 22]) but the proof of the analytic continuation for series of rank
one attached to cusp forms given in [16] was inspired by his methods. So it contains the
same elements, although a little distorted. The proof in [15] is perhaps closer to that of
Selberg. Since s and −s yield the same eigenvalue the functions E(z,−s) attached to the
various cusps must be expressible in terms of E(z, s), and the resulting functional equations
are critical to the proof.

But Selberg’s purpose in [21] went beyond the special theory. A function ψ on the upper
half-plane may be identified with a function φ on G = SL(2,R) invariant on the right under
K = SO(2) by setting φ(g) = ψ

(
g(i)

)
. If f is a function on G with compact support and
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bi-invariant under K then
φ ∗ f =

∫
G

φ(gh)f(h) dh

is also the lift of a function invariant under Γ. The operators φ→ φ ∗ f commute with each
other and with ∆, and their spectral theory is identical with that of ∆. They are integral
operators with easily computed kernel and, if the quotient of G by Γ is compact and the
function smooth, even of trace class. The trace is computed by integrating the kernel over
the diagonal and, just as for the character of an induced representation, is easily expressed
as a sum over conjugacy classes of Γ of orbital integrals of f . This is a form of the Selberg
trace formula, in this case a simple but none the less powerful tool. If the quotient is not
compact the operators are no longer of trace class, but their restriction to the space of cusp
forms is. It is still possible with the help of the Eisenstein series to obtain a formula for the
trace of the restriction, but the analysis is substantially more difficult and the result far more
complicated [21].

As an application Selberg evaluated in closed form the trace of the Hecke operators acting
on holomorphic forms of a given weight and level, a problem treated at about the same
time by Eichler [8] with the help of a Lefschetz formula, at least for weight two. For this
application one must consider not functions on G/K, which is the upper half-plane, but
sections of a bundle defined by K, in other words functions on G transforming on the right
according to a certain finite-dimensional representation of K and invariant on the left under
Γ. Indeed at the time of writing of [21] a number of developments (cf. [13, 14]) were making
it clear that the proper setting for the theory of automorphic forms was a reductive group G
and an arithmetic subgroup Γ, and that many aspects of it were nothing but a study of the
infinite-dimensional representation of G on L2(Γ\G). The origin of these developments is
generally felt to be the 1952 paper of Gelfand-Fomin [10], in which representation-theoretic
methods were introduced into the study of geodesic flows.

The general problems were considered in the addresses of both Gelfand [11] and Selberg
[22] in Stockholm. Selberg works with an arbitrary group, although he confines himself
to K-invariant functions. He poses the problem of analytic continuation of the Eisenstein
series in general, sketches very clearly his proof in the rank one case, and draws attention to
some special series in several variables whose analytic continuation can be effected by means
essentially classical. In addition he states that he can treat all series for the pair Γ = SL(n,Z),
G = SL(n,R), but no indications of proofs have ever appeared. It seems they involve theta
series and can only be applied to a limited class of groups. He also emphasizes the importance
of developing a trace formula in general, and of applying it to the Hecke operators. Gelfand
works with Γ\G and stresses the spectral problem, which is now to decompose L2(Γ\G) into
a direct integral of irreducible representations. He introduces the fundamental notion of cusp
form in general, and states the important theorem, due to himself and Piatetskii-Shapiro, that
the representation on the space of cusp forms is a discrete sum of irreducible representations
when G is semisimple. He also points out the similarity of the problem with that arising in
scattering theory, and it is indeed striking and useful to bear in mind, although the analogy
cannot be pushed too far and it has not been very profitable to transport methods from one
domain to the other.

The spectral analysis of the quantum-mechanical Hamiltonian H for n interacting particles
X1, . . . , Xn in d-dimensional space often assumes an intuitively very simple form (see [12,
§13.2] for a brief description and [1] for the complete theory). The bound states correspond,
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if we overlook the movement of the center of gravity, to the discrete spectrum and are
finite in number. More generally if we partition X1, . . . , Xn into clusters S1, . . . , Sl then the
Hamiltonian Hj for the particles in Sj alone will have bound states X1,j, . . . , Xmj ,j which
can move with a momentum pj. For each partition and each choice Xkl,1, . . . , Xkl,l of bound
states there will be a subspace of the total Hilbert space L2(Rnd) on which H acts that is
isomorphic to L2(Rld), the underlying parameters being p1, . . . , pl, and H will act on this
subspace as

l∑
j=1

1

2mj

P 2
j + C,

where C is the total energy of the bound states. Thus each partition and each family of bound
states yields a piece of the total Hilbert space corresponding to freely and independently
moving clusters in these states. The total space is the orthogonal direct sum of the pieces.

The analogue in the theory of Eisenstein series of a partition into clusters is a cuspidal
subgroup of G, which is in particular a parabolic subgroup. If G = GL(n) these are obtained
by choosing a basis {x1, . . . , xn} of the n-dimensional coordinate space and a partition
S1, . . . , Sl of the basis. If Pj is the stabilizer of the span of

⋃
1⩽k⩽j Sk then the parabolic

subgroup associated to the basis is
⋂l

j=1 Pj.
In general if P is a cuspidal subgroup for Γ and if one projects Γ∩ P on a Levi factor of P

one obtains a pair Θ, M like Γ, G. The Levi factor itself is AM where A is a vector group.
A complex character χ = χ(s1, . . . , sl) of A depends on l complex parameters and if Φ is a
function yielding a discrete part of the spectrum for Θ\M we can lift the product χ · Φ to
a function on P . The parameter sj is the analogue of

√
−1pj and Φ is the analogue of the

family of bound states.
Taking a function F on G = PK = NAMK of the form

(2)

F (g, s1, . . . , s1) = F (g, s) = F (pk, s) = F (namk, s)

= χ(a)
n∑

j=1

Φj(m)Ψj(k)

we form the Eisenstein series
(3) E(g, s) =

∑
Γ∩P\Γ

F (γg, s).

It converges in a tube over a cone, but not over the point needed for the spectral analysis, and
if the emphasis is on Eisenstein series as in [22] the problem is to show that these functions
can be analytically continued as meromorphic functions to all of Cl, and that they satisfy
functional equations. If the emphasis is on the spectral decomposition of L2(Γ\G) it must be
shown as well how they yield the spectral decomposition of L2(Γ\G). So far it has not been
possible to solve the first problem without at the same time solving the second. They were
both solved in [16]. Selberg has recently indicated to me that he had an idea for effecting
analytic continuation without reference to a spectral decomposition but with the help of
Fredholm theory. However he has not developed it. It would be worthwhile to do so.

The argument of [16] requires some geometrical assumptions on Γ. The ones used are
adequate to arithmetic groups, and indeed based on their reduction theory, and to Fuchsian
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groups of the first kind. They allow one to introduce the constant terms∫
Γ∩N\N

φ(ng) dn,

to define the space of cusp forms, as consisting of those functions whose constant term is zero
for all cuspidal subgroups but G itself, to control the behavior of eigenfunctions by means of
their constant terms, an important analytic tool, and in particular to establish the theorem
of Gelfand-Piatetskii-Shapiro.

Then if A is of dimension one, so that l = 1 and the series depend on a single complex
variable, and if the functions Φj are taken to be cusp forms the proof of the analytic
continuation and the functional equation proceeds pretty much as for subgroups of SL(2,R).
If the dimension of A is greater than one but the Φj continue to be cusp forms, then a
truncation argument and a partial summation to reduce to the one-dimensional case yield
the result. The argument to this point is also presented in [15].

The method used in [16] to deal with the general Eisenstein series is to show that it
can be obtained from a series associated to a cusp form by taking a succession of residues,
reducing thereby the number of variables at each stage by one. It is related to the fact that
in two-particle scattering problems the bound states appear at poles of the scattering matrix.
The central difficulty is to convince oneself that all Eisenstein series are obtained in this
way. The analytic continuation is then immediate, and the functional equations and spectral
decomposition are obtained in the course of the argument.

Its basic nature is easily described. If a function φ on N\G has compact support then

(4) θ(g) =
∑

Γ∩N\Γ

φ(γg)

is square-integrable on Γ\G and if φ can be represented as

φ(amk) =
1

(2π)l

∫
Re s=σ

χ(a, s)α(s) |ds1| · · · |dsl|
∑
j

Φj(m)Ψj(k),

where s = (s1, . . . , sl) and the Φi are cusp forms then

(5) θ(g) =
1

(2π)l

∫
Re s=σ

α(s)E(g, s) |ds1| · · · |dsl|

and there is a fairly simple expression for the L2-norm of θ in terms of α, which is an entire
function, and certain auxiliary functions. In the simplest cases it is of the form

(6)
∫
Γ\G

∣∣θ(g)∣∣2 dg = 1

(2π)l

∫
Re s=σ

∑
ω∈Ω

m(ω, s)α(s)α(−ωs) |ds|.

The group Ω is a finite group of real linear transformations, a Weyl group, and the functions
m(ω, s), which appear in the constant term of the Eisenstein series, satisfy

(i) m(1, s) = 1,
(ii) m(ω, s) = m(ω−1,−ωs),
(iii) m(ω1ω2, s) = m(ω1, ω2s)m(ω2, s).

In particular
∣∣m(ω, s)

∣∣ = 1 if s is purely imaginary.
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The problem is in essence to find a decomposition for the space spanned by the functions θ.
If σ in the formula (6) were 0 then∫

Γ\G

∣∣θ(g)∣∣2 dg = |Ω|
∫
Re s=0

∣∣β(s)∣∣2 |ds|
where β = Πα is defined by

β(s) =
1

|Ω|
∑
ω∈Ω

m(ω−1, ωs)α(ωs).

The operator Π is the orthogonal projection of the space of square-integrable functions on
Re s = 0 onto the space of β satisfying

β(ωs) = m(ω, s)β(s)

for all ω and s with Re s = 0. Thus an obvious density argument yields an isomorphism of
the space spanned by the θ with a simple L2-space, and it has been so constructed that the
operators of interest become multiplication by functions of s

Unfortunately σ is usually not 0. The procedure in general is to deform the contour to
σ = 0, thereby picking up residual integrals of dimension l − 1, the poles of the functions
m(ω, s) being the poles of Eisenstein series. If α is chosen to vanish along these poles
these residues do not appear. Since this restriction does not affect density in the space of
square-integrable functions on Re s = 0, the l-dimensional spectrum is as before. For an
arbitrary α the square of the norm of the projection of θ on the complement of this spectrum
is given by the residual integral. But then the process can be iterated until one arrives at the
discrete spectrum and is done.

There are difficulties. The analogues of the functions m(ω, s) may have poles of higher
order; they may have poles on the analogues of Re s = 0; and we may be forced into regions in
which we can no longer control their rate of growth as Im s→ ∞. So an elaborate induction
is required. There is a great deal to be proven at each stage, and to facilitate matters, the
notion of Eisenstein system, which supplies the title to the book under review, was defined.

The book is indeed largely an exposition of that part of [16] which treats the Eisenstein
series associated to general forms and the spectral decomposition. Some find it a useful
adjunct to [16]; others do not. It must certainly be used with caution, for it is tendentious,
the tone occasionally lapsing into truculence.

The first chapter contains a review of results on discrete groups, many with only a tenuous
connection with the problem to be treated, and a bizarre survey of previous work on the
analytic theory. In particular the reader is misled about the present status of the trace
formula and about the role played by adele groups. The first reason for introducing the adele
groups into the theory of automorphic forms is the formal and conceptual simplicity they
entail. This is particularly true in the theory of Eisenstein series. Moreover the spaces that
arise in the adelic theory are finite unions of the spaces Γ\G that occur when working with
discrete subgroups of Lie groups. So it demands no additional analysis, simply a routine and
formal re-interpretation of the results. Osborne and Warner do their readers a disservice by
suggesting otherwise.

To confine oneself to adele groups is equivalent to confining oneself to congruence subgroups
and it is best to refrain from this until it is appropriate, for the theory of Eisenstein series
promises to have applications to the study of the cohomology groups of Γ, and these are of
interest for more general classes of discrete groups.



REVIEW OF THE THEORY OF EISENSTEIN SYSTEMS 7

For the trace formula too one hesitates to impose gratuitous restrictions, for it does have
geometric applications. However, as appears already in Selberg and as has been confirmed
by later applications to Artin and Hasse-Weil L-functions, a principal purpose of the trace
formula is to study the Hecke operators, which in general can only be handled adelically. So
it is convenient to derive it directly in the adelic context, indeed critical. First of all the
trace formula appears as a sum over conjugacy classes, and these are easier to analyze in
G(Q) then in G(Z). Secondly both Arthur, who has developed a general trace formula, and
Flicker1, who has made several interesting applications in low dimensions, exploit devices
peculiar to adele groups.

Only the final chapter of the present book refers directly to the trace formula. The authors
show, using a device first introduced into the subject by Duflo-Labesse [7], that convolution
with a large class of functions yields operators of trace class on the space of cusp forms and, in
addition, operators on the total continuous spectrum with continuous kernels, a result due to
themselves. The concept of a trace formula implicit in this chapter and in their introduction
ignores the experience of the past decade. It differs from that of Arthur, which is highly
developed [2, 3], has been applied [9], and has led to a body of results of interest in their own
right [4, 5, 6]. Incidentally, in Arthur’s hands the trace formula has taken a shape somewhat
different than anticipated. He introduces directly a truncated kernel, evaluates its trace in
two ways, and then deals with the problem of interpreting both sides.

In the second chapter Osborne and Warner devote considerable space to their geometric
assumptions on Γ, finally equivalent to those of [16], and they point out that it is easy, by
introducing a compact factor, to construct groups which violate them. The compact factor is
a standard device for dealing with cohomology of Γ with coefficients; so there is motivation
for extending the theory to these groups, even though it does not appear to be needed for
arithmetical purposes, but the authors do not pursue the problem. Chapters 3 and 4 are
reviews of material on automorphic forms and Eisenstein series associated to cusp forms.

Chapters 5, 6 and 7 are the heart of the book and are an exposition of the induction
argument of Chapter 7 of [16]. This induction demands the verification of a number of
technical conditions at each stage, and a feature of their presentation, which will be useful
even to the reader of [16], is that they label these conditions, and clarify their logical
interdependence. In addition a number of facts, like those of Propositions 5.1, 5.2, 5.7 and
lemma 5.5, which are simply taken for granted or stated without comment in [16] are isolated
and proved, and this may be a help to the inexperienced reader. On the other hand the
global structure of the induction is obscured. So it may be worthwhile to close the review
with a technical discussion of the proofs, in an attempt to provide a guide to these three
chapters and to the last chapter of [16] as well.

The pair
(Γ, G) =

(
GL(n1,Z)× · · · ×GL(nr,Z), GL(n1,R)× · · · ×GL(nr,R)

)
is typical. A conjugacy class of cuspidal subgroups is determined by partitions Πi =
{S1

i , . . . , S
l1
i } of ni, 1 ⩽ i ⩽ r, and the Levi factor is then isomorphic to

∏r
i=1

∏l
j=1 GL(nj

i ,R)

if nj
i = |Sj

i |. So these pairs are sufficiently general to permit induction.
Two conjugacy classes of cuspidal subgroups are associate if for all i the partition Π′

i is
obtained from Πi by a permutation of {1, . . . , ni}. In contrast to scattering theory there is

1(Added in 2001). I can no longer recommend [9] to the reader. He is better off reading the book of
Arthur-Clozel published by Princeton University Press.
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here an easy initial decomposition of L2(Γ\G) into a direct sum of spaces L(P). The space
L(P) is the closed span of the functions θ introduced above as P varies over P. It is the
space L(P) we need to decompose.

Let P ′ ≻ P mean that some family of partitions defining P is finer than one defining P ′

and let r(P) be the rank of the P in P , namely
∑

i li. The decomposition of L(P) takes the
form

L(P) =
∑
P ′≻P

L(P ′,P)

where L(P ′,P) itself is a direct sum of direct integrals with respect to r(P ′)-dimensional
Lebesgue measure. In particular when P ′ = {G} the rank r(P ′) is a minimum and

L
(
{G},P

)
=
⊕

V ⊗ L2(Rr)

where V are subspaces of functions on Γ\G square-integrable modulo the centre of G and G
acts irreducibly on V . The action on L2(Rr) is given by g = (g1, . . . , gr) : f(x1, . . . , xr) →∏r

j=1(det g)
ixjf(x1, . . . , xr). Thus V ⊗ L2(Rr) =

∫
V ⊗ χ(ix1, . . . , ixr) dx1 · · · dxr. The sum

runs over all such V modulo the equivalence V ∼= V ⊗ χ(ix1, . . . , ixr), x1, . . . , xr ∈ R.
It is important that the K-finite functions in these spaces can all be expressed as linear

combinations of residues of Eisenstein series associated to cusp forms on Levi factors of
parabolic subgroups in P . Such a residue is obtained by choosing the parabolic subgroup P
and I collections Φi

j , Ψi
j , 1 ⩽ j ⩽ ni, of functions on Θ\M and K respectively, where each Φi

j

is a cusp form, building the functions Fi(g, s), then choosing polynomials ai(s), and finally
taking the (l − r)-fold residue of

∑I
i=1 ai(s)Ei(g, s) with respect to l − r linear functions

on Cl.
The analytic continuation of all Eisenstein series is immediate. Consider that defined by

(3) in which for convenience we replace P by P ′. The functions Φj occurring in (2) will
then be finite linear combinations of functions in L2(Θ′\M ′) transforming according to an
irreducible representation of M ′. Using the spectral decomposition we may even suppose that
each function a′m′ → Φj(m

′) lies in some V , with V ⊗ L2(Rl′) ⊆ L
(
{M ′},PM ′

)
and finally

that it is a residue of some
∑
ai(s)E

′
i(g, s), the E ′

i being Eisenstein series for M ′ attached
to cusp forms on the Levi factor M of a cuspidal subgroup PM in M ′. But PMN

′ is then
a cuspidal subgroup P of G with Levi factor M and the Eisenstein series attached to the
Φj is an (l − l′)-fold residue of

∑
ai(s)Ei(s), Ei being defined by the same collection as E ′

i

but as an Eisenstein series on G attached to P . Since
∑
ai(s)Ei(s) is meromorphic in Cl′

the residue is meromorphic on Cl. This gives the analytic continuation and, if one likes, the
functional equations as well. In fact this part of the argument must be incorporated into
the inductive construction, because as one peels off L(P ,P), L(P ′,P), r(P ′) = r(P) − 1,
L(P ′,P), r(P) = r(P)− 2, and so on, successively from L(P) one must use the analytically
continued Eisenstein series to decompose them as direct integrals.

The induction demands a deformation of contours in complex spaces of the form Re s = σ,
s = (s1, . . . , sl). The first point to check is that this does not force one to contend with
infinitely many residues. This is Proposition 5.3 of Osborne-Warner (Lemma 7.2 of [16]).
The proof requires Lemma 7.3 of [16], which does not seem obvious to me but which Osborne-
Warner insert as an observation, with no proof and no comment but a page number in
[16].
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The (l − l′)-fold residues arising from the integrals (5) will be of the form

(7)
1

(2π)l′

∫
α′(s)E ′(g, s) |d′s|

where s′ lies in an l-dimensional space X ⊆ Cl. There are many of them and considerable
redundancy can occur, in the sense that the eigenfunctions E ′(g, s′) parametrized by one
space may be the same as those parametrized by another. The purpose of Proposition 5.4
(Lemma 7.4 of [16]) is to control the redundancy. It also yields the functional equations
immediately, but the authors do not point this out clearly. Rather they devote a separate
Chapter 6 to them, burying a simple fact in a welter of notation. Proposition 5.6 (Corollary
to Lemma 7.4 in [16]) guarantees in essence that the residues one obtains are eigenfunctions.

The technical device used to overcome the lack of information on the growth of the functions
E ′(g, s′) in (7) on the sets Re s′ = σ′ is the spectral theory of an operator analogous to the
Hamiltonian. It is used in Propositions 5.8 and 5.9 (Lemmas 7.5 and 7.6 of [16]) to construct
the spaces L(P ′,P). Their structure is manifest, for at this point one has the analytic
continuation of the relevant Eisenstein series, although one has to take Proposition 5.11
(Corollary to Lemma 7.6), which guarantees that they are analytic on the unitary axis, into
account. Thus one has the spectral decomposition, but Osborne and Warner wait until
Chapter 7, which seems none the less to be clearly written, to notice it.

However all this presupposes the successful construction of Eisenstein systems at each
stage, and the final struggle comes in proving Theorem 5.12 (Theorem 7.7 (=7.1) of [16]).
After the first stage the subspaces X of formula (7) intersect, so that at the following stages
there may be several residues attached to the same space X but to different σ′. Thus it is
necessary to choose a definite σ′

0 and deform all contours to Re s′ = σ′
0, thereby introducing

residues of one dimension less, which have to be set aside momentarily but taken into account
at the next step. It is difficult to juggle all these spaces and to ensure that none without the
properties essential to the induction insinuate themselves. The argument of [16] is compressed
into ten pages, but Osborne and Warner wisely take fifty-four, which include however Lemma
7.1 of [16]. The arguments are similar but not identical and involve delicate geometric
considerations, on which everything hangs, as by a thread.
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